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1. Introduction

In the drift-di�usion model of semiconductor devices the free energy has turned out
to be a very useful quantity. Gajewski and Gr�oger [10] applied it in the analysis

of the transient initial-boundary value problem. Gajewski [6], [8] also used it to
control the step width in the time discretization. Considered as a functional of
the carrier densities, the free energy is a thermodynamic potential and a convex
functional. It is a very attractive quantity with both the properties. In the case of
variable temperature, however, the free energy is no convex functional. In [2], [3] we
have started to set up an analogous frame for an investigation of the energy model
of semiconductor devices in a similar way as Gajewski and Gr�oger dealt with the
drift-di�usion model. The present paper is a self-contained continuation of [2].

Two versions of the energy model are presented. In both cases

� we consider balance equations for the carrier densities n and p and a balance

equation for a (generalized) energy density,
� the current equations are formulated in the conjugate variables of the densities,
� the current equations re
ect the Onsager symmetry and the positivity of the
entropy production,

� there are convex thermodynamic potentials which allow us to apply the convex
(functional) analysis.

In our opinion these physically motivated properties will be advantageous in the

mathematical analysis of the problems as well as in numerical evaluations.

The di�erence of the two versions consists in the fact that the generalized density u
of the total energy is balanced in the �rst version, but the density ui of the interior
energy is balanced in the second version. In the �rst version the boundary value

problem for the Poisson equation for the electrostatic potential 	 is considered as a
state equation. The non-local electrostatic interaction implies some thermodynamic
consequences which has been surprising for us, but which has been neither rejected
nor con�rmed in some discussions with experts. These consequences seem to be,
moreover, unpleasant from the mathematical point of view. Therefore we prefer a
second way which is completely equivalent to the generally accepted energy model.
The second version can be considered as a Gummel iteration technique adapted to
the energy model. It is possible, because the total energy is the sum of the interior

energy and of the electrostatic energy. This splitting is possible, because we assume
that the dielectric permittivity � is independent of the temperature and the heat
capacity of the lattice cL is independent of the electric �eld. These assumptions are
generally accepted in the simulation practice. We have included also the �rst version,
because the arising questions might be of interest beyond the �eld of semiconductor
theory in �elds, where a non-local interaction like the electrostatic one plays a role.

In contrast to [2] we do not only formally discuss the subject, but we introduce
function spaces and investigate the functionals on such function spaces. In this way
we build a bridge to the modern mathematical theories of evolution equations or of
the convex analysis. We present our approach on the half way, because

� we believe that the approach is worthwhile to be introduced,
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� colleagues are invited to overcome the remaining problems on the way to the
proof of existence and uniqueness of solutions,

� the approach should also be introduced to non-mathmaticians which are inter-
ested in this subject or in similar subjects, but which are not so much interested
in the mathematical di�culties and techniques.

The paper is organized as follows. The basic notation and assumptions are intro-
duced in section 2. In this section the free energy as a function of n, p and of the
temperature T is also introduced, because this thermodynamic potential seems to
be the most familiar one and because it represents the assumptions in the most
illustrative way. Furthermore the conjugate variables (�; �; � ) of (n; p; u) and the
corresponding thermodynamic potential H(�; �; � ) are derived in a formal way. The
non-local terms in the equations (2.12) arise quite naturally; they causes the ques-
tions and the modi�cations of the energy model mentioned above. In the section 3
it is shown that the potential H is a concave F -di�erentiable functional on an open

convex subset of the a�ne Banach space zD+H1
0 �H

1
0 � (H1

0 \L1) � z
D+Z1. In

this section we take advantage of the moderate growth of Fermi integrals compared
to the exponential function, i.e. we restrict us onto the Fermi-Dirac statistics. Some
remarks which concern the convex analysis are gathered in section 4 in order to re-
late the properties of the energy model to properties on which the mathematical
theory is founded. In the following two sections the approach based on the convex
analysis is presented for the modi�ed energy model and for the conventional energy
model. These sections end with a �rst a priori estimate for solutions of evolution

equations which are discretized in the time. These physically motivated a priori
estimates are main results of this paper. We hope that they will be useful tools
in the proof of existence (and uniqueness). As mentioned above the mathematical
problems of proving suitable a priori estimates which guarantee the existence of
solutions and other mathematical problems remain open, but the basis for a precise
formulation of the problems is given. In the section 7 we discuss an oversimpli�ed
test example to illustrate our intentions. In an appendix we show that the approach
to the energy model is closely related to the thermodynamics of ideal Fermi gases.

2. Notation and assumptions

We consider a simple, but generally accepted energy model of semiconductor devices.

The device occupies a bounded open region 
 � R
m in the Euclidean space of

dimension m = 2 or 3. Let Lp(
) with 1 � p � 1 denote the Banach space of

measurable functions � on 
 for which j�jp :=
R
j�j

p
d
1=p

<1 (p <1) or which
are a.e. bounded with the least upper bound j�j1 of j�j. Let L+

1
denote the open

convex set

L
+
1
:= f� 2 L1(
) : 0 < � � � a.e. g � L1(
)

of strictly positive bounded measurable functions on 
. Furthermore, H1(
) de-
notes the space of square integrable functions � 2 L2(
) which have square inte-
grable partial derivatives in the sense of distributions. The boundary @
 is assumed
to be a regular Lipschitz boundary, which is decomposed in a regular way into a
proper part � � @
 and its complement. Let denote H1

0 the Banach space

H
1
0 := f� 2 H

1(
) : � = 0 on @
 n � g
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with the norm k�k :=
R
jr�j

2
d
 1=2. Its dual space is denoted by H�1 := (H1

0 )
0.

The norm k:k is equivalent to the H1 norm on H
1
0 , as we consider a measurable

subset � of the boundary with the surface measure j�j < j@
j.

The energy model which will be considered is, mathematically spoken, a system
of four partial di�erential equations with suitable boundary conditions and with
suitable initial conditions. The energy model is a phenomenological model. The
states of the semiconductor device are described by three independent state vari-
ables, which are functions or generalized functions on the closure �
 of 
, e.g. the
densities n and p of electrons and holes and the temperature T . Instead of T the
density u of the total energy can be considered. The evolution of the state is de-

scribed by a system of three balance equations and by the Poisson equation for the
electrostatic potential 	, which describes the electrostatic interaction. The three
balance equations are the continuity equations

_n+r � jn = �R and _p +r � jp = �R(2.1)

with the net recombination rate R and the conservation law

_u+r � ju = 0(2.2)

for the total energy. The Poisson equation reads

�r � (�r	) = d+ p � n(2.3)

with the dielectric permittivity � 2 L
+
1

and with a �xed doping pro�le d. The
mixed boundary conditions are Dirichlet conditions on @
n�, homogeneous natural
conditions

� � jn = � � jp = 0 and � � ju = 0 on �(2.4)

with the outward normal unit vector � for the balance equations and a boundary
condition of third type

�@�	+ b	 = g on �(2.5)

for the Poisson equation with given functions 0 � b 2 L1(�) and g. The mixed
boundary value problem for the Poisson equation is considered as a state equation.
Instead of specifying d and g we write 	 = 	D+ , where 	D

2 H
1
\L1 is the given

'exterior' electrostatic potential due to the doping pro�le and due to the boundary
values, whereas  =  p�n 2 H

1
0 is the solution of the corresponding boundary value

problem

hP ; �i :=

Z
�r r� d
 +

Z
�

b � d� =

Z
(p� n)� d
(2.6)

(� 2 H1
0 ) with homogeneous boundary conditions. This equation is brie
y written

as an equation P = [p�n] in H�1. The Green function of this problem is denoted
by P , i.e.  (x) =

R


P (x; y)[p(y)� n(y)] dy. For arbitrary functions � 2 L+

1
\H

1,

� 2 H
1 and � 2 H1

0 we introduce the notation

hP(� )�; �i :=

Z
��r�r� d
 +

Z
�

�b�� d� =:

Z
�p[�; �] d(
 [ �)

and the generalized density

ue(�) =
1

2

�
�jr�j

2+ b�
2
��

�
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of the electrostatic energy of the lattice with an electrostatic potential �. The
boundary term in (2.6) is responsible for the fact that we have to deal with gener-
alized densities like ue on �
 or on 
 [ �.

Initial values for n, p, and u are n0, p0, and u0. This initial-boundary value problem
has to be supplemented by current equations and by specifying the net recombina-
tion rate. These speci�cations are given later.

A basic assumption of the energy model is that the principle of partial local equi-

librium can be applied, i.e. in particular

� thermodynamic quantities like the temperature T , the electrochemical poten-

tials v of electrons and w of holes are de�ned,
� they are (generalized) functions on �
, which may also depend on the time t
and

� at any point x 2 
 (and at any time t) thermodynamic relations hold like the
state equations

n = NcF1=2

�
1

T
(v +	� Ec)

�
and p = NvF1=2

�
1

T
(Ev � w �	)

�
:(2.7)

The densities of state Nc and Nv and the band edges Ec and Ev are given material
laws and F1=2 is one of the Fermi integrals

F�(r) =
1

�(� + 1)

Z
1

0

s
�

1 + es�r
ds (� > �1) :

Since the expressions for electrons and for holes are almost the same, we will often
omit the expressions for holes, in particular, in proofs we often consider devices only
with electrons.

