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State estimation with model reduction and shape variability:

Application to biomedical problems

Felipe Galarce Marín, Damiano Lombardi,

Olga Mula

Abstract

We develop a mathematical and numerical framework to solve state estimation problems for

applications that present variations in the shape of the spatial domain. This situation arises typ-

ically in a biomedical context where inverse problems are posed on certain organs or portions

of the body which inevitably involve morphological variations. If one wants to provide fast recon-

struction methods, the algorithms must take into account the geometric variability. We develop and

analyze a method which allows to take this variability into account without needing any a priori

knowledge on a parametrization of the geometrical variations. For this, we rely on morphometric

techniques involving Multidimensional Scaling, and couple them with reconstruction algorithms

that make use of reduced model spaces pre-computed on a database of geometries. We prove

the potential of the method on a synthetic test problem inspired from the reconstruction of blood

flows and quantities of medical interest with Doppler ultrasound imaging.

1 Introduction

Model Order Reduction is nowadays an established class of methods to foster the application of math-

ematical modelling and scientific computing in realistic industrial contexts [1, 2]. Data Assimilation is

an example of a field which is related to a broad spectrum of applications in science and engineering

(the reader is referred to [3, 4]). Data Assimilation problems often come with a computational burden

making them prohibitively hard to be solved. A classical way to formulate such problems reads as fol-

lows: a mathematical model formally links data and parameters of a system to its state (and, ultimately,

the quantities of interest); given the measurements (which are partial and corrupted observations of

the system state) we wish to estimate the state (what we refer to as state estimation) or the quantities

of interest by repeatedly solving the model and improving its likelihood. In this work, we call the model

Full Order Model (FOM), and the only fact that we need to evaluate it multiple times implies a large

computational cost. To overcome this issue, we replace the evaluation of a costly FOM by a signifi-

cantly less expensive Reduced-Order model (ROM), built by leveraging the properties of the sets of

solutions of the FOM, as investigated for instance in [5, 6, 7, 8, 9].

One of the most common strategies to construct a ROM consists in dividing the procedure into two

stages: in the offline stage, several instances of the FOM are solved, once and for all. The set of solu-
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tions makes it possible to uncover eventual sparse or low rank structures, to be exploited in the online

phase, in which new instances are approximately solved by taking advantage of the knowledge ac-

quired in the offline phase. The typical scenario in which this is applied is when the model is described

by a parametric Partial Differential Equation (PDE). The model variability is well described by a set of

scalar parameters, which can be sampled in order to construct the solution set and the ROM.

Challenging scenarios are the ones in which the geometry of the domain can vary and it is potentially

the unknown of the problem to be solved. This is common to several fields of research such as shape

optimisation ([10, 11, 12]), inverse scattering problems ([13]), geometry morphometrics ([14, 15]).

Moreover, a variable domain is challenging for projection based ROM for which, typically, a basis of

space functions is defined on a given domain. This important issue has been studied in several works

in the literature. A first example is provided in [16], in which a reduced-element method is devised,

to take advantage of domain decomposition techniques and adapt to various potentially deformed

domains. An important class of methods consists in mapping the domains into a same reference

configuration and write the equations in this latter. In [17] the authors consider the set of transfor-

mations with affine parametrisation and their effect on the inf-sup stability for a reduced-basis for-

mulation of the Stokes problem. In [18], the computational domain is deformed thanks to an elastic

displacement and the non-affine dependence of the equations on the domain is tackled by using a

matrix-DEIM approach. A similar approach is proposed in [19] to efficiently reduce the computational

cost of parametrised fluid models. In [20] an isogeometric analysis framework is used to deal with

the domain parametrisation and build a reduced-basis method to speed up shape optimisation prob-

lems. A similar approach is proposed in [21]. In [22] the parametrisation of the domain (obtained by

considering NURBS) is incorporated as extra-coordinate in a Progressive Generalised Decomposition

(PGD) method. In [23] a free-form deformation method is coupled to Proper Orthogonal Decompo-

sition (POD) in the context of shape optimisation in aerodynamics. In [24], instead of mapping the

domains into a common reference configuration, the shifted boundary method is applied to deal with

the geometry parametrisation. By doing so, we avoid the changes of coordinate; to deal with the

intrinsic non-linearity, the authors propose to use the GNAT method or the gappy-POD. In [25] an

hyper-reduction framework is used to deal with non-parametrised geometrical variations of the do-

main in the context of fluid-mechanics. In [26] a reduced-basis formulation is proposed to deal with a

cut-FEM embedding method. In [27] the reduced-basis functions are defined on an average-deformed

configuration in order to speed up finite volume computations for fluid models with variable geome-

tries. In [28] the authors consider the problem of the parametrisation of interfaces in the context of

fluid-structure interaction problems. In [29], the reduced-basis method is used to efficiently solve the

Maxwell equations to speed up the design of semiconductors. In [30, 31] and other recent works, the

authors consider the problem of registration applied to model reduction: by suitably transforming the

domain we can achieve the reduction efficiency. Numerous applications including geometry reduction

can take advantage of such techniques.

The present work was motivated by applications in biomedical engineering. The prototypical yet fun-

damental situation regards the clinical applications in which non-invasive measurements (typically
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acquired by medical imaging) are exploited in order to infer non-observable mechanical or physiolog-

ical properties, or to perform state estimation. The time constraints of the clinical applications clearly

motivate and justify the use of ROMs. However, the inter-patient variability is often very large and man-

ifests itself also in terms of anatomy, hence domain geometry. This points towards a severe limitation

of the classical ROM strategy, as typically one would need to construct a database of FOM solutions

for each patient, reducing the range of possible applications to the ones in which we monitor a patient

multiple times and follow the pathology evolution.

With respect to the works cited above, there are two major differences. First, we set up a reduced-

order method specifically tailored for the task of the inverse data-assimilation problem with shape

variability. This is in contrast with the above works, which focus mostly on the direct problem but we

emphasize that our method is general and it could be adapted for that purpose. Second, our proposed

strategy is nonparametric in the sense that it does not require any a priori knowledge on an explicit

parametrization of the geometry, and it does not require to define a reference geometry.

To the best of our knowledge, the work which shares more similarities with the present contribution is

[32]. In that work, a set of realistic patient template geometries is built without knowing the underlying,

potentially high-dimensional, parametrisation. The authors then construct the reduced-order model

on a geometry computed as the average of the available templates. A set of transformations make it

possible to map fields between the geometries and the average geometry. The two main differences

with respect to the present work are the following: we construct a reduced-order method in view of

performing the reconstruction given some observable so, instead of constructing an atlas based solely

on geometric information, we construct a set of templates based also on the physics of the problem

we are considering. In order to solve the Data Assimilation problem in a reduced way, we adapt the

Parametrised Background Data Weak approach, proposed in [33] and analyzed in subsequent papers

such as [34, 35, 36, 37, 38, 39, 40].

The structure of the work is as follows: in Section 2 we present the context of the state estimation and

the methods we use in the present work. In 3 we detail the strategy we adopt in order to deal with

variable domain geometries. In 4 we propose an error analysis for the Data Assimilation problem. In

section 5 we describe in detail how the different steps of the procedure are practically implemented

and we conclude by presenting a numerical experiment to assess the method.

2 Multi-Domain State Estimation: Problem Setting

In the following, the terms geometry, spatial domain, and shape will be used interchangeably whenever

there is not ambiguity.
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2.1 State estimation on a given domain

Let Ω be a fixed given domain of Rd with dimension d ≥ 1, and let V (Ω) be a Hilbert space defined

over Ω. The space is endowed with an inner product 〈·, ·〉 and induced norm ‖ · ‖. The choice of

V (Ω) must be relevant for the problem under consideration, and typical options are L2, H1 or some

Reproducing Kernel Hilbert Space.

