
Abstract

We de�ne a new paradigm | postrelativity | based on the hy-

pothesis of a preferred hidden Newtonian frame in relativistic theories.

It leads to a modi�cation of general relativity with ether interpreta-

tion, without topological problems, black hole and big bang singulari-

ties. Semiclassical theory predicts Hawking radiation with evaporation

before horizon formation. In quantum gravity there is no problem of

time and topology. Con�guration space and quasiclassical predictions

are di�erent from canonical quantization of general relativity. Un-

certainty of the light cone or an atomic structure of the ether may

solve ultraviolet problems. The similar concept for gauge �elds leads

to real, physical gauge potential without Faddeev-Popov ghost �elds

and Gribov copy problem.
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1 Introduction

\Postrelativity" is a new paradigm about space, time and causality alterna-

tive to the usual, relativistic paradigm of curved spacetime. The name should

suggest that it revives pre-relativistic notions combined with incorporation

of relativistic results. It is de�ned by the following principles:

1. Classical quantum framework: Quantum theory has to be based on the

complete framework of standard, classical quantum theory.

2. Restricted relativity: Relativistic invariance is not required. Relativity

remains to be a powerful guiding principle, but only in a restricted

sense. A relativistic expression has to be chosen whenever possible

without violation of the �rst principle.
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The introduction of a new paradigm requires \postrelativization" of cur-

rent physics | the development of postrelativistic versions of existing rel-

ativistic theories and reconsideration of relativistic quantization problems.

The aim of this paper is to give an overview of the results, hypotheses and

ideas we have obtained following this program.

At �rst, we give a justi�cation for our choice of principles. Postrelativ-

ity may be understood as a reformulation of the known \preferred frame

hypothesis" | the existence of a hidden Newtonian frame is the most inter-

esting consequence of postrelativity. This reinterpretation as an alternative

paradigm removes the main argument against this hypothesis | incompati-

bility with the relativistic paradigm.

Postrelativity already requires a modi�cation of classical general relativ-

ity. We have to incorporate a Newtonian background frame as a hidden

variable. This leads to minor but interesting di�erences like a di�erent sce-

nario for the black hole collapse without singularity and well-de�ned local

energy and momentum conservation. This postrelativistic theory of gravity

suggests an interpretation as an ether theory with dynamical ether described

by deformation tensor, velocity and a scalar material property | the local

speed of light. The tetrad formalism may be incorporated, reduces to a triad

variant and suggests interpretation as crystal structure of the ether.

In scalar semiclassical theory we de�ne the con�guration space indepen-

dent on the gravitational �eld via canonical quantization. The vacuum state

and the Fock space structure appear only as derived notions, uniquely de-

�ned but dependent on the gravitational �eld and time. Hawking radiation is

a necessary consequence of this approach. The black hole evaporates before

horizon formation. The introduction of tetrad formalism allows to gener-

alize this scheme to particles with spin. Using semiclassical considerations

the Feynman diagram technique may be justi�ed only for the �rst order tree

approximation and for momentum below Planck scale.

In quantum theory, the Newtonian background frame remains �xed and

certain. On the other hand, the gravitational �eld, especially the light cone,

becomes uncertain. The uncertainty of the light cone may remove ultraviolet

problems by regularization of the light cone singularities. Another possibility

to remove ultraviolet problems may be the introduction of an atomic struc-

ture of the ether, without necessity of discretization of space or time required

by the similar relativistic concept.
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We consider canonical quantization and the path integral formulation

as possibilities for quantization. We observe some essential simpli�cations

compared with the canonical quantization of general relativity. Especially we

have no problem of time and no topological foam. We also �nd a di�erence

in the con�guration space. This suggests that above approaches lead to

quantum theories with di�erent experimental predictions because of di�erent

de�nition of the Pauli principle.

For quasiclassical theory we consider a simple gedanken-experiment to

�nd di�erences between the postrelativity and relativity. In postrelativity

we are able to make predictions which coincide in the non-relativistic limit

with Schr�odinger theory. These predictions cannot be made in the relativistic

approach because of symmetry reasons. This suggests that in the relativistic

approach it is problematic if not impossible to derive Schr�odinger theory as

the non-relativistic limit.

Then we use the similarity between gauge theory and gravity to �nd a

version of gauge theory which corresponds to postrelativistic gravity. In this

postrelativistic gauge theory the gauge potential becomes a real, physical

variable, the Lorentz condition has to be interpreted as a physical evolution

equation. The con�guration space of postrelativistic gauge theory contains

di�erent gauge-equivalent gauge potentials as di�erent states. This leads

to di�erent experimental predictions at least for non-Abelian gauge theory.

Because of the absence of a gauge-�xing procedure there will be no Faddeev-

Popov ghost �elds and no problems with Gribov copies. Similar to gravity,

a quasiclassical gedanken-experiment suggests problems of the relativistic

approach with the Schr�odinger theory limit.

Last not least, we discuss some esthetic, metaphysical and historical ques-

tions related with the postrelativistic approach.

2 The Principles of Postrelativity

This may be considered as the diametrically opposite to Einstein's concept

that general relativity is more fundamental compared with quantum theory.

It is known that some problems of relativistic quantum theory, especially

the problem of time [19] and the violation of Bell's inequality [7] for realistic

hidden variable theories allow a solution by assumption of a preferred but

hidden Newtonian background frame.
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This \preferred frame hypothesis" is usually not considered as a serious

alternative. The reason is that it is not compatible with the relativistic

paradigm | the philosophical and metaphysical ideas about space and time

related with Einstein's special and general relativity. This obvious incom-

patibility is usually solved in favour of the relativistic paradigm. But we

consider the problems solved by the preferred frame hypothesis | especially

the problem of time | as serious enough to try the other way and to re-

ject the relativistic paradigm. This requires to replace it by an alternative

paradigm which is not in contradiction with the preferred frame hypothesis.

2.1 A Simple Fictional World

Let's consider at �rst a simple �ctional world. This world is non-relativistic,

with a classical Newtonian frame. By unspeci�ed reasons, measurement is

very restricted, especially for length to rulers of a single material. That

means, length comparison of di�erent materials cannot be used to built a

thermometer. We assume that temperature is not observable by other meth-

ods too.

Nonetheless, a non-constant temperature distribution may be observed by

length measurement. Indeed, it leads to nontrivial curvature of the metric

de�ned by this length measurement. On the other hand, length measurement

cannot be used to observe the Newtonian background. It would be no won-

der if it would be able to derive a \theory of relativity" with temperature

as an unobservable, hidden potential, which is able to explain all classical

observations.

On the other hand, it is clear that it would not be possible to extend this

relativistic theory to the quantum domain. The correct quantum theory is

| per construction | classical quantum theory. An identi�cation of states

with identical metric but di�erent Newtonian background would be wrong.

We see, that a situation where the preferred frame hypothesis is correct

and the relativity principle valid in the classical limit but restricted in general

is imaginable. It may be not an inherent problem, but only a restriction of

our observation possibilities, which hides the Newtonian background frame.

It would be not the �rst time in history we have to learn about the restricted

possibilities of mankind.

In principle, postrelativity may be considered as an attempt to �nd out

if we live in a similar situation. The two principles we have formulated for
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postrelativity can be considered as derived from the general idea of a hidden

preferred frame, by analogy from this �ctional world. Let's now consider

these principles in detail.

2.2 Classical Framework

At �rst let's consider the �rst principle. It describes the general, metaphysical

and philosophical foundations of the theory and an essential part of the

mathematical apparatus. It is the apparatus of classical quantum theory.

This apparatus in no way requires to reject relativistic �eld theories. As we

will see below, we don't have to modify very much to incorporate them into

the classical framework.

Thus, the general structure and the symmetry group of the theory is

classical, relativistic properties follow only from the physics, from properties

of the Schr�odinger operator.

Of course, this general notion \framework" is a little bit uncertain yet. In

some sense, this is natural | it is possible to modify or remove some parts

from the notion \framework" if they cause problems in future without giving

up the whole concept. Thus, the speci�cation below is also a description of

the state of the research which parts of the classical framework do not cause

problems in the following.

2.2.1 Contemporaneity, Time and Causality

Absolute contemporaneity is the most important, characteristic part of the

classical framework. Remark that this contemporaneity is not considered to

be measurable with clocks. The impossibility of an exact measurement of

time is known from quantum mechanics: Any clock goes with some probabil-

ity even back in time [19]. Absolute contemporaneity leads also to absolute

causality.

Together with contemporaneity we require symmetry of translations in

time. But, because we have no time measurement, we have no natural unit.

We have only an a�ne structure in time direction.
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2.2.2 The General Principles of Quantum Mechanics

We require the standard mathematical apparatus of quantummechanics, that

means, the Hilbert space, states as self-adjoint, positive-de�nite operators

with trace 1, observables as projective operator measures, and evolution as

an unitary transformation. Any of the usual interpretations of this apparatus

can be used.

We consider classical theory to be only the limit ~! 0 of quantum theory.

In this sense, quantization is an incorrect, inverse problem, and canonical

quantization is considered only as a method to obtain a good guess. But, of

course, for a given classical theory, the canonical quantization has to be tried

at �rst.

We do not include into the classical framework any requirements about

the Hamilton operator other than to be self-adjoint and time-independent.

2.2.3 Space, Translations and the A�ne Galilee Group

The next required part of classical quantum theory is the three-dimensional

space and the group of translations in space. This allows to de�ne position

and momentum measurement, the standard commutation relations and the

related standard simplectic structure of the phase space.