The functions Ni and Ei (i = c; v) are functions

Ni : 
 �R+ 7! R+ and Ei : 
�R+ 7! R ;

where R+ :=]0;1[ denotes the open real half-line. The functions are assumed to be
measurable in the �rst argument x 2 
, but twice continuously di�erentiable in the
second argument T 2 R+. They and their derivatives with respect to the second
argument are assumed to satisfy the estimates

0 < N
b
a � Ni �

�N b
a <1 and jEij � E

b
a <1 ;

0 � @TNi �
�N b
a <1 and j@TEij � E

b
a <1 ;

j@
2
TNij �

�N b
a <1 and j@

2
TEij � E

b
a <1

a.e. on 
 � [a; b] for any bounded closed interval [a; b]. It will be convenient to
write brie
y Ni(T ) instead of Ni(:; T ) or instead of Ni[:; T (:)] and N

0

i(T ) instead of
@TNi(:; T ). We write also Ni � T instead of Ni[:; T (:)]. Let us, moreover, introduce

the notation Ni(1=T ) := Ni(T ) (i = c; v), En(T ) := Ec(T )�	, Ep(T ) := Ev(T )�	,
Ei(1=T ) := Ei(T )=T (i = c; n; p; v), and the functions

hj(s; � ) = Nc(� )F1=2[�s� Ej(� )] (j = c; n)(2.8)

and hk(s; � ) = Nv(� )F1=2[Ek(� )� s] (k = p; v) on R�R+. We assume, furthermore,
that the material functions Nc and Ec (and, correspondingly, Nv and Ev) satisfy
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the following inequalities

Nc"F3=2 �NcEc"(� )F1=2 >
[N 0

cF1=2]
2

NcF�1=2
(2.9)

for all (s; � ) 2 R � R+ and for almost all x 2 
. This assumption guarantees the
convexity of the functions hj on R�R+ for a.a. x 2 
. The assumptions concerning
Nc and Ej (j = c; n) (or, correspondingly, Nv and Ek (k = v; p)) are satis�ed in the

model case

Nc(T ) = N
+
c T

3=2 with N
+
c 2 L

+
1

and Ec(T ) = Ec 2 L1(
) :

A proof and the thermodynamic background are described in the Appendix.

Further material laws are the generalized density fL of the free energy of the lattice,
i.e. the semiconductor device without the carriers, and the density cL of the heat
capacity of the lattice. The function cL : 
 � R+ 7! R+ is assumed to satisfy
cL(:; T ) 2 L

+
1

for all T 2 R+ and to increase monotonely and continuously in the
second argument for a.a. x 2 
. As it is commonly done in simulation practice
we assume that the dielectric permittivity does not depend on the temperature and
that the heat capacity of the lattice does not depend on the electric �eld. As a

consequence the total energy of the system is a sum of the 'interior' energy and of
the electrostatic energy. Thus the generalized density fL is

fL(:; T ) = f
i
L(:; T ) + ue(	

D)

with a function f iL : 
� R+ 7! R which is related to cL by
R T

cL(s) ds = f
i
L(T )�

T@Tf
i
L(T ).

The state space of the energy model is physically described by an expression for the
free energy. We choose

F (n; p; T ) :=

Z
fL � T d


+

Z
nTF

�1
1=2

�
n

Nc � T

�
� TNc(T )F3=2 � F

�1
1=2

�
n

Nc � T

�
+ nEc(T ) d


+

Z
pTF

�1
1=2

�
p

Nv � T

�
� TNv(T )F3=2 � F

�1
1=2

�
p

Nv � T

�
� pEv(T ) d


+

Z
	D(p � n) +

1

2
�jr j

2
d
 +

1

2

Z
�

b 
2
d� =:

Z
f(n; p; T ) d
(2.10)

with a generalized density f(n; p; T ).

The following theorem and its proof are not stringent in the mathematical sense, but
yield a thermodynamically motivated description of the semiconductor device as a

system with a non-local electrostatic interaction, i.e. one of the state equations is
a boundary value problem. The thermodynamic background (without electrostatic
interaction) is also described in the Appendix. The theorem is the basis for an
approach to the analysis of the energy model suggested in this paper. Let z denote
the triple (�; �; � ) of state variables which will be introduced in the theorem.
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Theorem 2.1. The state equations (2.7) are compatible with the de�nition (2.10)
of the free energy, i.e. the functional partial derivatives @nF and @pF satisfy

h@nF (n; p; T ); �ni =

Z
v�n d
 and h@pF (n; p; T ); �pi = �

Z
w�p d
 :

The entropy S := �h@TF (n; p; T ); 1i with the density s = �@Tf(n; p; T ) =:
sf(n; p; T ), considered as a functional of the densities n, p, and

u = uf (n; p; T ) := f(n; p; T )� T@Tf(n; p; T ) ;(2.11)

is a concave functional. The conjugate variables of n, p, and u are the state variables

� = �
v

T
�

Z �
1

T
�

1

T (y)

�
�(y)r (y)ryP (y; :) d
(y)

�

Z
�

�
1

T
�

1

T (y)

�
b(y) (y)P (y; :) d�(y) ;(2.12)

� =
w

T
+

Z �
1

T
�

1

T (y)

�
�(y)r (y)ryP (y; :) d
(y)

+

Z
�

�
1

T
�

1

T (y)

�
b(y) (y)P (y; :) d�(y) ;

and � = 1=T .
The operators �h(z) : H

1
0 7! H

�1 de�ned by

�h(�; �; � )� := PP(� )�1P� � @�[hn(� � �; � )� hp(�� � �; � )]

are strongly monotone operators.
The conjugate potential H of S reads (up to an additive constant)

H(�; �; � ) =

Z
hi(�; �; �; �) d
 �

1

2
hP�;P(� )�1P�i +

1

2
hP��; ��i(2.13)

with the integrand

hi(�; �; �; �) =

Z �

1

Z 1=�

cL(s) ds d� + (� � 1)ue(	
D)

� hn(� � �; � ) + hn(��
�
; 1) � hp(� + �; � ) + hp(�

�
; 1)

and with the solutions � = �h(z) of the equation �h(z)� = 0 and �� of the equation
�h(0; 0; 1)�

� = 0.

We consider state variables z which are triples of functions �; � 2 H
1(
) and � 2

L
+
1
\H

1(
). The boundary values on @
n� are given by functions �D; �D 2 H1(
)
and �D 2 L+

1
\H

1(
). Let denote

Z
D
1
:= (�D +H

1
0 )� (�D +H

1
0 )� [(�D +H

1
0 ) \ L

+
1
]

and Z1 := H
1
0 �H

1
0 � (H1

0 \ L1). Notice that Z1 = Z
0 is the dual space of the

Banach space Z = H
�1
� H

�1
� (H�1 + L1) and that there is an open convex

neighbourhood Z+ of 0 2 Z1 such that ZD
1
= z

D + Z
+ (zD = (�D; �D; �D)).

Proof of Theorem 2.1 (for electrons only). Let �n and �T denote arbitrary variations
of n and of T . Formal di�erentiation of F (n; T ), the identity  �n��n =  �  �n,
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and the Poisson equation (2.6) for  �n with the test function  =  �n yield

h@nF (n; T ); �ni =

Z
T

�
F
�1
1=2

�
n

Nc

�
+

1

T
(En �  )

�
�n d
 :

The left-hand side is
R
v�n d
 according to (2.7).

The assumption (2.9) and cL > 0 guarantee the inequality @Tuf (n; T ) > 0 (cf.
Appendix). The identity (2.11) implies @Tuf = T@Tsf . Therefore the entropy S can
be considered as a functional of n and u. Eliminating �T by �u = @nuf�n+@Tuf�T

one obtains

�s = (@nsf �
1

T
@nuf )�n+

1

T
�u =: �f (n; T )�n+

1

T
�u

with

�f (n; T )�n = �
1

T
@nf(n; T )�n = �

�
F
�1
1=2

�
n

Nc � T

�
+

1

T
En(T )

�
�n

+
�

T
r r �n +

b

T
  �n�� :

The functional partial derivative with respect to n is de�ned by

h@nS(n; u); �ni =

Z
�f (n; T )�n d
 :

The conjugate variable � is obtained from the right-hand side.

We consider the quadratic form

�
2
s := @n�f (n; T )�

0
n
 �n+ @T �f (n; T )�

0
T 
 �n�

1

T 2
�
0
T 
 �u

and observe that

�
2
s = �

�

T
r �0nr
  �n �

b

T
 �0n 
  �n�� �

�
0
n
 �n

NcF�1=2
�
@Tuf

T 2
�
0
T 
 �T ;

i.e. the functional S = S(n; u) is a concave functional.

Since F1=2 is a monotone function the strong monotony of �h(z) follows easily from

h�h(z)�2 ��h(z)�1; �i � hPP(� )�1P�; �i � const(� )k�k2

(� � �2 � �1). Since equations with continuous strongly monotone operators have
an unique solution, we denote � = �h(z) the solutions of the equations �h(z)� = 0.

