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Stochastic homogenization on perforated domains I:
Extension operators

Martin Heida

Abstract

This preprint is part of a major rewriting and substantial improvement of WIAS Preprint 2742.
In this first part of a series of 3 papers, we set up a framework to study the existence of uniformly
bounded extension and trace operators for W 1,p-functions on randomly perforated domains,
where the geometry is assumed to be stationary ergodic. We drop the classical assumption of
minimaly smoothness and study stationary geometries which have no global John regularity. For
such geometries, uniform extension operators can be defined only from W 1,p to W 1,r with the
strict inequality r < p. In particular, we estimate the Lr-norm of the extended gradient in terms
of the Lp-norm of the original gradient. Similar relations hold for the symmetric gradients (for Rd-
valued functions) and for traces on the boundary. As a byproduct we obtain some Poincaré and
Korn inequalities of the same spirit.

Such extension and trace operators are important for compactness in stochastic homoge-
nization. In contrast to former approaches and results, we use very weak assumptions: local
(δ,M)-regularity to quantify statistically the local Lipschitz regularity and isotropic cone mixing
to quantify the density of the geometry and the mesoscopic properties. These two properties are
sufficient to reduce the problem of extension operators to the connectivity of the geometry.

In contrast to former approaches we do not require a minimal distance between the inclusions
and we allow for globally unbounded Lipschitz constants and percolating holes. We will illustrate
our method by applying it to the Boolean model based on a Poisson point process and to a
Delaunay pipe process, for which we can explicitly estimate the connectivity terms.
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1 Introduction

In 1979 Papanicolaou and Varadhan [22] and Kozlov [15] for the first time independently introduced
concepts for the averaging of random elliptic operators. At that time, the periodic homogenization
theory had already advanced to some extend (as can be seen in the book [23] that had appeared one
year before) dealing also with non-uniformly elliptic operators [17] and domains with periodic holes [3].
The most recent and most complete work for extension operators on periodically perforated domains
is [11].

In contrast, the homogenization on randomly perforated domains is still open to a large extend. Recent
results focus on minimally smooth domains [9, 24] or on decreasing size of the perforations when the
smallness parameter tends to zero [8] (and references therein). The main issue in homogenization on
perforated domains compared to classical homogenization problems is compactness. For elasticity,
this is completely open.
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Extension Operators on perforated domains 3

The results presented below are meant for application in quenched convergence. The estimates for the
extension and trace operators which are derived strongly depends on the realization of the geometry
- thus on ω. Nevertheless, if the geometry is stationary, a corresponding estimate can be achieved for
almost every ω.

The Problem

In order to illustrate the issues in stochastic homogenization on perforated domains, we introduce the
following example.

Let P(ω) ⊂ Rd be a stationary random open set and let ε > 0 be the smallness parameter and
let P̃(ω) be an infinitely connected component (i.e. an unbounded connected domain) of P(ω). For
a bounded open domain Q, we consider Qε

P̃
(ω) := Q ∩ εP̃(ω) and Γε(ω) := Q ∩ ε∂P̃(ω)

with outer normal νΓε(ω). For a sufficiently regular and Rd-valued function u we denote ∇su :=
1
2

(
∇u+ (∇u)>

)
the symmetric part of∇u. A typical homogenization problem then is the following::

−div
(
|∇suε|p−2∇suε

)
= g(uε) on Qε

P̃
(ω) ,

u = 0 on ∂Q ∩ (εP) , (1.1)

|∇suε|p−2∇uε · νΓε(ω) = f(uε) on Γε(ω) .

Note that for simplicity of illustration, the only randomness that we consider in this problem is due to
P(ω).

One way to prove homogenization of (1.1) is to prove Γ-convergence of

Eε,ω(u) =

ˆ
Qε

P̃
(ω)

(
1

p
|∇su|p −G(u)

)
+

ˆ
Γε(ω)

F (u) ,

in a suitably chosen space where G′ = g and F ′ = f . Conceptually, this implies convergence
of the minimizers uε to a minimizer of a limit functional but if G or F are non-monotone, we need
compactness. However, the minimizers are elements of W1,p(Qε

P̃
) := W 1,p(Qε

P̃
;Rd) and since this

space changes with ε, there is apriori no compactness of uε, even though we have uniform apriori
estimates on the gradients.

The canonical path to circumvent this issue in periodic homogenization is via uniformly bounded
extension operators Uε : W 1,p(Qε

P̃
) → W 1,p(Q) that share the property that for some C > 0

independent from ε it holds for all u ∈ W 1,p(Qε
P̃

) with u|Rd\Q ≡ 0

‖∇Uεu‖Lp(Q) ≤ C ‖∇u‖Lp(Qε
P̃

) , ‖Uεu‖Lp(Q) ≤ C ‖u‖Lp(Qε
P̃

) , (1.2)

see [11, 12], combined with uniformly bounded trace operators, see [7, 9]. Such operators have also
been provided for elasticity problems [11, 21, 30, 31], i.e.

‖∇sUεu‖Lp(Q) ≤ C ‖∇su‖Lp(Qε
P̃

) .

The last estimate then allows to use Korn’s inequality combined with Sobolev’s embedding theorem to
find Uεuε ⇀ u0 weakly in W1,p(Q).

What is the classical strategy? The existing results on extension and trace operators for random
domains are focused on a.s. minimally smooth domains. A connected domain P ⊂ Rd is minimally
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M. Heida 4

smooth [26] if there exist (δ,M) such that for every x ∈ ∂P the set ∂P ∩ Bδ(x) is the graph
of a Lipschitz continuous function with Lipschitz constant less than M . It is further assumed that the
complement Rd\P consists of uniformly bounded sets. This concept leads to almost sure construction
of uniformly bounded extension operators W 1,p

loc (P) → W 1,p(Rd) [9] in the sense that for every
bounded Q and every u ∈ W 1,p(Q ∩P) with u|Rd\Q ≡ 0 holds

‖∇Uu‖Lp(Q) ≤ C ‖∇u‖Lp(Q∩P) , ‖Uu‖Lp(Q) ≤ C ‖u‖Lp(Q∩P) , (1.3)

with C independent from Q. Similarly, one obtains for the trace T that [24]

‖T u‖Lp(Q∩∂P) ≤ C
(
‖u‖Lp(Q∩P) + ‖∇u‖Lp(Q∩P)

)
.

Using a scaling argument to obtain e.g. (1.2), such extension and trace operators are typically used in
order to treat nonlinearities in homogenization problems.

Why does this work? The theory cited above is directly connected to the theory of Jones [13] and
Duran and Muschietti [5] on so-called John domains. These are precisely the bounded domains P
that admit extension operators W 1,p(P)→ W 1,p(Rd) satisfying

‖Uu‖W 1,p(Rd) ≤ C ‖u‖W 1,p(Q∩P) .

Definition (John domains). A bounded domain P ⊂ Rd is a John domain (a.k.a (ε, δ)-domain) if
there exists ε, δ > 0 such that for every x, y ∈ P with |x− y| < δ there exists a rectifiable path
γ : [0, 1]→ P from x to y such that

lengthγ ≤ 1

ε
|x− y| and

∀t ∈ (0, 1) : inf
z∈Rd\P

|γ(t)− z| ≥ ε |x− γ(t)| |γ(t)− y|
|x− y|

.

Because of the locality implied by δ, it is possible to glue together local extension operators on John
domains such as done in [11] for periodic or [9] for minimally smooth domains. In the stochastic case
one benefits a lot from the uniform boundedness of the components of Rd\P, which allows to split
the extension problem into independent extension problems on uniformly John-regular domains.

Why this is not enough for general random domains! As one could guess from the emphasis that
is put on the above explanations, random geometries are merely minimally smooth. On an unbounded
random domain P, the constant M can locally become very large in points x ∈ ∂P, while simultane-
ously, δ can become very small in the very same x. In fact, they are not even “uniformly John” as the
following, yet deterministic example illustrates.

Example 1.1. Considering

P :=
{

(x1, x2) ∈ R2 : ∃n ∈ N : x1 − (2n+ 1) ∈ (−1, 1], x2 < max {1, n |x1 − (2n+ 1)|}
}

the Lipschitz constant on (2n, 2n+ 2) is n and it is easy to figure out that this non-uniformly Lipschitz
domain violates the John condition due to the cups. Hence, a uniform estimate of the form (1.3) cannot
exist.
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Extension Operators on perforated domains 5

Therefor, an alternative concept to measure the large scale regularity of a random geometry is needed.
Since the classical results do not excluded the existence of an estimate

1

|Q|

ˆ
Q

|∇Uu|r ≤ C

(
1

|Q|

ˆ
Q∩Br(P)

|∇u|p
) r

p

,
1

|Q|

ˆ
Q

|Uu|r ≤ C

(
1

|Q|

ˆ
Q∩Br(P)

|u|p
) r

p

,

(1.4)
or

1

|Q|

ˆ
Q

|∇sUu|r ≤ C

(
1

|Q|

ˆ
Q∩Br(P)

|∇su|p
) r

p

,
1

|Q|

ˆ
Q

|Uu|r ≤ C

(
1

|Q|

ˆ
Q∩Br(P)

|u|p
) r

p

,

(1.5)
where 1 ≤ r < p and C is independent from Q, such inequalities will be our goal.

Our results in a nutshell We will provide inequalities of the form (1.4)–(1.5) for a Voronoi-pipe model
and for a Boolean model. On the way, we will provide several concepts and intermediate results that
can be reused in further examples and general considerations such as planed in part III of this series.
Scaled versions (replacing ε = m−1 in Theorems 1.16 and 1.18) of (1.4)–(1.5) can be formulated for
functions

u ∈ W 1,p
0,∂Q(εP ∩Q) :=

{
u ∈ W 1,p(Q ∩ εP) : u|(εP)∩∂Q ≡ 0

}
,

and will be of the form

1

|Q|

ˆ
Rd
|∇Uεu|r ≤ C

(
1

|Q|

ˆ
Q∩εP

|∇u|p
) r

p

,
1

|Q|

ˆ
Rd
|Uεu|r ≤ C

(
1

|Q|

ˆ
Q∩εP

|u|p
) r

p

,

resp.

1

|Q|

ˆ
Rd
|∇sUεu|r ≤ C

(
1

|Q|

ˆ
Q∩εP

|∇su|p
) r

p

,
1

|Q|

ˆ
Rd
|Uεu|r ≤ C

(
1

|Q|

ˆ
Q∩εP

|u|p
) r

p

,

where the support of Uεu lies within Bεβ(Q) for ε small enough and some arbitrarily chosen but fixed
β ∈ (0, 1).

Quantifying properties of random geometries

As a replacement for periodicity, we introduce the concept of mesoscopic regularity of a stationary
random open set:

Definition 1.2 (Mesoscopic regularity). Let P be a stationary ergodic random open set, let f̃ be a
positive, monotonically decreasing function f̃ with f̃(R)→ 0 as R→∞ and let r > 0 s.t.

P
(
∃x ∈ BR(0) : B4

√
dr(x) ⊂ BR(0) ∩P

)
≥ 1− f̃(R) . (1.6)

Then P is called (r, f̃)-mesoscopic regular. P is called polynomially (exponentially) regular if 1/f̃
grows polynomially (exponentially).

As a consequence of Lemmas 3.14, 3.16 and 3.17 we obtain the following.

Corollary 1.3 (All stationary ergodic random open sets are mesoscopic regular). Let P(ω) be a
stationary ergodic random open set. Then there exists r > 0 and a monotonically decreasing function
with f̃(R) → 0 as R → ∞ such that P is (r, f̃)-mesoscopic regular. Furthermore, there exists a
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M. Heida 6

jointly stationary random point process Xr(ω) = (xa)a∈N and for every a ∈ N it holds B r
2
(xa) ⊂ P

and for all a, b ∈ N, a 6= b, it holds |xa − xb| > 2r. Construct from Xr a Voronoi tessellation of
cells Ga with diameter da = d(xa). Then for some constant C > 0 and some monotone decreasing
f : (0,∞)→ R and C > 0 with f(R) ≤ Cf̃(C−1R) it holds

P(d(xa) > D) < f(D) .

r, Xr and f from Corollary 1.3 will play a central role in the analysis. We summarize some of these
properties in the following.

Assumption 1.4. Let P be a Lipschitz domain and assume there exists Xr = (xa)a∈N be a set of
points having mutual distance |xa − xb| > 2r if a 6= b and with B r

2
(xa) ⊂ P for every a ∈ N (e.g.

Xr(P), see (2.51)).

The second important concept to quantify in a stochastic manner is that of local Lipschitz regularity.

Definition 1.5 (Local (δ,M)-Regularity). Let P ⊂ Rd be an open set. P is called (δ,M)-regular in
p0 ∈ ∂P if there exists an open set U ⊂ Rd−1 and a Lipschitz continuous function φ : U → R with
Lipschitz constant greater or equal to M such that ∂P∩Bδ(p0) is subset of the graph of the function
ϕ : U → Rd , x̃ 7→ (x̃, φ(x̃)) in some suitable coordinate system.

Every Lipschitz domain P is locally (δ,M)-regular in every p0 ∈ ∂P. In what follows, we bound δ
from above by r only for practical reasons in the proofs. The following quantities can be derived from
local (δ,M)-regularity.

Definition 1.6. For a Lipschitz domain P ⊂ Rd and for every p ∈ ∂P and n ∈ N ∪ {0}

∆(p) := sup
δ<r
{∃M > 0 : P is (δ,M) -regular in p} , δ∆(p) :=

∆(p)

2
, (1.7)

Mr(p) := inf
η>r

inf {M : P is (η,M) -regular in p} , (1.8)

ρn(p) := sup
r<δ(p)

r
(
4Mr(p)

2 + 2
)−n

2 , (1.9)

If no confusion occurs, we write δ = δ∆. Furthermore, for c ∈ (0, 1] let η(p) = cδ∆(p) or η(p) =
cρn(p), n ∈ N and r ∈ C0,1(∂P) and define

η[r],Rd(x) := inf
{
η(x̃) : x̃ ∈ ∂P s.t. x ∈ Br(x̃)(x̃)

}
, (1.10)

M[r,η],Rd(x) := sup
{
Mr(x̃)(x̃) : x̃ ∈ ∂P s.t. x ∈ Bη(x̃)(x̃)

}
, (1.11)

where inf ∅ = sup ∅ := 0 for notational convenience. We also write M[η],Rd(x) := M[η,η],Rd(x) and
ηRd(x) := η[η],Rd(x). Of course, we can also considerM[r],∂P : p 7→Mr(p)(p) as a function on ∂P,
and we will do this once in Lemma 3.8.