Our goal is to recover an unknown function u ∈ V (Ω) from m possibly noisy measurement observa-

tions

yi = `i(u) + ηi, i = 1, . . . ,m,

where the `i are linearly independent linear forms from V ′(Ω) and the ηi are unknown measurement

errors. In the following, for the sake of simplicity, we will assume that there is no noise (ηi = 0, i =

1, . . . ,m) but the main methodology which we develop could easily be extended to deal with noisy

measurements. In practical applications, each `i models a sensor device which is used to collect the

measurement data `i(u). In the applications which we present in our numerical tests, the observations

come in the form of an image and each `i models the response of the system on a given pixel as Figure

4 illustrates.

We denote by ωi ∈ V (Ω) the Riesz representers of the `i. They are defined via the variational

equation

〈ωi, v〉 = `i(v), ∀v ∈ V (Ω).

Since the `i are linearly independent in V ′(Ω), so are the ωi in V (Ω) and they span anm-dimensional

space

Wm(Ω) = span{ω1, . . . , ωm} ⊂ V (Ω)

When there is no measurement noise, knowing the observations yi = `i(u) is equivalent to knowing

the orthogonal projection

ω = PWm(Ω)u.

In this setting, the task of recovering u from the measurement observation ω can be viewed as building

a recovery algorithm

A : Wm(Ω) 7→ V (Ω)

such that A(PWm(Ω)u) is a good approximation of u in the sense that ‖u− A(PWm(Ω)u)‖ is small.

Recovering u from the measurements PWm(Ω)u is a very ill-posed problem since V (Ω) is generally a

space of very high or infinite dimension so, in general, there are infinitely many v ∈ V (Ω) such that

PWm(Ω)v = ω. It is thus necessary to add some a priori information on u in order to recover the state

up to a guaranteed accuracy. In the following, we work in the setting where u is a solution to some

parameter-dependent PDE of the general form

P(u, y) = 0,
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where P is a differential operator and y is a vector of parameters that describes some physical prop-

erty and lives in a given set Y ⊂ Rp. For every y ∈ Y, we assume that the PDE has a unique solution

u = u(y) ∈ V (Ω). Therefore, our prior on u is that it belongs to the set

M(Ω) := {u(y) ∈ V (Ω) : y ∈ Y},

which is sometimes referred to as the solution manifold.

Performance Benchmarks: The quality of a recovery mapping A is usually quantified in two ways:

� If the sole prior information is that u belongs to the manifoldM(Ω), the performance is usually

measured by the worst case reconstruction error

Ewc(A,M(Ω)) = sup
u∈M(Ω)

‖u− A(PWm(Ω)u)‖ .

� In some cases u is described by a probability distribution p on V (Ω) supported on M(Ω).

This distribution is itself induced by a probability distribution on Y that is assumed to be known.

When no information about the distribution is available, usually the uniform distribution is taken.

In this Bayesian-type setting, the performance is usually measured in an average sense through

the mean-square error

E2
ms(A,M(Ω)) = E

(
‖u− A(PWm(Ω)u)‖2

)
=

∫
V (Ω)

‖u− A(PWm(Ω)u)‖2dp(u) ,

and it naturally follows that Ems(A,M(Ω)) ≤ Ewc(A,M(Ω)).

PBDW as our practical algorithm: In this work, we will reconstruct with the Parametrized-Background

Data-Weak algorithm (PBDW, [33]). Other choices would of course be possible but the PBDW algo-

rithm is relevant for the following reasons:

� Simplicity and Speed: It is easily implementable and it provides reconstructions in near-real

time.

� Optimality: It has strong connections with optimal linear reconstruction algorithms as has been

studied in [35, 39].

� Extensions: If required, the algorithm can easily be extended to enhance its reconstruction

performance (see [40, 41]). In particular, it shown in [40] that piece-wise PBDW reconstruction

strategy can deliver near-optimal reconstruction performance. The PBDW algorithm can also

be easily adapted to accommodate noisy measurements (see [36, 38]) and some easy-to im-

plement extension to mitigate the model error exist (in the following however, we assume the

PDE model is perfect for the sake of simplicity).
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Since the geometry ofM(Ω) is generally complex, optimization tasks posed onM(Ω) are difficult

(lack of convexity, high evaluation costs for different parameters). Therefore, instead of working with

M(Ω), PBDW works with a linear (or affine) space Vn(Ω) of reduced dimension n which is expected

to approximate the solution manifold well in the sense that the approximation error of the manifold

δ(wc)
n := sup

u∈M(Ω)

dist(u, Vn(Ω)) , or δ(ms)
n := E

(
dist(u, Vn(Ω))2

)1/2

decays rapidly if we increase the dimension n. It has been proven in [42] that it is possible to find such

hierarchies of spaces (Vn(Ω))n≥1 for certain manifolds coming from classes of elliptic and parabolic

problems, and numerous strategies have been proposed to build the spaces in practice (see, e.g.,

[43, 44] for reduced basis techniques and [42, 45] for polynomial approximations in the y variable).

Assuming that we are given a reduced model Vn(Ω) with 1 ≤ n ≤ m, the PBDW algorithm

A(pbdw)
m,n : Wm → V (Ω)

gives for any ω ∈ Wm(Ω) a solution of

A(pbdw)
m,n (ω) ∈ arg min

u∈ω+W (Ω)⊥
dist(u, Vn(Ω)). (2.1)

The minimizer is unique as soon as n ≤ m and β(Vn(Ω),Wm(Ω)) > 0, which is an assumption to

which we adhere in the following. In practice, solving problem (2.1) boils down to solving a linear least

squares minimization problem. We refer, e.g., to [46, Appendix A] for details on how to compute it in

practice. For any pair of closed subspaces (E,F ) of V , β(E,F ) is defined as

β(E,F ) := inf
e∈E

sup
f∈F

〈e, f〉
‖e‖ ‖f‖

= inf
e∈E

‖PF e‖
‖e‖

∈ [0, 1].

We can prove that A(pbdw)
m,n is a bounded linear map from Wm(Ω) to Vn(Ω)⊕ (Wm(Ω)∩ Vn(Ω)⊥). In

fact, it is a simple least squares problem whose cost is essentially n2. Therefore, if the dimension n of

the reduced model is moderate, the reconstruction with (2.1) takes place in close to real-time.

For any u ∈ V (Ω), the reconstruction error is bounded by

‖u− A(pbdw)
m,n (ω)‖ ≤ β−1(Vn,Wm)‖u− PVn⊕(Wm∩V ⊥n )u‖ ≤ β−1(Vn,Wm)‖u− PVnu‖, (2.2)

where we have omitted the dependency of the spaces on Ω in order not to overload the notation, and

we will keep omitting this dependency until the end of this section. Depending on whether Vn is built to

address the worst case or mean square error, the reconstruction performance over the whole manifold

M is bounded by

e(wc, pbdw)
m,n := Ewc(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm) max

u∈M
dist(u, Vn⊕(V ⊥n ∩Wm)) ≤ β−1(Vn,Wm) δ(wc)

n ,

or

e(ms, pbdw)
m,n := Ems(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm)E

(
dist(u, Vn ⊕ (V ⊥n ∩Wm))2

)1/2

≤ β−1(Vn,Wm) δ(ms)
n . (2.3)
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Note that β(Vn,Wm) can be understood as a stability constant. It can also be interpreted as the

cosine of the angle between Vn and Wm. The error bounds involve the distance of u to the space

Vn⊕ (V ⊥n ∩Wm) which provides slightly more accuracy than the reduced model Vn alone. This term

is the reason why it is sometimes said that the method can correct model error to some extend. In the

following, to ease the reading we will write errors only with the second type of bounds (2.3) that do not

involve the correction part on V ⊥n ∩Wm.

An important observation is that for a fixed measurement space Wm (which is the setting in our

numerical tests), the error functions

n 7→ e(wc, pbdw)
m,n , and n 7→ e(ms, pbdw)

m,n

reach a minimal value for a certain dimension n∗wc and n∗ms as the dimension n varies from 1 to m.

This behavior is due to the trade-off between:

� the improvement of the approximation properties of Vn as n grows (δ(wc)
n and δ(ms)

n → 0 as n

grows)

� the degradation of the stability of the algorithm, given here by the decrease of β(Vn,Wm) to 0

as n→ m. When n > m, β(Vn,Wm) = 0.