The conjugate potential of S(n; u) is de�ned by

~H(�; � ) :=

Z
�n+ �u d
 � S(n; u) =

Z
�n +

1

T
f(n; T ) d
 :

We get an explicit expression if we eliminate n and T on the right-hand side by �
and � = 1=T . The integration of the initial value problem

�T@Tf
i
L(T ) + f

i
L(T ) =

Z T

cL(y)dy

with the initial value f iL(1) at T = 1 yields

1

T
f
i
L(T ) = f

i
L(1) +

Z �

1

Z 1=�

cL(y)dy d� :
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The summand

~� :=

Z
1

T (y)
�(y)r (y)ryP (y; :) d
(y) +

Z
�

1

T (y)
b(y) (y)P (y; :) d�(y)

in (2.12) satis�esZ
~��n d
 = hP(� ) ; �ni =

Z
P�1P(� ) �n d
 ;

i.e. P~� = P(� ) and thus

PP(� )�1P~� = P = �[n] = �[NcF1=2(�� + ~� � En)] ;

i.e. ~� = �h(�; � ) � �. So far we obtain

~H(�; � ) =
1

2
hP(� )	;	i+

Z
f
i
L(1) d
 +

Z Z �

1

Z 1=�

cL(y)dy d� d


�

Z
Nc(� )F3=2[�� + � � En(� )] d
 +

Z
n� d
 +

1

2
hP(� ) ; i :

The last two summands on the right-hand side can be transformed according toZ
n� d
 +

1

2
hP(� ) ; i = �hP ; �i+

1

2
hP�;  i = �

1

2
hP�;P(� )�1P�i :

Since an additive constant does not play an essential role, we set

H(�; � ) := ~H(�; � ) � ~H(0; 1) :

This completes the proof of the Theorem 2.1.

3. The state space of the energy model

The aim of this section is to establish the functional H of Theorem 2.1 and its
properties on the open convex set ZD

1
� z

D + Z1. We start with an elementary
lemma which, from the mathematical point of view, illustrates some advantages of
the Fermi-Dirac statistics compared with the Boltzmann statistics.

Lemma 3.1. The following estimates with real numbers � > �1, p � 1 hold for
functions E 2 L1(
), w 2 H

1(
) or u 2 Lp(
):

1

2�+1
F�(r) � 1 +

1

�(� + 2)
max (0; r)

�+1
(r 2 R);(3.1)

jF�(u� E)jp=(�+1) � Ap;� +B�juj
�+1
p ;(3.2)

jF�(w � E)j6=(�+1) � A� +B�kwk
�+1

:(3.3)

The constant B� > 2�+1=�(� + 2) can be arbitrarily chosen, but the constants Ap;�

depend on jEj1 and on the choice of B�.

Proof. The �rst inequality follows from the estimatesZ ar

0

s
�

1 + es�r
ds +

Z
1

ar

s
�

1 + es�r
ds �

(ar)�+1

�+ 1
+ a

�+1

Z
1

r

s
�

1 + e(a�1)s+s�r
ds

�
(ar)�+1

�+ 1
+

�
a

a� 1

��+1



CONVEX ANALYSIS OF ENERGY MODELS 9

(0 < r; 1 < a) with a = 2.

To prove the other inequalities, we observe that the function r 7! �
p�1

� (r+a)p+c
on the closed positive real half-line with parameters p; � > 1 has only one extremal

point and that the function attains its minimal value there. This fact implies the
estimate

(r + a)p � �
p�1

r
p +

�
�

� � 1

�p�1

(3.4)

(r � 0). Now we apply (3.1), i.e.

jF�(u� E)j � c+ cmax(u� E; 0)
�+1

� c+ c(juj+ jEj)�+1

and

jF�(u� E)jp=(�+1) � cj
j(�+1)=p + c(jujp + jEjp)
�+1

:

The estimate (3.4) applied to the second summand on the right-hand side yields
the second assertion. The last assertion is a consequence of the Sobolev imbedding

theorem.

Lemma 3.2. The operators �h(z) (z 2 Z
D
1
) introduced in the Theorem 2.1 maps

H
1
0 into H�1; they are hemicontinuous and strongly monotone.

Proof. The operators P(�) (� 2 L+
1
) are linear isomorphisms between H1

0 and H
�1.

The functionsNcF1=2(��+���En) belong to L6=5 ,!H
�1 according to the preceding

lemma. Therefore �h(z) maps H1
0 into H�1 and is strongly monotone. To prove

the hemicontinuity we consider

[F1=2(u+ t�)�F1=2(u+ s�)]� = ��

Z t

s

F�1=2(u+ y�) dy

for arbitrary u 2 H
1
0 + L1, �; � 2 H

1
0 and t � s. The H�older inequality for three

factors can be applied to the right-hand side. Choosing p = 12, q = r = 24=11 we
obtain

j��

Z t

s

F�1=2(u+ y�) dyj1 � j�jqj�jq

Z t

s

jF�1=2(u+ y�)jp dy = O(jt � sj)

according to (3.1) and (3.3), i.e. the function t 7! h�h(z)(�� + t�); �i (�� 2 H
1
0 ) is

continuous on [0; 1].

We remember that the equations �h(z)� = 0 in H
�1 have uniquely determined

solutions � = �h(z) (cf. e.g. [19]).

Theorem 3.1. The expression (2.13) in the Theorem 2.1 de�nes an F -
di�erentiable functional H on ZD

1
the di�erential of which satis�es

hdH(z2)� dH(z1); �zi < 0 (�z :� z2 � z1 6= 0) :

Proof. The proof is carried out for a system with electrons only. Let yi (i = 1; 2)
denote the value of any state variable y in the state (�i; �i) and �y := y2 � y1. The
functions �i; �

�
2 H

1
0 are well de�ned. Let !i denote brie
y the argument ��i+�i�

En(�i) in the Fermi integrals. The integrability of the functions Nc(�i)F1=2(!i) and
Nc(1)F3=2[�

�
� En(1)] follows from Lemma 3.1, i.e. the expression (2.13) is de�ned
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on ZD
1
. We have already di�erentiated the functional H in a formal way, i.e. we

already know the expression dH, but we have still to prove that the expression

F := H2 �H1 �

Z
��n1 + ��uf(n1; 1=�1) d


satis�es F = o(k��k + k��k+ j�� j1) and F < 0 if �� � �� 6= 0.

We have

F =

Z Z ��

0

Z 1=(�+�1)

1=�1

cL(s) ds d� d


�

Z
Nc(�2)F3=2(!2)�Nc(�1)F3=2(!1)

+ ��n1 � ��N
0

c(�1)F3=2(!1) + ��E
0

n(�1)n1 d


�
1

2
hP�2;P(�2)

�1P�2i +
1

2
hP�1;P(�1)

�1P�1i �
1

2
hP(�� ) 1;  1i :

We add the identity

0 =

Z
��n1 d
 + hP 1; ��i =

Z
��n1 d
 + hP(�2) 2 �P(�1) 1;  1i

and obtain

F =

Z Z ��

0

Z 1=(�+�1)

1=�1

cL(s) ds d� d


�

Z
[Nc(�2)�Nc(�1)� ��N

0

c(�1)]F3=2(!2) d


�

Z
Nc(�1)

�
F3=2(!2)�F3=2(!1)� �!F1=2(!1)

�
d


+

Z
[�En � ��E

0

n(�1)]n1 d


�
1

2
hP(�2) 2;  2i + hP(�1) 2;  1i �

1

2
hP(�2) 1;  1i

= �

Z Z ��

0

Z �

0

cL

�
1

z + �1

�
1

(z + �1)2
dz d� d


�

Z
(�� )2

Z 1

0

Z y

0

Nc"(�1 + z�� ) dz dyF3=2(!2) d


�

Z
Nc(�1)�!

Z 1

0

�
F1=2(!1 + y�!)�F1=2(!1)

�
dy d


+

Z
(�� )2n1

Z 1

0

Z y

0

En"(�1 + z�� ) dz dy d


�
1

2
hP(�2)� ; � i :
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The identity

�h(�1; �1)�2 ��h(�1; �1)�1

= P[P(�1)
�1
�P(�2)

�1]P�2

+
�
Nc(�1)F1=2(!2 + �� + �E)�Nc(�2)F1=2(!2)

�
= PP(�1)

�1P(�� )P(�2)
�1P�2

+

�
Nc(�1)(�E + ��)

Z �E+��

0

F�1=2[!2 + y(�E + ��)] dy � �NcF1=2(!2)

�

with P(�2)
�1P�2 =  2 yields an estimate for ��, since the inverse of the strongly

monotone operator �h(�1; �1) is Lipschitz continuous. We have , indeed,

k��k � ck�h(�1; �1)�2 ��h(�1; �1)�1kH�1

and

kPP(�1)
�1P(�� ) 2kH�1 � ckP(�� ) 2kH�1

� c sup
k�k�1

hP(�� ) 2; �i =
c

k 2k
hP(�� ) 2;  2i � cj�� j1k 2k :

The other summands can be estimated as in the proof of the preceding lemma.
In this way we see that any summand is bounded from above by a bound, which
contains a factor like k��k, k��k, or j�� j1.

An estimate for � is obtained in a similar way. There is the identity

�h(�1; �1)P
�1P(�1) 2 ��h(�1; �1)P

�1P(�1) 1

= P 2 +
�
Nc(�1)F1=2[!1 +P�1P(�1) 2 � �1]

�
=
�
Nc(�1)F1=2[!2 + �E + �� +P�1P(�1) 2 � �2]�Nc(�2)F1=2(!2)

�
=
�
Nc(�1)

�
F1=2(!2 + �E + ��)�F1=2(!2)

�
� �NcF1=2(!2)

+ Nc(�1)
�
F1=2[~! �P

�1P(�� ) 2]�F1=2(~!)
��

with �2 �P
�1P(�1) 2 = P�1P(�� ) 2 and ~! := !2 + �E + ��.