When it comes to application of the abstract results found below, it is important to have in mind that η
and Mr are quantities on ∂P, while η[r],Rd and M[r,η],Rd are quantities on Rd. Hence, while trivially

P(η[r],Rd ∈ (η1, η2)) = lim
n→∞

n−d |Q|−1
∣∣{x ∈ nQ : η[r],Rd ∈ (η1, η2)

}∣∣
(and similarly for M[r,η],Rd) for every convex bounded open Q, we have in mind

P(η ∈ (η1, η2)) =
(

lim
n→∞

Hd−1(∂P ∩ nQ)
)−1

Hd−1({x ∈ (nQ) ∩ ∂P : η ∈ (η1, η2)}) .

We will prove measurability of η[r],Rd and M[r,η],Rd in Lemma 3.11 and see how the weighted ex-
pectations of η[r],Rd and M[r,η],Rd can be estimated by weighted expectations of M and η in Lemma
3.12.
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Extension Operators on perforated domains 7

Traces

The first important result is the boundedness of the trace operator.

Theorem 1.7. Let P ⊂ Rd be a Lipschitz domain, 1
8
> r > 0 and let Q ⊂ Rd be a bounded open

set and let 1 ≤ r < p0 < p. Then the trace operator T satisfies for every u ∈ W 1,p
loc (P)

1

|Q|

ˆ
Q∩∂P

|T u|r ≤ C

 1

|Q|

ˆ
B 1

4
(Q)∩P

|u|p + |∇u|p
 r

p

where for some constant C0 depending only on p0, p and r and d and for ρ̃ = 2−5ρ1 one has

C = C0

 1

|Q|

ˆ
B 1

4 r
(Q)∩∂P

ρ̃
− 1
p0−r

Rd


p0−r
p0

 1

|Q|

ˆ
B 1

4 r
(Q)∩P

(
1 + M̃[ 1

32
δ],Rd

)( 1
p0

+1+d̂
)

p
p−p0


p−p0
p0p

,

(1.12)

C = C0

 1

|Q|

ˆ
B 1

4 r
(Q)∩∂P

(
ρ̃Rd
(

1 + M̃[ 1
32
δ],Rd

))− 1
p−r


p−r
p

. (1.13)

Proof. This is proved in Section 4.6.

Local Covering of ∂P

In view of Corollary 3.7, for every n = 1 or n = 2 there exist a complete covering of ∂P by balls
Bρ̃n(pni )(pni ), (pni )i∈N, where ρ̃n(p) := 2−5ρn(p). We write ρ̃n,i := ρ̃n(pni ).

Definition 1.8 (Microscopic regularity and extension order). The inner microscopic regularity α is

α := inf
{
α̃ ≥ 0 : ∀p ∈ ∂P∃y ∈ P : Bρ̃(p)/32(1+Mρ̃(p)(p)

α̃)(p) ⊂ Bρ̃(p)/8(p)
}
.

In Lemma 3.1 we will see that indeed α ≤ 1.

Definition 1.9 (Extension order). The geometry is of extension order n ∈ N ∪ {0} if there exists
C > 0 such that for almost every p ∈ ∂P there exists a local extension operator

U : W 1,p(B 1
8
δ(p)(p) ∩P)→ W 1,p(B 1

8
ρn(p)(p)) ,

‖∇Uu‖Lp(B 1
8 ρn(p)

(p)) ≤ C
(

1 +M 1
8
δ(p)(p)

)
‖∇u‖Lp(B 1

8 δ(p)
(p)) . (1.14)

The geometry is of symmetric extension order n ∈ N∪{0} if there exists C > 0 such that for almost
every p ∈ ∂P there exists a local extension operator

U : W1,p(B 1
8
δ(p)(p) ∩P)→W1,p(B 1

8
ρn(p)(p)) ,

‖∇sUu‖Lp(B 1
8 ρn(p)

(p)) ≤ C
(

1 +M 1
8
δ(p)(p)

)2

‖∇su‖Lp(B 1
8 δ(p)

(p)) . (1.15)

Corollary 3.6 shows that every locally Lipschitz geometry is of extension order n = 1 and every locally
Lipschitz geometry is of symmetric extension order n = 2. However, better results for n are possible,
as we will see below.
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Global Tessellation of P

Let X = (xa)a∈N be a jointly stationary point process with P such that Br(X) ⊂ P. In this work, we
will often assume that |xa − xb| > 2r for all a 6= b for simplicity in Sections 5 and 6. The existence
of such a process is always guarantied by Lemmas 3.14 and 3.16. Its choice in a concrete example
is, however, delicate. Worth mentioning, for most of the theory developed until the end of Section 4
(Except for Lemmas 3.17 and 3.18 which are not used before Section 5), is completely independent
from this mutual minimal distance assumption.

From X we construct a Voronoi tessellation with cells (Ga)a∈N and we chose for each xa a radius
ra ≤ r with Bra(xa) ⊂ Ga ∩ P. Again, using Corollary 1.3, we assume that ra = r is constant for
simplicity.

Extensions I: Gradients

Notation 1.10. Given n ∈ {0, 1} and α ∈ [0, 1] we chose

rn,α,i := ρ̃n,i/32(1 +Mρ̃n,i(pn,i)
α) (1.16)

and some yn,α,i such that

Bn,α,i := Brn,α,i(yn,α,i) ⊂ P ∩ B 1
8
ρ̃n,i

(pn,i) . (1.17)

and for every i and a, we define

τn,α,iu :=

 
Bn,α,i

u , Mau :=

 
B ra

16
(xa)

u ,

local averages close to ∂P and in xa. We say that xa ∼∼ xb if Ga ∩ Br(Gb) 6= ∅ and we say
xa ∈ Xr(Q) if Br(Ga) ∩Q 6= ∅. Based on (4.14) we obtain the following extension result.

Theorem 1.11. Let r > 0 and let P ⊂ Rd be a stationary ergodic random Lipschitz domain such that
Assumption 1.4 holds for X = (xa)a∈N and P has microscopic regularity α with extension order n.
Let Q ⊂ Rd be a bounded open set with B 1

4
(0) ⊂ Q and let 1 ≤ r < p. Furthermore, let

E
((

1 +M[ 3δ
8
, δ
8

],Rd

)nd (
1 +M[ 1

8
δ],Rd

)r (
1 +M[ρ̃n],Rd

)α(d−1)
)
<∞

then there exist C > 0 depending only on d, r and p such that for a.e. ω there exists an extension
operator Uω : W 1,p

loc (P(ω)) → W 1,p
loc (Rd) and Cω > 0 such that for every m ≥ 1 and every

u ∈ W 1,p(P(ω)) with u|P(ω)\mQ ≡ 0 it holds

1

|mQ|

ˆ
mQ

|∇ (Uωu)|r ≤ Cω

(
1

md

ˆ
P∩Br(mQ)

|∇u|p
) r

p

+ C
1

md

ˆ
P∩Br(mQ)

∑
i 6=0

∑
a

ρ̃−rP χB r
2

(Ga)χBρ̃n,i (pn,i) |τn,α,iu−Mau|r

+ C

∣∣∣∣∣ 1

md

ˆ
P∩mQ

∑
a

∑
a∼∼b

χBr(Ga) |Mau−Mbu|

∣∣∣∣∣
r

,

1

|mQ|

ˆ
mQ

|Uωu|r ≤Cω
(

1

md

ˆ
P∩Br(mQ)

|u|p
) r

p

.
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Proof. This is a consequence of Lemma 4.7.

In case one is interested in a weaker estimate on the extension operator, we propose the following:

Theorem 1.12. Under the assumptions of Theorem 1.11 let additionally

E
(
ρ̃
− rp
p−r

P

)
<∞

then there exists an extension operator Uω : W 1,p
loc (P(ω)) → W 1,p

loc (Rd) such that for every m ≥ 1
and every u ∈ W 1,p(P(ω)) with u|P(ω)\mQ ≡ 0 it holds

1

|mQ|

ˆ
mQ

(|∇ (Uωu)|r + |Uωu|r) ≤ Cω

(
1

md

ˆ
P∩Br(mQ)

(|∇u|p + |u|p)
) r

p

.

Proof. This is a consequence of the proof of Lemma 4.7, replacing Mau in the definition of Uu by
0.

Percolation and Connectivity

The terms depending on |τn,α,iu−Mau| or |Mau−Mau| appearing on the right hand side in
Theorem 1.11 need to be replaced by an integral over |∇u|p. Here, the pathwise topology of the
geometry comes into play. By this we mean that we have to integrate the gradient of u over a path
connecting e.g. pi and xa. Here, the mesoscopic properties of the geometry will play a role. In par-
ticular, we need pathwise connectedness of the random domain, a phenomenon which is known as
percolation in the theory of random sets. We will discuss two different examples to see that these
terms can indeed be handled in application, but shift a general discussion of arbitrary geometries to a
later publication.

Extensions II: Symmetric gradients

We now turn to the situation that u is a Rd-valued function and that the given PDE system yields only
estimates for∇su = 1

2

(
∇u+ (∇u)T

)
. We introduce the following quantities:

Definition 1.13. Given n ∈ {0, 1, 2} and α ∈ [0, 1] such that such that (1.17) holds for ri = rn,α,i
for every i let for i, a

∇̄⊥n,α,iu :=

 
Brn,α,i (yn,α,i)

(∇u−∇su) ,
[
τ sn,α,iu

]
(x) :=∇̄⊥n,α,iu (x− y2,i) +

 
Brn,α,i (yn,α,i)

u ,

∇̄⊥a u :=

 
B ra

16
(xa)

(∇u−∇su) , [Ms
au] (x) :=∇̄⊥a u (x− xa) +

 
B ra

16
(xa)

u .

Using above introduced notation and W do denote Rd-valued Sobolev spaces, we find the following.

Theorem 1.14. Let r > 0 and let P ⊂ Rd be a stationary ergodic random Lipschitz domain such that
Assumption 1.4 holds for X = (xa)a∈N and P has microscopic regularity α with symmetric extension
order n ≤ 2. Let Q ⊂ Rd be a bounded open set with B 1

4
(0) ⊂ Q and let 1 ≤ r < p0 < p.

Furthermore, let

E
((

1 +M[ 3δ
8
, δ
8

],Rd

)nd (
1 +M[ 1

8
δ],Rd

)2r (
1 +M[ρ̃n],Rd

)α(d−1)
)
<∞
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then hen there exist C > 0 depending only on d, r, s and p such that for a.e. ω there exists an
extension operator Uω : W1,p

loc(P(ω)) → W1,p
loc(Rd) and Cω > 0 such that for every m ≥ 1 and

every u ∈W1,p(P(ω)) with u|P(ω)\Q ≡ 0 it holds

1

|Q|

ˆ
Q

|∇s (Uωu)|r ≤ Cω

(
1

|Q|

ˆ
Br(Q)∩P

|∇su|p
) r

p

+ C
1

|Q|

ˆ
Q\P

∑
a

∑
i 6=0

ρ−r1,iχA1,i
χA1,a

∣∣τ sn,α,iu−Ms
au
∣∣r

+
1

|Q|

ˆ
Q

∣∣∣∣∣
d∑
l=1

∑
a: ∂lΦa>0

∑
b: ∂lΦb<0

∂lΦa |∂lΦb|
DΦ
l+

(Ms
au−Ms

bu)

∣∣∣∣∣
r

1

|Q|

ˆ
Q

|Uωu|r ≤ Cω

(
1

|Q|

ˆ
Br(Q)∩P

|u|p
) r

p

,

Proof. This is a consequence of Lemma 4.9.

Theorem 1.15. Under the assumptions of Theorem 1.14 let additionally

E
(
ρ̃
− rp
p−r

P

)
<∞

then there exists an extension operator Uω : W 1,p
loc (P(ω)) → W 1,p

loc (Rd) such that for every m ≥ 1
and every u ∈ W 1,p(P(ω)) with u|P(ω)\mQ ≡ 0 it holds

1

|mQ|

ˆ
mQ

(|∇ (Uωu)|r + |Uωu|r) ≤ Cω

(
1

md

ˆ
P∩Br(mQ)

(|∇u|p + |u|p)
) r

p

.

Proof. This is a consequence of the proof of Lemma 4.7, replacing M s
au in the definition of Uu by

0.

Discussion: Random Geometries and Applicability of the Method

In Section 6 we discuss two standard models from the theory of stochastic geometries. The first one is
a system of random pipes: Starting from a Poisson point process and deleting all points with nearest
neighbor closer than 2r and introducing the Delaunay neighboring condition on the points, every two
neighbors are connect through a pipe of random thickness 2δ, where δ is distributed i.i.d among the
pipes and we complete the geometry by adding a ball of radius r

2
around each point. Defining for

bounded open domains Q ⊂ Rd and n ∈ N

u ∈ W 1,p
0,∂(nQ)(P ∩ nQ) :=

{
u ∈ W 1,p(P ∩ nQ) : u|∂(nQ) ≡ 0

}
,

and using W instead of W for Rd-valued functions, we find our first result:

Theorem 1.16. In the pipe model of Section 6.1 let P(δ(x, y) < δ0) ≤ Cδδ
β
0 and let 1 ≤ r < s < p

be such that max
{
p(s+d)
p−s ,

p(2d−s−1)
p−s

}
≤ β and sr

s−r ≤ β+d−1. Then α = n = 0 both for extension

and symmetric extension order and there almost surely exists an extension operator U : W 1,p
loc (P)→

W 1,p
loc (Rd) and constants C,R > 1 such that for all m ∈ N and every u ∈ W 1,p

0,∂(mQ)(P ∩mQ) it
holds

1

|mQ|

ˆ
Rd
|∇ (Uu)|r ≤ C

(
1

md

ˆ
P∩mQ

|∇u|p
) r

p

.
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Furthermore there almost surely exists an extension operator U : W1,p
loc(P) → W1,p

loc(Rd) and a
constant C > 0 such that for all m ∈ N and every u ∈W1,p

0,∂(mQ)(P ∩mQ)

1

|mQ|

ˆ
Rd
|∇s (Uu)|r ≤ C

(
1

md

ˆ
P∩mQ

|∇su|p
) r

p

.

In both cases for every β ∈ (0, 1) the following holds: for some m0 > 1 depending on ω and every
m > m0 the support of Uu lies within Bm1−β(mQ).

Proof. The proof is given at the very end of Section 6.1.

Corollary 1.17. If P(δ(x, y) < δ0) ≤ Cδe
−γδ−1

0 then the last theorem holds for every 1 ≤ r < p.

In Section 6.2 we study the Boolean model based on a Poisson point process in the percolation case.
Introduced in Example 2.48 we will consider a Poisson point process Xpois(ω) = (xi(ω))i∈N with
intensity λ (recall Example 2.48). To each point xi a random ball Bi = B1(xi) is assigned and the
family B := (Bi)i∈N is called the Poisson ball process. We say that xi ∼ xj if |xi − xj| < 2. In
case λ > λc the union of these balls has a unique infinite connected component (that means we have
percolation) and we denote Xpois,∞ the sellection of all points that contribute to the infinite component
and P∞ (ω) :=

⋃
i∈Xpois,∞

Bi this infinite open set and seek for a corresponding uniform extension
operator. The connectedness of P∞ is hereby essential. We use results from percolation theory that
otherwise would not hold.