As a result, the best reconstruction performance with PBDW is given by

e(wc, pbdw)
m,n∗wc

= min
1≤n≤m

e(wc, pbdw)
m,n , or e(ms, pbdw)

m,n∗ms
= min

1≤n≤m
e(ms, pbdw)
m,n .

2.2 Obstructions when the spatial domain is not given a priori

The speed of the above reconstruction algorithm crucially relies on the fact that we have assumed

that the spatial domain Ω is given to us a priori. Thanks to this we can precompute the reduced

models Vn(Ω) before the reconstruction takes place, and we only need to solve (2.1) during the

reconstruction, which is a computation that can be done in near real-time. The offline computation of

the reduced model should be seen as a training phase, and it can be computationally intensive and

time-consuming for complex physical systems.

There are however cases in which we cannot assume that Ω is given a priori. This situation typically

arises in biomedical applications where state estimation needs to be performed on a certain part of

the body for different patients which inevitably present morphological variations. In this case, given a

new target geometry Ω, one could of course generateM(Ω) and derive a reduced model Vn(Ω) but

this task would not be feasible in real-time, and the method would no be useful for real time decisions.

To avoid this computational bottleneck, we propose a method to quickly build a space Vn(Ω) by using

reduced models which have been pre-computed on a database of template geometries which we

suppose to be available offline. The idea consists in finding the best reduced model from the template

geometries, and then to transport it to the target geometry Ω. Once this is done, we reconstruct with

PBDW on the target geometry. The next section presents the details of our proposed strategy.
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3 Proposed strategy for fast state estimation

We consider a set G of spatial domains in Rd. The set can potentially be infinite. An example for G is

the set of human carotid arteries or, more generally, the set of shapes of a certain organ. Our goal is

to build a state estimation procedure that is fast for every geometry Ω ∈ G. For this, our approach is

based on a learning phase that involves computations on a dataset of available template geometries.

We next summarize the main steps. In section 4 we give an error analysis of the procedure and

discuss the main sources of inaccuracy. Some steps involve certain routines which are introduced

at an abstract level in this section and in the error analysis. In section 5, we explain how we have

implemented them in practice, and how our theory justifies certain choices. Note however that since

the procedure is general, other constructions can of course be considered for these building blocks.

Training/Learning phase (offline)

� Database of Template Geometries: Gather a family of K template domains

Gtemplates = {Ω1, . . . ,ΩK} ⊆ G.

This family will serve as a database for our subsequent developments.

� Database of Template Reduced Models: For every Ω ∈ Gtemplates, similarly as in section

2.1 we consider a parameter-dependent PDE

P(u, y) = 0,

where the parameters y take values in Y and the solution u(y) belongs to a Hilbert space

V (Ω). Note that the differential operator P and the parameter domain Y could vary with

the geometry Ω. However, to simplify the presentation, we assume that P and Y are taken

identical for all Ω ∈ Gtemplates. The set of solutions yields the solution manifoldM(Ω) and

it describes all the possible physical states of the system under consideration for the given

geometry. We summarize the physics by precomputing a template reduced model Vn(Ω),

M(Ω) ≈ Vn(Ω), ∀Ω ∈ Gtemplates.

� Transport snapshots and reduced-models between geometries: We need to define a

map to transport function between different geometries

τΩ→Ω′ : V (Ω)→ V (Ω′), ∀(Ω,Ω′) ∈ G×G.

We also need to define a map to transport subspaces into subspaces. Since in general the

image of a subspace Vn(Ω) by τΩ→Ω′ is not necessarily a subspace, we introduce another

mapping

τ̂Ω→Ω′ : Vn(Ω) ⊆ V (Ω)→ Vn′(Ω
′) ⊆ V (Ω′), ∀(Ω,Ω′) ∈ G×G.
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We assume in the following that n′ ≤ n. Also, for some applications, it will be important that

τ satisfies some physical properties such as mass conservation. We discuss how we have

built τ and τ̂ in practice in section 5.1.

� Best-Template: For the reconstruction task, we need to identify for each new target ge-

ometry Ω ∈ G which template geometry Ωt ∈ Gtemplates has the most appropriate reduced

model Vn(Ωt) that we have to transport to Ω. For this, we need to build a best template map

BT : G→ Gtemplates

Ω 7→ Ω∗t .

We discuss the different possibilities to build BT in section 5.2.

Reconstruction phase (online)

We are given a target domain Ω ∈ G, and our goal is to give a fast reconstruction of an unknown

function u ∈ V (Ω) given m measurement observations `(u) = (`i(u))mi=1. Note that since

`i ∈ V ′(Ω), the observation space depends on the geometry and W = W (Ω).

� If Ω ∈ Gtemplates (the target geometry is in our template dataset), then we simply reconstruct

with A(pbdw)
n,m (PW (Ω)u) with the pre-computed reduced model Vn(Ω).

� If Ω 6∈ Gtemplates:

� We need to find an appropriate reduced model for the reconstruction. For this, we

apply the best-template mapping BT and we set

Ω∗t = BT(Ω) ∈ Gtemplates.

� We transport the template reduced model Vn(Ω∗t ) to Ω by applying τ̂Ω∗t→Ω, namely

V̂n(Ω) = τ̂Ω∗t→Ω(Vn(Ω∗t ))

� In Ω, we reconstruct with PBDW using Wm(Ω) and V̂n(Ω).

4 Theoretical analysis of the reconstruction error

Suppose we are given a target geometry Ω1 ∈ G and that we want to reconstruct an unknown

function u ∈ M(Ω1) from its observations `i(u), i = 1, . . . ,m. Suppose further that we fix a

geometry Ω0 ∈ Gtemplates and we transport the reduced model space Vn(Ω0) to the target geometry

by applying τ̂0→1(V (Ω0)). The goal of this section is to give an error bound on the reconstruction of

DOI 10.20347/WIAS.PREPRINT.2850 Berlin 2021
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u ∈M(Ω1) with PBDW and using

V̂n(Ω1) = τ̂Ω0→Ω1(Vn(Ω0))

as a reduced model on Ω1.

The results involve the following notion of Hausdorff distance between compact sets.

Definition 1. For any two given compact sets X and Y of a Hilbert space V , the Hausdorff distance

between X and Y is defined as

dH(X, Y ) := max{sup
x∈X
‖x− PY x‖V , sup

y∈Y
‖y − PXy‖V }.

4.1 An error bound based on dH (τ0→1M(Ω0),M(Ω1))

It is natural to expect that the reconstruction error will be of good quality if:

� the physical phenomena contained in the target manifoldM(Ω1) are well represented in some

sense by the transported manifold τ0→1M(Ω0), and if

� the reduced model Vn(Ω0) approximatesM0 with enough accuracy, and its quality is not de-

graded by the transport to the target geometry.

Theorem 4.1 formalises and quantifies this intuition under the following assumptions:

1 In the template geometry Ω0, the accuracy of the template reduced model Vn(Ω0) is bounded

by

max
u∈M(Ω0)

‖u− PVn(Ω)u‖ ≤ ε0 (H1)

for some ε0 ≥ 0.

2 The Hausdorff distance between τ0→1 (M(Ω0)) andM(Ω1) is bounded by

dH (τ0→1M(Ω0),M(Ω1)) ≤ η, (H2)

for some η ≥ 0. Note that dH (τ0→1M(Ω0),M(Ω1)) couples the physics, the geometry and

the transport between Ω0 and Ω1. The bound on this term expresses the fact that the physics

in the target domain Ω1, expressed via the manifoldM(Ω1), should be well represented when

we transport the physics from Ω0 to Ω1. The value of η could of course be large depending on

the type of physics, geometries, and transport.