As in the proof of the preceding lemma we get upper bounds for the absolute values
of the diverse summands of the sum F such that each bound is quadratic in the
small terms k��k, k��k, or j�� j1.

We set �i :� �i � �i. The di�erence F can be written in the form

F = �

Z Z ��

0

Z �

0

cL

�
1

z + �1

�
1

(z + �1)2
dz d� d


�

Z
[hn(�2; �2)� hn(�1; �1)� ��@�hn(�1; �1)� ��@�hn(�1; �1)] d


�
1

2
hP(�2)� ; � i ;

such that F < 0 obviously holds because of the assumption (2.9).
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4. Convex analysis

The convex analysis is often presented in connection with proper convex lsc func-
tionals on real re
exive Banach spaces (lsc means lower semicontinuous) or with

monotone operators which map a real re
exive Banach space into its dual space,
and many statements rest on the fact that bounded closed convex sets in re
exive
Banach spaces are weakly compact. The theory can partially be carried over to
proper convex w�lsc functionals on the dual space E0 of a real Banach space E or
to monotone operators which map E0 into E, because the bounded closed convex
sets in E0 are weakly� compact.

Let, e.g., �0 denote a convex F-di�erentiable functional on an open convex subset U
in an a�ne dual space f0 + E

0 of a real Banach space E such that the F-derivative
d�0 maps U in E. The functional �H on ZD

1
in the preceding section is an example.

The functionals f 7! �0(g)+hf�g; d�0(g)i (g 2 U �x) are weakly� continuous a�ne
functionals on f0 + E

0 which satisfy �0(f) � �0(g) + hf � g; @�0(g)i for all g 2 U .
Therefore

�(f) := sup
g2U

[ �0(g) + hf � g; d�0(g)i ]

de�nes a proper convex w�lsc extension of �0 onto the whole a�ne Banach space
f0 + E

0. Let �0 denote the conjugate functional

�
0(x) := sup

f2f0+E0
fhf � f0; xi � �(f)g :

The biconjugate functional on f0 + E
0,

�"(f) := sup
x2E

fhf � f0; xi � �
0(x)g = �(f) ;

coincides with �, since � is the upper envelope of a family of weakly� continuous
a�ne functions. Therefore the relations

x 2 @�(f) , f � f0 2 @�
0(x) , �

0(x) = hf � f0; xi � �(f)(4.1)

hold. In particular, for f � f0 2 U the equivalence

x = d�0(f) , f � f0 2 @�
0(x)

holds. Let H� denote the corresponding extension of �H from Z
D
1

onto the whole
a�ne Banach space zD + Z1. The subdi�erential @H� coincides on ZD

1
with the

F -derivative �dH. The following proposition is adapted from a well known result
(cf [4], Prop 2.13, p.41).

Proposition 4.1. Let E be a real Banach space and E
0 its dual space. For any

proper convex w�lsc functional F on E0 the subdi�erential @F � E
0
�E is surjective

if and only if

lim
kfk!1

[ F (f)� hf; xi ] =1

for any x 2 E.

Proof. 1) If the condition is satis�ed, then the functional F (f) � hf; xi attains its
minimum in some point f0, since w

�lsc functionals attain their in�mum on weakly�

compact sets. Thus F (f)� hf; xi � F (f0)� hf0; xi, i.e. x 2 @F (f0).
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2) Let @F be surjective, but let us assume that there is an unbounded sequence
(fn) in E

0 for which there is an x 2 E such that F (fn)� hfn; xi � a <1 holds for
all n. As a consequence of the 'resonance theorem' ([17]) there is a z 2 E such that
hfn; zi ! 1. There is an g 2 E 0 such that x+z 2 @F (g) because of the surjectivity.
Therefore the inequality F (fn) � F (g) + hfn � g; x + zi holds in contradiction to
the unboundedness of (hfn; zi), namely,

hfn; zi � F (fn)� hfn; xi � F (g) + hg; x+ zi � a� F (g) + hg; x+ zi :

The space Z1 is densely and continuously imbedded into H = L2(
) � L2(
) �
L2(
). Thus we have an evolution triple Z1 ,!H ,! Z, which allows to introduce
the Banach space

W (S) = f z 2 L2(S;Z1) : _z 2 L2(S;Z) g ,! C(S;H)

on any compact interval S of time with the norm k:kW de�ned by

kzk
2
W = kzk

2
L2(S;Z1) + k _zk2L2(S;Z) :

In contrast to the usual evolution triples V ,! H ,! V
0, the Banach space Z1 is

not re
exive, but we have V = Z
0 and V

0 = Z such that the weak� compactness

substitutes the weak compactness in some sense. (We consider also the possibility
to substitute the third factor of H by the direct sum L2(
)� L2(�). The choice of
one of the two alternatives seems to be related to the formulation of the boundary
value problem for the Poisson equation and the choice of P. The choice is relevant
with respect to the initial-value problem, because the initial values are naturally
chosen in H!)

5. The energy model, time discretization and regularization

The current equations of the energy model are

jn = �Dnn(rv + PnrT );

jp = Dpp(rw � PprT );

ju = ��rT + (TPn + v)jn + (TPp � w)jp;

with the di�usion coe�cient (or, as a matter of scaling, the carrier mobility) Di,
the thermoelectric power Pi and with the total thermal conductivity

� = �L + n(�n=T �DnP
2
nT ) + p(�p=T �DpP

2
p T ):

(cf. [15] or [16]). The electrochemical potentials v and w have the opposite sign as
the quasi-Fermi levels 'n and 'p in [15]. These current equations can be written in
a more symmetric form, namely,0

@ jn

jp

ju

1
A = Dr

0
@ �v=T

w=T

1=T

1
A(5.1)
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with

D =

0
@ nTDn 0 nT

2
Dn

�
Pn +

v
T

�
0 pTDp pT

2
Dp

�
Pp �

w
T

�
nT

2
Dn

�
Pn +

v
T

�
pT

2
Dp

�
Pp �

w
T

�
D

1
A

and

D = T
2
� + nT

3
Dn

�
Pn +

v

T

�2
+ pT

3
Dp

�
Pp �

w

T

�2
:

We do not yet specify the coe�cients, which are state variables, but we remark
that the matrix D is a symmetric positive semi-de�nite matrix in accordance with
the Onsager principle. As a model case we mention the material functions Dn =
D�nT

�n, e.g. �n = �1=2, and then

Pn +
v

T
=

5

2
+ �n + � (Ec �	)

and, similarly,

Pp �
w

T
=

5

2
+ �p � � (Ev �	)

(cf [13]).

We observe the discrepancy between the thermodynamic forces in (5.1) and the
conjugate variables (�; �; � ) of (n; p; u). If we derive, however, current equations
from the entropy balance equation (a suggestion made by W. Muschik, Berlin) then

we get the equation 0
@ jn

jp

ju

1
A = Dr

0
@ �

�

�

1
A(5.2)

in a similar way as the conjugate variables were determined in the preceding section.
Therefore we suggest to modify the conventional energy model by substituting (5.1)
by (5.2). We do not have the competence to decide which of the current equations
(5.1) or (5.2) are the correct equations, but we believe that it is a reasonable question
for experimenters and for more physically educated specialists.

Under suitable assumptions on the coe�cient matrix D in the current equations a
monotone potential operator @zA(n; p; T; :) is de�ned with the potential

A(z) � A(n; p; T; z) :=
1

2

Z
rz �D(n; p; T )rz d
 :

The functions n, p, and T are not considered as the state variables related to z here,

but they are considered as suitable measurable positive parameter functions. The
potential is F -di�erentiable (with respect to z) and its derivative has values in Z.

Typical net recombination rates used in the drift-di�usion model are R =
r+(n; p; T )(np�n

2
i ) with the intrinsic carrier density ni or R = r+(n; p; T )(e

v�w
�1)

with a positive function r+ : R3
+ 7! R+. As the temperature is more or less a scaling

parameter in the drift-di�usion model, we also regard the net recombination rate

R � r+(n; p; T )
�
e
(v�w)=T

� 1
�
= r+(n; p; T )(e

����
� 1) ;
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which is advantageous in some sense as we will see below. The advantage of this
expression is also preserved in the case

R � r+(n; p; T )(e
v�w

� 1) =: r�(n; p; T )
1

T
e
�(�+�)T

� r+(n; p; T ) :

If n, p, and T are positive real numbers, then

g1(n; p; T; z) = r+(n; p; T )(� + � + e
����)

or

g2(n; p; T; z) = r+(n; p; T )(� + �) + r�(n; p; T )
1

T
e
�(�+�)T

are di�erentiable convex functions of z = (�; �; � ) 2 R3 (,which do not depend on � ).
Under suitable assumptions on r+, r� and on the parameter functions n, p, and T
the convex di�erentiable functions g(n; p; T; z) de�ne proper convex lsc functionals
G(n; p; T; :) on L2(
)

3 by

G(n; p; T; z) =

Z
g[n(x); p(x); T (x); z(x)] d


(G(n; p; T; z) =1 if the integrand is not integrable). Since zD+Z1 is continuously
imbedded in L2(
)

3, G is a proper convex lsc functional also on zD+Z1, such that

G(n; p; T; z) :=
R
S
G[n(t); p(t); T (t); z(t)] dt is also a proper convex lsc functional on

z
D + L2(S;Z1). The e�ective domains of de�nition of the functionals G(n; p; T; :)
and G(n; p; T; :) do not contain interior points, since there are L2 functions u arbi-
trarily close to 0 such that e�u is not integrable. Therefore we will regularize g by
substituting the factors e�� and e�� by convex functions with bounded derivatives

such that the regularized potentials ~G(n; p; T; :) and ~G(n; p; T; :) are F -di�erentiable
on the whole space and such that the derivative attains values in Z or in L2(S;Z).