Remark that we have not included a metric of space or time into the

classical framework. Indeed, the metric occurs in the Hamilton formulation

of classical mechanics only in the Hamilton function and is that's why not

part of the framework. Thus, the symmetry group of the classical framework

as we have de�ned it here is not the classical Galilee group, it but the a�ne

variant of this group. This group contains the following subgroups:

� translations in space;

� translations in time;

� the classical Galilee transformations (x0i = x
i � v

i
t);

� linear transformations in space (xi
0

= a
i0

j x
j);

� linear transformations in time (t0 = at);

� and, of course, any compositions.
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Remark that because of the absence of a distance in space there is no

preferred subgroup of rotations. In the following we name this group the

\a�ne Galilee group".

2.2.4 Con�guration Space

The con�guration space has to be de�ned in an a�ne-invariant way. Another

requirement is locality. That means, �eld operators dependent on position

for di�erent positions have to be independent.

Another question is the independence between di�erent �elds in the same

point. In classical quantum theory, the con�guration space is a tensor prod-

uct of the con�guration spaces for di�erent steps of freedom. The interaction

is de�ned by the Hamilton operator, not by nontrivial con�guration space

structure.

Such a tensor product structure allows a simple operation | to ignore

the state of another step of freedom. We don't have to specify a complete

measurement for all steps of freedom, but can de�ne such a complete mea-

surement by the measurement of interest for one step of freedom and \some

other measurement" for the other steps of freedom. To ignore other steps

of freedom is a measurement of these steps of freedom which seems easy to

realize, thus, it is a natural assumption that this is possible.

Thus, if for a given theory it is possible to �nd a formulation with ten-

sor product structure of the con�guration space, it is reasonable to prefer

this variant, at least by Ockham's razor. Of special interest is of course the

independence between gravity and matter. As we will see below, it is pos-

sible to introduce a tensor product structure into the con�guration space of

postrelativistic quantum gravity.

2.3 Restricted Relativistic Invariance

The second principle is formulated in a very weak form, but nonetheless

remains very powerful. De-facto, all what has been done in the relativis-

tic domain, with small exceptions, has to be incorporated because of this

principle. The restriction leads usually only to one modi�cation: An object

which is not relativistic invariant has in relativity the status \not existent",

in postrelativity it has the status \maybe not observable".
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Roughly speaking, it can be said, that the �rst principle describes the

framework, the second tells that we have to make the contents as relativistic

as possible.

3 Classical Postrelativistic Gravity

At �rst, it may be assumed that our set of principles leads to contradictions

already in the classical limit ~! 0. This is not the case. We present here a

theory which is in full agreement with the principles of postrelativity and in

agreement with experiment named (classical) postrelativistic gravity (PG).

It can be considered as a generalization of the Lorentz-Poincare version of

special relativity [26] to general relativity. It may be interpreted also as a

classical ether theory. It can also be considered as a minor modi�cation of

general relativity which de-facto is not distinguishable from general relativity

by classical experiment.

PG can be derived from the postrelativistic principles at least in an infor-

mal way: There have to be an absolute a�ne time t and an absolute a�ne

space like in classical theory because of the �rst principle. The evolution of

the additional variables | like for all variables | has to be �xed by evolution

equations. If possible, we have to use a relativistic equation because of the

relativistic principle. The existence of such relativistic equations | the har-

monic coordinate condition is a relativistic wave equation for the harmonic

coordinates | shows that this is possible and that's why �xes the harmonic

equation as the evolution equation.

3.1 The Equations of Classical Postrelativistic Gravity

In the classical formulation we have preferred coordinates - a�ne space co-

ordinates and time. The gravitational �eld is described like in general rela-

tivity by the tensor �eld gij(x; t). General-relativistic time measurement is

described like in general relativity by proper time:

� =

Z r
gij(x; t)

dxi

dt

dxj

dt
dt

The equations of the theory are the Einstein equations
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Rik �
1

2
gikR =

8�k

c4
Tik

and the harmonic conditions

@i

�
g
ik
p
�g
�
= 0

As equations for the material �elds we also use the same equations as

general relativity. The coordinates are interpreted as a�ne coordinates of a

hidden but real Newtonian frame. This de�nes an absolute contemporaneity

and absolute causality as required by the �rst principle.

Local existence and uniqueness theorems can be easily obtained. Indeed,

the existing results for general relativity use harmonic coordinates and can

be interpreted as theorems for postrelativistic gravity combined with the

derivation of the general-relativistic results from these theorems.

PG does not de�ne distances for the background structure, nor in space,

nor in time. Thus, the symmetry group of PG is the a�ne Galilee group.

3.1.1 Covariant Formulation

Of course, we can give also an equivalent covariant formulation of the theory.

In this formulation, we introduce a covariant derivative ~r (di�erent from the

covariant derivative de�ned by the metrical tensor) and a global function t

and describe them by the following equations:

h
~r; ~r]

i
= 0

~ri

�
g
ik
p
�g
�
= 0

~ri
~rjt = 0

Let's remark also that the preferred coordinates ful�l relativistic wave

equations:

2x
i = 0; 2t = 0;
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3.2 Properties of the Theory

The background framework of PG is hidden from direct observation, but

nonetheless modi�es some properties of the theory. Indeed, the assumption of

additional hidden but real variables can forbids solutions which do not allow

the introduction of these variables, can modify the de�nition of completeness

of a solution, can change the symmetry group of the theory and through the

Noether theorem the conservation laws. All these e�ects we �nd in the

relation between PG and GR. They are similar to the di�erences found by

Logunov et.al. [24], [33] for their \relativistic theory of gravity", a similar

theory but with a special-relativistic instead of Newtonian background.

But, at �rst, remark that for every solution of PG we can de�ne an

\image"-solution of GR simply by \forgetting" the hidden variables. That's

why, the di�erences have only one direction: They allow falsi�cation of PG

without falsi�cation of GR. Let's consider now the di�erences in detail. As

we will see, PG removes some of the most complicate problems for quantiza-

tion: The singularities of the black hole collapse and the big bang, nontrivial

topologies, and the problems with local energy-momentum tensor.

3.2.1 Fixation of the Topology

In a hidden variable theory it may happen that some solutions of the original

theory do not allow the introduction of the hidden variables. The related

observable solutions are forbidden in the hidden variable theory. This de�nes

one way to falsify the hidden variable theory: To observe in reality one of

the forbidden solutions.

In the case of PG, GR solutions with nontrivial topology are forbidden.

Thus, PG excludes a whole class of GR solutions as forbidden. Unfortunately,

the observation of nontrivial topology, if it exists, is very nontrivial, because

it cannot be restricted to local observations only. Indeed, it is su�cient to

remove some parts of codimension 1 from the solution with nontrivial topol-

ogy, and we have a solution with trivial topology which can be interpreted

as a PG solution, even as a complete PG solution.

Thus, the di�erence is only of theoretical interest and cannot be used

for a real falsi�cation of PG. Nonetheless, the theoretical simpli�cation is

essential. In quantum PG, we have not to consider di�erent topologies, thus,

we have no topological foam.
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3.2.2 Di�erent Notion of Completeness

A solution in PG is complete if it is de�ned on the whole a�ne space and

time. There is no requirement of completeness of the metric de�ned by the

gravitational �eld gij .

The most interesting example of this e�ect is the black hole collapse. For

a collapsing black hole, there are reasonable initial values of the harmonic

coordinates de�ned by the Minkowski coordinates in the limit t! �1. The

resulting coordinates have the interesting property that they do not cover the

complete GR solution. Indeed, in the domain outside the collapsing body

the harmonic time coincides with the Schwarzschild time, thus does not cover

the part behind the horizon.

This o�ers a possibility to falsify PG, which is unfortunately also only

very theoretical. If an observer falls into a black hole created by collapse,

and if he really reaches the part behind the horizon, he can be sure that PG

is falsi�ed. Unfortunately he cannot tell us about this observation.

Let's remark that the conceptual problems which may be related with the

singularity, especially the possibility that conservation laws may be violated

[34], are simply not present in PG. Thus, another quantum gravity problem

has simply disappeared.

3.2.3 Di�erent Symmetry Group

Above theories have di�erent symmetry groups. Thus, a solution which may

be considered as symmetrical in GR may not have this symmetry in PG. An

example are the Friedman universes. Only the 
at Friedman universe allows

harmonic coordinates with the same symmetry group. The other, curved, so-

lutions allow the introduction of harmonic coordinates (if we remove a single

\in�nite" world-line from the closed universe solution), but these solutions

are no longer homogeneous. From point of view of the hidden coordinates,

these solutions have a center.

Thus, PG prefers the 
at universe solution as the only homogeneous one.

The fact that the observed universe is at least very close to a 
at universe

speaks in favour of PG. But in our world where even P and CP symmetry is

not observed, an inhomogeneous universe is not forbidden. Thus, observation

of a curved universe would not be a falsi�cation of PG, and that's why it is

not possible to say that PG predicts a 
at universe. Nonetheless, PG suggests
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an easy explanation why our universe is approximately 
at | because it is

approximately homogeneous.

3.2.4 Local Energy and Momentum Conservation

Di�erent from GR, we have a preferred symmetry group of translations in

space and time. This leads because of the Noether theorem to well-de�ned

local conservation laws for energy and momentum of the gravitational �eld

too.