3 We finally need two technical assumptions on the transport maps τ0→1 and τ̂0→1:

3.1 τ0→1 : V (Ω0) → V (Ω1) is Hölder continuous, namely there exists C > 0 and α > 0

such that

‖τ0→1(f)− τ0→1(g)‖V (Ω1) ≤ C‖f − g‖αV (Ω0), ∀(f, g) ∈ V (Ω0)× V (Ω0). (H3)
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3.2 There exists γ ≥ 0 such that

sup
v∈τ0→1(Vn(Ω0))

‖v − Pτ̂0→1(V (Ω0))v‖V (Ω1)

‖v‖V (Ω1)

≤ γ. (H4)

Theorem 4.1. Let Ω0 ∈ Gtemplates be a template geometry and let u ∈ M(Ω1) be a target function

to estimate from the observations PWm(Ω1)u. If we reconstruct with PBDW using

V̂n(Ω1) = τ̂0→1(Vn(Ω0))

then the reconstruction error is bounded by

‖u− A(PWm(Ω1)u)‖V (Ω1) ≤
1

β(V̂n(Ω1),Wm(Ω1))
‖u− PV̂n(Ω1)u‖V (Ω1). (4.1)

If the assumptions (H1) to (H4) hold, then the reconstruction error over the whole manifoldM(Ω1) is

bounded by

max
u∈M(Ω1)

‖u− A(PWu)‖V (Ω1) ≤
1

β(V̂n(Ω1),Wm(Ω1))
(η + max

v∈τ0→1M(Ω0)
‖v − PV̂n(Ω1)(v)‖V (Ω1)).

(4.2)

Suboptimal bounds for maxv∈τ0→1M(Ω0) ‖v − PV̂n(Ω1)(v)‖V (Ω1) are

max
v∈τ0→1M(Ω0)

‖v − PV̂n(Ω1)(v)‖V (Ω1) ≤ Cεα0 + max
v∈τ0→1PVn(Ω0)M(Ω0)

‖v − PV̂n(Ω1)v‖V (Ω1) (4.3)

≤ C(εα0 + γ max
u∈M(Ω0)

‖u‖αV (Ω0)), (4.4)

where the constant C > 0 is the one given in assumption (H3).

Proof. In this proof, all norms will be related to the space V (Ω1) defined on the target geometry Ω1.

Let u ∈M(Ω1). By (2.2), we have

‖u− A(PWu)‖ ≤ 1

β(V̂n(Ω1),W )
‖u− PV̂n(Ω1)u‖, (4.5)

which is the first inequality of the Theorem. We next bound ‖u − PV̂n(Ω1)u‖ in terms of quantities in

the template geometry Ω0 and the transport operators τ0→1 and τ̂0→1. For this, let

u1 ∈ arg inf
v∈τ0→1(M(Ω0))

‖u− v‖,

and remark that

‖u− u1‖ ≤ dH(τ0→1(M(Ω0)),M(Ω1)) ≤ η (4.6)

by assumption (H2).

By the triangle inequality and inequality (4.6),

‖u− PV̂n(Ω1)u‖ ≤ ‖u− u1 − PV̂n(Ω1)(u− u1)‖+ ‖u1 − PV̂n(Ω1)u1‖

≤ η + ‖u1 − PV̂n(Ω1)u1‖

≤ η + max
v∈τ0→1M(Ω0)

‖v − PV̂n(Ω1)v‖, (4.7)
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and the error bound (4.2) follows by inserting (4.7) into (4.5).

We next bound maxv∈τ0→1M(Ω0) ‖v−PV̂n(Ω1)v‖ as follows. For any u1 ∈ τ0→1M(Ω0), there exists

u0 ∈M(Ω0) such that u1 = τ0→1(u0). Therefore,

‖u1 − PV̂n(Ω1)u1‖ = ‖τ0→1(u0)− PV̂n(Ω1) (τ0→1(u0)) ‖

≤ ‖τ0→1(u0)− τ0→1(PVn(Ω0)u0)− PV̂n(Ω1)

[
τ0→1(u0)− τ0→1(PVn(Ω0)u0)

]
‖

+ ‖τ0→1(PVn(Ω0)u0)− PV̂n(Ω1)

(
τ0→1(PVn(Ω0)u0)

)
‖,

where we have added and subtracted τ0→1(PVn(Ω0)u0) + PV̂n(Ω1)

(
τ0→1(PVn(Ω0)u0)

)
, and applied

the triangle inequality. By applying hypothesis (H3) and (H1), we can further bound the above inequality

as

‖u1 − PV̂n(Ω1)u1‖ ≤ ‖τ0→1(u0)− τ0→1(PVn(Ω0)u0)‖+ max
v∈τ0→1PVn(Ω0)M(Ω0)

‖v − PV̂n(Ω1)v‖

≤ Cεα0 + max
v∈τ0→1PVn(Ω0)M(Ω0)

‖v − PV̂n(Ω1)v‖, (4.8)

which yields inequality (4.3). Inequality (4.4) follows from using (H3) to bound maxv∈τ0→1PVn(Ω0)M(Ω0) ‖v−
PV̂n(Ω1)v‖ in (4.8). Note that both inequalities (4.3) and (4.4) are suboptimal due to the construction

of the bounds.

Theorem 4.1 shows that several ingredients are required in order to obtain a good quality reconstruc-

tion in Ω1 from a template geometry Ω0:

� The quality of the reduced basis Vn(Ω0) in Ω0 must be high so that ε0 is small enough.

� The transported manifold τ0→1M(Ω0) must be close the target manifoldM(Ω1) is the sense

that η is small enough.

� The transported space V̂n(Ω1) = τ̂0→1(Vn(Ω0)) must have “a good alignment” with the obser-

vation space W in the sense that the stability constant β(V̂n(Ω1),W ) is bounded away from

0.

� Finally, the transport of the space Vn(Ω0) with τ̂0→1 must approximate as well as possible the

one with τ0→1 so that γ is small.

4.2 An alternative error bound based on subspace distances

The reconstruction error bound (4.2) given in Theorem 4.1 involves very natural quantities such as the

Hausdorff distance between the target manifoldM(Ω1) and the transported one τ0→1M(Ω0). The

bound (4.2) may however be pessimistic in the sense that if dH(τ0→1M(Ω0),M(Ω1)) is large, then

the bound will not guarantee a high quality (because η is large). In this scenario, the reconstruction
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may however still be of decent quality if the transported subspace τ̂0→1(Vn(Ω0)) does not deviate

much compared to good quality reduced subspaces Vn(Ω1) that one could compute in the target

manifoldM(Ω1).

Theorem 4.2 quantifies this argument. It is a perturbative result that expresses to what extent the

reconstruction is degraded between working directly with a reduced model Vn(Ω1) and a transported

subspace V̂n(Ω1) = τ̂0→1(Vn(Ω0)). The result involves the Hausdorff distance between the unit

spheres of these two spaces, which we denote by S(Vn(Ω1)) and S(V̂n(Ω1)). The square of this

distance can be written as

d2
H(S(V̂n(Ω1)), S(Vn(Ω1))) = max

(
max

v̂∈V̂n(Ω1)

‖v̂ − PVn(Ω1)v̂‖2

‖v̂‖2
; max
v∈Vn(Ω1)

‖v − PV̂n(Ω1)v‖2

‖v‖2

)
= max

(
1− β2(V̂n, Vn); 1− β2(Vn, V̂n)

)
= 1−min

(
β2(V̂n, Vn); β2(Vn, V̂n)

)
Theorem 4.2. Let Vn(Ω1) be a reduced model such that

max
u∈M(Ω1)

‖u− PVn(Ω1)u‖ ≤ ε, (4.9)

β(Vn(Ω1),W ) ≥ β > 0. (4.10)

Let V̂n(Ω1) = τ̂0→1(V (Ω0)) be a transported subspace from Ω0 to Ω1 such that

dH(S(V̂n(Ω1)),S(Vn(Ω1))) ≤ δH . (4.11)

Then the reconstruction ofM(Ω1) with PBDW using Vn(Ω1) is well-posed and the error is bounded

by

max
u∈M(Ω1)

‖u− AVn(Ω1)(PWu)‖ ≤ ε

β
.