The evolution equation

@t

0
@ n

p

u

1
A+r �

2
4D

0
@ r�

r�

r�

1
A
3
5 +

0
@ ~R

~R
0

1
A = 0

with a regularized recombination term can be considered as an equation

@tdH�(z) + @zA(n; p; T; z) + @z
~G(n; p; T; z) = 0(5.3)

in L2(S;Z) for functions z 2 z
D + L2(S;Z1) with values z(t) 2 ZD

1
for a:a: t 2 S.

The initial-value problem for (5.3) on a �nite closed time interval S = [0; T �] is
discretized in time now. Let denote tk = kT

�
=M discrete times (k = 0; 1; :::;M),

�M = M=T
�, yk the value of a state variable y at time tk ( n0, p0 and u0 or T0

are given initial data) and �ky := yk � yk�1. A discrete version of the initial-value

problem for the evolution equation (5.3) reads

dH�(zk) + �M

h
dAk�1(zk) + d ~Gk�1(zk)

i
= dH�(zk�1) (k = 1; 2; :::; M)

(5.4)

with Ak�1(zk) := A(nk�1; pk�1; Tk�1; zk). The sum rule can be applied to the func-

tionalsH�, Ak�1 and ~Gk�1 such that we have a �nite sequence of minimumproblems

with the proper convex w�lsc functionals H� + �(Ak�1 + ~Gk�1). Notice that the
minimumproblems generalizes the equations (5.4) in so far as the F -derivative dH�
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is substituted by its multivalued subdi�erential extension. A priori estimates will be
necessary which guarantee that the �k are strictly positive. The functionals satisfy
the surjectivity condition in the Proposition 4.1 such that a generalized regularized
solution of the discretized problem exist (details have to be checked yet!).

We are interested in the question, whether the conjugate functional of the convex
extension H� can be applied to get �rst a priori estimates as in the case of the
drift-di�usion model.

For any (a�ne) Banach space X let LM2 (S;X) � L2(S;X) denote the space of
step functions u which are constant uk on ]tk�1; tk], and CM(S;X) � C(S;X) \
H

1(S;X) the space of continuous functions with the values uk at the discrete times
tk which are a�ne between the discrete times. We de�ne discrete time derivatives
@
u0
Mu 2 L

M
2 (S;X) for functions u 2 L

M
2 (S;X) with initial values u0 2 X, namely

@
u0
Mu = �M (uk � uk�1) on ]tk�1; tk]. The integral of this function with respect to
time with the initial value u0 is just Lu0Mu 2 CM(S;X) with the values uk. We

introduce, moreover, the map Tu0
M : LM2 (S;X) 7! L

M
2 (S;X) by [Tu0

Mu]k := uk�1.
The discretized problem (5.4) can be considered as the problem

@
u0
M dH�(z) + @zA(T

n0
Mn;T

p0
Mp;T

T0
MT; z) + @z

~G(Tn0
Mn;T

p0
Mp;T

T0
MT; z) = 0(5.5)

in L2(S;Z) for functions z 2 z
D +LM2 (S;Z1). Let us assume that we would have a

solution zM 2 z
D + L

M
2 (S;Z1) with �

M = dH�(z
M ) for each large natural number

M . What about upper bounds

sup
M

max
�
kz

M
� z

D
kL2(S;Z1) ; k@

�0
M�

M
kL2(S;Z) ; kL

�0
M�

M
kC(S;H)

�
?(5.6)

Let S� denote the conjugate functional on Z of H�,

S�(�) = sup
z2zD+Z1

f h�; z � z
D
i �H�(z) g :

The biconjugate functional H�" of H� coincides with H�, because H� is an upper
envelope of weakly� continuous a�ne functions on zD+Z1. Moreover, the relations

� 2 @H�(z) , z � z
D
2 @S�(�) , S�(�) = h�; z � z

D
i �H�(z)

hold, in particular, we have

� = dH�(z) , z � z
D
2 @S�(�) , S�(�) = hdH�(z); z � z

D
i �H�(z)

for z 2 ZD
1
. The de�nition of the subgradient yields

S�(�k)� S�(�k�1) � h�k � �k�1; zk � z
D
i

= ��hdAk�1(zk) + d ~Gk�1(zk); zk � z
D
i

for solutions zk � z
D
2 Z1 of the equation

@f H�(zk) + �[Ak�1(zk) + ~Gk�1(zk)] g 3 �k�1
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and for �k 2 @H�(zk). Summing up the estimates for a single time step, we get the
physically motivated a priori estimates

S�(�k) + �M

kX
1

h[dAj�1(zj)� dAj�1(z
D)] + [d ~Gj�1(zj)� d ~Gj�1(z

D)]; zj � z
D
i

� S�(�0)� �M

kX
1

hdAj�1(z
D) + d ~Gj�1(z

D); zj � z
D
i(5.7)

(k = 1; :::;M), which we had in mind from the beginning. Note that all the sum-
mands on the left-hand side are non-negative, but sharper estimates from below will
be necessary for �nding upper bounds (5.6).

6. The conventional energy model

The fact that the total energy is the sum of the electrostatic energy and of the
interior energy allows still another approach. We change the notation in this section
slightly.

The state variables n, p, T , v, w, � = 1=T , Nc, Nc, ..., Ev, and Ev have the
same meaning as before, but u denotes the density of the interior energy. We set
� := �v=T , � := w=T , and we introduce �n = �� �	 and �p = �+ �	. We consider
z :� (�n; �p; � ) �: (�; � ) as independent state variables. The carrier densities read
n = Nc(� )F1=2[��n � Ec(� )] and p = Nv(� )F1=2[Ev(� )� �p] in these variables. The

Dirichlet data on @
 n� are given now by functions �D 2 H1(
)2 and by 	D
; �

D as
above. As before there is an open convex set Z+

� Z1 such that

Z
D
1
:= [�D + (H1

0 )
2]� [(�D +H

1
0 ) \ L

+
1
] = z

D + Z
+

holds. The evolution equation of the energy model with the (conventional) current

equation (5.1) reads

@t

0
@ n

p

u

1
A+r �

2
4D

0
@ r�

r�

r�

1
A
3
5 =

0
@ �R

�R

	r � (jp � jn)

1
A :(6.1)

We test the equation with functions �z. Since

hr � jn;
��ni + hr � jp;

��pi + hr � ju; �� i � h	r � (jp � jn); ��i

= hr � jn;
��n +	�� i+ hr � jp;

��p �	�� i + hr � ju; �� i ;

we get

h _n; ��ni+ h _p; ��pi + h _u; ��i +

Z
R( ��n + ��p) d


�

Z
r

0
@ ��n +	��

��p �	��
��

1
A � Dr

0
@ �

�

�

1
A d
 = 0 :

Before we discretize the evolution equation with respect to time, we introduce a
convex function h� on the open half-space R�R�R+. This function is de�ned for
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any point z = (�n; �p; � ) 2 R�R �R+ by

h�(z) = �

Z �

�D

Z 1=�

cL(s) ds d� + hn(�n; � )� hn(�
D
n ; �

D)

+ hp(�p; � )� hp(�
D
p ; �

D)(6.2)

with a �xed point zD 2 R�R�R+. We notice that the partial derivatives are just
�rh�(z) = (n; p; u) according to the state equations used in this preprint. This
function is extended to a proper convex lsc functional on R3 by

h�(�; � ) := sup
(y;s)2R2�R+

[ h�(y; s) + (� � y)@yh(y; s) + (� � s)@sh(y; s) ] :(6.3)

We set

H�(z) =

Z



h�[z(x)] dx �

Z
h�[z] d


for functions z 2 L2(
)
3, if h� � z 2 L1(
), but +1 elsewhere.

Theorem 6.1. The functional H� on Z
D
1

is convex and F -di�erentiable with
dH�(z) 2 Z.

Proof. The proof is carried out for a system of electrons only. Let yi (i = 1; 2)
denote the value of any state variable y in the state (�i; �i) and �y := y2 � y1. The
integrability of the functions h�i follows from the estimate (3.3) in Lemma 3.1 with
w = �i, E = Ec(�i). We already know the derivatives of h� such that we have to
prove that

0 < F := H�2 �H�1 +

Z
��n1 + ��uif(n1; T1) d
 = o(k��k+ k��k+ j�� j1)

for small �� � �� 6= 0. The following formula, in which d2hn denotes the matrix of
the second-order partial derivatives of the function hn on R�R+, is checked at the
end of the Appendix (if zD and z are identi�ed there with z2 and z1, respectively).