Here we can show that the micro- and mesoscopic assumptions are fulfilled, at least in case P is given
as the union of balls. If we choose P as the complement of the balls, the situation becomes more
involved. On one hand, Theorem 6.8 shows that α and n change in an unfortunate way. Furthermore,
the connectivity estimate remains open. However, some of these problems might be overcome using
a Matern modification of the Poisson process. For the moment, we state the following.

Theorem 1.18. In the boolean model of Section 6.2 it holds α = 0 in case P = P∞ and both the
extension order and the symmetric extension order are n = 0. If d < p and

pr

p− r
< 2, r < d+ 2

Then there almost surely exists an extension operator U : W 1,p
loc (P) → W 1,p

loc (Rd) and a constant
C > 0 such that for all m ∈ N and every u ∈ W 1,p

0,∂Q(P ∩mQ)

1

|mQ|

ˆ
mQ

|∇ (Uu)|r ≤ C

(
1

md

ˆ
P∩mQ

|∇u|p
) r

p

.

If furthermore

r <
d+ 2

2

then there almost surele exists an extension operator U : W1,p
loc(P) → W1,p

loc(Rd) and a constant
C > 0 such that for all m ∈ N and every u ∈W1,p

0,∂Q(P ∩mQ)

1

|mQ|

ˆ
mQ

|∇s (Uu)|r ≤ C

(
1

md

ˆ
P∩mQ

|∇su|p
) r

p

.

In both cases for every β ∈ (0, 1) the following holds: for some m0 > 1 depending on ω and every
m > m0 the support of Uu lies within Bm1−β(mQ).

Proof. The proof is given at the very end of Section 6.2.
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Notes

Structure of the article

We close the introduction by providing an overview over the article and its main contributions. In
Section 2 we collect some basic concepts and inequalities from the theory of Sobolev spaces, ran-
dom geometries and discrete and continuous ergodic theory. We furthermore establish local regularity
properties for what we call η-regular sets, as well as a related covering theorem in Section 2.8. In Sec-
tion 2.13 we will demonstrate that stationary ergodic random open sets induce stationary processes
on Zd, a fact which is used later in the construction of the mesoscopic Voronoi tessellation in Section
3.2.

In Section 3 we introduce the regularity concepts of this work. More precisely, in Section 3.1 we
introduce the concept of local (δ,M)-regularity and use the theory of Section 2.8 in order to establish
a local covering result for ∂P, which will allow us to infer most of our extension and trace results. In
Section 3.2 we show how isotropic cone mixing geometries allow us to construct a stationary Voronoi
tessellation of Rd such that all related quantities like “diameter” of the cells are stationary variables
whose expectation can be expressed in terms of the isotropic cone mixing function f . Moreover we
prove the important integration Lemma 3.18.

In Sections 4–5 we finally provide the aforementioned extension operators and prove estimates for
these extension operators and for the trace operator. In Section 6 we study the sample geometries.

A Remark on Notation

This article uses concepts from partial differential equations, measure theory, probability theory and
random geometry. Additionally, we introduce concepts which we believe have not been introduced
before. This makes it difficult to introduce readable self contained notation (the most important aspect
being symbols used with different meaning) and enforces the use of various different mathematical
fonts. Therefore, we provide an index of notation at the end of this work. As a rough orientation, the
reader may keep the following in mind:

We use the standard notation N, Q, R, Z for natural (> 0), rational, real and integer numbers. P
denotes a probability measure, E the expectation. Furthermore, we use special notation for some
geometrical objects, i.e. Td = [0, 1)d for the torus (T equipped with the topology of the torus), Id =
(0, 1)d the open interval as a subset of Rd (we often omit the index d), B a ball, C a cone and X a set
of points. In the context of finite sets A, we write #A for the number of elements.

Bold large symbols (U, Q, P,. . . ) refer to open subsets of Rd or to closed subsets with ∂P = ∂P̊.
The Greek letter Γ refers to a d− 1 dimensional manifold (aside from the notion of Γ-convergence).

Calligraphic symbols (A, U , . . . ) usually refer to operators and large Gothic symbols (B,C, . . . )
indicate topological spaces, except for A.

Outlook

This work is the first part of a triology. In part II, we will see how to apply the extension and trace
operators introduced above.

In part III we will discuss general quantifyable properties of the geometry that are eventually accessible
also to computer algorithms that will allow to predict homogenization behavior of random geometries.
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2 Preliminaries

We first collect some notation and mathematical concepts which will be frequently used throughout
this paper. We first start with the standard geometric objects, which will be labeled by bold letters.

2.1 Fundamental Notation and Geometric Objects

Throughout this work, we use (ei)i=1,...d for the Euclidean basis of Rd. By C > 0 we denote any
constant that depends on p and d but no further dependencies unless explicitly mentioned. Such
mentioning may expressed in some cases through the notation C(a, b, . . . ). Furthermore, we use the
following notation.

Unit cube The torus T = [0, 1)d is quipped with the topology of the metric

d(x, y) = min
z∈Zd
|x− y + z|

. In contrast, the open interval Id := (0, 1)d is considered as a subset of Rd. We often omit the index
d if this does not provoke confusion.

Balls Given a metric space (M,d) we denote Br(x) the open ball around x ∈ M with radius
r > 0. The surface of the unit ball in Rd is Sd−1. Furthermore, we denote for every A ⊂ Rd by
Br(A) :=

⋃
x∈A Br(x).

Points A sequence of points will be labeled by X := (xi)i∈N.

A cone in Rd is usually labeled by C. In particular, we define for a vector ν of unit length, 0 < α < π
2

and R > 0 the cone

Cν,α,R(x) := {z ∈ BR(x) : z · ν > |z| cosα} and Cν,α(x) := Cν,α,∞(x) .

Inner and outer hull We use balls of radius r > 0 to define for a closed set P ⊂ Rd the sets

Pr := Br(P) :=
{
x ∈ Rd : dist (x,P) ≤ r

}
,

P−r := Rd\
[
Br
(
Rd \P

)]
:=
{
x ∈ Rd : dist

(
x,Rd \P

)
≥ r
}
.

(2.1)

One can consider these sets as inner and outer hulls of P. The last definition resembles a concept of
“negative distance” of x ∈ P to ∂P and “positive distance” of x 6∈ P to ∂P. For A ⊂ Rd we denote
conv(A) the closed convex hull of A.

The natural geometric measures we use in this work are the Lebesgue measure on Rd, written |A| for
A ⊂ Rd, and the k-dimensional Hausdorff measure, denoted byHk on k-dimensional submanifolds
of Rd (for k ≤ d).

2.2 Simple Local Extensions and Traces

In the following, we formulate some extension and trace results. Although it is well known how such
results are proved and the proofs are standard, we include them for completeness since we are par-
ticularly interested in the dependence of the operator norm on the local Lipschitz regularity of the
boundary.

The following is well known:
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Lemma 2.1. For every 1 ≤ p ≤ ∞ there exists Cp > 0 such that for every R > 0 there exists an
extension operator U : W 1,p(BR(0))→ W 1,p(B2R(0)) such that

‖∇Uu‖Lp(B2R(0)) ≤ Cp ‖∇u‖Lp(BR(0)) .

Let P ⊂ Rd be an open set and let p ∈ ∂P and δ > 0 be a constant such that Bδ(p) ∩ ∂P is graph
of a Lipschitz function. We denote

M(p, δ) := inf
{
M : ∃φ : U ⊂ Rd−1 → R

φ Lipschitz, with constant M s.t. Bδ(p) ∩ ∂P is graph of φ} . (2.2)

Remark 2.2. For every p, the function M(p, ·) is monotone increasing in δ.

Lemma 2.3 (Uniform Extension for Balls). Let P ⊂ Rd be an open set, 0 ∈ ∂P and assume there
exists δ > 0, M > 0 and an open domain U ⊂ Bδ(0) ⊂ Rd−1 such that ∂P ∩ Bδ(0) is graph of
a Lipschitz function ϕ : U ⊂ Rd−1 → Rd of the form ϕ(x̃) = (x̃, φ(x̃)) in Bδ(0) with Lipschitz

constant M and ϕ(0) = 0. Writing x = (x̃, xd) and defining ρ = δ
√

4M2 + 2
−1

there exist an
extension operator

(Uu) (x) =

{
u(x) if xd < φ(x̃)

u (x̃,−xd + 2φ(x̃)) if xd > φ(x̃)
, (2.3)

such that for

A (0,P, ρ) := {(x̃,−xd + 2φ(x̃)) : (x̃, xd) ∈ Bρ(0)\P} ⊂ Bδ(0) , (2.4)

and for every p ∈ [1,∞] the operator

U : W 1,p(A (0,P, ρ))→ W 1,p(Bρ(0)) ,

is continuous with

‖Uu‖Lp(Bρ(0)\P) ≤ ‖u‖Lp(A(0,P,ρ)) , ‖∇Uu‖Lp(Bρ(0)\P) ≤ 2M ‖∇u‖Lp(A(0,P,ρ)) . (2.5)

Remark 2.4. In case φ(x̃) ≥ 0 we findA (0,P, ρ) ⊂ Bρ(0).

Proof of Lemma 2.3. In case φ(x̃) ≡ 0 we consider the extension operator U+ : W 1,p(Rd−1 ×
(−∞, 0))→ W 1,p(Rd) having the form (compare also [6, chapter 5], [1])

(U+u) (x) =

{
u(x) if xd < 0

u (x̃,−xd) if xd > 0
.

The general case follows from transformation.

Lemma 2.5. Let P ⊂ Rd be an open set, 0 ∈ ∂P and assume there exists δ > 0, M > 0
and an open domain U ⊂ Bδ(0) ⊂ Rd−1 such that ∂P ∩ Bδ(0) is graph of a Lipschitz function
ϕ : U ⊂ Rd−1 → Rd of the form ϕ(x̃) = (x̃, φ(x̃)) in Bδ(0) with Lipschitz constant M and

ϕ(0) = 0 and define ρ = δ
√

4M2 + 2
−1

. Writing x = (x̃, xd) we consider the trace operator
T : C1 (P ∩ Bδ(0))→ C (∂P ∩ Bρ(0)). For every p ∈ [1,∞] and every r < p(1−d)

(p−d)
the operator

T can be continuously extended to

T : W 1,p (P ∩ Bδ(0))→ Lr(∂P ∩ Bρ(0)) ,

such that

‖T u‖Lr(∂P∩Bρ(0)) ≤ Cr,pρ
d(p−r)
rp
− 1
r

√
4M2 + 2

1
r

+1
‖u‖W 1,p(P∩Bδ(0)) . (2.6)
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Proof. We proceed similar to the proof of Lemma 2.3.

Step 1: WritingBr = Br(0) together withB−r = {x ∈ Br : xd < 0} and Σr := {x ∈ Br : xd = 0}
we recall the standard estimate(ˆ

Σ1

|u|r
) 1

r

≤ Cr,p

(ˆ
B−1

|∇u|p
) 1

p

+

(ˆ
B−1

|u|p
) 1

p

 ,

which leads to(ˆ
Σρ

|u|r
) 1

r

≤ Cr,pρ
d(p−r)
rp
− 1
r

ρ(ˆ
B−ρ

|∇u|p
) 1

p

+

(ˆ
B−ρ

|u|p
) 1

p

 .

Step 2: Using the transformation rule and the fact that 1 ≤ |detDϕ| ≤
√

4M2 + 2 we infer (2.6)
similar to Step 2 in the proof of Lemma 2.3.(ˆ

∂P∩Bρ(0)
|u|r
) 1

r

≤
√

4M2 + 2
1
r

(ˆ
Σρ

|u ◦ ϕ|r
) 1

r

≤ Cr,pρ
d(p−r)
rp
− 1
r

√
4M2 + 2

1
r

ρ(ˆ
B−ρ

|∇ (u ◦ ϕ)|p
) 1

p

+

(ˆ
B−ρ

|u ◦ ϕ|p
) 1

p


≤ Cr,pρ

d(p−r)
rp
− 1
r

√
4M2 + 2

1
r

+1
·

·

ρ(ˆ
B−ρ

|(∇u) ◦ ϕ|p detDϕ

) 1
p

+

(ˆ
B−ρ

|u ◦ ϕ|p detDϕ

) 1
p


and from this we conclude the Lemma with ϕ−1(B−ρ ) ⊂ Bδ(0).

2.3 Local Nitsche-Extensions

In this work, we will use bold letters for Rd-valued function spaces. In particular, we introduce for
1 ≤ p ≤ ∞

Lp(Q) := Lp(u;Rd) ,

W1,p(Q) :=
{
u ∈ Lp(Q) : ∇u ∈ Lp

(
Q;Rd×d)} .

From [5] we know that on general Lipschitz domains an estimate like the following holds:

Lemma 2.6. For every 1 ≤ p ≤ ∞ there exists a constant C > 0 depending only on the dimension
d ≥ 2 such that the following holds: For every radius R > 0 there exists an extension operator
UR : W 1,p(BR(0))→ W 1,p(B2R(0)) such that

‖∇s (URu)‖W 1,p(B2R(0)) ≤ C ‖∇su‖W 1,p(BR(0)) .

Again, we will need a refined estimate on extensions on Lipschitz domains which explicitly accounts
for the local Lipschitz constant.
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Lemma 2.7 (Uniform Nitsche-Extension for Balls). For every d ≥ 2 there exists a constant CN
depending only on the dimension d such that the following holds: Let P ⊂ Rd be an open set,
0 ∈ ∂P and assume there exists δ > 0, M > 0 and an open domain U ⊂ Bδ(0) ⊂ Rd−1

such that ∂P ∩ Bδ(0) is graph of a Lipschitz function ϕ : U ⊂ Rd−1 → Rd of the form ϕ(x̃) =
(x̃, φ(x̃)) in Bδ(0) with Lipschitz constant M and ϕ(0) = 0. Writing x = (x̃, xd) and defining

ρ = δ
√

4M2 + 2
−1

and

A (0,P, ρ) :=
{

(x̃, xd) ∈ P : |x̃| < ρ, xd ≤ CN (1 +M2)
}
, (2.7)

and for every p ∈ [1,∞] there exists a continuous operator

U : W 1,p(A (0,P, ρ))→ W 1,p(Bρ(0)) ,

such that for some constant C independent from (δ,M) and P it holds

‖∇sUu‖Lp(Bρ(0)\P) ≤ C (1 +M)2 ‖∇su‖Lp(A(0,P,ρ)) . (2.8)

Remark 2.8. In case φ(x̃) ≥ 0 the proof reveals A (0,P, ρ) ⊂ Bcρ(0) for some c depending only
on the dimension d.

In order to prove such a result we need the following lemma.