If we use V̂n(Ω1), the reconstruction is well posed if and only if

δH < β (4.12)

and the reconstruction error is bounded by

max
u∈M(Ω1)

‖u− AV̂n(Ω1)(PWu)‖ ≤
ε+ 2δH maxu∈M(Ω1) ‖PVn+V̂n

u‖
β(1− δH/β)1/2((2 + δH)/β − 1)1/2

. (4.13)

Proof. Let u ∈M(Ω1). By direct application of (4.1), we have

‖u− AV̂n(Ω1)(PWu)‖ ≤ 1

β(V̂n(Ω1),W )
‖u− PV̂n(Ω1)u‖.

By the triangle inequality and hypothesis (4.9) and (4.11),

‖u− PV̂n(Ω1)u‖ ≤ ‖u− PVn(Ω1)u‖+ ‖PVn(Ω1)u− PV̂n(Ω1)u‖ ≤ ε+ 2δH‖PVn+V̂n
u‖. (4.14)
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We next prove that

β2(V̂n,W ) ≥ 1− (1− β + δH)2 = β2(1− δH/β)((2 + δH)/β − 1). (4.15)

Note that this automatically guarantees that the reconstruction using V̂n(Ω1) is well-posed since, by

hypothesis (4.12), we have δH < β and therefore β(V̂n,W ) > 0.

To prove (4.15), we start from the fact that

β2(V̂n,W ) = 1−max
v̂∈V̂n

‖v̂ − PW v̂‖2

‖v̂‖2
,

and, by Jensen’s inequality, we have that for any ζ > 0

‖v̂ − PW v̂‖2

‖v̂‖2
≤ (1 + ζ)

‖v̂ − v − PW (v̂ − v)‖2

‖v̂‖2
+ (1 + ζ−1)

‖v − PWv‖2

‖v̂‖2
, ∀v ∈ Vn. (4.16)

Now, on the one hand,
‖v̂ − v − PW (v̂ − v)‖2

‖v̂‖2
≤ ‖v̂ − v‖

2

‖v̂‖2
. (4.17)

On the other hand,

‖v − PWv‖2

‖v̂‖2
≤ ‖v‖

2

‖v̂‖2
max
v∈Vn

‖v − PWv‖2

‖v‖2
≤ ‖v‖

2

‖v̂‖2
(1− β2), ∀v ∈ Vn, (4.18)

where we have used (4.10) to derive the last inequality. Thus inserting bounds (4.17) and (4.18) into

(4.16), and setting v = PVn v̂, we derive

‖v̂ − PW v̂‖2

‖v̂‖2
≤ (1 + ζ)

‖v̂ − PVn v̂‖2

‖v̂‖2
+ (1 + ζ−1)(1− β2)

‖PVn v̂‖
‖v̂‖

≤ (1 + ζ) max
v̂∈V̂n

‖v̂ − PVn v̂‖2

‖v̂‖2
+ (1 + ζ−1)(1− β2)

≤ (1 + ζ)δ2
H + (1 + ζ−1)(1− β2), ∀v̂ ∈ V̂n, ∀ζ > 0.

We can maximize the left-hand side over v̂ ∈ V̂n and minimize the right-hand side over ζ > 0. This

yields

1− β2(V̂n,W ) = max
v̂∈V̂n

‖v̂ − PW v̂‖2

‖v̂‖2

≤ min
ζ>0

(1 + ζ)δ2
H + (1 + ζ−1)(1− β2)

= (1− β + δH)2,

which is the proof to inequality (4.15). We derive the final result (4.13) by inserting bounds (4.15) and

(4.14) into (4.5).

From the error bound (4.13) from Theorem 4.2, it follows that if the transported subspace V̂n(Ω1)

deviates from Vn(Ω1) by a quantity of the order δH ≤ ε/maxu∈M(Ω1) ‖u‖, then

max
u∈M(Ω1)

‖u− AV̂n(Ω1)(PWu)‖ ≤ C
ε

β
,

for a relatively moderate constant C ≥ 1. In this scenario, the reconstruction with the transported

subspace is of the same quality as the one with the reduced model Vn(Ω1) (which we are avoiding to

compute in order to speed-up the state estimation procedure).
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5 Transport routine τ and the routine Best-Template

5.1 Computation of τΩ→Ω′ and τ̂Ω→Ω′

We next describe a practical way of a mapping snapshots and subspaces from a given geometry Ω0

to a target geometry Ω1. Our approach is based on building a one-to-one mapping between the two

volumes Ω0 and Ω1. It involves three steps:

1 Surface matching: The task is to compute a map between ∂Ω0 and ∂Ω1. For this, we use

the so-called Large Deformation Diffeomorphic Metric Mapping (LDDMM, see for instance [47])

method. In practice, the output of this method is an invertible and smooth mapping T(LDDMM) :

∂Ω0 → ∂Ω′1 between ∂Ω0 and an intermediate surface ∂Ω′1 which is close to the target surface

∂Ω1. The mapping is such that, if ∂Ω0 = ∂Ω1, then T(LDDMM)(x) = x, ∀x ∈ ∂Ω0. The surface

misfit between ∂Ω′1 and ∂Ω1 is corrected in step 3 with an interpolation post-processing.

2 Extrapolation of the surface map to the entire volume: We make a harmonic extension on Ω0

and we find a displacement field d0 ∈ H1(Ω0)d such that

∆d0 = 0, in Ω0

d0(x) = T(LDDMM)(x)− x, ∀x ∈ ∂Ω0. (5.1)

Note that d0 = 0 if Ω0 = Ω1. We define the volumetric mapping

T0→1′ : Ω0 → Ω′1

x0 7→ x1 = T0→1′(x0) := x0 + d0(x0).

This map is invertible and T−1
0→1′ = T1′→0. We further define the functional mapping

φ0→1′ : V (Ω0)→ V (Ω′1)

f 7→ φ0→1′(f)(x′1) := f ◦ T1′→0(x′1), ∀x′1 ∈ Ω′1.

3 Interpolation: Since in general Ω′1 6= Ω1, we add an interpolation operator I1′→1 : V (Ω′1) 7→
V (Ω1), so that the final mapping is

τ0→1 : V (Ω0)→ V (Ω1)

f 7→ τ0→1(f) := I1′→1 (φ0→1′(f))

Note that the map τ0→1 may not exist if the spaces V (Ω0) and V (Ω1) are chosen of very different

nature (very different regularity) or if certain physical quantities need to be preserved. One relevant

example for fluid and biomedical applications is the space of divergence free fields where V (Ω0) =

H(div,Ω0) and V (Ω1) = H(div,Ω1). In this case, for any f ∈ H(div,Ω0), we have τ0→1f ∈
H1(Ω1) but the function may not be divergence free. One remedy in this case is to add a post-process
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with the Piola transform. We therefore update the abstract definition of τ0→1 by adding a post-process

mapping p to allow this type of scenario,

τ0→1 : V (Ω0)→ V (Ω1)

f 7→ τ0→1(f) := p ◦ I1′→1 (φ0→1′(f)) . (5.2)

In our reconstruction method, we need to transport subspaces Vn(Ω0) ⊆ V (Ω0) to subspaces of

V (Ω1). Note that in general the image of Vn(Ω0) by τ0→1, defined as

τ0→1(Vn(Ω0)) := {τ0→1(v) ∈ V (Ω1) : v ∈ V (Ω0)},

is not a linear subspace of V (Ω1) unless τ0→1 is a linear map. Due to this, given that in our approach

we need to map subspaces into subspaces, we choose to define the image of Vn(Ω0) with respect to

a given basis B = span{ϕ1, . . . , ϕn} of Vn(Ω0) as

τ̂0→1(V (Ω0),B) := span{τ0→1(ϕ1), . . . , τ0→1(ϕn)}

Note that τ̂0→1(V (Ω0),B) is a subspace of V (Ω1) of dimension lower or equal to n, and it depends

on the choice of the basis B.

5.2 The Best-Template routine BT

The goal of this routine is to identify for each new target geometry Ω ∈ G which template geometry

Ωt ∈ Gtemplates has the most appropriate reduced model Vn(Ωt) that we have to transport to Ω.