This situation is di�erent from general relativity. The general-relativistic

pseudo-tensor tik is not a tensor, thus, cannot be observable in general rel-

ativity. This is not required in PG. Thus, the pseudo-tensor tik is in PG

a well-de�ned object, of the same class of reality as the hidden background

frame. Thus, the problems with the de�nition of local energy density are not

present in PG. Physically di�erent PG states usually have di�erent energy

even if their general-relativistic image is equivalent.

3.3 Triad Formalism

In general relativity we have some interesting variables known as tetrad vari-

ables. They are useful for the quantization of tensor and spinor �elds on

general-relativistic background, and they allow to replace the non-polynomialp
�g by a polynomial expression. The tetrad variables are four covector �elds

e
i
�(x; t), they de�ne the metric as

g��(x; t) = e
i
�(x; t)e

j
�(x; t)�ij

In PG, the preferred foliation into space and time already splits the met-

ric into separate parts. It is natural to require that the tetrad variables

correspond with this splitting. Especially, consider the hyper-plane de�ned

by constant time. The time-like tetrad vector can be de�ned uniquely by

orthogonality to this plane and the direction of time. Thus, this vector �eld

is already �xed in PG.

The remaining three vector �elds now have to be in this plane. Thus,

in PG the tetrad formalism naturally reduces to a triad formalism. If we

consider these triad variables as the real steps of freedom of the gravitational

�eld, this leads also to some internal advantages. The metric always remains

space-like in the plane of constant time.
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3.4 Ether Interpretation

PG may be easily interpreted as a dynamical ether theory. At least, the

number of components of the gravitational �eld gij(x) is in good agreement

with the steps of freedom and the transformation rules for a material ether.

Remark that from point of view of PG the gravitational �eld gij(x) splits

into parts with separate transformation behavior. At �rst, considering the

transformation behavior for pure Galilee transformations, we can identify the

vector vi = �g0i=g00 as the velocity of the ether. The scalar � = g
00
p
�g

can be identi�ed as the density of the ether. This leads to an interpretation

of the �rst harmonic equation as a conservation law for this density:

@t� � @iv
i
� = 0

The space part of the metrical tensor gij describes the deformation tensor

modulo a scalar factor which de�nes a scalar material property | the local

speed of light.

The ether interpretation is in good correspondence with the triad for-

malism. The three three triad vector �elds de�ne some hidden preferred

directions, which suggest an interpretation in terms of a crystal structure of

the ether.

The ether interpretation can also give hints for quantization. For example,

if the harmonic equation is a conservation law, it has to be ful�lled also for

quantum con�gurations, thus, interpreted as a constraint, not an evolution

equation.

But much more interesting is that it suggests that there may be an under-

lying atomic structure of the ether. Such an atomic variant highly probable

allows to solve ultraviolet problems.

4 Semiclassical Postrelativity

Semiclassical theory considers quantum �elds on a �xed, classical background

solution for the gravitational �eld. Thus, we consider the quantum e�ects

only as small and neglect the in
uence of the quantum e�ects on the gravi-

tational �eld.
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4.1 Canonical Quantization of the Scalar Field

Assume we have given a PG solution as the �xed background. Consider a

scalar particle on this background with the standard relativistic Lagrangian

(Greek indices from 0 to 3, Latin indices from 1 to 3):

L =
1

2

p
�g(g���;��;� �m

2
�
2)

Using the standard canonical formalism, we de�ne (ĝ�� = g
��
p�g)

� =
@L
@�;0

= ĝ
0�
�;�

H = ��;0 � L =
1

2
(ĝ00)�1(� � ĝ

0i
�;i)

2 � 1

2
ĝ
ij
�;i�;j +

m
2

2
�
2
p
�g

We de�ne now � and � as operators with the standard commutation rules

(~ = 1):

[�(x); �(y)] = i�(x� y)

This already gives the guarantee that the �rst principle is ful�lled. We

don't consider here the problem of ordering which occurs in the de�nition

of the Schr�odinger operator. We de�ne the vacuum state as the state with

minimal energy, which has to exist because the energy is nonnegative.

4.2 Special-Relativistic Quantum Field Theory

In the case of the Minkowski space ĝ�� = �
�� it is useful to introduce another

basis:

�k =

Z
e
ikx
�(x)dx; �k =

Z
e
ikx
�(x)dx

which essentially simpli�es the expression for the energy

H =

Z
Hdx = 1

2

Z
�
2
k + !

2
k�

2
kdk; !k =

p
k2 +m2
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Now it is useful to de�ne operators

a
+
k =

1p
2!k

(�k + i!k�k) ak =
1p
2!k

(�k � i!k�k)

with the well-known commutation relations with H:

[ak;H] = !kak

These operators allow to characterize the vacuum state, because for this

state we have

akj0i = 0

Any other constant gravitational �eld (a metric of the same signature as

for the whole spacetime, as for the space only), can be transformed in PG to

the standard Minkowski form within the PG symmetry group. Nonetheless,

let's write down the related expression for the general constant �eld too:

a
+
k =

1p
2!k

(�k � i(ĝ0iki � !k)�k);

ak =
1p
2!k

(�k � i(ĝ0iki + !k)�k);

!
2
k = ĝ

00(�ĝijkikj +m
2
p
�g)

4.3 Nontrivial Gravitational Field

In the general case, it is not so easy to de�ne such a basis. Nonetheless, let's

try to characterize the vacuum state in a similar way at least approximately.

Indeed, consider the wave packets

�kx =

Z
e
iky��(y�x)2

�(y)dy; �kx =

Z
e
iky��(y�x)2

�(y)dy;

Assume a su�ciently small �, so that we have a good approximation

of the momentum, but, on the other hand, assume � big enough so that

the gravitational �eld can be approximated by a constant �eld in the region

there the function is not very small. In this approximation, we can de�ne

local particle operators
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a
+
kx =

1p
2!kx

(�kx � i(ĝ0iki � !kx)�kx);

akx =
1p
2!kx

(�kx � i(ĝ0iki + !kx)�kx);

!
2
kx = ĝ

00(�ĝijkikj +m
2
p
�g);

We obtain

[akx;H] � !kxakx

akxj0i � 0

Thus, for gravitational �elds which vary not very fast, the vacuum state

looks locally like the Minkowski vacuum.

4.3.1 Hawking Radiation

In this way, semiclassical PG de�nes a natural vacuum state and Fock space

structure dependent on the gravitational �eld and time. In general relativity

we have no such natural Fock space de�nition. In the GR paradigm, this is

explained in the following way: To de�ne the notion of a particle, we have

to choose a preferred set of particle detectors which are considered to be

inertial. The vacuum would be the state where these particle detectors do

not detect particles.

The previous considerations allow us to describe the vacuum state de�ned

by PG in these words too. Indeed, the PG background structure de�nes a

preferred set of observers which are considered as inertial observers. At a

given moment of time, these local observers do not observe particles in the

vacuum state.

It is essential that the vacuum state de�nition in PG depends on time.

The state which is the vacuum at t = t0 in general not become the vacuum

state at t = t1, but becomes a state with particles. This e�ect leads to

Hawking radiation. Let's show this: Outside the collapsing body, the har-

monic coordinates which initially coincide with the Minkowski coordinates

19



are static, especially the harmonic time is simply Schwarzschild time. As

we have shown, in the vacuum state at least far away from the surface an

observer at rest does not detect any particles. Thus, this vacuum state will

be close to the state known as Boulware vacuum state. The real state is of

course the result of the evolution of the initial Minkowski vacuum. The evo-

lution of this state - known as the Unruh state - coincides after the collapse

with the Hartle-Hawking state. In this state, observers at rest relative to the

black hole observe Hawking radiation.

Thus, Hawking radiation is a natural consequence of postrelativity for

the Fock space de�nition described here. The conceptual problems with the

uncertainty of the de�nition of the Fock space do not occur in postrelativity.

4.3.2 Scenario of Black Hole Evaporation

Because we have no horizon formation in classical PG, we already know

that Hawking radiation starts before the horizon is formed. If we consider

the classical background as �xed, we observe a small but constant loss of

energy in Schwarzschild time. Because of energy conservation this has to

be compensated by a modi�cation of the energy-momentum tensor of the

classical background solution at this Schwarzschild time, that means, before

horizon formation.

This modi�cation leads to a decreasing horizon, thus, if the unmodi�ed

surface hasn't reached the horizon, the modi�ed hasn't reached it too. Thus,

this modi�cation does not lead to a modi�cation of the property that the

horizon will not be reached by the surface in PG. Combined with the known

results about the time for evaporation for the outside observer, which is �nite,

it seems clear that the black hole evaporates in PG before the horizon is even

formed. Of course, there may be modi�cations of this picture near Planck

length, for example there may be a remaining black hole of Planck order

size without Hawking radiation. Nonetheless, even in this state we have no

singularity inside.

The answer of general relativity about the evaporation is not so certain.

According to Birrell and Davies [8], there are di�erent proposals, with explod-

ing singularity or remaining singularity of Planck order, but also a similar

proposal of evaporation before horizon formation [16].
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4.4 Nonscalar Fields

4.4.1 The Dirac Field

Before considering the Dirac �eld, remark that we have been able to de�ne

the con�guration space for the scalar �eld independent of the gravitational

�eld. Such a property is suggested by our �rst principle, thus, it seems

natural to try to get the same independence for the other �elds too.