Lemma 2.9 ([26] Chapter 6 Section 1 Theorem 2). There exist constants c1, c2, c3 > 0 such that for

every open set P ⊂ Rd with local Lipschitz boundary there exists a function dP : Rd\P{ → R with

c1dP(x) ≤ dist(x,P) ≤ c2dP(x) ,

∀i ∈ {1, . . . , d} : |∂idP(x)| ≤ c3 ,

∀i, k ∈ {1, . . . , d} : |∂i∂kdP(x)| ≤ c3 |dP(x)|−1 .

From the theory presented by Stein [26] we will not get an explicit form of CN but only an upper bound
that grows exponentially with dimension d.

Proof of Lemma 2.7. We use an idea by Nitsche [20], which we transfer from p = 2 to the general
case, thereby explicitly quantifying the influence of M . For simplicity we write Pδ := P ∩ Bδ(0) and
P{
δ := Bδ(0)\P and assume that x ∈ Pδ iff x ∈ Bδ(0) and xd < φ(x̃).

As observed by Nitsche, it holds

∀x ∈ P{
δ : 0 <

(
1 +M2

)− 1
2 (xd − φ(x̃)) ≤ dist(x, ∂P) ≤ xd − φ(x̃) ,

and together with Lemma 2.9, we can define dP,M(x) := 2c2 (1 +M2)
1
2 dP(x) and find for c >

max
{

2c2
c1
, 4c2c3

}
that

2 (xd − φ(x̃)) ≤ dP,M(x) ≤ c
(
1 +M2

) 1
2 (xd − φ(x̃)) ,

∀i ∈ {1, . . . , d} : |∂idP,M(x)| ≤ c
(
1 +M2

) 1
2 ,

∀i, k ∈ {1, . . . , d} : |∂i∂kdP,M(x)| ≤ c
(
1 +M2

)
|dP,M(x)|−1 .

If ψ ∈ C([1, 2]) satisfies
ˆ 2

1

ψ(t) dt = 1 ,

ˆ 2

1

t ψ(t) dt = 0. (2.9)
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Nitsche introduced xλ := (x̃, xd − λdP,M(x)) and proposed the following extension on x ∈ P{
δ:

ui(x) :=

ˆ 2

1

ψ(λ) (ui(xλ) + λud(xλ) ∂idP,M(x)) dλ .

One can quickly verify that this maps C(Pδ) onto C
(
Bρ(0)

)
. In what follows, we write ε[u](x) :=

∇su(x) and particularly εij[u](x) := 1
2

(∂iuj + ∂jui) as well as ελij[u](x) = εij[u](xλ) for x ∈ P{
δ.

Then for x ∈ P{
δ ∩ Bρ(0)

εij[u](x) =

ˆ 2

1

ψ(λ)
(
ελij(x) + λ∂idP,M(x) ελjd(x) + λ∂jdP,M(x) ελid(x) (2.10)

+λ2∂idP,M(x) ∂jdP,M(x) ελdd(x) + λ∂i∂jdP,M(x)ud(xλ)
)

(2.11)

From the fundamental theorem of calculus we find

ud(xλ) = ud(x1) + δ(x̃)

ˆ λ

1

∂dud(xt) dt ,

which leads by (2.9) to

ˆ 2

1

ψ(λ)λ∂i∂jdP,M(x)ud(xλ) dλ = ∂i∂jdP,M(x) dP,M(x)

ˆ 2

1

εdd[u](xt) dt

ˆ 2

µ

ψ(λ)λ dλ .

We may now apply | · |p on both sides of (2.10), integrate over P{
δ ∩ Bρ(0) and use the integral

transformation theorem for each λ to find

‖ε[u]‖Lp(P{
δ∩Bρ(0)) ≤ C

(
1 +M2

)
‖ε[u]‖Lp(Pδ)

.

2.4 Poincaré Inequalities

We denote for bounded open A ⊂ Rd

W 1,p
(0),r(A) :=

{
u ∈ W 1,p(A) : ∃x : Br(x) ⊂ A ∨

 
Br(x)

u = 0

}
.

Note that this is not a linear vector space.

Lemma 2.10. For every p ∈ [1,∞) there existsCp > 0 such that the following holds: Let 0 < r < R
and x ∈ BR(0) such that Br(x) ⊂ BR(0) then for every u ∈ W 1,p(BR(0))

‖u‖pLp(BR(0)) ≤ Cp

(
RpR

d−1

rd−1
‖∇u‖pLp(BR(0)) +

Rd

rd
‖u‖pLp(Br(x))

)
, (2.12)

and for every u ∈ W 1,p
(0),r((BR(0)) it holds

‖u‖pLp(BR(0)) ≤ CpR
p
( r
R

)1−d
(

1 +
( r
R

)p−1
)
‖∇u‖pLp(BR(0)) . (2.13)
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Remark. In case p ≥ d we find that (2.13) holds iff u(x) = 0 for some x ∈ B1(0).

Proof. In a first step, we assume x = 0 and R = 1. The underlying idea of the proof is to compare
every u(y), y ∈ B1(0)\Br(0) with u(rx). In particular, we obtain for y ∈ B1(0)\Br(0) that

u(y) = u(ry) +

ˆ 1

0

∇u(ry + t(1− r)y) · (1− r)y dt

and hence by Jensen’s inequality

|u(y)|p ≤ C

(ˆ 1

0

|∇u(ry + t(1− r)y)|p (1− r)p |y|p dt+ |u(ry)|p
)
.

We integrate the last expression over B1(0)\Br(0) and find

ˆ
B1(0)\Br(0)

|u(y)|p dy ≤
ˆ
Sd−1

ˆ 1

r

C

(ˆ 1

0

|∇u(rsν + t(1− r)sν)|p (1− r)psp dt

)
sd−1dsdν

+

ˆ
B1(0)\Br(0)

|u(ry)|p dy

≤
ˆ
Sd−1

ˆ 1

r

C

(ˆ s

rs

|∇u(tν)|p (1− r)p−1sp−1 dt

)
sd−1ds

+

ˆ
B1(0)\Br(0)

|u(ry)|p dy

≤ C

ˆ 1

r

ds sd−1 1

(rs)d−1

ˆ s

rs

dt td−1

ˆ
Sd−1

|∇u(tν)|p (1− r)p−1sp−1

+

ˆ
B1(0)\Br(0)

|u(ry)|p dy

≤ C
1

rd−1
‖∇u‖pLp(B1(0)) +

1

rd
‖u‖pLp(Br(0)) .

For general x ∈ B1(0), use the extension operator U : W 1,p(B1(0)) → W 1,p(B4(0)) such that
‖Uu‖W 1,p(B4(0)) ≤ C ‖u‖W 1,p(B1(0)) and ‖∇Uu‖W 1,p(B4(0)) ≤ C ‖∇u‖W 1,p(B1(0)). Since B1(0) ⊂
B2(x) ⊂ B4(0) we infer

‖u‖pLp(B1(0)) ≤ ‖Uu‖
p
Lp(B2(x)) ≤ C

(
1

rd−1
‖∇Uu‖pLp(B2(x)) +

1

rd
‖Uu‖pLp(Br(x))

)
.

and hence (2.12). Furthermore, since there holds ‖u‖pLp(B1(0)) ≤ C ‖∇u‖pLp(B1(0)) for every u ∈
W 1,p

(0) (B1(0)), a scaling argument shows ‖u‖pLp(Br(0)) ≤ Crp ‖∇u‖pLp(Br(0)) for every

u ∈ W 1,p
(0),r(B1(0)) and hence (2.13). For general R > 0 use a scaling argument.

A similar argument leads to the following, where we remark that the difference in the appearing of 1
r

is
due to the fact, that integrating the cylinder needs no surface element rd−1.

Corollary 2.11. For every p ∈ [1,∞) and r > 0 there exists Cp > 0 such that the following holds:
Let r < L, PL,r := Bd−1

r (0) × (0, L) and x ∈ PL,r such that Br(x) ⊂ PL,r then for every
u ∈ W 1,p(PL,r)

‖u‖pLp(PL,r)
≤ Cp

(
Lp ‖∇u‖pLp(PL,r)

+
L

r
‖u‖pLp(Br(x))

)
, (2.14)
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Extension Operators on perforated domains 19

and if additionally
ffl
Br(x)

u = 0 then

‖u‖pLp(PL,r)
≤ Cp

(
Lp ‖∇u‖pLp(PL,r)

+ Lrp−1 ‖∇u‖pLp(Br(x))

)
, (2.15)

Let y ∈ PL,r such that Br(y) ⊂ PL,r then for every u ∈ W 1,p(PL,r)∣∣∣∣ 
Br(y)

u−
 
Br(x)

u

∣∣∣∣p ≤ Cp

(
Lp−1r1−d ‖∇u‖pLp(PL,r)

)
. (2.16)

2.5 Korn Inequalities

We introduce on open sets A ⊂ Rd the Sobolev space

W1,p
∇⊥(0)

(A) :=

{
u ∈W1,p(A) : ∀i, j :

ˆ
A

∂iuj − ∂jui = 0

}
.

To the authors best knowledge, the following is the most general Korn inequality in literature.

Theorem 2.12 ([5] Theorem 2.7 and Corollary 2.8). Let 1 ≤ p ≤ ∞ and ε ∈ (0, 1) and δ̃ > 0. Then
there exists a constant Cp > 0 depending only on d, p, ε and δ̃ such that for every bounded open set
A ∈ Rd with δ > 0 such that δ/diamA ≥ δ̃ and with the property

∀x, y ∈ A, |x− y| < δ : ∃γ ∈ C1([0, 1];A), γ(0) = x, γ(1) = y such that:

l(γ) ≤ 1

ε
|x− y| and ∀t ∈ (0, 1) : dist(γ(t), ∂A) ≥ ε |x− γ(t)| |y − γ(t)|

x− y

 (2.17)

it holds
∀u ∈W1,p

∇⊥(0)
(A) : ‖∇u‖Lp(A) ≤ Cp ‖∇su‖Lp(A) . (2.18)

Remark 2.13. In the original work the claimed dependence of Cp was on d, p, ε, δ and A with the
observation that (2.18) is invariant under scaling of A. However, this scale invariance results in the
dependence on d, p, ε and δ/diamA since ε, p and d are not sensitive to scaling of A.

Definition 2.14. Domains A ⊂ Rd satisfying (2.17) for some ε ∈ (0, 1) and δ > 0 are called
(ε, δ)-John domains or simply John domains.

Corollary 2.15. For every 1 ≤ p ≤ ∞ there exists Cp depending only on d and p such that for every
bounded open convex set A ⊂ Rd the estimate (2.18) holds.

We furthermore introduce the set

W1,p
∇⊥(0),r

(A) :=

{
u ∈W1,p(A) : ∃x : Br(x) ⊂ A ∨ ∀i, j :

ˆ
Br(x)

∂iuj − ∂jui = 0

}
which is not a vector space.

Lemma 2.16 (Mixed Korn inequality). Let 1 ≤ p ≤ ∞ and ε, δ ∈ (0, 1). Then there exists a constant
C̃p > 0 depending only on d, p, ε and δ such that for every (ε, δ)-John domain A ⊂ B1(0) and for
every r ∈ (0, 1) and every x ∈ A with Br(x) ⊂ A it holds

∀u ∈W1,p(A) : ‖∇u‖Lp(A) ≤ C̃p

(
|A|
rd

) 1
p (
‖∇su‖Lp(A) + ‖∇u‖Lp(Br(x))

)
. (2.19)

Furthermore,

∀u ∈W1,p
∇⊥(0),r

(A) : ‖∇u‖Lp(A) ≤ C̃p

(
|A|

|Sd−1| rd

) 1
p (
‖∇su‖Lp(A)

)
. (2.20)

DOI 10.20347/WIAS.PREPRINT.2849 Berlin 2021



M. Heida 20

Unfortunately, we do not have a reference for a comparable Lemma in the literature except for [25] in
case p = 2. The author strongly supposes a proof must exist somewhere, however, we provide it for
completeness.

Proof. Let Cp be the constant from Theorem 2.12 for domains with a diameter less than 2 and sup-
pose (2.19) was wrong. Then there exists a sequence of (ε, δ)-John domains An ⊂ B1(0) with
xn ∈ An, rn ∈ (0, 1) with Brn(xn) ⊂ An and functions un ∈W1,p(An) such that

1 = ‖∇un‖Lp(An) ≥ Cp

(
|An|
|Sd−1| rdn

) 1
p

n
(
‖∇sun‖Lp(An) + ‖∇un‖Lp(Brn (xn))

)
.

We define ∇⊥n (un) :=
ffl
An

(∇un −∇sun) and un,⊥(x) := un(x) − ∇⊥n (un)x with ∇sun,⊥ =
∇sun. Hence by (2.18)∥∥∥∇un −∇⊥n (un)

∥∥∥
Lp(An)

≤ Cp ‖∇sun,⊥‖Lp(An) = Cp ‖∇sun‖Lp(An) .

We directly infer with Cn := |An|
|Sd−1|rdn

CpC
1
p
n

(
‖∇sun‖Lp(An) + ‖∇un‖Lp(Brn (xn))

)
→ 0 , C

1
p
n

∥∥∥∇un −∇⊥n (un)
∥∥∥
Lp(An)

→ 0 .

(2.21)
Furthermore, we find

1 = ‖∇un‖Lp(An) ≥
∥∥∥∇⊥n (un)

∥∥∥
Lp(An)

−
∥∥∥∇un −∇⊥n (un)

∥∥∥
Lp(An)

,∥∥∥∇⊥n (un)
∥∥∥
Lp(An)

≥ ‖∇un‖Lp(An) −
∥∥∥∇un −∇⊥n (un)

∥∥∥
Lp(An)

,

and hence
∥∥∥∇⊥n (un)

∥∥∥
Lp(An)

→ 1 due to (2.21). Since∇⊥n (un) are constant, it holds

Cn

∥∥∥∇⊥n (un)
∥∥∥p
Lp(Brn (xn))

=
∥∥∥∇⊥n (un)

∥∥∥p
Lp(An)

and we infer from a similar calculation

C
1
p
n

(
‖∇un‖Lp(Brn (xn)) +

∥∥∥∇un −∇⊥n (un)
∥∥∥
Lp(Brn (xn))

)
≥ C

1
p
n

∥∥∥∇⊥n (un)
∥∥∥
Lp(Brn (xn))

≥
∥∥∥∇⊥n (un)

∥∥∥
Lp(An)

.

This implies
∥∥∥∇⊥n (un)

∥∥∥
Lp(An)

→ 0 by (2.21), a contradiction. Hence, (2.19) holds with C̃p = nCp

for some n ∈ N.

Estimate (2.20) now follows from (2.19) and (2.18) and the definition of W1,p
∇⊥(0),r

(BR(0)).