Given a target geometry Ω ∈ G and a template geometry Ωt ∈ Gtemplates, the reconstruction error is

bounded by (see (4.1))

max
u∈M(Ω)

‖u− Aτ̂Ωt→ΩVn(Ωt)(PWu)‖ ≤ 1

β(τ̂Ωt→ΩVn(Ωt),W )
δ

(wc)
Ωt→Ω, (5.3)

where

δ
(wc)
Ωt→Ω := max

u∈M(Ω)
‖u− Pτ̂Ωt→ΩVn(Ωt)u‖, ∀ Ωt ∈ Gtemplates.

Alternatively, if we study errors in the average sense,

E(‖u− Aτ̂Ωt→ΩVn(Ωt)(PWu)‖2) ≤ 1

β2(τ̂Ωt→ΩVn(Ωt),W )
δ2

Ωt→Ω, (5.4)

with

δ
(ms)
Ωt→Ω := E(‖u− Pτ̂Ωt→ΩVn(Ωt)u‖2)1/2, ∀ Ωt ∈ Gtemplates.

Ideally, we would like to find the template Ωt that miminizes the upper bound (5.3) or (5.4), that is, find

Ω∗t ∈ arg min
Ωt∈Gtemplates

1

β(τ̂Ωt→ΩVn(Ωt),Wm(Ω))
δ

(??)
Ωt→Ω,
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where (??) means (wc) or (ms) depending on the desired setting to study the errors. Note that this

strategy depends on the observation spaceWm(Ω) that we use for the reconstruction in Ω. In practice,

this entails that we need to know in advance Wm(Ω) and the target Ω for the learning phase of our

approach. In general, this requirement is not realistic for most applications, especially the ones from

the field of biomedicine which we are particularly targeting. The procedure would have to be restarted

every time that Ω and Wm(Ω) changes, making it unfeasible in real time.

There are several possibilities to avoid involving Wm(Ω) in the criterion. The option that has delivered

the best results in our numerical tests is based on bound (4.13) of Theorem 4.10. From this bound, it

follows that a strategy to find the best template is to minimize over the Hausdorff distance

dH(S(τ̂Ωt→ΩVn(Ωt)),S(Vn(Ω))) (5.5)

between a good reduced model Vn(Ω) (coming, for example, from forward reduced modeling) and the

transported subspace τ̂Ωt→ΩVn(Ωt)). With this strategy, the output to select the best-template routine

is thus

BT(Ω) ∈ arg min
Ωt∈Gtemplates

dH(S(τ̂Ωt→ΩVn(Ωt)),S(Vn(Ω))). (5.6)

In order to perform this selection in real time, we need to estimate quickly the map

Ω ∈ G→ {dH(S(τ̂Ωt→ΩVn(Ωt)),S(Vn(Ω))) : Ωt ∈ Gtemplates} .

In our work, this is performed with a Multidimensional Scaling approach (MDS, see e.g. [48, 49, 50,

51]). We next describe the main steps.

Remark 5.1. Note that another criterion that does not involve Wm(Ω) is to work with δ(??)
Ωt→Ω. This

strategy was studied in our numerical tests but it was outperformed by the criterion (5.5) discussed

in the main text. We conjecture that the reason for this is related to the fact that δ(??)
Ωt→Ω is connected

to the approximation quality of the forward reduced modeling problem instead of our current inverse

reconstruction problem.

Step 1: Voxelize geometries: To ease the manipulation and comparison between different domains,

we work with voxelized descriptions of them involving a uniform grid mesh of Nvox cells. Therefore, in-

stead of working with a given domain Ω ⊂ Rd with possibly involved geometry, we will actually manip-

ulate vectors vΩ ∈ RNvox such that for all i = 1, . . . , Nvox, the voxel entry v(i)
Ω is equal to the volume

portion of the associated cell i of the mesh. Ideally, the size of the grid mesh Nvox should be large

enough in order to guarantee an isomorphism between the domains Ω ∈ G and their corresponding

voxelizations vΩ.

The family of geometries G is therefore replaced in practice by the voxelized representation,

G ∼ V := {vΩ ∈ RNvox : Ω ∈ G}.

Similarly,

Gtemplates ∼ Vtemplates := {vΩ ∈ RNvox : Ω ∈ Gtemplates}.
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As a result of the voxelization, we will alternatively write the manifold set of solutionsM(Ω) asM(vΩ)

for all Ω ∈ G. Also, in practice we will construct a best template mapping of the form

BT : RNv ∈ V→ Vtemplates.

Learning Phase – Step 1: MDS: We consider the manifold set

S := {M(vΩ) : vΩ ∈ V}.

Our goal is to find a low dimensional representation of S using our database of K templates,

Stemplates := {M(vΩ) : vΩ ∈ Vtemplates}.

For this, suppose that S is equipped with a metric ρ. The exact choice for ρ will be specified later on.

We then assemble the matrix of pairwise square distances between elements of Stemplates,

D = (di,j)1≤i,j≤K , di,j = ρ2
(
M(vΩi

),M(vΩj
)
)
. (5.7)

The vanilla version of MDS seeks to find vectors x1, . . . , xK from an Euclidean space Rp of small

dimension p such that

‖xi − xj‖2
`2(Rp) = di,j, 1 ≤ i, j ≤ K.

The solution to this problem, if it exists, is not unique because if X∗ = (x∗1| . . . |x∗N) ∈ Rp×K is a

solution, then X∗c = (x∗1 + c | . . . |x∗N + c) is also a solution for any vector c ∈ Rp. We therefore

add a constraint in which we search for the unique centered solution such that
∑p

i=1 x
∗
i,j = 0 for all

j = 1, . . . , K . One can easily prove that, if such a centered solution X∗ exists, then it satisfies the

equation

(X∗)TX∗ = C, (5.8)

with

C := −1

2
HDH, H := I− 1

K
eeT , e := (1, . . . , 1)︸ ︷︷ ︸

K

T .

The matrix C resembles a covariance matrix in that if the original pairwise distances represent Eu-

clidean distances in a p-dimensional space, C will be symmetric and positive semidefinite of rank p.

Since C is symmetric, its eigenvalue decomposition is of the form

C = VΛVT ,

where V = (v1| . . . |vK) ∈ RK×K is a unitary matrix and Λ = diag(λ1, . . . , λK) is a diagonal

matrix containing the eigenvalues in the diagonal. We sort them in decreasing order λ1 ≥ · · · ≥ λK .

If C is positive definite of rank p, we have λ1 ≥ · · · ≥ λp > 0 and λi = 0 for p < i ≤ K . In

this case, we can exactly represent the objects as points in a p-dimensional space, in such a way that

the square of the Euclidean distance ‖xi − xj‖2
`2(Rp) between each pair of points is exactly equal to
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di,j = ρ2
(
M(vΩi

),M(vΩj
)
)
. To find the points, we consider the eigenvectors v1, . . . , vp associated

to the nonnegative eigenvalues and assemble the matrices

Vp = (v1| . . . |vp) ∈ RK×p, Λp = .... ∈ RK×p.

We then set

X = Λ1/2
r VTr

Of course, in general C need not be positive semi-definite, which will not be true if there is no p-

dimensional embedding representing the K objects with specified pair-wise distances di,j . In such

cases, the standard MDS procedure is to embed the data using only the positive eigenvalues. This

yields an approximate embedding, whose quality depends on the importance of the eigenmodes that

are discarded.

The selection of the metric for the manifold S plays a critical role in the ability of MDS to find a low

dimensional representation of S . Ideally we would like to use d2
H(S(τ̂Ω′→ΩVn(Ω′)), S(Vn(Ω))) as

defined in (5.5) but the main obstacle is that this quantity is not symmetric. This is the reason why we

use the symetrized version

ρ2(M(vΩ),M(vΩ′)) :=
1

2
d2
H(S(τ̂Ω′→ΩVn(Ω′)), S(Vn(Ω))) +

1

2
d2
H(S(Vn(Ω′)),S(τ̂Ω→Ω′Vn(Ω)))

(5.9)

Note that the above mapping ρ : S × S 7→ R+ does not define a distance in the classical sense

because it does not satisfy the triangle inequality. Despite this, the fact that it is symmetric is sufficient

to perform the MDS procedure. We will see that this choice yields good results despite the fact that we

do not work with a metric. The success of our choice may be connected to the fact that our function ρ

involves a notion of ordering since we have that 0 = ρ(M(vΩ),M(vΩ)) < ρ(M(vΩ),M(vΩ′)) if

Ω′ 6= Ω.