Let's try to do this for the Dirac �eld. In special-relativistic �eld theory,

we have the de�nition

�
 
+
� (x);  �(y)

	
+
= ����(x� y)

which depends only on the metric ���, but not on the Minkowskimetric. If

we try to use this as the de�nition of the con�guration space, we immediately

obtain a problem: We have to establish a relation between the operators 
i

and the partial derivatives @i. If we �x such a relation, it de�nes a Minkowski

metric in the space derived from the internal Minkowski metric. Thus, this

relation cannot be independent from the gravitational �eld. That means,

this relation cannot be part of a gravity-independent con�guration space for

the Dirac �eld.

Thus, it has to be part of the gravitational �eld. That means, the gravi-

tational �eld has to de�ne an isometric relation between a four-dimensional

internal Minkowski space de�ned by the 
i and the tangential Minkowski

space. The metric gij(x) alone does not allow to de�ne such a relation.

This problem is solved by the tetrad formalism. Thus, to be able to

describe the Dirac �eld with an independent con�guration space, we have to

introduce tetrad variables into postrelativistic gravity. After the introduction

of tetrad variables we are able to de�ne the con�guration space of the Dirac

�eld by the same de�nition as for the Minkowski space.

4.4.2 Other Fields and Interactions

The tetrad technique can be used for other spinor and tensor �elds too. The

problem is reduced in this way to the de�nition of the con�guration space

for a standard Minkowski frame. Gauge �elds we consider separately below.

The introduction of interaction terms changes only the Schr�odinger op-

erator, thus, does not have any in
uence on the con�guration space. Thus,
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nothing has to be changed compared with the situation for free �elds. That

means, it is possible to derive the Feynman diagram formalism.

But it has to be remarked that the semiclassical limit is only justi�ed for

momentum below Planck scale. Already the Fock space is de�ned only in

this sense. Thus, it is not justi�ed to consider any integral over the whole

momentum space. That means, only the �rst, tree approximation is justi�ed.

Thus, it is clear that at Planck scale the semiclassical limit becomes wrong.

Thus, we have no reason to wonder about ultraviolet problems in such

illegal integrals. Of course, on the other hand, the results obtained by renor-

malization are reasonable. It is reasonable to assume that the correct theory

leads to �nite terms based on some type of e�ective cuto� at the order of

Planck scale with unknown details. Renormalization claims to be able to

compute results which do not depend on these details, even on the order of

magnitude of the cuto�.

4.4.3 Small Quantum Variations of the Gravitational Field

The semiclassical approximation may be applied to consider small modi�-

cations of the gravitational �eld too. This leads to a standard Feynman

diagram scheme for general relativity in harmonic gauge.

The independence of the con�guration spaces of matter from gravity is

necessary to show the correctness of the consideration of small modi�cations

of the gravitational �eld as an independent quantum �eld. Else, the consid-

eration of any material �eld operator together with operators which describe

the di�erence between the real gravitational �eld and the background metric

would be meaningless.

Especially that means that this approach is meaningless in the context

of general relativity. The di�erence between even very close solutions of the

Einstein equation is not covariant, thus not de�ned. Applying di�erent coor-

dinate transformations for above �elds we can make the di�erence arbitrary

big and strange. This di�erence between the relativistic and the postrel-

ativistic approach if di�erent gravitational �elds are involved is discussed

below.
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5 Ultraviolet Problems and Non-Renormalizability

It is known that quantum general relativity is non-renormalizable. We havn't

modi�ed anything which may change this fact, thus, postrelativistic gravity is

non-renormalizable too. Many people consider this as a strong, even decisive

argument against a theory. There are already arguments [4] which show that

non-renormalizability it is not a decisive argument against a theory. But, on

the other hand, it is considered as a serious conceptual problem.

In the context of postrelativity I consider non-renormalizability not as a

conceptual, but only as a technical problem. Some of the following remarks

to justify this are valid also for the relativistic approach, other not.

First, we have already seen that there is no reason to wonder about

in�nities. They simply show an obvious error | the attempt to apply the

semiclassical limit outside it's possibilities. In this sense, the divergences of

these integrals not a conceptual problem, because our concepts don't even

suggest these integrals have to be �nite.

They are also not a problem to justify the �rst order tree approximation.

Our concepts also don't suggest a de�nition of quantum gravity via a formal

power series based on a �xed classical background. We have derived the

semiclassical limit based on some general assumptions about the correspon-

dence between the unknown full theory and their semiclassical limit. Thus,

the derivation of the �rst order tree approximation is based on these assump-

tions, not on the formal power series and the correct de�nition of the higher

order terms. Thus, problems of computation of higher order approximations

do not question the correctness of the �rst order tree approximation.

5.1 Light Cone Uncertainty

Second, let's consider a simple qualitative prediction about the properties of

postrelativistic quantum gravity. This prediction is the uncertainty of the

light cone.

Remark at �rst that such a prediction does not make sense from point

of view of the relativistic paradigm, because this paradigm does not allow

to compare di�erent solutions. This property of the relativistic approach

we consider in detail below. But in the postrelativistic approach we can

compare the light cone of di�erent solutions. From point of view of the

postrelativistic paradigm, events are de�ned independent of the state of the
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gravitational �eld. It makes sense to compare di�erent gravitational �elds.

And we observe easily that di�erent gravitational �elds usually have di�erent

light cones. That means, in quantum PG the light cone will be uncertain.

There is no possibility to avoid this e�ect in postrelativity. But we have

also no reason to bother, because this uncertainty does not cause any prob-

lem. It is not dangerous nor for causality, nor for position, because above

notions are de�ned independent of the state of the gravitational �eld.

Moreover, this uncertainty suggests that ultraviolet problems of the usual

type are not present in quantum PG. Indeed, the ultraviolet problems in

relativistic quantum theory are caused by the singularity of the propagator

near the light cone. But, if the light cone is not de�ned exactly, where is no

place left for a light cone singularity to survive.

This is in no way a proof of anything. But it nonetheless suggests that

a correct computation of higher order approximation (di�erent from the in-

correct one which remains in the semiclassical approximation without justi-

�cation) may not lead to in�nities. Last not least, we have a new physical

e�ect | the uncertainty of the light cone caused by the quantum character

of the gravitational �eld.

5.2 The Atomic Ether

Third, the ether interpretation of PG suggest a simple way to avoid ultra-

violet problems | the assumption of an atomic ether. Indeed, to make this

assumption is even natural without having any ultraviolet problem, because

of the same philosophical reasons which have justi�ed the atomic hypothesis

for usual matter.

If we make such an assumption, we obviously obtain an e�ective cuto�

which depends on the typical distance between the atoms of the ether. Thus,

the assumption of an atomic ether de�nes a simple emergency exit for the case

that the previous ideas do not lead to a removal of the ultraviolet problems.

The idea to introduce a discrete structure to solve the ultraviolet problems

is not new [4]. But the realization of this idea in the relativistic paradigm

leads to a completely di�erent concept | a discrete spacetime. It requires

completely di�erent mathematics and foundations. Compared with this idea,

the atomic ether is a very simple idea. Of course, we may obtain a lot of dif-

�cult technical problems, but conceptually the atomic ether is as complicate

as a deformed crystal material.
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Nonetheless, it seems not yet the time to develop such a theory in detail,

this would be too speculative.

5.3 The Status of the Ultraviolet Problem

Let's remark that the status of ultraviolet problems is di�erent in relativistic

and postrelativistic theory. I don't want to diminish the technical problems,

but I reject to consider ultraviolet problems as a serious conceptual problem

of the postrelativistic approach.

Indeed, GR claims to be a theory of space and time, that means about

the most fundamental things in the universe. It claims to be able to predict

the evolution even of the topology of our space. There is nothing more

fundamental than space and time. Thus, an ultraviolet problem becomes a

serious conceptual problem in our understanding of space and time if they

occur in this theory.

The status is completelydi�erent in postrelativity. PG doesn't claim to be

the ultimate theory about space and time, it is a continuous ether theory, with

similarity to classical continuum mechanics. If ultraviolet problems occur

in such a continuous ether theory, they only show that the ether has some

di�erent, probably atomic, microscopic structure which is not yet observable.

Thus, as far as we do not pretend to have found the ultimate theory | which

is not a very natural claim for a continuous ether theory | this does not even

suggest that there is anything wrong with our continuous approximation, and

is that's why not a conceptual 
aw of this theory, but the only chance for

future research to observe | at least in principle| the microscopic structure

of the ether.

6 Canonical Quantization and Path Integral

Formulation

We have seen that there is no reason to be afraid of ultraviolet problems |

they do not occur immediately in the semiclassical approximation, there are

reasons to suggest that they do not occur in higher order approximations

too, and we have an emergency exit if they nonetheless occur.

Nonetheless, perturbative theory starting with a classical background so-

lution does not suggest a way of rigorous de�nition of quantum PG. For this
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purpose, other methods have to be used.

Two methods may be considered for this purpose | Feynman path inte-

gral formulation and canonical quantization. For above concepts, postrelativ-

ity leaves some freedom. Nonetheless, we can compare our approach with the

standard general-relativistic paradigm. We can show not only a di�erence,

but also an essential technical and conceptual simpli�cation.

6.1 Freedom of Choice for Further Quantization

For above methods our �rst principles leave some freedom of choice for the

following steps. Indeed, above concepts require to �x the following:

� the con�guration space and

� the Lagrange function.

The classical postrelativistic theory leaves here some freedom. We have

di�erent choices which lead to the same classical equations:

� We can consider the harmonic equation as an external constraint. In

this case, only harmonic �elds are valid �eld con�gurations. This would

be natural if we interpret it as a conservation law.