F =

Z Z �1

�2

Z �1

�

cL(
1

y
)
1

y2
dy d� d


+

Z �
��

��

�
�

Z 1

0

Z t

0

d
2
hn(�1 + s��; �1 + s�� ) ds dt

�
��

��

�
d
 :(6.4)

Since there are bounds 0 < � � �i � �� , we have an upper bound Cj�� j2
1
=�

2 for the

�rst summand on the left-hand side of (6.4). According to our assumptions on the
material laws Na and Ea the non-negative second summand can be estimated by a
sum of terms

C

Z
j��j

j
j�� j

2�j

Z 1

0

Z t

0

F3=2�k[��1 � s�� � E(�1 + s�� )] ds dt d


(j; k 2 f0; 1; 2g). The summands can be estimated from above by

Cj�� j
2�j
1
j��j

j
6

Z 1

0

Z t

0

jF3=2�k[��1 � s�� � E(�1 + s�� )]jpj ds dt

(p0 = 1 ; p1 = 6=5 ; p2 = 3=2). According to Lemma 3.1 we have

jF3=2�k(�� � E)j2qj=(5�2k) � Aqj;3=2�k +B3=2�kj�j
5=2�k
qj

:
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These estimates imply the assertions of the theorem, because

qj = (
5

2
� k)pj � (

5

2
� k)

3

2
�

15

4
< 6 :

The potentials ~g(n; p; T; z) on R
3, ~G(n; p; T; z) on L2(
)

3 and ~G(n; p; T; z) on
L2[S;L2(
)

3] of the preceding section are used here with � instead of (�; �)

there. This change is possible, because the potentials depend on z via the sum
�n + �p = � + �. We have to �nd, moreover, a suitable function space on which the
potential

b(n; p; T;  ; z) =
1

2

Z
r

0
@ �n +	�

�p �	�
�

1
A �D(n; p; T )r

0
@ �n +	�

�p �	�
�

1
A d


in z = (�; � ) is well de�ned for measurable positive parameter functions n, p, T ,
and for parameter functions 	 which are solutions of the Poisson equation P	(t) =
[d� n(t) + p(t)] in H�1 for functions 	(t) 2 	D +H

1
0 with the operator

hP�; �i :=

Z
�r� � r� d
 +

Z
�

(b�� g)� d� :

The functions 	 will belong to the space 	D + Vp, where Vp := fu 2 W
1
p (
) :

uj@
n� = 0g is chosen with a parameter p > 2 (cf [12]). Therefore the function

spaces 	 2 	D+Vp\Lq and � 2 �
D+Vp\Lq with a re
exive function space Vp\Lq

instead of H1
0 \ L1, where the parameter p near 2 and a large q are chosen such

that 1
q
+ 1

p
�

1
2
, might be reasonable candidates (cf [9], [12]).

The evolution equation (6.1) with the regularized net recombination rate ~R instead
of R reads

@tdH�[z(t)] + @zB[n(t); p(t); T (t);	(t); z(t)]+ @z
~G[n(t); p(t); T (t); z(t)] = 0 :

(6.5)

The system of equations which arises if this equation is discretized in the time reads

@f H�(zk) + �M [Bk�1(zk) + ~Gk�1(zk)] g 3 �k�1 (�k�1 2 @H�(zk�1))(6.6)

(k = 1; :::; M), but it has to be supplemented by the Poisson equation P	k =
[d � nk + pk] (k = 0; 1; :::; m) in H

�1 for functions 	 2 	D + H
1
0 . It might be

advantageous to apply the non-linear Poisson equations P	k = [d � nke
	k�	k�1 +

pke
	k�1�	k ] instead of the linear ones.

The density u of the interior energy of the system as a function of n, p and T reads

u � uif(n; p; T ) =

Z T

cL(y)dy + nE
0

c(1=T ) + T
2
N
0

c(T )F3=2 � F
�1
1=2

�
n

Nc(T )

�

� pE
0

v(1=T ) + T
2
N
0

v(T )F3=2 � F
�1
1=2

�
p

Nv(T )

�

(E 0c(1=T ) = Ec(T )� TE
0

c(T )). The conjugate function

s�(�) = sup
z2R2�R+

f h�; z � z
D
i � h�(z) g � 0(6.7)
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of h� can be alternatively described on the domain

� :=

8<
: � = �

0
@ n

p

uif (n; p; T )

1
A : 0 < n; p; T

9=
; � R

3

by means of the conjugate variables. The identity

s�(�) = (� � �
D)2

Z 1

0

Z t

0

1

[� + s(�D � � )]2
cL

�
1

� + s(�D � � )

�
ds dt

+
X
a

�
�a � �

D
a

� � �
D

�
�

Z 1

0

Z s

0

d
2
ha[(�a; � ) + t(�Da � �a; �

D
� � )] ds dt

�
�a � �

D
a

� � �
D

�

on � is checked at the end of the Appendix. It holds analogously to the equation
(6.4) in the proof of Theorem 6.1. Analogous properties has the conjugate functional
S� of H� on L2(
; R

3) which is also de�ned by S�(�) =
R


s�[�(x)] dx if s� � � 2

L1(
), but S�(�) =1 elsewhere (cf [4]).

As in the preceding section we get the physically motivated a priori estimates

S�(�k) + �M

kX
1

h[dBj�1(zj)� dBj�1(z
D)] + [d ~Gj�1(zj)� d ~Gj�1(z

D)]; zj � z
D
i

� S�(�0)� �M

kX
1

hdBj�1(z
D) + d ~Gj�1(z

D); zj � z
D
i(6.8)

(k = 1; :::;M) for solutions zM = (zM1 ; :::; z
M
M ) of the discretized equation (6.6).

7. An illustrative test example

Let us consider the problem

( _n+R; _p +R; _u) = 0; �(0) = �0 :

We discuss a model case only, i.e. the material laws are cL(y) = cL > 0 constant,

Na(� ) = Na�
�3=2 and Ea(� ) = �Ea with constants Na > 0 and Ec > Ev, r(n; p; T ) =

r1T
3
e
�Eg=T �: r1ni(T )

2 with a positive constant r1 > 0 and with the gap width
Eg = Ec � Ev > 0. Even this simple example is fairly illustrative. Our approach
requires some ideas from [10], although a lot of technical problems are avoided.

Let us consider the problem more directly, before we apply the calculus of the
preceding section. We introduce the sum Z := �n + �p. The carrier densities n

and p changes in a (short) time interval according to �n = �p = �r(e�Z � 1), i.e.
Z and the change �n = �p have the same sign. Because of both the inequalities
@Tuif � cL > 0 and @nuif + @puif � Ec � Ev � Eg > 0 the change �n is connected
with a change �T of the opposite sign and with a change �Z = A�T � B�n with
coe�cients A > Eg=T

2 and B > 0. The change �Z has the opposite sign as Z, i.e.

Z ! 0 in a monotone way.

In this example there is no reason to prefer the Fermi-Dirac statistics to the Boltz-
mann statistics, and we will take sometimes the last one, because formulas are more
transparent. The following arguments show (in the case of Boltzmann statistics)



CONVEX ANALYSIS OF ENERGY MODELS 21

that the initial-value problem has an unique solution. The charge and the energy
are conserved, i.e.

p � n = p0 � n0 =: Q0 ;(7.1)

cLT +
1

2
(Eg + 3T )(n+ p) = u0 +

1

2
(Ec + Ev)Q0 :(7.2)

We consider the case of Boltzmann statistics and introduce the variable Y =
e
�Z. The two conservation laws admit exactly one state for each Y 2

[min(1; e�Z0);max(1; e�Z0)]. To see this, we set X = Nce
�n and substitute the

state equations in the conservation laws. The conservation of charge yields

n =

q
Y ni(T )2 +Q

2
0=4 �Q0=2 :

The conservation of energy reads thenq
Y ni(T )2 +Q

2
0=4 = �

1

3
cL +

u0 + (Ec + Ev)Q0=2 + cLEg=3

Eg + 3T

for T > 0. Since u0 + (Ec + Ev)Q0=2 > 0, the equation has exactly one solution if
and only if

Eg

q
Y ni(0)2 +Q

2
0=4 � u0 + (Ec + Ev)Q0=2 :

This condition is ful�lled, since

u0 + (Ec + Ev)Q0=2 = cLT0 + (3T0 + Eg)

q
Y0ni(T0)2 +Q

2
0=4 >

1

2
EgjQ0j :

This fact guarantees the uniqu solvability.

It is interesting to see that the conservation of the energy and of the charge do
not yield too much a priori estimates. We have seen only three non-trivial bounds,
namely,

T <
1

cL
[u0+(Ec+Ev)Q0=2] ; n+p <

2

Eg

[u0+(Ec+Ev)Q0=2] ; jQ0j < max(n; p) :

Of course, there are more bounds in connection with 0 � jZj � jZ0j, but the
question is to have bounds which are easily evaluated.