2.6 Korn-Poincaré Inequalities

Generalizing the above Korn inequality to a Korn-Poincaré inequality, we define

W1,p
(0),∇⊥(0),r

(BR(0)) :=
{
u ∈W1,p(Br(0)) : ∃x : Br(x) ⊂ BR(0) ∨

ˆ
Br(x)

ui = 0 ∨ ∀i, j :

ˆ
Br(x)

∂iuj − ∂jui = 0

}
.
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Lemma 2.17 (Mixed Korn-Poincaré inequality on balls). For every p ∈ [1,∞) there exists Cp > 0
such that for every R > 0, r ∈ (0, R) and every x ∈ BR(0) with Br(x) ⊂ BR(0) it holds

∀u ∈W1,p
(0),∇⊥(0),r

(BR(0)) : ‖∇u‖pLp(BR(0)) ≤ Cp
(
R

r

)d
‖∇su‖pLp(BR(0)) , (2.22)

‖u‖pLp(BR(0)) ≤ Cp
(
R

r

)2d−1
(

1 +

(
R

r

)1−p
)
Rp ‖∇su‖pLp(BR(0)) .

(2.23)

Proof. Apply Lemma 2.16 for R = 1 and use a simple scaling argument to obtain

‖∇u‖Lp(BR(0)) ≤ Cp

(
R

r

)d (
‖∇su‖Lp(Br(0))

)
.

Afterwards apply Lemma 2.10.

Lemma 2.18 (Mixed Korn-Poincaré inequality on cylinders). For every p ∈ [1,∞) and r > 0 there
exists Cp > 0 such that the following holds: Let r < L, PL,r := (0, L) × Bd−1

r (0) and x ∈ PL,r
such that Br(x) ⊂ PL,r then for every u ∈W1,p(PL,r)

‖∇u‖pLp(PL,r)
≤ Cp

((
L

r

)p
‖∇su‖pLp(PL,r)

+
L

r
‖∇u‖pLp(Br(x))

)
. (2.24)

Furthermore,

‖u‖pLp(PL,r)
≤ Cp

(
L2p

rp
‖∇su‖pLp(PL,r)

+
Lp+1

r
‖∇u‖pLp(Br(x)) +

L

r
‖u‖pLp(Br(x))

)
, (2.25)

and if additionally u ∈W1,p
(0),∇⊥(0),r

(PL,r) then

‖∇u‖pLp(PL,r)
≤ Cp

Lp

rp
‖∇su‖pLp(PL,r)

, ‖u‖pLp(PL,r)
≤ Cp

L2p

rp
‖∇su‖pLp(PL,r)

, (2.26)

Defining∇⊥a,δu :=
ffl
Bδ(a)

(∇u−∇su) and

[
Ms,δ

a u
]

(x) := ∇⊥a,δu(x− a) +

 
Bδ(a)

u (2.27)

we find for a, b with Bδ(a),Bδ(b) ⊂ PL,r for every u ∈W1,p(PL,r) that

∣∣∣[Ms,δ
a u
]

(x)−
[
Ms,δ

b u
]

(x)
∣∣∣p ≤ C |x− a|p |a− b|

2p

δp+d

(ˆ
conv(Bδ(a)∪Bδ(b))

|∇su|p
)
. (2.28)

Furthermore, for every δ < r we find∣∣[Ms,r
a u] (x)−

[
Ms,δ

a u
]

(x)
∣∣p

≤ C

((
δ

r

)−d
|x− a|p +

(
δ

r

)1−d

(1 +

(
δ

r

)p−d
)

)
rp−d ‖∇su‖pLp(Br(a)) . (2.29)
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Proof. Step1: W.l.o.g we assume L ∈ N, a = 1
2
e1, b = (L− 1

2
)e1, r = 1

2
and define

Pk :=
(
ke1 + [0, 1)× Bd−1

1
2

(0)
)
, Bk := ke1 + B 1

2

(
1

2
e1

)
τ sku(x) :=

[
Ms, 1

2

(k+ 1
2)e1

u

]
(x) =

[ 
Bk

(∇u−∇su)

]
x+

 
Bk

u .

Then we find by Lemma 2.16

‖∇u‖pLp(PK) ≤ C
(
‖∇ (u− τ sKu)‖pLp(PK) + ‖∇τ sKu‖

p
Lp(PK)

)
≤ C

(
‖∇su‖pLp(PK) + ‖∇τ sKu‖

p
Lp(PK)

)
.

Since∇τ sku is constant, we find

‖∇τ sKu‖
p
Lp(PK) ≤ C ‖∇τ s0u‖

p
Lp(P0) + C

(
K−1∑
k=0

∥∥∇ (τ sk+1u− τ sku
)∥∥

L1(Pk+1)

)p

.

Furthermore, we find

τ sk
(
u− τ sk+1u

)
=

 
Bk

(
∇u−

 
Bk+1

(∇u−∇su)−∇su

)
x+

 
Bk

(
u−

 
Bk+1

u

)
= τ sku− τ sk+1u = τ sk+1(u− τ sku) .

This implies by∇τ sk+1 (u− τ sku) =
ffl
Bk+1

(∇−∇s) (u− τ sku) and Lemma 2.16 and Theorem 2.12∥∥∇ (τ sk+1u− τ sku
)∥∥p

Lp(Pk+1)
≤ C

∥∥∇τ sk+1 (u− τ sku)
∥∥p
Lp(Bk+1)

≤ C ‖∇ (u− τ sku)‖pLp(Bk+1)

2.16

≤ ≤ C
(
‖∇s (u− τ sku)‖pLp(Pk+1∪Pk) + ‖∇ (u− τ sku)‖pLp(Bk)

)
2.12

≤ C ‖∇su‖pLp(Pk+1∪Pk) .

Since the last inequality implies(
K−1∑
k=0

∥∥∇ (τ sk+1u− τ sku
)∥∥

L1(Pk+1)

)p

≤ Kp−1C ‖∇su‖p
Lp((0,K)×Bd−1

1 (0))

and ‖∇τ s0u‖
p
Lp(P0) ≤ C

(
‖∇su‖pLp(P0) + ‖∇u‖pLp(B0)

)
by Lemma 2.16 we find in total

‖∇τ sKu‖
p
Lp(PK) ≤ C ‖∇u‖pLp(B0) + CKp−1 ‖∇su‖p

Lp((0,K)×Bd−1
1 (0))

.

Adding the last inequality from K = 0 to K = L implies (2.24) through scaling. Applying Corollary
2.11 we infer that (2.25) and (2.26).

Step 2: We observe that Step 1 also holds for PL,r being replaced by conv(Bδ(a) ∪ Bδ(b)). Writing
ub := u−Ms,δ

b u we find from the above calculations∣∣∣Ms,δ
a u−M

s,δ
b u
∣∣∣p (x) =

∣∣∣Ms,δ
a

(
u−Ms,δ

b u
)∣∣∣p (x)

≤ C
1

δd

(
|x− a|p

ˆ
Bδ(a)

|∇ub −∇sub|p +

ˆ
Bδ(a)

|ub|p
)
.
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Using that ub ∈W1,p
(0),∇⊥(0),r

(conv(Bδ(a) ∪ Bδ(b))), we find (2.28) with help of (2.26) and Lemma
2.17.

Step 3: W.l.o.g. a = 0. Writing ū(y) := u(y) −
(
∇⊥a,δu

)
y with

ffl
Br(0)

u =
ffl
Br(0)

u we infer (2.29)

from Lemmas 2.16 and 2.10 via∣∣∣[Ms,1
0 u
]

(x)−
[
Ms,δ

0 u
]

(x)
∣∣∣p ≤ C ∣∣∣∣∣

ˆ
B1(0)

∇u−∇su−∇⊥a,δu

∣∣∣∣∣
p

|x|p +

∣∣∣∣∣
 
B1(0)

u−
 
Bδ(0)

u

∣∣∣∣∣
p

≤ C
ˆ
B1(0)

(∣∣∣∇u−∇⊥a,δu∣∣∣p + |∇su|p
)
|x|p +

 
B1(0)

∣∣∣∣∣u−
 
Bδ(0)

u

∣∣∣∣∣
p

≤ C
(
δ−d |x|p ‖∇su‖pLp(B1(0)) + δ1−d

(
1 + δp−d

)
‖∇u‖pLp(B1(0))

)
.

2.7 Voronoi Tessellations and Delaunay Triangulation

Definition 2.19 (Voronoi Tessellation). Let X = (xi)i∈N be a sequence of points in Rd with xi 6= xk
if i 6= k. For each x ∈ X let

G(x) :=
{
y ∈ Rd : ∀x̃ ∈ X\ {x} : |x− y| < |x̃− y|

}
.

Then (G(xi))i∈N is called the Voronoi tessellation of Rd w.r.t. X. For each x ∈ X we define d(x) :=
diamG(x).

We will need the following result on Voronoi tessellation of a minimal diameter.

Lemma 2.20. Let r > 0 and let X = (xi)i∈N be a sequence of points in Rd with |xi − xk| > 2r
if i 6= k. For x ∈ X let I(x) := {y ∈ X : G(y) ∩ Br(G(x)) 6= ∅}. Then y ∈ I(x) implies
|x− y| ≤ 4d(x) and

#I(x) ≤
(

4d(x)

r

)d
. (2.30)

Proof. Let Xk =
{
xj ∈ X : Hd−1(∂Gk ∩ ∂Gj) ≥ 0

}
the neighbors of xk and dk := d(xk). Then

all xj ∈ X satisfy |xk − xj| ≤ 2dk. Moreover, every x̃ ∈ X with |x̃− xk| > 4dk has the property
that dist( ∂G (x̃) , xk ) > 2dk > dk + r and x̃ 6∈ Ik. Since every Voronoi cell contains a ball of

radius r, this implies that #Ik ≤ |B4dk(xk)| / |Br(0)| =
(

4dk
r

)d
.

Definition 2.21 (Delaunay Triangulation). Let X = (xi)i∈N be a sequence of points in Rd with xi 6=
xk if i 6= k. The Delaunay triangulation is the dual unoriented graph (see Def. ?? below) of the Voronoi
tessellation, i.e. we say D(X) :=

{
(x, y) : Hd−1(∂G(x) ∩ ∂G(y)) 6= 0

}
.

2.8 Local η-Regularity

Definition 2.22 (η- regularity). For a function η : ∂P→ (0, r] we call P η-regular if

∀p ∈ ∂P, ε ∈
(

0,
1

2

)
, p̃ ∈ Bεη(p)(p) ∩ ∂P : η(p̃) > (1− ε)η(p) . (2.31)
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Figure 1: An illustration of η-regularity. In The-
orem 2.25 we will rely on a “gray” region like
in this picture.

Remark 2.23. This concept and its consequences from Lemma 2.24 and Theorem 2.25 will be exten-
sively used later to cover ∂P by a suitable family of open balls.

Lemma 2.24. Let P be a locally η-regular set for η : ∂P → (0, r). Then η : P → R is locally
Lipschitz continuous with Lipschitz constant 1 and for every ε ∈

(
0, 1

2

)
and p̃ ∈ Bεη(p) ∩P it holds

1− ε
1− 2ε

η(p) > η(p̃) > η(p)− |p− p̃| > (1− ε) η(p) . (2.32)

Furthermore,

|p− p̃| ≤ εmax {η(p), η(p̃)} ⇒ |p− p̃| ≤ ε

1− ε
min {η(p), η(p̃)} (2.33)

Proof. Let p, p̃ such that |p̃− p| < 1
2
η(p) with εp,p̃ := inf {ε : |p̃− p| < εη(p)}. This means

ε ∈ [εp,p̃,
1
2
) iff η(p̃) ≥ (1− ε) η(p) and we find

η(p̃) ≥ η(p)− |p− p̃| = η(p)− εp,p̃η(p) > (1− ε) η(p)

which implies |p̃− p| < ε
1−εη(p̃) and the local Lipschitz continuity by a symmetry argument in p, p̃.

This in turn leads to η(p) >
(
1− ε

1−ε

)
η(p̃) or

η(p) =
1− ε
1− ε

η(p) <
1

1− ε
(η(p)− |p− p̃|) < 1

1− ε
η(p̃) ≤ 1

1− 2ε
η(p) ,

implying (2.32) and continuity of η.

In order to prove (2.33), w.l.o.g. let η(p̃) ≤ η(p). Then

|p− p̃| ≤ εη(p) ≤ ε

1− ε
η(p̃) .

Theorem 2.25. Let Γ ⊂ Rd be a closed set and let η(·) ∈ C(Γ) be bounded and satisfy for every
ε ∈

(
0, 1

2

)
and for |p− p̃| < εη(p)

1− ε
1− 2ε

η(p) > η(p̃) > η(p)− |p− p̃| > (1− ε) η(p) . (2.34)

and define η̃(p) = 2−Kη(p), K ≥ 2. Then for every C ∈ (0, 1) there exists a locally finite covering
of Γ with balls Bη̃(pk)(pk) for a countable number of points (pk)k∈N ⊂ Γ such that for every i 6= k
with Bη̃(pi)(pi) ∩ Bη̃(pk)(pk) 6= ∅ it holds

2K−1 − 1

2K−1
η̃(pi) ≤ η̃(pk) ≤

2K−1

2K−1 − 1
η̃(pi)

and
2K − 1

2K−1 − 1
min {η̃(pi), η̃(pk)} ≥ |pi − pk| ≥ C max {η̃(pi), η̃(pk)}

(2.35)
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Proof. We chose δ > 0, n ∈ N such that
(
1− 1

n

)
(1− δ) > C . W.o.l.g. assume η̃ < (1 − δ).

Consider Q̃ :=
[
0, 1

n

]d
, let q1,...,nd denote the nd elements of [0, 1)d∩ Qd

n
and let Q̃z,i = Q̃+ z+ qi,

z ∈ Zd. We set B(0) := ∅, Γ1 = Γ, ηk := (1− δ)k and for k ≥ 1 we construct the covering using
inductively defined open sets B(k) and closed set Γk as follows:

1 Define Γk,1 = Γk. For i = 1, . . . , nd do the following:

1.1 For every z ∈ Zd do

if ∃p ∈
(
ηkQ̃z,i

)
∩ Γk,i, η̃(p) ∈ (ηk, ηk−1] then set bz,i = Bη̃(p)(p) , Xz,i = {p}

otherwise set bz,i = ∅ , Xz,i = ∅ .

1.2 Define B(k),i :=
⋃
z∈Zd bz,i and Γk,i+1 = Γk,i\B(k),i and X(k),i :=

⋃
z∈Zd Xz,i.

Observe: p1, p2 ∈ X(k),i implies |p1 − p2| >
(
1− 1

n

)
ηk and p3 ∈ X(k),j , j < i

implies p1 6∈ Bηk(p3) and hence |p1 − p3| > ηk. Similar, p3 ∈ Xl, l < k, implies
|p1 − p3| > ηl > ηk.