� The other alternative would be to consider it as a classical evolution

equation, and to add a penalty term to the Lagrange functional so that

the Euler-Lagrange equations include not only the Einstein equations,

but also the harmonic equation. In this case, all �eld con�gurations

(inclusive non-harmonic) are valid. The gauge �eld correspondence

considered below suggests this choice.

� Orthogonal to this question, we have the possibility to introduce other

variables with another con�guration space. We have already seen that

the introduction of the triad formalism is reasonable. This formalism

introduces some new hidden (gauge) steps of freedom.

� But, of course, also other variables like Ashtekar's variables [4] have to

be considered.
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� We also have some freedom how to choose the Lagrange function for

gravity between the usual Lagrange density | the scalar R | and

the Rosen Lagrangian. The �rst is covariant, the second not. On

the other hand, the �rst includes second derivatives, the second not.

Postrelativity suggests to use the second, because second derivatives

will be a problem, non-covariance not.

� If we introduce delta-functions into the path integral, we have to bother

about correct norm. Thus, we may have to include an appropriate

normalization coe�cient.

Because of the Pauli principle, at least di�erent choices of the con�gura-

tion space lead with high probability to di�erent quantum theories. Thus,

postrelativity does not �x quantum gravity uniquely. To �nd which is the

best choice has been left to future research. My personal preference at the

current moment is the Rosen Lagrange function, harmonic equation as a

constraint, triad variables. But one in in no way forced in this direction.

6.2 Properties of Quantum Postrelativistic Gravity

Nonetheless, all these variants have common properties, which we will de-

scribe here as properties of quantum postrelativity.

� Postrelativistic gravity is the classical limit.

� The path integral is de�ned between arbitrary but �xed, �nite moments

of time t0; t1.

� The con�guration space consists of functions de�ned on the three-

dimensional a�ne space. Especially the functions gij(x) are de�ned

and describe the gravitational �eld.

� Con�gurations with di�erent gravitational �eld gij(x) are di�erent,

even if the con�gurations can be transformed into each other by dif-

feomorphism. For such con�gurations, the related probabilities have to

be added, not the amplitudes.

� For canonical quantization, we obtain a well-de�ned evolution in time,

di�erent from the Wheeler-DeWitt equation in canonical quantization

of general relativity.
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6.3 Comparison With Relativistic Approach

On the classical level, the main di�erence between the relativistic approach

and the postrelativistic approach is the consideration of con�gurations which

can be transformed into each other with a di�eomorphism. In GR they are

identi�ed, in PG they are di�erent.

This identi�cation leads to conceptual problems even in the formulation

of quantization. The �rst and most serious group of problems is connected

with di�eomorphisms which change time. The related problems are known

as the \problem of time". Only if we neglect this problem by considering

only di�eomorphisms which don't change time, we are able to de�ne a con-

�guration space which may be compared with the PG con�guration space.

This comparison shows that the con�guration spaces are essentially di�erent.

Thus, highly probable, the resulting quantum theories will be di�erent too,

simply because of the Pauli principle.

6.3.1 Problem of Time

According to the paradigm, con�gurations have to be identi�ed if there is a

di�eomorphism between the con�gurations.

In this sense, it is already a violation of the paradigm if we write down a

path integral with �nite, �xed boundaries for time t0, t1. Probably only path

integrals with in�nite limit or over compact solutions can ful�l the paradigm

completely.

This occurs in the canonical quantization approach too. As the result,

instead of a Hamiltonian evolution we obtain only a so-called Hamilton con-

straint. After quantization, this leads to the Wheeler-DeWitt equation

Ĥ = 0

instead of a usual Schr�odinger equation. This equation is considered

to describe only the di�eomorphism-invariant information about our world.

Thus, similar to the problem in the path-integral formulation, we have no

description of the evolution for any �nite time, how to extract physically

meaningful information is completely unclear.

Because we are not able to solve this problem, we ignore it and consider in

the following only di�eomorphisms which leave the time coordinate invariant.
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6.3.2 Topological Foam

A second problem is the topology of the space. The topology is usually not

a problem in classical general relativity, because it is controlled more or less

by the Einstein equation which usually does not change topology during the

evolution. But in the quantum domain, we have to consider also non-classical

con�gurations. Because for small distances we have to assume that quantum

theory allows small variations of the �eld, inclusive small, local variations of

the topology, this concept leads to the picture that at small distances the

topology will be de-facto uncertain. This concept is known as \topological

foam".

Because we are not able to solve this problem, we �x in the following the

topology of the space, for simplicity we consider only trivial topology.

6.3.3 The Con�guration Space of General Relativity

After these two simpli�cations we can at least de�ne the con�guration space

of the general-relativistic approach in a form comparable with the postrela-

tivistic con�guration space. It is the result of factorization of the postrela-

tivistic con�guration space where di�eomorph con�gurations have been iden-

ti�ed.

Thus, we see, that two essential simpli�cations have been necessary even

to de�ne a con�guration space which may be compared with postrelativ-

ity. Moreover, the resulting con�guration space is essentially di�erent. This

highly probable leads to a quantum theory with di�erent experimental pre-

dictions, simply because in the path integral we have a di�erent basic rule for

the computation of probabilities. Indeed, if di�erent but di�eomorph con�gu-

rations are considered, we have to add the related probabilities in the postrel-

ativistic approach, but the related amplitudes in the general-relativistic ap-

proach. Thus, already the Pauli principle is de�ned di�erently. Probably in

some situation one theory will predict interference e�ects but the other not.

7 Quasiclassical Theory

In this section we compare the predictions of above theories in the quasiclas-

sical situation. That means, we leave the semiclassical situation where the
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gravitational �eld is approximated by a classical �eld and consider the next

step | superpositions of such states.

In this case, above concepts lead to di�erent predictions. More accu-

rate, the general-relativistic concept remains silent, we are not able to obtain

predictions from this concept. Nonetheless, the prediction of postrelativity

cannot be copied, because it is in contradiction with the symmetry principles

of the approach. Thus, it is reasonable to say nonetheless that the predictions

are di�erent.

7.1 Non-Relativistic Description of a Simple Experi-

ment

At �rst, let's describe our experiment in non-relativistic language. More

accurate, we describe it using classical multi-particle Schr�odinger theory with

Newtonian interaction potential.

We consider a \heavy" particle in a simple superposition state

 = �(x� x1) + �(x� x2)

and it's gravitational interaction with a light test particle. The initial

product state splits into a nontrivial two-particle state. To compute this

state, we use quasiclassical approximation, thus, if the heavy particle is in

the delta-state, we approximate the two-particle problem by a single-particle

problem for the test particle in the classical gravitational �eld created by the

heavy particle in this position:

i@t�
1=2 = H

1=2
�
1=2

H
1=2 =

p
2

2m
� k

jx� x1=2j

Then we interpret this one-particle solutions as two-particle tensor prod-

uct states and use standard superposition rules to compute the result:

�
  ! �1 
 �(x� x1) + �2 
 �(x� x2)

After the interaction, we simply ignore the test particle, but measure, if

the state of the heavy particle has changed or not. This is simple and can
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be done by an arbitrary interference experiment which tests if the state of

the heavy particle is yet in a superposition state or not, or, in other words,

if the interaction with the test particle was strong enough to be considered

as a measurement of the position or not. The probability of observing the

heavy particle unchanged is

� =
1

2
(1 +Reh�1j�2i)

The extremal case of scalar product 1 can be interpreted as no measure-

ment by the interaction with the test particle, thus we observe interference,

and the other extremal case of scalar product 0 as complete position mea-

surement, thus we observe no more interference.

But the point of this consideration is that the real part of the scalar

product is observable in non-relativistic Schr�odinger theory.

7.2 Postrelativistic Description of the Experiment

Let's describe now the same experiment in the postrelativistic approach.

In principle, we can use a similar, classical language. We need only small

modi�cations. Instead of the one-particle Schr�odinger equation with the

operator H1=2 we have to consider now the semiclassical theory for �xed

classical background g
1=2
ij (x; t). The functions �1=2(x; t) are replaced by states

de�ned in the con�guration space of semiclassical theory.

It becomes essential now that the de�nition of the con�guration space

itself was given in terms of the operators � and � independent of the gravita-

tional �eld, not in terms of the particle operators which depend on the �eld.

Thus, the two states j�1=2i are states in the same Hilbert space. Thus, we

can de�ne their scalar product without problem.

Thus, the postrelativistic approach makes clear predictions about the

results of the experiment. It allows to compute the relativistic corrections.

These predictions coincide in the non-relativistic limitwith classical Schr�odinger

theory.

7.3 Non-Covariance of the Scalar Product

Consider now the situation in general relativity. Let's use the language intro-

duced by Anandan [3] who has considered a similar superposition experiment.

31



If there is a superposition of gravitational �elds, he distinguishes two types

of di�eomorphism: a classical or c-di�eomorphism that is the same for all

superposed gravitational �elds, and a quantum or q-di�eomorphism which

may be di�erent for the di�erent superposed �elds. He postulates as the

\principle of quantum general covariance" that all physical e�ects should be

invariant under all q-di�eomorphisms.

As we can easily see, the scalar product cannot be observable in this ap-

proach. Indeed, the semiclassical theory allows to de�ne the states j�1=2i 

jg1=2i only as pairs (�1=2(x; t); g

1=2

ij (x; t)) modulo arbitrary coordinate trans-

formations (x; t)! (x0; t0):

(�1=2(x; t); g
1=2
ij (x; t))! (�1=2(x0; t0); g

1=2
ij (x0; t0))

The scalar product as de�ned in postrelativity

Z
�
1(x; t)��2(x; t)dx

is obviously invariant only for c-di�eomorphisms, but not for q-di�eomorphisms.