Learning Phase – Step 2: Voxelization-to-embedding-space Mapping: The final element in our

procedure is to build a mapping between the voxelization vΩ of a geometry Ω ∈ G and the corre-

sponding point xΩ ∈ Rp in the low dimensional parametrization of S . In our case, this step is done by

a simple linear least-squares procedure but of course other options could be considered. We search

for a minimizer of

min
W∈RNvox×p

1

2K

∑
Ω∈Gtemplates

‖WTvΩ − xΩ‖2
`2(Rp).

Denoting V = (vΩ1| . . . |vΩK
) ∈ RNvox×K and X = (xΩ1 | . . . |xΩK

) ∈ Rp×K , the solution W with

minimal norm satisfies the least-squares equation

VVTW = VX,

which can be solved by classical least-squares inversion techniques.
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Practical Application of the routine BT: Once the above learning steps have been performed,

given a domain Ω ∈ G we can quickly find the best template from Gtemplates by performing the following

steps:

� Compute the corresponding voxelization vΩ of the target geometry Ω.

� Find the representation ofM(vΩ) in the low-dimensional space by computing xΩ = WTvΩ.

� Find the template geometry which is the closest in the embedding

Ω∗t ∈ arg min
Ωt∈Gtemplates

‖xΩ − xΩt‖2
`2(Rp) (5.10)

and set BT(Ω) = Ω∗t . This choice is justified from the following fact: our original minimization

problem is (5.6), that is, to find

min
Ωt∈Gtemplates

dH(S(τ̂Ωt→ΩVn(Ωt)),S(Vn(Ω))).

By definition (5.9) of the metric ρ,

dH(S(τ̂Ωt→ΩVn(Ωt)),S(Vn(Ω))) ≤
√

2ρ(M(vΩ),M(vΩ′)) ≈
√

2‖xΩ − xΩ′‖2
`2(Rp)

Therefore, our choice (5.10) for Ω∗t guarantees that

min
Ωt∈Gtemplates

dH(S(τ̂Ωt→ΩVn(Ωt)),S(Vn(Ω))) .
√

2‖xΩ − xΩ∗t
‖2
`2(Rp).

6 Numerical example

The proposed methodology is general and, among the many different applications that could be envis-

aged, problems from the field of biomedicine emerge as particularly relevant. As such, we next present

a numerical example on this topic related to the task of reconstructing 3D blood velocity flows from

Doppler ultrasound velocity images (see [41, 46]). The tests are performed on synthetically generated

observations due to our lack of real data. The linear observation functions {`i}mi=1 will thus be defined

in order to mimic the output of real ultrasound images.

Sections 6.1 to 6.3 give details on the test case, and outline the steps performed for the training phase.

The training follows exactly the guidelines given in section 3. Section 6.4 quantifies and illustrates the

good performance of the reconstruction strategy.

6.1 Geometry

In our example, the family G of geometries is a set of 3D Venturi tubes with variations on three geomet-

rical parameters concerning the tube coarctation (see Figure 1). The parameters are the coarctation

length Sl, its radius Sr, and its position along the y−axis Sx. The ranges of the geometrical parame-

ters are Sr ∈ [1.4, 2.6] mm, Sl ∈ [0.8L, 1.2L] and Sx ∈ [5, 11] mm. The length of the tube is fixed

to L = 5 cm, and its diameter to D = 0.4 cm.
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Training Phase: We work with K = 64 template geometries for the database Gtemplates. They are

computed using a uniform grid sample on the three geometrical parameters.

Sx

Sr

Sl

Γin

<latexit sha1_base64="i1059KFVKuMnAHHXJn8nv3flz/o="></latexit>

Γout

<latexit sha1_base64="b9v+oZuWUS11l7krNCwBgsmrRqo="></latexit>

Γw

<latexit sha1_base64="2JrDrEZHb7ThIv1xxCG22JGFU0I="></latexit>

L

D

Figure 1: Scheme for the generation of the set G.

6.2 Physics, solution manifoldM(Ω), and reduced model Vn(Ω)

We assume that the fluid is governed by the Stokes equations defined, for a given Ω ∈ G, as the

problem of finding the velocity u ∈ [H1 (Ω; [0, T ])]
3

and the pressure p ∈ L2(Ω; [0, T ]) such that:

∂tu− µ∆u+∇p = 0 in Ω

∇ · u = 0 in Ω

u = (0, 0, 0) on Γw

u = u0

(
0, 1− x2 + z2

(D/2)2
, 0

)
sin (2πt) on Γin(

∇Tu+∇u
2

− pI

)
· n = (0, 0, 0) on Γout

(6.1)

where I is an identity matrix of size three, n is a unitary vector pointing outwards the working domain,

and u0 ∈ R+. The boundary ∂Ω is decomposed into 3 disjoint subdomains,

∂Ω = Γin ∪ Γout ∪ Γw,

where Γin is the inflow part, Γout the outflow, and Γw corresponds to the walls (see Figure 1).

In our example, we reconstruct velocities taking V (Ω) = [L2(Ω)]3 as the ambient reconstruction

space. Note that this does not match with the space [H1(Ω)]3 in which velocity is defined in the

Stokes equation. This choice was made in order to target the reconstruction of the field and not its

derivatives.

For each Ω ∈ G, we work with the manifold

M(Ω) := {u(y) : y ∈ Y},

with

Y := {y = (t, u0, µ) ∈ [0, 0.5 s.]× [0.01, 1 cm/s]× [0.01, 0.1 P]}.
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Training Phase: For each Ω ∈ Gtemplates, we compute a finite training subset ofM(Ω) with Ns =

12 800 snapshots, and we compute its Proper Orthogonal Decomposition (POD). The parameters

to generate the snapshots are sampled from a uniform random distribution. Appendix A gives some

details on the discretization and the solver used to generate them. The reduced order model Vn(Ω) is

the subspace spanned by the POD eigenfunctions associated to the n = 20 most energetic modes.

6.2.1 Example of τ̂0→1 for mass conservative fields

We have described in section 5.1 how fields are transported among domains. Let us illustrate the

methodology with a numerical example between two geometries Ω0 and Ω1, as shown in figure 2.a

and 2.b, respectively. Let vst ∈ [H1(Ω)]
3

be a divergence free vector field, depicted on figure 2.a and

solution to the Stokes problem (6.1), a snapshot in the training set of Ω0. In figure 2.b we observe

the result of the shape registration via LDDMM (implemented using [52]) computed from (5.1). Mass

conservation is not preserved nonetheless. In order to convey a divergence free field in the arrival

geometry we define the operator p from equation (5.2) as the Piola transform p : [H1(Ω0)]3 7→
[H1(Ω1)]3 (see [53] or [32]):

p(v) =
(I3×3 +∇ [I1→1′ ◦ φ0→1′ (d0)])

det (I3×3 +∇ [I1′→1 ◦ φ0→1′(d0)])
I1′→1 ◦ φ0→1′ (v) .

In figure 2.c we observe how this transformation recovers mass conservation in Ω1. The underlying

mechanism of this operator is well illustrated with the scaling factor of figure 2.d.

(a) Stokes snapshot vst

(b) φ0→1′(vst)

(c) p ◦ I1′→1 ◦ φ0→1′(vst)

(d) det (I3×3 +∇ [I1′→1 ◦ φ0→1′(d0)])

Figure 2: A divergence free field transported among geometries with a different value for Sr.