2 Define Γk+1 := Γk,nd+1, Xk :=
⋃
iX(k),i.

The above covering of Γ is complete in the sense that every x ∈ Γ lies in one of the balls (by
contradiction). We denote X :=

⋃
k Xk = (pi)i∈N the family of centers of the above constructed

covering of Γ and find the following properties: Let p1, p2 ∈ X be such that Bη̃(p1)(p1)∩Bη̃(p2)(p2) 6=
∅. W.l.o.g. let η̃(p1) ≥ η̃(p2). Then the following two properties are satisfied due to (2.34)

1 It holds |p1 − p2| ≤ 2η̃(p1) ≤ 1
2K−1η(p1) and hence Bη̃(p2)(p2) ⊂ B22−Kη(p1)(p1) and

η(p2) ≥ 2K−1−1
2K−1 η(p1). Furthermore η̃(p1) ≥ η̃(p2) ≥ 2K−1−1

2K−1 η̃(p1).

2 Let k such that η̃(p1) ∈ (ηk, ηk+1]. If also η̃(p2) ∈ (ηk, ηk+1] then the observation in Step
1.(b) implies |p1 − p2| ≥

(
1− 1

n

)
ηk ≥

(
1− 1

n

)
(1− δ) η̃(p1). If η̃(p2) 6∈ [ηk, ηk+1) then

η̃(p2) < ηk and hence p2 6∈ Bη̃(p1)(p1), implying |p1 − p2| > η̃(p1).

Due to our choice of n and δ, this concludes the proof.

2.9 Dynamical Systems

Assumption 2.26. Throughout this work we assume that (Ω,F ,P) is a probability space with count-
ably generated σ-algebra F .

Due to the insight in [10], shortly sketched in the next two subsections, after a measurable transfor-
mation the probability space Ω can be assumed to be metric and separable, which always ensures
Assumption 2.26.

Definition 2.27 (Dynamical system). A dynamical system on Ω is a family (τx)x∈Rd of measurable
bijective mappings τx : Ω 7→ Ω satisfying (i)-(iii):

(i) τx ◦ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rd, B ∈ F (Measure preserving)
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(iii) A : Rd × Ω→ Ω (x, ω) 7→ τxω is measurable (Measurability of evaluation)

A set A ⊂ Ω is almost invariant if P ((A ∪ τxA) \ (A ∩ τxA)) = 0. The family

I =
{
A ∈ F : ∀x ∈ Rd P ((A ∪ τxA) \ (A ∩ τxA)) = 0

}
(2.36)

of almost invariant sets is σ-algebra and

E (f |I ) denotes the expectation of f : Ω→ R w.r.t. I . (2.37)

A concept linked to dynamical systems is the concept of stationarity.

Definition 2.28 (Stationary). Let X be a measurable space and let f : Ω × Rd → X . Then f is
called (weakly) stationary if f(ω, x) = f(τxω, 0) for (almost) every x.

Definition 2.29. A family (An)n∈N ⊂ Rd is called convex averaging sequence if

(i) each An is convex

(ii) for every n ∈ N holds An ⊂ An+1

(iii) there exists a sequence rn with rn →∞ as n→∞ such that Brn(0) ⊆ An.

We sometimes may take the following stronger assumption.

Definition 2.30. A convex averaging sequence An is called regular if

|An|−1 #
{
z ∈ Zd : (z + T) ∩ ∂An 6= ∅

}
→ 0 .

The latter condition is evidently fulfilled for sequences of cones or balls. Convex averaging sequences
are important in the context of ergodic theorems.

Theorem 2.31 (Ergodic Theorem [4] Theorems 10.2.II and also [27]). Let (An)n∈N ⊂ Rd be a convex
averaging sequence, let (τx)x∈Rd be a dynamical system on Ω with invariant σ-algebra I and let
f : Ω→ R be measurable with |E(f)| <∞. Then for almost all ω ∈ Ω

|An|−1

ˆ
An

f(τxω) dx→ E(f |I ) . (2.38)

We observe that E (f |I ) is of particular importance. For the calculations in this work, we will partic-
ularly focus on the case of trivial I . This is called ergodicity, as we will explain in the following.

Definition 2.32 (Ergodicity and mixing). A dynamical system (τx)x∈Rd on a probability space (Ω,F ,P)
is called mixing if for every measurable A,B ⊂ Ω it holds

lim
‖x‖→∞

P(A ∩ τxB) = P(A)P(B) . (2.39)

A dynamical system is called ergodic if

lim
n→∞

1

(2n)d

ˆ
[−n,n]d

P(A ∩ τxB)dx = P(A)P(B) . (2.40)
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Remark 2.33. a) Let Ω = {ω0 = 0} with the trivial σ-algebra and τxω0 = ω0. Then τ is evidently
mixing. However, the realizations are constant functions fω(x) = c on Rd for some constant c.

b) A typical ergodic system is given by Ω = T with the Lebesgue σ-algebra and P = L the Lebesgue
measure. The dynamical system is given by τxy := (x+ y) mod T.

c) It is known that (τx)x∈Rd is ergodic if and only if every almost invariant set A ∈ I has probability
P(A) ∈ {0, 1} (see [4] Proposition 10.3.III) i.e.

[ ∀xP((τxA ∪ A) \ (τxA ∩ A)) = 0 ] ⇒ P(A) ∈ {0, 1} . (2.41)

d) It is sufficient to show (2.39) or (2.40) for A and B in a ring that generates the σ-algebra F . We
refer to [4], Section 10.2, for the later results.

A further useful property of ergodic dynamical systems, which we will use below, is the following:

Lemma 2.34 (Ergodic times mixing is ergodic). Let (Ω̃, F̃ , P̃) and (Ω̂, F̂ , P̂) be probability spaces
with dynamical systems (τ̃x)x∈Rd and (τ̂x)x∈Rd respectively. Let Ω := Ω̃ × Ω̂ be the usual product
measure space with the notation ω = (ω̃, ω̂) ∈ Ω for ω̃ ∈ Ω̃ and ω̂ ∈ Ω̂. If τ̃ is ergodic and τ̂ is
mixing, then τx(ω̃, ω̂) := (τ̃xω̃, τ̂xω̂) is ergodic.

Proof. Relying on Remark 2.33.c) we verify (2.40) by proving it for sets A = Ã× Â and B = B̃× B̂
which generate F := F̃ ⊗ F̂ . We make use of A ∩B =

(
Ã ∩ B̃

)
×
(
Â ∩ B̂

)
and observe that

P(A ∩ τxB) = P
((
Ã ∩ τ̃xB̃

)
×
(
Â ∩ τ̂xB̂

))
= P̂

(
Â ∩ τ̂xB̂

)
P̃
(
Ã ∩ τ̃xB̃

)
= P̂

(
Â ∩ B̂

)
P̃
(
Ã ∩ τ̃xB̃

)
+
[
P̂
(
Â ∩ τ̂xB̂

)
− P̂

(
Â ∩ B̂

)]
P̃
(
Ã ∩ τ̃xB̃

)
.

Using ergodicity, we find that

lim
n→∞

1

(2n)d

ˆ
[−n,n]d

P̂
(
Â ∩ B̂

)
P̃
(
Ã ∩ τ̃xB̃

)
dx = P̂

((
Â ∩ B̂

))
P̃
(
Ã ∩ B̃

)
= P(A ∩B) . (2.42)

Since τ̂ is mixing, we find for every ε > 0 some R > 0 such that ‖x‖ > R implies∣∣∣P̂(Â ∩ τ̂xB̂)− P̂
(
Â ∩ B̂

)∣∣∣ < ε.

For n > R we find

1

(2n)d

ˆ
[−n,n]d

∣∣∣P̂(Â ∩ τ̂xB̂)− P̂
(
Â ∩ B̂

)∣∣∣ P̃(Ã ∩ τ̃xB̃)
≤ 1

(2n)d

ˆ
[−n,n]d

ε+
1

(2n)d

ˆ
[−R,R]d

2→ ε as n→∞ . (2.43)

The last two limits (2.42) and (2.43) imply (2.40).

Remark 2.35. The above proof heavily relies on the mixing property of τ̂ . Note that for τ̂ being only
ergodic, the statement is wrong, as can be seen from the product of two periodic processes in T× T
(see Remark 2.33). Here, the invariant sets are given by IA := {((y + x) mod T , x) : y ∈ A}
for arbitrary measurable A ⊂ T.
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2.10 Random Measures and Palm Theory

We recall some facts from random measure theory (see [4]) which will be needed for homogeniza-
tion. Let M(Rd) denote the space of locally bounded Borel measures on Rd (i.e. bounded on every
bounded Borel-measurable set) equipped with the Vague topology, which is generated by the sets{

µ :

ˆ
f dµ ∈ A

}
for every open A ⊂ Rd and f ∈ Cc

(
Rd
)
.

This topology is metrizable, complete and countably generated. A random measure is a measurable
mapping

µ• : Ω→M(Rd) , ω 7→ µω

which is equivalent to both of the following conditions

1 For every bounded Borel set A ⊂ Rd the map ω 7→ µω(A) is measurable

2 For every f ∈ Cc(Rd) the map ω 7→
´
f dµω is measurable.

A random measure is stationary if the distribution of µω(A) is invariant under translations of A
that is µω(A) and µω(A + x) share the same distribution. From stationarity of µω one concludes
the existence ([10, 22] and references therein) of a dynamical system (τx)x∈Rd on Ω such that
µω (A+ x) = µτxω (A). By a deep theorem due to Mecke (see [19, 4]) the measure

µP(A) =

ˆ
Ω

ˆ
Rd
g(s)χA(τsω) dµω(s) dP(ω)

can be defined on Ω for every positive g ∈ L1(Rd) with compact support. µP is independent from
g and in case µω = L we find µP = P. Furthermore, for every B(Rd) × B(Ω)-measurable non
negative or µP × L- integrable functions f the Campbell formula

ˆ
Ω

ˆ
Rd
f(x, τxω) dµω(x) dP(ω) =

ˆ
Rd

ˆ
Ω

f(x, ω) dµP(ω) dx

holds. The measure µω has finite intensity if µP(Ω) < +∞.

We denote by

EµP (f |I ) :=

ˆ
Ω

f the expectation of f w.r.t. the σ-algebra I and µP . (2.44)

For random measures we find a more general version of Theorem 2.31.

Theorem 2.36 (Ergodic Theorem [4] 12.2.VIII). Let (Ω,F ,P) be a probability space, (An)n∈N ⊂ Rd

be a convex averaging sequence, let (τx)x∈Rd be a dynamical system on Ω with invariant σ-algebra
I and let f : Ω→ R be measurable with

´
Ω
|f | dµP <∞. Then for P-almost all ω ∈ Ω

|An|−1

ˆ
An

f(τxω) dµω(x)→ EµP (f |I ) . (2.45)

Given a bounded open (and convex) set Q ⊂ Ω, it is not hard to see that the following generalization
holds:
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Theorem 2.37 (General Ergodic Theorem). Let (Ω,F ,P) be a probability space, Q ⊂ Rd be a
bounded open set with 0 ∈ Q, let (τx)x∈Rd be a dynamical system on Ω with invariant σ-algebra I
and let f : Ω→ R be measurable with

´
Ω
|f | dµP <∞. Then for P-almost all ω ∈ Ω it holds

∀ϕ ∈ C0(Q) : n−d
ˆ
nQ

ϕ(
x

n
)f(τxω) dµω(x)→ EµP (f |I )

ˆ
Q

ϕ . (2.46)

Sketch of proof. Chose a countable dense family of functions ϕ ∈ C0(Q) that spans L1(Q) and
that have support on a ball. Use a Cantor argument and Theorem 2.36 to prove the statement for a
countable dense family of C0(Q). From here, we conclude by density.

The last result can be used to prove the most general ergodic theorem which we will use in this
work:

Theorem 2.38 (General Ergodic Theorem for the Lebesgue measure). Let (Ω,F ,P) be a probability
space, Q ⊂ Rd be a bounded open set with 0 ∈ Q, let (τx)x∈Rd be a dynamical system on Ω with
invariant σ-algebra I and let f ∈ Lp(Ω;µP) and ϕ ∈ Lq(Q), where 1 < p, q < ∞, 1

p
+ 1

q
= 1.

Then for P-almost all ω ∈ Ω it holds

n−d
ˆ
nQ

ϕ(
x

n
)f(τxω) dx→ E(f)

ˆ
Q

ϕ .

Proof. Let ϕδ ∈ C(Q) with ‖ϕ− ϕδ‖Lq(Q) < δ. Then∣∣∣∣n−d ˆ
nQ

ϕ(
x

n
)f(τxω) dx− E(f)

ˆ
Q

ϕ

∣∣∣∣
≤ ‖ϕ− ϕδ‖Lq(Q)

(
n−d

ˆ
nQ

|f(τxω)|p dx

) 1
p

+

∣∣∣∣n−d ˆ
nQ

ϕδ(x)f(τxω) dx− E(f)

ˆ
Q

ϕδ

∣∣∣∣+ EµP (f |I )

ˆ
Q

|ϕ− ϕδ| ,

which implies the claim.

2.11 Random Sets

The theory of random measures and the theory of random geometry are closely related. In what
follows, we recapitulate those results that are important in the context of the theory developed below
and shed some light on the correlations between random sets and random measures.

Let F(Rd) denote the set of all closed sets in Rd. We write

FV :=
{
F ∈ F(Rd) : F ∩ V 6= ∅

}
if V ⊂ Rd is an open set , (2.47)

FK :=
{
F ∈ F(Rd) : F ∩K = ∅

}
if K ⊂ Rd is a compact set . (2.48)

The Fell-topology TF is created by all sets FV and FK and the topological space (F(Rd),TF ) is
compact, Hausdorff and separable[18].

Remark 2.39. We find for closed sets Fn, F in Rd that Fn → F if and only if [18]

1 for every x ∈ F there exists xn ∈ Fn such that x = limn→∞ xn and
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2 if Fnk is a subsequence, then every convergent sequence xnk with xnk ∈ Fnk satisfies
limk→∞ xnk ∈ F .

If we restrict the Fell-topology to the compact sets K(Rd) it is equivalent with the Hausdorff topology
given by the Hausdorff distance

d(A,B) = max

{
sup
y∈B

inf
x∈A
|x− y| , sup

x∈A
inf
y∈B
|x− y|

}
.

Remark 2.40. For A ⊂ Rd closed, the set

F(A) :=
{
F ∈ F(Rd) : F ⊂ A

}
is a closed subspace of F

(
Rd
)
. This holds since

F
(
Rd
)
\F(A) =

{
B ∈ F

(
Rd
)

: B ∩
(
Rd\A

)
6= ∅
}

= FRd\A is open.

..

Lemma 2.41 (Continuity of geometric operations). The maps τx : A 7→ A+x and bδ : A 7→ Bδ(A)
are continuous in F

(
Rd
)
.