With the potentials h� and g which were introduced in the preceding sections the
initial-value problem can be written in the form

_� + @zg(T; z) = 0 ; � = dh�(z) ; �(0) = �0 :(7.3)

The evolution equation can be considered as a family of problems

@tdh�[z(t)] + @zg[T (t); z(t)] = 0 ; z(0) = z0(7.4)

depending on a parameter x 2 
. The problem is compatible with the Dirichlet
data on @
 n � if and only if R = R

D = 0 there. This condition is satis�ed if
the electron-hole equilibrium is assumed to hold on the Dirichlet boundary (in the

simulation practice this equilibrium is accepted on the Dirichlet contacts). We start
with a regularized problem

@tdh�[z(t)] + @z~g[T (t); z(t)] = 0 ; z(0) = z0 :(7.5)

Let 0 < T < �T < 1 be suitable bounds for the temperature, n := ni(T ) and
�n := ni( �T ), and let eK denote the convex di�erentiable function which coincides
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with the exponential function e
Z on the interval [�K;K] and which is a�ne on

either side of the interval. We set

~g(T; z) := r1maxfn;min[ni(T ); �n]g
2[Z + e2jZ0j(�Z)] =: ~r(T )[Z + e2jZ0j(�Z)] :

The regularization does not concern neither the conservation of charge, the con-
servation of energy nor our argumentation above. A solution ~z of the regularized
problem (7.5) is therefore also a solution of the problem (7.4), if the bounds T and
�T are suitably chosen.

The time discretization of the regularized test problem (7.5) with M equidistant
discrete times tk > 0 � t0 reads

d[ h�(zk) + �M ~gk�1(zk) ] = dh�(zk�1) (k = 1; :::;M) :(7.6)

The existence of solutions of the discretized test problem is guaranteed, at least in
case of Boltzmann statistics, as

lim
max(�;1=�;j�j)!1

h�(�; � ) + �~g(T0; �) + h�0; zi = +1

is satis�ed for any positive parameters �, T0, n0, and p0 (cf Proposition 4.1). This
can be seen from

B :� h�(�; � ) + �~g(T0; �) + h�0; zi = B1 + cL(� � log � ) + ~r0(Z + e2jZ0j(�Z)

+

�
Nc�

�3=2
e
��n�Ec� + n0(�n + Ec� ) +

3

2
n0� + n0max

�
0; log

n0

Nc

�
3

2

��

+

�
Nv�

�3=2
e
Ev���p + p0(�p �Ev� ) +

3

2
p0� + p0max

�
0; log

p0

Nv

�
3

2

��

with constants B1 and ~r0 > 0. The di�erence B �B1 is a sum of four non-negative
summands B� +BZ+Bn+Bp with limmax(�;1=�)!1B� =1 and limjZj!1BZ =1;
if max (�; 1=� ) and Z remain bounded, but � !1, then either �n +Ec� ! +1 or
�p � Ev� ! +1.

The de�nition of the subgradient yields the estimates

s�(�k)� s�(�k�1) � hdh�(zk) � dh�(zk�1); zk � z
D
i

= ��M hd~gk�1(zk)� d~gk�1(z
D); zk � z

D
i(7.7)

� �M hd~gk�1(z
D); zk � z

D
i

(k = 1; :::; M , �M = T
�
=M).

In the following we prove the convergence of Rothe's method of discretizing the time,
i.e. we give an existence proof. The proof is based on these physically motivated
estimates and on a coercivity estimate

h@z~g(T; z)� @z~g(T;w); z � wi � 
jZ �W j
2(7.8)

with a positive constant 
. Such an estimate holds with a constant 
 = ~
(T; �T ; jZ0j).
The solutions of (7.6) are considered as step functions zM 2 L

M
2 (S;R3). We use the

notation H�(z
M ) =

R T �
0
h�[z

M(t)] dt etc as in section 5.
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Lemma 7.1. Let zM 2 L
M
2 (S;R3) be a solution of the equation (7.6). Then the

following estimates hold uniformly with respect to M , i.e. with positive constants
cj(S) which do not depend on M :

jZ
M
jL2(S) � s�(�0) + c1(S) ;

j@
�0
M�

M
jL2(S;R3) � c2(S) ;

n
M
k ; p

M
k ; ju

M
k j � c3(S) (k = 1; :::; M) ;

0 < c5(S) � �
M
k � c6(S) (k = 1; :::; M) ;�

�
M
nk

�
�
;
�
�
M
pk

�
�

� c7(S) (k = 1; :::; M) ;

j�
M
n jL2(S); j�

M
p jL2(S) � c8(S) :

Proof. Summing up the corresponding estimates (7.7) one gets the estimates

s�(�k) + �M

kX
1

hd~gj�1(zj)� d~gj�1(z
D); zj � z

D
i

� s�(�0)� �M

kX
1

hd~gj�1(z
D); zj � z

D
i(7.9)

(k = 1; :::;M). We regard s� � 0 and apply the coercivity estimate to the second
summand on the left-hand side and Young's inequality to the right-hand side. Thus
we get the �rst estimate. The second estimate, which obviously implies the third

one, is an immediate consequence of the equation @�0M�
M = �@z

~G(�M
�
T
M
; z

M ) with

�
M
�
T
M = T

M
k�1 on ]tk�1; tk]. From the �rst estimate follows, in particular, that

the right-hand side of (7.9) is bounded from above by a constant s�(�0) + C4(S).
Therefore the estimates

cL

�
log

�
M
k

�D
� 1 +

�
D

�
M
k

�
� s�(�

M
k ) � s�(�0) + c4(S) (k = 1; :::; M)

hold, which imply the fourth estimate. The �fth estimate is a consequence of the
last two preceding ones and of the state equations for the densities n and p. The
last estimate follows from the �rst one and from the preceding one, since

jZjL2 � j[�a]+jL2 � j[�n]�jL2 � j[�p]�jL2

and j�aj
2
L2

= j[�a]+j
2
L2

+ j[�a]�j
2
L2
.

Lemma 7.2. There is a solution z 2 L2(S;R
3) of the initial-value problem (7.5).

Proof. Since the sequences (zM), (@�0M�
M ) in L2(S;R

3) and (LM�0�
M) in C( �S;R3) are

bounded, there is a subsequence (Ml) such that the sequences

� z
Ml � zl * z

� in L2(S;R
3) and LMl

�0
�
Ml � !l * !

� in H1(S;R3)

weakly converge. Since the Dirac measures on S belong to H1(S)0 the convergence

� !l(t)! !
�(t) (t 2 �S)

holds. We get also
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� �
Ml(t) � �l(t)! !

�(t) a:e: on S

because jLM�0�
M
� �

M
jL2(S;R3) � �M

j@
�0
M�

M
j. Since H1(S) is compactly imbedded

into L2(S;R
3)

� �l; !l ! !
� in L2(S;R

3).

Let be [a; b] � �S any subinterval and �� any element of the e�ective domain of s�.
Then the estimateZ b

a

h�� � !
�(t); z�(t)� z

D
i dt = lim

l!1

Z b

a

h�� � !l(t); zl(t)� z
D
i dt

� limsup
l

Z b

a

[s�(��)� s�[�l(t)]] dt �

Z b

a

[s�(��)� s�[!
�(t)]] dt

holds because of the lower semi-continuity of s�. This estimate with an arbitrary
subinterval implies the pointwise estimate

h�� � !
�(t); z�(t)� z

D
i � s�(��)� s�[!

�(t)]

a:e: on S, i.e. z�(t)� z
D
2 @s�[!

�(t)] a:e: on S and the identity

s�[!
�(t)]� s�(�0) =

Z t

0

h _!�(s); z�(s)� z
D
i ds(7.10)

for all t 2 �S.

The identity

0 = lim
l!1

Z
S

h@
�0
Ml
�
Ml + d~g[zl(t)]; zl(t)� z

�(t)i dt

= lim
l!1

Z
S

�
h@

�0
Ml
�
Ml; zl(t)� z

D
i

+ h _!�(t); z�(t)� z
D
i + hd~g[zl(t)]� d~g[z�(t)]; zl(t)� z

�(t)i
�
dt

� lim sup
l!1

�
s�[!l(T

�)]� s�(�0) +

Z
S

h _!�(t); z�(t)� z
D
i dt+ 
j�nl + �pl � �

�

n � �
�

p jL2(S)

�

� lim sup
l!1

�
s�[!

�(T �)]� s�(�0) +

Z
S

h _!�(t); z�(t)� z
D
i dt+ 
j�nl + �pl � �

�

n � �
�

p jL2(S)

�

yields the convergence of the sums

� �nl + �pl ! �
�

n + �
�

p in L2(S)

i.e. the convergence of the gradients

� d ~G(zl)! d ~G(z�) in L2(S;R
3).

Using the convergence properties the limit l ! 1 can be taken in the problem

@
�0
Ml
�
Ml + d ~G(zl) = 0 and in the relation �Ml = dH�(zl), i.e. z

� is a solution of the

problem (7.5) and thus of the problem (7.3).
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Let us mention Gajewski's method of proving the uniqueness. Its starting point is
the identity

s�[�1(t)] + s�[�2(t)]� 2s�[�(t)]

=

Z t

0

[h _�1(s); z1(s)� z(s)i + h _�2(s); z2(s)� z(s)i] ds

= �

Z t

0

[ hdg[z1(s)]; z1(s)� z(s)i+ hdg[z2(s)]; z2(s)� z(s)i ] ds ;

where z1 and z2 denote two solutions of the initial-value problem (7.3) with the
same initial value, � denotes the arithmetic mean of the �i and z(s) = z

D + d�(s).
Notice that z1(s) � z(s) � �[z2(s) � z(s)]. The idea of the method is to use the
convexity of s� or h� and of g to get an estimate from below on the left-hand side
and an estimate of the integrand from above on the right-hand side and to apply
Gronwall's lemma.