Anandan's principle is a consequence of the Einstein equations and cannot

be simply removed from quantum general relativity. Indeed, if we consider

a superposition of semiclassical solutions, above solutions are only de�ned

modulo an arbitrary di�eomorphism, thus, quasiclassical general relativity

is automatically q-di�eomorphism-invariant, if we don't introduce some new

non-q-di�eomorphism-invariant mechanism into the theory. Moreover, the

con�guration space and the path integral formulation which we have con-

sidered for the general-relativistic approach also requires that the resulting

quantum theory is q-di�eomorphism-invariant.

Thus, the scalar product is not de�ned in the general-relativistic ap-

proach, observable results of this theory cannot depend on such scalar prod-

ucts. That means, we are not able to predict relativistic corrections of our

simple experiment.

7.4 Remarks About the Seriousness of this Problem

In principle, this problem can be added to the list of already existing concep-

tual problems of the general-relativistic approach which do not occur in the

postrelativistic approach, but nonetheless continue to hope for a solution of
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all these problems in future. But in my opinion it has to be considered as a

decisive argument in favour of the postrelativistic approach. Some remarks

in favour of this position:

Remark that it is not our personal inability to compute the predictions

of the general-relativistic approach, but a clear symmetry requirement of

general relativity which does not allow to de�ne this scalar product.

Remark that the argument is present in full beauty in the classical limit.

Indeed, we can rewrite the classical Schr�odinger theory experiment in general-

relativistic language, using the metric

g00 = 1 +
2�

c2

and restricting the consideration to small velocities. We already have

di�erent gravitational �elds, thus, the full problem of q-di�eomorphism-

invariance. That this is not an exact solution of the Einstein equations is not

signi�cant, because in quantum theory we have to be able to handle con�gu-

rations which are not exact solutions. This suggests that a q-di�eomorphism-

invariant theory will not have Schr�odinger theory as the classical limit.

Remark that the problem is present already for very small modi�cations

of the gravitational �eld.

Remark that if we are able to de�ne scalar products between functions

on di�erent solutions, we have de-facto a di�eomorphism between the solu-

tions. Indeed, we can simply consider the scalar products between delta-like

functions. And having a di�eomorphism for any two solutions is very close

to a coordinate condition. Indeed, a di�eomorphism between the Minkowski

space and an arbitrary space de�nes a preferred coordinate system | a�ne

Minkowski coordinates | on the other solution.

Remark that the idea to accept a break of the q-di�eomorphism-invariance

temporary, as a gauge condition, does not help if we want to obtain the ob-

servable prediction of classical Schr�odinger theory.

Remark that the idea to accept a break of the q-di�eomorphism-invariance

but to make it as relativistic as possible is de-facto the postrelativistic ap-

proach. Indeed, we use a really beautiful relativistic wave equation to de�ne

the scalar product. In this sense, the postrelativistic approach can be con-

sidered as the simplest way to solve this problem.

Remark, that we have simply ignored the results of measurement of the

test particle. The aim of this ignorance was to avoid the consideration of
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problems which are related with almost every measurement in the relativistic

approach. In the postrelativistic approach, we are able to consider the results

of some measurement, for example coordinate measurement, for the test

particle too.

On the other hand, the result depends on assumptions about measurabil-

ity in Schr�odinger theory. It may be argued that this theory may be wrong

or that these observables are not really observable, but observable only in

the classical limit.

Such argumentation may be of course used to show that nonetheless this

problem is not decisive. But, of course, a theory of quantum gravity has to

be based on some assumptions which cannot be exactly proven. This leads to

the question how a more decisive argument against the relativistic approach

could look like.

8 Postrelativistic Gauge Theory

The postrelativistic principles do not de�ne immediately what has to be

done with gauge �elds. But there is a close similarity between gauge theory

and general relativity. This suggests that there has to be also a similar

correspondence between gravity and gauge theory in postrelativity too.

Using this correspondence argument, we obtain a new approach for gauge

theory. It seems natural to use the name \postrelativistic gauge theory" for

this gauge-theoretical approach too. Nonetheless, it has to be recognized

that postrelativistic gravity and postrelativistic gauge theory are di�erent,

independent theories. Failure or success of one of them does not immediately

prove failure or success of the other. But, of course, the correspondence will

be a strong correspondence argument.

The main property of postrelativistic gauge theory is that the gauge po-

tential has to be considered as a hidden but real step of freedom. The Lorentz

condition becomes a physical equation, not a gauge condition.

Classical postrelativistic gauge theory cannot be distinguished from the

relativistic variant. In the quantum domain, they become di�erent.
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8.1 Standard Paradigm | No Gauge Freedom

Let's shortly remember the standard, usual paradigm, which corresponds to

general relativity. In this paradigm, di�erent but gauge-equivalent gauge

potentials are identical. The gauge freedom is considered only as a mathe-

matical construct which makes it easier to write down some formulas, not as

a real freedom. In the path integral, the usual way to realize this is to use

a gauge condition which de�nes a unique gauge potential for each class of

gauge-equivalent potentials:

Z t1

t0

exp i

Z
Ldt

Y
x;t

�(A)�(f(A))dA

Every equivalence class has to occur in the integral only once. It would be

even more beautiful if we could describe gauge �elds immediately in gauge-

invariant terms like Wilson loops.

The most interesting (because of their relativistic form) gauge condition

| the Lorentz condition | solves only half of the problem of gauge �xing.

Indeed, it �xes the gauge only for �xed boundary conditions, but doesn't �x

the gauge for the boundary conditions. This remaining gauge freedom has to

be �xed by other, additional boundary conditions. This type of gauge �xing

leads to problems with unitarity of the S-matrix, if it is not compensated by

additional terms. These compensation terms may be interpreted as terms

describing particles known as Faddeev-Popov ghost particles. But in the

general case even �xed boundary conditions may be not su�cient to �x the

gauge with the Lorentz condition | there may be so called Gribov copies.

The problem is that the Gribov copies occur in the path integral as di�erent

states, but have to be identical in the ideal theory.

8.2 Classical Postrelativistic Gauge Theory

The general correspondence between gauge theory and general relativity re-

quires to consider the gauge freedom as the analog of the freedom of choice of

coordinates in general relativity, gauge transformations as the analog of dif-

feomorphisms. The de�nition of the gravitational �eld in a given coordinate

system is the analog of the gauge potential. Let's apply this correspondence

scheme to the postrelativistic approach.
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The con�guration space of postrelativistic gravity consists of gravitational

�elds in given coordinates. The analog of this con�guration space is obviously

the space of all gauge potentials. Thus, in postrelativistic gauge theory the

gauge potential is the real variable we have to use to describe the gauge �eld.

Field con�gurations which are di�erent but equivalent from point of view

of the symmetry transformation of the relativistic theory are considered as

di�erent states in the postrelativistic theory.

Thus, as in postrelativistic gravity, we have to introduce new steps of

freedom into the theory. They are not directly observable. To describe the

evolution of these observables, we need a new equation.

For gravity we have used an equation known already as a very useful

coordinate condition, the harmonic condition. The similarity to the Lorentz

condition in gauge theory is obvious: Above conditions can be written as a

�rst-order divergence-like condition for the variables we use to describe the

�elds, but also as a second order relativistic wave equation immediately for

the hidden steps of freedom. That's why in postrelativistic gauge theory we

consider the Lorentz condition as a physical evolution equation for the gauge

potential.

8.3 Canonical Quantization

As suggested by general rules, let's try now canonical quantization of clas-

sical postrelativistic gauge theory. We have di�erent possibilities to de�ne

a Lagrange formalism, let's consider here only one | the \diagonal gauge"

Lagrange density:

Ldiag = �1

2
@
�
A�@�A

�

For this Lagrange density, we have no problems to derive the canonical

momentum variables

�
�(x) =

@Ldiag

@A�;t(x)
= �@tA�(x)

Canonical quantization leads to commutation relations

[A�(x); �
�(y)] = i�

�
��(x� y)
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This de�nes the standard, canonical con�guration space. It does not de-

pend on the gravitational �eld, as suggested by semiclassical postrelativistic

gravity.

8.3.1 Particle Interpretation

For a given tetrad �eld we can try to de�ne now particle operators similar

to the scalar �eld separately for each component. The only di�erence is that

the energy for the component 0 is negative. We can de�ne the vacuum state

not as the state with minimal energy | such a state doesn't exist in the

con�guration space | but the state with maximal energy.

The con�guration space now consists of four types of particles. All of them

are considered as physical in postrelativity. For comparison, in relativistic

gauge theory, only two of them are considered as physical.

8.3.2 The Incorporation of the Lorentz Condition

One of the two additional steps of freedom is de�ned by the Lorentz condition

�(x) = @�A
�(x). In classical theory, this equation has the solution � = 0. If

it is ful�lled for the initial conditions, it will be ful�lled always. Thus, the

step of freedom may be removed simply by making an assumption about the

initial values.

This type of incorporation of the Lorentz condition into classical postrela-

tivistic gauge theory has to be preferred, because the de�nition of � depends

on the gravitational �eld, thus, this condition should not be used to restrict

the con�guration space.

In the case of quantummechanics the situation becomes more complicate.