Proof. We show that preimages of open sets are open. For open sets V we find

τ−1
x (FV ) =

{
F ∈ F(Rd) : τxF ∩ V 6= ∅

}
=
{
F ∈ F(Rd) : F ∩ τ−xV 6= ∅

}
= Fτ−xV ,

b−1
δ (FV ) =

{
F ∈ F(Rd) : Bδ(F ) ∩ V 6= ∅

}
=
{
F ∈ F(Rd) : F ∩ Bδ(V ) 6= ∅

}
= F(bδV )◦ .

The calculations for τ−1
x

(
FK
)

= Fτ−xK and b−1
δ

(
FK
)

= FbδK are analogue.

Remark 2.42. The Matheron-σ-field σF is the Borel-σ-algebra of the Fell-topology and is fully charac-
terized either by the class FV of FK .

Definition 2.43 (Random closed / open set according to Choquet (see [18] for more details)).

a) Let (Ω, σ,P) be a probability space. Then a Random Closed Set (RACS) is a measurable
mapping

A : (Ω, σ,P) −→ (F, σF)

b) Let τx be a dynamical system on Ω. A random closed set is called stationary if its characteristic
functions χA(ω) are stationary, i.e. they satisfy χA(ω)(x) = χA(τxω)(0) for almost every ω ∈ Ω
for almost all x ∈ Rd. Two random sets are jointly stationary if they can be parameterized by
the same probability space such that they are both stationary.

c) A random closed set Γ : (Ω, σ, P ) −→ (F, σF) ω 7→ Γ(ω) is called a Random closed
Ck-Manifold if Γ(ω) is a piece-wise Ck-manifold for P almost every ω.

d) A measurable mapping
A : (Ω, σ,P) −→ (F, σF)

is called Random Open Set (RAOS) if ω 7→ Rd\A(ω) is a RACS.
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The importance of the concept of random geometries for stochastic homogenization stems from the
following Lemma by ZÃd’hle. It states that every random closed set induces a random measure. Thus,
every stationary RACS induces a stationary random measure.

Lemma 2.44 ([32] Theorem 2.1.3 resp. Corollary 2.1.5). Let Fm ⊂ F be the space of closed m-
dimensional sub manifolds of Rd such that the corresponding Hausdorff measure is locally finite.
Then, the σ-algebra σF ∩ Fm is the smallest such that

MB : Fm → R M 7→ Hm(M ∩B)

is measurable for every measurable and bounded B ⊂ Rd.

This means that
MRd : Fm →M(Rd) M 7→ Hm(M ∩ ·)

is measurable with respect to the σ-algebra created by the Vague topology on M(Rd). Hence a
random closed set always induces a random measure. Based on Lemma 2.44 and on Palm-theory,
the following useful result was obtained in [10] (See Lemma 2.14 and Section 3.1 therein). We can
thus assume w.l.o.g that Ω is a separable metric space.

Theorem 2.45. Let (Ω, σ, P ) be a probability space with an ergodic dynamical system τ . Let A :
(Ω, σ, P ) −→ (F, σF) be a stationary random closed m-dimensional Ck-Manifold.

There exists a separable metric space Ω̃ ⊂ M
(
Rd
)

with an ergodic dynamical system τ̃ and a

mapping Ã : (Ω̃,BΩ̃,P) → (F, σF) such that A and Ã have the same law and such that Ã still is
stationary. Furthermore, (x, ω) 7→ τxω is continuous. We identify Ω̃ = Ω, Ã = A and τ̃ = τ .

Also the following result will be useful below.

Lemma 2.46. Let µ be a Radon measure on Rd and let Q ⊂ Rd be a bounded open set. Let
F0 ⊂ F

(
Q
)

be such that F0 → R, A 7→ µ(A) is continuous. Then

m : F× F0 →M
(
Rd
)
, (P,B) 7→

{
A 7→ µ(A ∩B) B ⊂ P

0 else

is measurable.

Proof. For f ∈ Cc(Rd) we introduce mf through

mf : (P,B) 7→

{´
B
f dµ B ⊂ P

0 else

and observe that m is measurable if and only if for every f ∈ Cc
(
Rd
)

the map mf is measurable
(see Section 2.10). Hence, if we prove the latter property, the lemma is proved.

We assume f ≥ 0 and we show that the mapping mf is even upper continuous. In particular, let
(Pn, Bn) → (P,B) in F × F0 and assume that Bn ⊂ Pn for all n > N0. Since Q is compact,
Remark 2.39. 2. implies that B ⊂ P ∩ Q. Furthermore, since f has compact support, we find∣∣∣´Bn f dµ−

´
B
f dµ

∣∣∣ ≤ ‖f‖∞ |µ(Bn)− µ(B)| → 0. On the other hand, if there exists a subse-

quence such that Bn 6⊂ Pn for all n, then either B 6⊂ P and mf (Pn, Bn) = 0 → mf (P,B) = 0
or B ⊂ P and 0 = limn→∞mf (Pn, Bn) ≤

´
B
fdµ = mf (P,B). For f ≤ 0 we obtain lower

semicontinuity and for general f the map mf is the sum of an upper and a lower semicontinuous
map, hence measurable.
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2.12 Point Processes

Definition 2.47 ((Simple) point processes). A Z-valued random measure µω is called point process.
In what follows, we consider the particular case that for almost every ω there exist points (xk(ω))k∈N
and values (ak (ω))k∈N in Z such that

µω =
∑
k∈N

akδxk(ω) .

The point process µω is called simple if almost surely for all k ∈ N it holds ak ∈ {0, 1}.

Example 2.48 (Poisson process). A particular example for a stationary point process is the Poisson
point process µω = Xω with intensity λ. Here, the probability P(X(A) = n) to find n points in a
Borel-set A with finite measure is given by a Poisson distribution

P(X(A) = n) = e−λ|A|
λn |A|n

n!
(2.49)

with expectation E(X(A)) = λ |A|. Shift-invariance of (2.49) implies that the Poisson point process
is stationary.

We can use a given random point process to construct further processes.

Example 2.49 (Hard core Matern process). The hard core Matern process is constructed from a given
point process Xω by mutually erasing all points with the distance to the nearest neighbor smaller than
a given constant r. If the original process Xω is stationary (ergodic), the resulting hard core process
is stationary (ergodic) respectively.

Example 2.50 (Hard core Poisson–Matern process). If a Matern process is constructed from a Pois-
son point process, we call it a Poisson–Matern point process.

Lemma 2.51. Let µω be a simple point process with ak = 1 almost surely for all k ∈ N. Then
Xω = (xk(ω))k∈N is a random closed set of isolated points with no limit points. On the other hand,
if Xω = (xk(ω))k∈N is a random closed set that almost surely has no limit points then µω is a point
process.

Proof. Let µω be a point process. For open V ⊂ Rd and compact K ⊂ Rd let

fV,R(x) = dist
(
x, Rd\ (V ∩ BR(0))

)
, fKδ (x) = max

{
1− 1

δ
dist(x,K) , 0

}
.

Then fV,R is Lipschitz with constant 1 and fKδ is Lipschitz with constant 1
δ

and support in Bδ(K).
Moreover, since µω is locally bounded, the number of points xk that lie within B1(K) is bounded. In
particular, we obtain

X−1(FV ) =
⋃
R>0

{
ω :

ˆ
Rd
fV,R dµω > 0

}
,

X−1
(
FK
)

=
⋂
δ>0

{
ω :

ˆ
Rd
fKδ dµω > 0

}
,

are measurable. Since FV and FK generate the σ-algebra on F
(
Rd
)
, it follows that ω → Xω is

measurable.
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In order to prove the opposite direction, let Xω = (xk(ω))k∈N be a random closed set of points. Since
Xω has almost surely no limit points the measure µω is locally bounded almost surely. We prove that
µω is a random measure by showing that

∀f ∈ Cc
(
Rd
)

: F : ω 7→
ˆ
Rd
f dµω is measurable.

For δ > 0 let µδω(A) :=
(∣∣Sd−1

∣∣ δd)−1 L(A ∩ Bδ(Xω)). By Lemmas 2.41 and 2.46 we obtain that
Fδ : ω 7→

´
Rd f dµδω are measurable. Moreover, for almost every ω we find Fδ (ω) → F (ω)

uniformly and hence F is measurable.

Corollary 2.52. A random simple point process µω is stationary iff Xω is stationary.

Hence we can provide the following definition based on Definition 2.43.

Definition 2.53. A point process µω and a random set P are jointly stationary if P and X are jointly
stationary.

Lemma 2.54. Let Xω = (xi)i∈N be a Matern point process from Example 2.49 with distance r and

let for δ < r
2

be B(ω) :=
⋃
iBδ(xi). Then B(ω) is a random closed set.

Proof. This follows from Lemma 2.41: Xω is measurable and X 7→ Bδ(X) is continuous. Hence
B (ω) is measurable.

2.13 Dynamical Systems on Zd

Definition 2.55. Let
(

Ω̂, F̂ , P̂
)

be a probability space. A discrete dynamical system on Ω̂ is a family

(τ̂z)z∈rZd of measurable bijective mappings τ̂z : Ω̂ 7→ Ω̂ satisfying (i)-(iii) of Definition 2.27 with Rd re-
placed byZd. A setA ⊂ Ω̂ is almost invariant if for every z ∈ rZd it holdsP ((A ∪ τ̂zA) \ (A ∩ τ̂zA)) =
0 and τ̂ is called ergodic w.r.t. rZd if every almost invariant set has measure 0 or 1.

Similar to the continuous dynamical systems, also in this discrete setting an ergodic theorem can be
proved.

Theorem 2.56 (See Krengel and Tempel’man [16, 27]). Let (An)n∈N ⊂ Rd be a convex averaging

sequence, let (τ̂z)z∈rZd be a dynamical system on Ω̂ with invariant σ-algebra I and let f : Ω̂→ R
be measurable with |E(f)| <∞. Then for almost all ω̂ ∈ Ω̂

|An|−1
∑

z∈An∩rZd
f(τ̂zω̂)→ r−dE(f |I ) . (2.50)

In the following, we restrict to r = 1 for simplicity of notation.

Let Ω0 ⊂ Rd. We consider an enumeration (ξi)i∈N of Zd such that Ω̂ := ΩZd
0 = ΩN

0 and write

ω̂ = (ω̂ξ1 , ω̂ξ2 , . . . ) = (ω̂1, ω̂2, . . . ) for all ω̂ ∈ Ω̂. We define a metric on Ω̂ through

d(ω̂1, ω̂2) =
∞∑
k=1

1

2k
|ω̂1,ξk − ω̂2,ξk |

1 + |ω̂1,ξk − ω̂2,ξk |
.

We write Ωn := Ωn
0 and Nn := {k ∈ N : k ≥ n+ 1}. The topology of Ω̂ is generated by the open

sets A × ΩNn
0 , where for some n > 0, A ⊂ Ωn is an open set. In case Ω0 is compact, the space Ω̂

is compact. Further, Ω̂ is separable in any case since Ω0 is separable (see [14]).
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Lemma 2.57. Suppose for every n ∈ N there exists a probability measure Pn on Ωn such that for
every measurable An ⊂ Ωn it holds Pn+k

(
An × Ωk

)
= Pn(An). Then P defined as follows defines

a probability measure on Ω:
P
(
An × ΩNn

0

)
:= Pn(An) .

Proof. We consider the ring

R =
⋃
n∈N

{
A× ΩNn

0 : A ⊂ Ωn is measurable
}

and make the observation that P is additive and positive onR and P(∅) = 0. Next, let (Aj)j∈N be an

increasing sequence of sets inR such that A :=
⋃
j Aj ∈ R. Then, there exists Ã1 ⊂ Ωn

0 such that

A1 = Ã1 × ΩNn
0 and since A1 ⊂ A2 ⊂ · · · ⊂ A, for every j > 1, we conclude Aj = Ãj × ΩNn

0 for
some Ãj ⊂ Ωn. Therefore, P(Aj) = Pn(Ãj) → Pn(Ã) = P(A) where A = Ã × ΩNn

0 . We have
thus proved that P : R → [0, 1] can be extended to a measure on the Borel-σ-Algebra on Ω (See [2,
Theorem 6-2]).

We define for z ∈ Zd the mapping

τ̂z : Ω̂→ Ω̂ , ω̂ 7→ τ̂zω̂ , where (τ̂zω̂)ξi = ω̂ξi+z component wise .

Remark 2.58. In this paper, we consider particularly Ω0 = {0, 1}. Then Ω̂ := ΩZd
0 is equivalent to

the power set of Zd and every ω̂ ∈ Ω̂ is a sequence of 0 and 1 corresponding to a subset of Zd.
Shifting the set ω̂ ⊂ Zd by z ∈ Zd corresponds to an application of τ̂z to ω̂ ∈ Ω̂.

Now, let P(ω) be a stationary ergodic random open set and let r > 0. Recalling (2.1) the map
ω 7→ P−r(ω) is measurable due to Lemma 2.41 and we can define Xr(P(ω)) := 2rZd ∩P− r

2
(ω).

Lemma 2.59. If P is a stationary ergodic random open set then the set

X = Xr(ω) := Xr(P(ω)) := 2rZd ∩P−r(ω) (2.51)

is a stationary random point process w.r.t. 2rZd.

Proof. By a simple scaling we can w.l.o.g. assume 2r = 1 and write X = Xr. Evidently, X corre-
sponds to a process on Zd with values in Ω0 = {0, 1} writing X(z) = 1 if z ∈ X and X(z) = 0
if z 6∈ X. In particular, we write (ω, z) 7→ X(ω, z). This process is stationary as the shift invariance
of P induces a shift-invariance of P̂ with respect to τ̂z. It remains to observe that the probabilities
P(X(z) = 1) and P(X(z) = 0) induce a random measure on Ω̂ in the way described in Remark
2.58.

Remark 2.60. If P is mixing one can follow the lines of the proof of Lemma 2.34 to find that Xr(P(ω))
is ergodic. However, in the general case Xr(P(ω)) is not ergodic. This is due to the fact that by nature
(τz)z∈Zd on Ω has more invariant sets than(τx)x∈Rd . For sufficiently complex geometries the map

Ω→ Ω̂ is onto.

Definition 2.61 (Jointly stationary). We call a point process X with values in 2rZd to be strongly jointly
stationary with a random set P if the functions χP(ω), χX(ω) are jointly stationary w.r.t. the dynamical
system (τ2rx)x∈Zd on Ω.
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Figure 2: How to fit a ball into a cone.

3 Quantifying Nonlocal Regularity Properties of the Geometry

3.1 Microscopic Regularity

Lemma 3.1. Let P be a Lipschitz domain. Then for every p0 ∈ ∂P with δ(p0) > 0 the following
holds: For every δ < δ (p0) and M := Mδ(p0) > 0 there exists y ∈ P with |p0 − y| = δ

4
such that

with r (p0) := δ
4(1+M)

it holds Br(p0)(y) ⊂ Bδ/2(p0).