We have not checked whether this method is applicable to this example, but we
have some doubts because the quadratic form d

2
g is rather degenerated.

8. Appendix

Lemma 8.1. Let two real functions 0 < N 2 C
2(R+) and E 2 C

2(R+) be given.
The function hn(x; � ) = N (t)F3=2[�x� E(t)] on R �R+ is convex if and only if E

and N satisfy the condition

N"F3=2 �NE"F1=2 �

�
N

0
F1=2

�2
NF�1=2

:(8.1)

Proof. The positivity 0 < N guarantees hnxx > 0. The condition (8.1) is just the
inequality hn�� � h

2
nx�=hnxx, which implies that the eigenvalues of the matrix d2hn

of the second-order partial derivatives @u@vhn � hnuv are non-negative, i.e. the
function hn is convex.

Let us denote the partial derivatives of hn by hnx = �n and hn� = �u. If we
introduce the notation T = 1=� , N (� ) = N(T ) and E(T ) = TE(1=T ), then we see

n = N(T )F1=2

�
�x�

1

T
E(T )

�
;

u = nE(T )� nTE
0(T ) + T

2
N
0(T )F3=2 � F

�1
1=2

�
n

N(T )

�
=: uf(n; T ) ;

i.e. hn is a thermodynamic potential of a Fermi gas with a state density N(T ) of
quasi-particles with the chemical potential �x in a potential E(T ); n is particle
density, and u is the energy density of the gas. The density of the free energy of
such a gas is

f(n; T ) = nTF
�1
1=2

�
n

N(T )

�
� TN(T )F3=2 � F

�1
1=2

�
n

N(T )

�
+ nE(T ) :



26 G�UNTER ALBINUS

The familiar thermodynamic relation uf (n; T ) = f(n; T ) � T@Tf(n; T ) as well as
the identities

�sf(n; T ) = @Tf(n; T ) = �nx� u� � hn(x; � )j�(n;u)=(hnx;hnu) ;(8.2)

T
2
@Tuf(n; T ) = N"F3=2 �NE"F1=2 �

�
N

0
F1=2

�2
NF�1=2

are checked by elementary calculations. According to the last identity, the condition
(8.1) in the Lemma 8.1 means that the Fermi gas has a positive heat capacity. The
identity (8.2) says that the negative entropy considered as a function of the densities
n and u is a convex function and the thermodynamic potential which is conjugate
to hn.

In the model case N(T ) = NT
3=2 and E(� ) = E� with real constants N > 0 and E

the heat capacity is

@Tuf(n; T ) =
9

4
N(T )

 
5

3
F3=2 �

F
2
1=2

F�1=2

!
:

The following lemma, the proof of which has been given by my colleague H. Stephan,
shows that the condition (8.1) of the Lemma 8.1 is ful�lled in the model case.

Lemma 8.2. The inequality

(1 +
1

� + 1
)F�+1 �

F
2
�

F 0
�

> 0

holds everywhere on the real line for any � > �1.

Proof. Since F 0

� > 0 everywhere on the real line, the inequality is equivalent to

G(� + 1)G(� � 1) � G(�)2 > 0

with the function

G(�) = (�+ 1)

Z
1

0

t
�

et�u + 1
dt =

Z
1

0

t
�+1

e
t�u

1 + et�u
dt =

Z
dp�(t):

We observe G(k)(�) =
R
(log t)kdp�(t) for the k

th derivative with respect to �. The

Jensen inequality is applied with the convex function x2, i.e.

[

Z
log t dp�(t)=

Z
dp�(t)]

2
<

Z
(log t)2dp�(t)=

Z
dp�(t) ;

i.e. G(�)G"(�) > G
0(�)2. The function H(�) := log [G(�)] satis�es

H"(�) =
1

G"(�)2
[G(�)G"(�) �G

0(�)2] > 0 ;

i.e.

log [
G(�� 1)G(� + 1)

G(�)2
] > 0 :
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The inequality of the lemma can be written in the form

1

�+ 1
F�+1F

0

� > F
2
� �F�+1F

0

� = F
2
�[
F�+1

F�

]0 :

The sign of the di�erence on the right-hand side of the inequality is also of interest
(cf. [7]).

Lemma 8.3. The inequalities

F�(v)

F 0
�(v)

>
F�(u)

F 0
�(u)

(u < v)

hold for any Fermi integral F�, � > �1.

Proof. The di�erence

A : = (�+ 1)e�u�v
Z

1

0

t
�
e
t�u

(1 + et�u)2
dt

Z
1

0

t
�
e
t�v

(1 + et�v)2
dt[
F�(v)

F 0
�(v)

�
F�(u)

F 0
�(u)

]

can be written in the form

A =

Z
1

0

t
�
e
t

(eu + et)2
dt

Z
1

0

t
�+1

e
t

(ev + et)2
dt �

Z
1

0

t
�
e
t

(ev + et)2
dt

Z
1

0

t
�+1

e
t

(eu + et)2
dt

=

Z
[(ev + e

x)2(eu + e
y)2 � (eu + e

x)2(ev + e
y)2]yd�

= (ev � e
u)

Z
(ey � e

x)yd� = (ev � e
u)

Z
y>x

(ey � e
x)(y � x)d� > 0

with the measures

d�(x; y) =
x
�
y
�
e
x+y

dxdy

(eu + ex)2(eu + ey)2(ev + ex)2(ev + ey)2
= d�(y; x)

and d�(x; y) = [(eu + e
v)(ey + e

x) + 2eu+v + 2ex+y]d�(x; y) on R2
+.

Since F 0

�(u) > 0 for any � > �1 the concavity of the functions F�1
� � F�+1 is

rigorously proved for any � > �1.

It might be desirable to have convex functions ~hn which are de�ned on the whole
plane and which di�ers from hn for large temperatures only. We have, however, the
following 'no go' lemma.

Lemma 8.4. There is no C2 function N > 0 on the real line such that N 0
< 0 on

R and that hn(x; t) = N (t)F3=2(�x� tE) is convex on R2.

Proof. Let us assume that such a function N would exist. In the case E" � 0 the
condition (8.1) reads

0 � (N 0)2F�1=2F3=2

"
NN"

(N 0)2
� 1 + 1�

F
2
1=2

F�1=2F3=2

#

or, in other words,

F
2
1=2

F�1=2F3=2

�
F3=2

F1=2

�0
�

�
N

N 0

�2
"
N"

N
�

�
N

0

N

�2
#
= �

�
1

(logN )0

�0
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for all t and all x. With regard to the preceding lemma there is a constant c > 0
with c < � [1=(log �N )0]

0
for all t � t0. Let t1 > 0 be �xed, z1 := (log �N )0(t1).

Then the inequality

(log �N )0(t) �
z1

1 + cz1(t1 � t)
< 0

holds for t < t1 and implies the inequality N (t) � N (t1)[1 + cz1(t1 � t)]�1=c there,

but the inequality contradicts the assumption.

In the case of Boltzmann statistics the situation is quite di�erent. The function
h�(x; t) = N (t)ex�E(t) with two real functions 0 < N 2 C

2(R+) and E 2 C
2(R+) is

convex if

N"

N
� E" >

�
N

0

N

�2

;

i.e. if (log �N � E)" > 0 holds. Let a real function 0 < N 2 C
2(R+) satisfy

N
0
< 0 < (log �N )". Then there are functions 0 < N� 2 C

2(R) for any � 2]0; 1[
which is equal to N on the interval t � � and satisfy N 0

� < 0 < (log �N�)" on

R, such that h�(x; t) := N�(t)e
x�tE is a convex function on the whole plane. The

function

(log �N )�(t) =
z2

2

�
t� � +

z1

z2

�2

�
z
2
1

2z2
+ z0

on the interval t < � with zk := (log �N )(k)(�) (k = 0; 1; 2) is a suitable continua-
tion of log �N . For functions E 2 C2(R+) instead of tE more technical re�nements
are necessary.

We bring the Appendix to an end with a proof of the formula (6.4) for a system
with electrons only.

s�(�) = h�; z � z
D
i � h�(z)j�=�dh�(z)=�(n;u)

= �n(� � �
D)� u(� � �

D) +

Z �D

�

Z 1=�

cL(y)dyd� � hn(�; � ) + hn(�
D
; �

D)

= hn(�
D
; �

D)� hn(�; � )� (�D � �)@�hn(�; � )

+

Z �D

�

Z 1=�

cL(y)dyd� + (� � �
D)@�hn(�; � )

=

Z �D

�

Z 1=�

1=�

cL(y)dyd�

+ hn(�
D
; �

D)� hn(�; � )� (�D � �)@�hn(�; � )� (�D � � )@�hn(�; � )

=

Z �

�D

Z �

�

1

y2
cL

�
1

y

�
dy d�

+ (�D � �)

Z 1

0

f@�hn[� + t(�D � �); � + t(�D � � )]� @�hn(�; � )g dt

+ (�D � � )

Z 1

0

f@�hn[� + t(�D � �); � + t(�D � � )]� @�hn(�; � )g dt ;
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s�(�) =

Z �

�D

Z �

�

1

y2
cL

�
1

y

�
dy d�

+

�
�
D
� �

�
D
� �

�
�

Z 1

0

Z t

0

d
2
hn[� + s(�D � �); � + s(�D � � )] ds dt

�
�
D
� �

�
D
� �

�
:
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