For non-Abelian gauge �elds and Minkowski background it is possible to

de�ne an invariant subspace with the property

h�j�(x)j�i = 0:

For this purpose we use a splitting � = �
+ + �

� into adjoint operators

�
+ and �� which allows to de�ne the subspace by

�
�(x)j�i = 0; h�j�+(x) = 0:
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Here �� is the part of the operator � consisting of particle creation resp.

destruction operators. This subspace is invariant even if we have interac-

tion. Thus, the consideration can be restricted to this subspace. Such an

invariant subspace is not available in general. But this does not create a

conceptual problem, because such a restriction is nice, but not necessary

for postrelativistic theory. The assumption h�i = 0 will be only a classical

approximation.

8.3.3 In�nite Scattering Matrix

For a �xed postrelativistic Minkowski background, the �xed subdivision into

space and time allows to de�ne the subspace

A0 = 0; rA
�
= 0

This subspace is useful for comparison with relativistic theory. If we

consider our observation to be restricted to this subspace, we have to make

additional assumptions about the initial state to be able to apply the theory.

In our case, we have a natural choice | the absence of hidden particles. For

the state after the scattering, this condition may be not ful�lled. We have

to integrate over all possible states of the hidden steps of freedom.

This general rule allows to make predictions about scattering of transver-

sal photons without being able to measure the hidden steps of freedom.

8.4 Comparison With Relativistic Theory

Comparison with relativistic theory has to be subdivided into two parts.

At �rst, there is the comparison of terms which are considered as physical

in above theories, especially the scattering matrix. The other question is

if the relativistic position to claim non-covariant and non-gauge-invariant

expressions to be non-physical is really justi�ed.

8.4.1 S-Matrix of QED

There are di�erent variants of relativistic QED. In the variant of Bjorken and

Drell [9] the gauge condition is incorporated into the con�guration space.

Con�guration space and commutation relations of postrelativistic QED are

more close to the quantization scheme of Gupta and Bleuler [17] [10].
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The main di�erence between this approach and postrelativistic QED is

the scalar product in the con�guration space. In the relativistic variant we

have an inde�nite Hilbert space structure. We obtain more relativistic in-

variance in this variant, but this is obviously a situation where postrelativism

suggests to sacri�ce relativistic invariance in favour of the fundamental prin-

ciples of quantum mechanics. But this manipulation is restricted only to

the gauge steps of freedom which are considered to be unobservable in the

relativistic approach. That's why I suppose this manipulation has no in
u-

ence on the resulting scattering matrix for the states considered as physical

by above theories. Thus, probably the comparison of QED does not lead to

di�erent experimental predictions.

8.4.2 S-Matrix of Non-Abelian Gauge Theory

Postrelativistic gauge theory does not require a modi�cation for the case of

non-Abelian gauge theory. For � we have now a more complicate equation

with interaction with the other gauge steps of freedom:

2�+ [A�; @
�
�] = 0

We have yet the classical solution � = 0, but nonetheless in quantum

theory we cannot de�ne an invariant subspace with h�i = 0 as before. But

the restriction of the gauge freedom is not required in postrelativistic gauge

theory. To have an invariant subspace is of course a nice property, but it

is in no way essential part of the theory, which is well-de�ned in the whole

con�guration space.

The Gupta-Bleuler approach cannot be generalized straightforward to

non-Abelian gauge theory. The restriction to the subspace � = 0 leads to

non-unitarity of the S-matrix. This problem can be removed by compensation

terms known as Fadeev-Popov ghost �elds [13]. Because this restriction is

not required in postrelativistic gauge theory, such a compensation is not

necessary. Thus, Faddeev-Popov ghost �elds do not occur in postrelativistic

gauge theory.

This modi�cation already leads to observable di�erences in the scattering

matrix. Indeed, in relativistic gauge theory we have (after introduction of

the ghost �elds) unitary evolution in the gauge steps of freedom which are

considered as physical (transversal particles). In postrelativistic gauge theory
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we have unitarity only in the full space. I cannot judge about the possibility

to verify this di�erence in real experiments, but obviously this will be much

easier compared with the case of quantum gravity.

8.4.3 A Quasiclassical Experiment

The other question is if the restriction of physics to gauge-invariant results

is really justi�ed. Similar to the situation in quasiclassical gravity, we have

to distinguish here two notions of gauge-invariance: c-gauge-invariance (in-

variance for common gauge transformation) and q-gauge-invariance (invari-

ance of a superposition state for di�erent gauge transformation on the basic

states). In postrelativity, we have trivial c-gauge-invariance, which may be

considered as �xed by �xing the state of the vacuum to be trivial. In rela-

tivistic gauge theory we have also q-gauge-invariance.

We can show that the concept of q-gauge-invariance leads to the same

problems as the concept of q-di�eomorphism-invariance in quantum gravity

with the classical Schr�odinger theory limit. For this purpose, we consider a

quasiclassical experiment similar to the experiment we have considered for

gravity. The real part of the scalar product h 1j 2i de�ned for a pair of solu-
tions (A1

;  
1); (A2

;  
2) is of interest here. Without copying this description,

let's describe the results:

� In Schr�odinger theory (multi-particle theory with Coulomb potential

for electricity), the real part of the scalar product is observable.

� Postrelativistic quantum gauge theory allows to compute this scalar

product and to obtain the non-relativistic limit.

� The scalar product is not q-gauge-invariant. Thus, the relativistic ap-

proach does not allow to de�ne the scalar product. Relativistic observ-

able results cannot depend on this scalar product.

The classical Maxwell equations lead to q-gauge-invariance in the sense

that they do not de�ne the evolution of the scalar product even classically.

They have to be combined with some gauge condition.

Thus, we see, that relativistic quantum gauge theory has a problem with

the non-relativistic limit. Of course, this is only a purely theoretical problem.

In real QED and QFT computations the same non-gauge-invariant terms as
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in postrelativity are used. Thus, the problem becomes obvious only if we

consider the situation very careful.

Of course, we have used here assumptions about measurability in classical

Schr�odinger theory. Especially we need a possibility to create and measure

a superposition.

9 Discussion

Last not least, let's discuss some other questions related with postrelativity.

9.1 Historical Context

The harmonic coordinate equation has been often used in GR, starting with

Lanczos [23] and Fock [15]. The Isham-Kuchar approach [22] interprets har-

monic space and time coordinates as gravity-coupled mass-less �elds used

to identify instants of time and points in space. But in the context of gen-

eral relativity they cause problems like di�erent solutions for the same metric

and solutions which don't cover the whole solution. Especially, a \clock �eld"

will be uncertain and measurable, di�erent from quantum mechanical and

postrelativistic time.

Logunov et.al. have introduced the harmonic coordinate equation as a

physical equation into their Relativistic Theory of Gravity [24], [33]. They

have found the related modi�cation for the black hole and big bang sce-

nario and the conservation laws. Di�erent from postrelativity, they have

introduced a Minkowski background. Moreover, their argumentation for the

theory was based on incorrect criticism of general relativity [29]. This the-

ory was the starting point for the development of classical postrelativistic

gravity.

For some of the quantization problems solved by the postrelativistic con-

cept, the introduction of a Newtonian background frame as a possible solution

has been recognized. For the problem of time, theories like PG are described

by Isham [19] as \GR forced into a Newtonian framework". Isham mentions

the reduction of the symmetry group in such an approach we �nd in PG

too. The reason for the rejection of this concept given there | \theoretical

physicists tend to want to consider all possible universes under the umbrella

of a single theoretical structure" | is not impressive. The theory de�nes
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which universes are possible. Thus, tautologically, PG describes all possible

universes too.

Real hidden variable theories have to violate Einstein causality if they

want to predict a violation of Bell's inequality. For such theories, it is natural

to introduce a Newtonian background frame. Bell has classi�ed them as

\relativistic but not Lorentz-invariant". A relativistic variant of the Bohm

interpretation also includes such a preferred frame.

A possible link between these two questions has been recognized too.

Isham [19] refers to Valentini [32] as a \recent suggestion that a preferred

foliation of spacetime could arise from the existence of nonlocal hidden-

variables".

Aharonov and Albert [1] have proposed an argument against the existence

of a preferred frame in special-relativistic context, which has been rejected by

Cohen and Hiley [12]. Roughly speaking, the 
aw in the argument was that

they have compared quantum evolution in di�erent Lorentz frames. But, if

we adopt the preferred frame hypothesis, the description of the evolution of

the quantum system is allowed only in the preferred frame.

Classical postrelativistic gravity and the gedanken-experiment for quasi-

classical theory have been introduced by the author 1992 [28].

9.1.1 Reasons for Previous Failure

It may be asked why such a simple concept has not been tried out before. In

another formulation, it may be assumed that it has been already tried, but

has failed. Thus, to continue the consideration of this concept is loss of time.

Here we have to reject that non-renormalizability, which is present in

this approach, has been widely accepted as a su�cient reason to reject a

concept. Arguments which show that this is not necessary [4] are not very old.

Some other technical ideas like tetrad/triad formalism (which allow to avoid

non-polynomial expressions like
p
�g) and functional-analytical methods for

rigorous quantization are of course necessary for rigorous quantization of

postrelativistic gravity.