6.3 MDS

We compute the MDS from the spectrum of the inner product matrix (5.8). To do so, we first compute

the matrix D = (di,j)1≤i,j≤K of pairwise distances between the K = 64 templates (see (5.7)). Each
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entry di,j is computed using formula (5.9) to quantify distances between two manifolds on different

geometries.

To visually illustrate the methodology, we select a subset of K̃ = 16 and show in Figure 3(a) the

values di,j of the matrix D. Figure 3(b) shows the positions xΩ in the reduced Euclidean space of

dimension p = 2 for the K̃ geometries. It is interesting to remark that the low dimensional represen-

tation of the geometries reflects the main differences in the geometrical parameters despite that the

MDS methodology is fully non-parametric. The figure shows that the “dominant” parameter that drives

metric changes is the radius Sr since the points xΩ tend to cluster following its values. For K̃ = 16

geometries a bi-dimensional representation is enough to get a good embedding. For K = 64 geome-

tries, we work in R3.

(a) Pair-wise distances (b) MDS coordinates of XΩ

Figure 3: Pair-wise distances plot (normalized scale in [0,1], where blue is 0 and yellow is 1) between

16 geometries and MDS representation in R2.

6.4 Reconstruction of synthetic data

Definition of the observation space Wm(Ω): For a given Ω ∈ G, we consider a partition of

Ω = ∪mi=1Ωvoxel
i into m disjoint subdomains (voxels) Ωvoxel

i . We mimic getting ultrasound images by

defining the linear functionals `i ∈ L2(Ω) as

`i(u) =

∫
Ωvoxel

i

u · b dx, 1 ≤ i ≤ m,

where b is a unitary vector giving the direction of the ultrasound beam. In our case, the plane is

chosen to be z = 0, the ultrasound direction is b = [0,
√

2/2,
√

2/2] and the size of voxels is 2.5

mm3. The dimension m of the total number of observations changes slightly between geometries.

The geometry with the smallest amount of voxels, i.e., the geometry corresponding to the smaller

parameter Sr and maximal Sl, is m = 59. Given that the domain is unknown a-priori, we need

to address the construction of the space Wm(Ω) = span{ωi}mi=1 during the online phase . The
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problem of computing the Riesz representers of the measures reads: Find {ωi}mi=1 ∈ V such that

〈ωi, v〉V (Ω) =

∫
Ωvoxel

i

v · b dx ∀v ∈ V (Ω),

Since our reconstruction space V (Ω) is L2(Ω), we have that ωi = 1Ωvoxel
i
b, and the numerical cost of

computing the family of representers {ωi}mi=1 is negligible in our case. In Figure 4 we give an example

of a PDE solution u and its associated synthetic Doppler ultra-sound data PWmu.

(a) Example of forward simulation u ∈M(Ω)

(b) Synthetic data PWmu

Figure 4: Snapshot in manifold of solutions and its projection in the space Wm. The measures emu-

lates Doppler ultrasound data with a transducer steered with an angle of π/4 respect to the main fluid

direction.

Reconstruction: We test the methodology withKtest = 16 test working domainsGtest = {Ωtest
i }Ktest

i=1

which are taken different from the geometries in Gtemplates. For each test working domain, we sample

Ntarget = 16 target simulations of the governing dynamics inM(Ωi
t). This yields a total of 50 snap-

shots per target due to time marching.

We study the performance of our method in terms of relative average reconstruction errors in L2. For

a given target geometry Ω ∈ Gtest, if we reconstruct by transporting reduced model Vn(Ωt) from a

given template geometry Ωt ∈ Gtemplates, the relative error for the i-th simulation at time t is defined

as

eiΩt→Ω(t) =
‖ui(t)− A (PWmu(t)) ‖(∫ T

0
‖ui(t)‖2 dt

)1/2
. (6.2)

In Figure 5, we fix one target geometry Ω ∈ Gtest and we show the average error over all simulations

i, namely

eΩt→Ω(t) =
1

Ntarget

Ntarget∑
i=1

eiΩt→Ω(t).

Each curve depicts the error for each template geometry Ωt ∈ Gtemplates. The role of the routine

Best-Template which we have built in the learning stage is to quickly select the template which

will be the most appropriate so that we obtain the most accurate reconstruction results. The selec-

tion with our proposed construction yields the error curve which is labeled MDS. We tested several
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Figure 5: The reconstruction error (6.2) with the best template for 4 different target geometries Ω ∈
Gtest. The Best-Template methods is able to identify a good or the best template.

possibilities for the definition of the metric ρ but the one based (5.9) produced systematically the best

results, so, for the sake of clarity, we only present the results for this choice. We observe in Figure 5

that the selection method is near-optimal in the sense that it chooses either a good or the best avail-

able template among the 64 template domains. Figure 6 gives an illustration of the reconstruction of

one snapshot with our pipeline.

(a) Target field u

(b) Reconstructed field A (PWm
u)

(c) Error field u−A (PWmu)

Figure 6: Example of field reconstruction for one target snapshot

In addition, it is important to compare with a set of reconstructions on all the Ktest test geometries

Ωtest ∈ Gtest with the pre-computed ROMs Vn(Ωtest). We want to quantify the difference between

the PBDW algorithm output of AVn(Ωtest)(ω) and that of AV̂n(Ω)(ω), for ω ∈ Wm. We recall that

V̂n(Ω) = τ̂Ω∗t→Ω(Vn(Ω∗t )), and Ω∗t = BT(Ωtest).

DOI 10.20347/WIAS.PREPRINT.2850 Berlin 2021



F. Galarce, D. Lobardi, O. Mula 26

It is encouraging to observe that the relative error

max
i

‖AVn(Ωtest)(ωi)− AV̂n(Ω)(ωi)‖L2

‖uiGT‖L2

is below one percent for a set of 16 ground truth solutions {uiGT}16
i=1 in each test domain Ωtest, with

ωi = PWm (uiGT).

7 Conclusion

We have developed a framework to solve in near-real time state estimation problems for applications

that present variations in the spatial domain. For a given target geometry, the reconstruction strat-

egy is based on selecting a relevant reduced model defined on a template geometry, which is then

transported to the target geometry. The reduced model is chosen among a pool of available reduced

models, each one defined on a different template geometry. The model selection strategy is based on

a dimensionality reduction technique based on MDS. The technique requires defining an appropriate

notion of distance between manifold sets M(Ω) from different geometries Ω. Among the different

options for the metric which we have tested in our numerical experiments, the one based on formula

(5.9) has produced the best results, and is simple to implement in practice. This choice is backed up

by our theoretical analysis from Theorem 4.2.

The present contribution paves the way for further developments in the field of inverse problems pre-

senting shape variability, especially in the field of biomedical engineering. Future research will be

devoted to applying the present methodology to applications with real data, and for which the shape

of the target domain evolves in time.

Appendix

A Details on the numerical solution of the Stokes equation

Using finite elements, we search for the projection coefficients of u and p in the space of piece-wise

linear polynomials [P1(Ωh)]
3 and P1(Ωj) respectively. The Lagrange polynomials are considered on

Ωh, a tessellation of Ω with tetrahedrons of size h = 0.08 cms. We don’t adopt a new notation for

the projection of the states in the polynomial spaces when no confusion arises. Time discretization is

done via implicit finite differences using a time step of ∆t = 0.02 seconds. The semi-discrete weak

problem to solve for each un+1 reads:

1

∆t
〈un+1, v〉+ µ〈∇un+1,∇v〉 − 〈p,∇ · v〉+ 〈∇ · un+1, q〉+

∑
Tet

h2
Tet〈∇p,∇q〉K =

1

∆t
〈un, v〉,

∀(v, q) ∈ [H1(Ω)]3 × L2(Ω), where v and q are test functions and where 〈·, ·〉 denotes the inner

product in L2(Ω). In addition, 〈·, ·〉Tet denotes the L2(Ωh) inner product over a single tetrahedron Tet
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in Ωh. The bilinear form concerning this term is a typical stabilization procedure to deal with the saddle

point nature of the problem [54].

The matrix assemblage and solution of the monolithic system of equations is done with CPU paral-

lelization via MPI using the software MAD ([55], chapter 5).
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