Moreover, even if we assume that this approach fails, it seems interesting

to �nd out where it really fails, which parts of the approach cause the failure

etc.
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9.2 Esthetic Questions

Of course, esthetic questions play an essential role in the distinction between

theories which cannot be compared directly by experiment. Some questions

we have considered | the consideration of the correspondence to gauge the-

ory and the derivation of postrelativity using �rst principles | are essentially

esthetic arguments for postrelativity. Let's consider also some other ques-

tions:

9.2.1 Popper's Criterion of Potential Power

Popper [27] has proposed a criterion of potential power. This criterion prefers

a theory which can be easier falsi�ed as potentially more powerful.

In this sense, already classical PG is more powerful. If PG is correct, GR is

correct too, thus, there cannot be any falsi�cation of GR without falsi�cation

of PG. But, in the other direction, there are at least theoretical possibilities to

falsify PG without GR. It starts with the observation of nontrivial topology

and the reality of the part behind the horizon of the collapsing black hole.

If we include quantum theory into the consideration, we obtain a really

di�erent predictive power. As the predictions of the tree approximation, as

the prediction of the results of the quasiclassical experiment are postrela-

tivistic predictions, general relativity remains silent.

9.2.2 What Has Been Lost?

In discussions, a main argument against postrelativity is an unspeci�ed \loss

of beauty" compared with general relativity. Unfortunately, the opponents

give usually wrong reasons, like references to covariance or to the number of

variables combined with Occam's razor. But, of course, something really has

been lost. To understand the issue it seems necessary to �nd out what has

been really lost.

At �rst, let's remark that it is not covariance, because any theory, PG too,

allows a covariant description. It is also not symmetry. As already remarked

by Fock [15], there is no symmetry in general relativity.

It seems useful to compare PG with an approach inside GR which de�nes

time as a physical clock �eld de�ned by the harmonic equation [22]. This

clock �eld approach remains completely inside GR and that's why does not

\loose their beauty". This comparison shows that it is also not the number
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of variables which makes the di�erence, and it is of course not the equation

used for the variables.

9.2.3 A Prede�ned Framework

But what is it? The only di�erence between the clock �eld approach and PG

is the metaphysical status of space and time. In PG we have an a-priori given

framework consisting of space, time and the a�ne-Galilee symmetry group.

GR | with or without harmonic clock �elds | lives without such a frame-

work. Thus, it is presence or absence of a framework which is independent

of physics which makes the real di�erence.

From esthetic point of view the presence of an independent framework can

be considered as an advantage | we obtain greater modularity. The modular

structure of the postrelativistic theory is di�erent from general relativity.

We have clear modular parts: Hilbert space theory | time | space |

con�guration space | Schr�odinger operator.

On the other hand, there are arguments for preference of a theory \with-

out framework".

First, the abstract principle \action = reaction" requires that the de-

pendence of matter from the framework leads to in
uence of matter on the

framework too. We can argue that the harmonic equation 2t = 0;2xi = 0

has the form of a relativistic wave equation, thus, de�nes a speci�c, weak in-


uence of matter on the framework which corresponds to the speci�c, weak

action of the framework on matter. Nonetheless, GR is obviously a better

realization of this principle.

9.2.4 No Final Theory of Everything

The other argument is the hope for a \theory of everything". It suggests a

\uni�cation" of matter and framework too. This points to another di�erence

between relativity and postrelativity: The loss of hope for the �nal theory of

everything.

Indeed, the nontrivial physical results of general relativity are no longer

results about \spacetime", but results about some ether. This de�nes a

loss of philosophical importance of these results, and reduces the hope that

we are close to the understanding of the most fundamental structure of the

universe. Postrelativity suggests that there is an atomic underlying structure
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of the ether which has as many rights to be considered as fundamental as

the atoms of usual matter.

A uni�ed theory of everything we know yet may be possible | it is known

that gauge theory occurs naturally for the description of crystal defects, by

analogy it may be that particles and gauge �elds may be interpreted as dif-

ferent types of defects of the crystal structure of the ether. Nonetheless, this

theory cannot have the metaphysical status of a �nal theory of everything,

but simply reduces the current observation to a more fundamental level.

The experimental possibilities to observe this more fundamental level are

de-facto zero, thus, we have to give up the dream to �nd the most funda-

mental, �nal theory of everything.

9.2.5 Simplicity and Common Sense

PG is obviously much closer to \common sense", that means, to the picture of

the world which is natural for our everyday experience. This is simply shown

by the ether interpretation. There is no necessity to establish \spacetime",

moreover \curved spacetime".

In this sense, PG is simpler compared with general relativity.

The fact that many expression, starting with the Einstein equations, are

essentially simpler in harmonic coordinates, also has to be mentioned in a

discussion of esthetic questions.

9.2.6 Beauty of the Harmonic Equation

Another criterion for beauty is the preference of a theory which requires the

existence of a certain beautiful mathematical structure, compared with a

theory which does not require this structure, if this structure really exists,

moreover if it is unique.

Applied to the harmonic equation, which is obviously required to de�ne

the evolution of the gravitational �eld relative to the background in PG,

but completely unnecessary in general relativity, this is a clear argument in

favour of PG. Similarly, the existence of the Lorentz condition is an argument

for postrelativistic gauge theory.
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9.3 The Question of Measurability

From point of view of the relativistic paradigm, the variables we consider as

real, physical variables are not observable. The comparison of con�guration

spaces and of the quasiclassical experiment suggest that the introduction of

these steps of freedom lead to observable consequences. Nonetheless, there

seem to be no direct measurement.

Is this a conceptual problem for postrelativity? The answer is no. It may

be a problem of comparison of the theory with real experiments. Indeed, if

we are not able to measure some variables, we are also not able to create the

pure states of the theory in the experimental setup.

But often this is not a real problem. Indeed, the assumption that these

steps of freedom are physical at least often allows to de�ne a simplest state

using physical criteria for simplicity|minimal energy or number of particles,

highest symmetry. In these situations, we can usually assume that we are

in this simplest state. The evolution of these states gives unique predictions

also for more complicate situations.

A nice example of this strategy is the black hole collapse. In the initial

state | nearly Minkowski space | we have a simplest choice of coordinates,

the a�ne coordinates. These initial conditions allow to make predictions

about the a�ne background through the collapse.

For the comparison of the predictions about a known state with experi-

ment there is simply no problem. The theory is and has to be able to predict

the evolution of the measurable variables of their states. The theory has not

to be unable to predict anything else. If further research shows that some

parts of the theory may be omitted without observable consequences, this

does not invalidate the theory.

In reality we are used to work with theories without possibility to measure

all variables. We have no possibility to measure the color of a quark or to

observe the state of the Faddeev-Popov ghost particles, but nonetheless use

such theories successfully.

9.4 Metaphysical Interpretation of the Background Frame

The metaphysical interpretation of the background frame is a more or less

obvious consequence of our initial picture. The background time describes

past, present, future, and causality. As a philosophical concept, it has to
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be distinguished from time measurement with clocks. It is remarkable that

the distinction between two notions of time | using the notions \true time"

and \apparent time" | has been introduced already by Newton [25]. It was

already mentioned in this de�nition, that they may be in principle di�erent:

\It may be, that there is no equable motion, whereby time may be accurately

measured. All motions may be accelerated and retarded, but the 
owing of

absolute time is liable to no change."

A similar distinction has to be made between the metaphysical concept

of position and distance. The notion \position" is de�ned by the background

space, distance by length measurement. They become really di�erent in the

context of a superposition of two gravitational �elds: The distance between

identical positions depends on the gravitational �eld. Only the existence of

the notion \position" independent on distance measurement allows to de�ne

the scalar product independent of the gravitational �eld.

9.5 Summary

As far as we have been able to verify, the postrelativistic principles do not

lead to serious quantization problems. Moreover, many known problems of

the standard relativistic approach do not occur in postrelativity:

� The problem of time, inclusive the problems related with the Hamilton

constraint in the Wheeler-DeWitt approach.

� Problems related with nontrivial topologies.

� Problems which may be related with Einstein causality, like uncertainty

of causality if the gravitational �eld is uncertain, the violation of Bell's

inequality, possible superluminal tunneling speed.

� Problems related with handling of the space di�eomorphisms, inclusive

the di�eomorphism constraints in the canonical relativistic approach.

� The problem of Gribov copies in relativistic gauge theory.

� Problems related with the impossibility to compare di�erent solutions

in general relativity, which is necessary for the scalar product computa-

tion in our semiclassical experiment, the semiclassical consideration of

small modi�cations of the gravitational �eld on a classical background.
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� Problems related with the de�nition of usual observables in quantum

gravity, inclusive local energy and momentum density, which is not ob-

servable already in classical general relativity, the vacuum state and the

number of particles which is problematic in semiclassical general rela-

tivity, and any usual classical measurement which becomes problematic

if q-di�eomorphism-invariance is required.

� Problems related with the impossibility to avoid the black hole and big

bang singularities in general relativity.

The status of the remaining known problems is not very serious from point

of view of their conceptual status. Without diminishing the di�culty of the

technical problems, it can be said that they have di�erent, technical char-

acter, comparable in di�culty with the quantization of a classical deformed

crystal with an unusual nonlinear behaviour, not conceptual problems like

the problem of time.

The postrelativistic approach allows to make a lot of additional experi-

mental predictions in a domain where the relativistic approach remains silent.

It predicts the evolution of variables which are considered to be not measur-

able in general relativity, like time, position, energy and momentumdensities

for the gravitational �eld, vacuum state and number of particles in semiclas-

sical quantum �eld theory, gauge potential in postrelativistic gauge theory.

It allows to leave the limits of semiclassical quantum gravity (tree approxi-

mation results for gravity, superpositions of semiclassical states).
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