Proof. We can assume that ∂P is locally a cone as in Figure 2. With regard to Figure 2, for p0 ∈ ∂P
with δ and M as in the statement we can place a right circular cone with vertex (apex) p0 and axis ν
and an aperture θ = π − 2 arctanM inside Bδ(p0), where α = arctanM . In other words, it holds
tan (α) = tan

(
π−θ

2

)
= M . Along the axis we may select y with |p0 − y| = δ

4
. Then the distance R

of y to the cone is given through

|y − p0|2 = R2 +R2 tan2

(
π − θ

2

)
⇒ R =

|y − p0|√
1 +M2

.

In particular r (p0) as defined above satisfies the claim.

Continuity properties of δ, M and %

Lemma 3.2. Let r > 0, P be a Lipschitz domain and recall (1.7). Then ∂P is δ∆-regular in the sense
of Definition 2.22. In particular, δ∆ : ∂P → R is locally Lipschitz continuous with Lipschitz constant
4 and for every ε ∈

(
0, 1

2

)
and p̃ ∈ Bεδ(p) ∩ ∂P it holds

1− ε
1− 2ε

δ∆(p) > δ∆(p̃) > δ∆(p)− |p− p̃| > (1− ε) δ∆(p) . (3.1)

Remark 3.3. The latter lemma does not imply global Lipschitz regularity of δ∆. It could be that
2δ∆(p) < |p− p̃| < 3δ∆(p) and p and p̃ are connected by a path inside ∂P with the shortest path
of length 10δ∆(p). Then Lemma 3.2 would have to be applied successively along this path yielding
an estimate of |δ∆(p)− δ∆(p̃)| ≤ 40 |p− p̃|.

Proof of Lemma 3.2. It is straight forward to verify that |p− p̃| < εδ∆(p) implies δ∆(p̃) > (1 −
ε)δ∆(p) and we conclude with Lemma 2.24.

With regard to Lemma 2.3, the local extension operator is related to δ(p)/
√

4M(p)2 + 2, where

M(p) is the related Lipschitz constant. While we can quantify δ(p) in terms of δ(p̃) and |p− p̃|, this

does not work for M(p). Hence we cannot quantify δ(p)/
√

4M(p)2 + 2 in terms of its neighbors.
This drawback is compensated by a variational trick in the following statement.
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Lemma 3.4. Let P be a Lipschitz domain and let δ ≤ δ∆ satisfy (3.1) such that ∂P is δ-regular. For
p ∈ ∂P and let Mr(p) be given in (1.8) and define for n,K ∈ N

ρn(p) := sup
r<δ(p)

r

√
4Mr(p)

2 + 2
−n
, (3.2)

ρ̂n,K(p) := inf

{
δ ≤ δ(p) : sup

r<2−Kδ

r

√
4Mr(p)

2 + 2
−n
≥ 2−Kρn(p)

}
. (3.3)

Then for fixed p ∈ ∂P the functions r 7→ Mr(p) is right continuous and monotone increasing (i.e.
u.s.c.). Furthermore, ρn is positive and locally Lipschitz continuous on ∂P with Lipschitz constant 4
and ∂P is ρ-regular in the sense of Definition 2.22. In particular, for |p− p̃| < ερn(p) it holds

1− ε
1− 2ε

ρn(p) > ρn(p̃) > ρn(p)− |p− p̃| > (1− ε) ρn(p) . (3.4)

Furthermore, ρ̂n,K ≤ δ is well defined.

Remark 3.5. Like in Remark 3.3 this does not imply global Lipschitz regularity of ρn or ρ̂n.

Corollary 3.6. Every Lipschitz domain P has extension order 1 and symmetric extension order 2.

Proof. This follows from ρ̂n,3 ≤ δ and Lemmas 2.3 and 2.7 applied to B 1
8
ρ̂n,3

(p0) and B 1
8
ρn

(p0).

Proof of Lemma 3.4. Right continuity of r 7→ Mr(p) follows because for every 0 < r < R because
M being Lipschitz constant of ∂P in BR(p) implies M being Lipschitz constant of ∂P in Br(p).

Let |p− p̃| < ερ(p) < εδ(p) implying δ(p̃) ≥ (1− ε) δ(p) by Lemma 3.2. For every η > 0 let

rη ∈ (ρ(p), δ(p)) such that ρ(p) ≤ (1 + η) rη

√
4Mrη(p)

2 + 2
−n

. Since rη > ρ(p) and |p− p̃| <
ερ(p) we find Brη(p) ⊃ B(1−ε)rη(p̃) and hence M(1−ε)rη(p̃) ≤ Mrη(p). This implies at the same
time that ∂P is ρ-regular and that

ρ(p̃) ≥ (1− ε) rη√
4M(1−ε)rη(p̃)

2 + 2
n ≥

(1− ε) rη√
4Mrη(p)

2 + 2
n ≥

(1− ε)
(1 + η)

ρ(p) .

Since η was arbitrary, we conclude ρ(p̃) ≥ (1− ε) ρ(p). Moreover, we find |p− p̃| < ε
1−ερ(p̃). And

we conclude the first part with Lemma 2.24.

Second, it holds for every r < δ and ε ∈ (0, 1) that

εr

√
4Mr(p)

2 + 2
−n
≤ εr

√
4Mεr(p)

2 + 2
−n

and choosing ε = 2−K and taking the supremum on both sides, we infer ρ̂n,K ≤ δ.

Corollary 3.7. Let r > 0 and let P ⊂ Rd be a locally (δ,M)-regular open set, where we restrict δ by
δ (·) ≤ r

4
. Then there exists a countable number of points (pk)k∈N ⊂ ∂P such that ∂P is completely

covered by balls Bρ̃(pk)(pk) where ρ̃ (p) := 2−5ρn (p) for some n ∈ N. Writing

ρ̃k := ρ̃(pk) , δk := δ(pk) .

For two such balls with Bρ̃k(pk) ∩ Bρ̃i(pi) 6= ∅ it holds

15

16
ρ̃i ≤ ρ̃k ≤

16

15
ρ̃i

and
31

15
min {ρ̃i, ρ̃k} ≥ |pi − pk| ≥

1

2
max {ρ̃i, ρ̃k} .

(3.5)
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Furthermore, there exists rk ≥ ρ̃k
32(1+Mρ̃(pk)

(pk))
and yk such that Brk(yk) ⊂ Bρ̃k/8(pk) ∩ P and

B2rk(yk) ∩ B2rj(yj) = ∅ for k 6= j.

Proof. The existence of the points and Balls satisfying (3.5) follows from Theorem 2.25, in particular
(2.35). It holds for Bρ̃k(pk) ∩ Bρ̃i(pi) 6= ∅

|pi − pk| ≤ ρ̃i + ρ̃k ≤
(

16

15
+ 1

)
ρ̃i .

Lemma 3.1 yields existence of yk such that Brk(yk) ⊂ Bρ̃k/8(pk) ∩ P. The latter implies Brk(yk) ∩
Brj(yj) = ∅ for k 6= j.

Lemma 3.8. Let r > 0, P ⊂ Rd be a locally (δ,M)-regular open set and let M0 ∈ (0,+∞]
such that for every p ∈ ∂P there exists δ > 0, M < M0 such that ∂P is (δ,M)-regular in p. For
α ∈ (0, 1] let η(p) = αδ∆(p) from Lemma 3.2 or η(p) = αρn(p) from Lemma 3.4 and define

M[η](p) := inf
δ>η(p)

inf
M
{P is (δ,M) -regular in p} . (3.6)

Then, for fixed ξ, M[η](·) : ∂P→ R is upper semicontinuous and on each bounded measurable set
A ⊂ Rd the quantity

M[η](A) := sup
p∈A∩∂P

M[η](p) (3.7)

with M[η](A) = 0 if A ∩ ∂P = ∅ is well defined. The functions

M[η](A, ·) : Rd → R , M[η](A, x) := M[η](A+ x) with M[η](A, 0) = M[η](A)

are upper semicontinuous.

Remark 3.9. Note at this point that M[η,r],Rd defined in (1.11) is a function on Rd and different from
M[η].

Notation 3.10. The infimum in (3.6) is a lim inf for δ ↘ η(p). We sometimes use the special notation

M[η],r(x) := M[η],Br(0)(x) .

Proof of Lemma 3.8. Let p, p̃ ∈ ∂P with |p− p̃| < εη(p). Writing ε̃ := ε
1−ε and r (p, ε) :=(

1
1−2ε

+ ε
)
η(p) and

M(p, ε) := inf
M

{
Br(p,ε)(p) ∩ ∂P is M -Lipschitz graph

}
as well as we observe from η-regularity that Bη(p̃)(p̃) ⊂ Br(p,ε)(p) and Bη(p)(p) ⊂ Br(p̃,ε̃)(p̃). Hence
we find

M[η](p̃) ≤M(p, ε) .

Observing that M(p, ε) ↘ M[η](p) as ε → 0 we find lim supp̃→p M[η](p̃) ≤ M[η](p) and M is
u.s.c.

Let x→ 0. First observe that M[η](A) = maxy∈A M[η](y). The setA is compact and henceA+x→
A in the Hausdorff metric as x → 0. Let yx ∈ A + x such that M[η](yx) = M[η] (A, x). Since
A+ x→ A w.l.o.g. we find yx → y converges and y ∈ A. Hence

M[η](y) ≥ lim sup
x→0

M[η](yx) = lim sup
x→0

M[η](A, x) .

In particular, M[η],A(·) is u.s.c. The u.s.c of m[η](p, ξ) can be proved similarly.
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Measurability and Integrability of Extended Variables

Lemma 3.11. Let r > 0, let P ⊂ Rd be a Lipschitz domain and let η, r : ∂P → R be continuous
such that η ≤ r and P is η- and r-regular. For ε ∈ (0, 1] let η(p) = εδ(p) from Lemma 3.2 or
η(p) = ερn(p), n ∈ N, from Lemma 3.4. Then η[r],Rd from (1.10) is measurable and M[η,r],Rd from
(1.11) is upper semicontinuous.

In what follows, we write Aη,r := F−1
(
(0, 3

2
r)
)

for

F := inf
p∈∂P

fp , fp(x) :=

{
η(p) if x ∈ Br(p)(p)
2r else

.

Proof. Step 1: We writeA = Aη,r for simplicity. Let (pi)i∈N ⊂ ∂P be a dense subset. If x ∈ Br(p)(p)
for some p ∈ ∂P then also x ∈ Br(p̃)(p̃) for |p− p̃| sufficiently small, by continuity of η. Hence every
fp is upper semicontinuous and it holds F = infi∈N fpi . In particular, F is measurable and so is the
set A. This implies η[r],Rd = χAF is measurable.

Step 2: We show that for every a ∈ R the preimage M−1
[η,r],Rd([a,+∞)) is closed. Let (xk)k∈N be a

sequence with M[η,r],Rd(xk) ∈ [a,+∞). Let (pk) ⊂ ∂P be a sequence with |xk − pk| ≤ r(pk).
W.l.o.g. assume pk → p ∈ ∂P and xk → x ∈ Rd. Since r is continuous, it follows |x− p| ≤ r(p).
On the other hand M[η](p) ≥ lim supk→∞M[η](pk) and thus M[η,r],Rd(x) ≥M[η,r](p) ≥ a.

Lemma 3.12. Under the assumptions of Lemma 3.11 let η̃ := η[ η
8

],Rd . Then there exists a constant
C > 0 only depending on the dimension d such that for every bounded open domain Q and k ∈ [0, 4)
it holds ˆ

Aη,r∩Q
χη̃>0η̃

−α ≤ C

ˆ
B r

4
(Q)∩∂P

η1−αMd−2
[ η
4

],Rd , (3.8)

ˆ
Aη,r∩Q

η̃−αM r
[k η

8
, η
8

],Rd ≤ C

ˆ
B r

4
(Q)∩∂P

η1−αM r
[k η

8
, η
4

],RdM
d−2
[ η
4

],Rd . (3.9)

Finally, it holds

x ∈ B 1
8
η(p)(p) ⇒ η(p) > η̃(x) >

3

4
η(p) . (3.10)

Remark 3.13. Estimates (3.8)–(3.9) are only rough estimates and better results could be obtained via
more sophisticated calculations that make use of particular features of given geometries.

Proof. We write A = Aη,r for simplicity. Step 1: Given x ∈ Rd with η̃(x) > 0 let

px ∈ argmin
{
η(x̃) : x̃ ∈ ∂P s.t. x ∈ B 1

8
η(x̃)(x̃)

}
. (3.11)

Such px exists because ∂P is locally compact. We observe with help of the definition of px, the triangle
inequality and (2.34)

x ∈ B 1
8
η(p)(p) ⇒ η(px) ≤ η(p) ⇒ |p− px| <

η(p)

4
⇒ η(px) >

3

4
η(p) .

The last line particularly implies (3.10) and

∀p ∈ ∂P ∀x ∈ B η(p)
8

(p) : η̃(x) >
3η(p)

4
.
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Step 2: By Theorem 2.25 we can chose a countable number of points (pk)k∈N ⊂ ∂P such that
Γ = ∂P is completely covered by balls Bk := Bξ(pk)(pk) where ξ(p) := 2−4η(p). For simplicity of
notation we write ηk := η(pk) and ξk := ξ(pk). Assume x ∈ A with px ∈ Γ given by (3.11). Since
the balls Bk cover Γ, there exists pk with |px − pk| < ξk = 2−4ηk, implying η(px) <

24

24−1
ηk and

hence |x− pk| ≤
(

2−4 + 2−324

24−1

)
ηk <

3
16
ηk. Hence we find

∀x ∈ A ∃pk : x ∈ B 3
16
ηk

(pk) .

Step 3: For p ∈ Γ with x ∈ B 1
4
η(p)(p) ∩ B 1

8
η(px)(px) we can distinguish two cases:

1 η(p) ≥ η(px): Then px ∈ B 3
8
η(p)(p) and hence η(px) ≥ 5

8
η(p) by (2.34).

2 η(p) < η(px): Then p ∈ B 3
8
η(px)(px) and henceη(px) >

1− 3
8

1− 6
8

η(p) = 5
2
η(p) by (2.34).

and hence

x ∈ B 1
4
η(p)(p) ⇒ η̃(x) = η(px) >

5

8
η(p) .

Step 4: Let k ∈ N be fixed and define Bk = B 1
4
ηk

(pk), Mk := M 1
4
ηk

(pk). By construction, every

Bj with Bj ∩ Bk 6= ∅ satisfies ηj ≥ 1
2
ηk and hence if Bj ∩ Bk 6= ∅ and Bi ∩ Bj 6= ∅ we find

|pj − pi| ≥ 1
4
ηk and |pj − pk| ≤ 3ηk. This implies that

∃C > 0 : ∀k # {j : Bj ∩Bk 6= ∅} ≤ C .

We further observe that the minimal surface of Bk ∩ ∂P is given in case when Bk ∩ ∂P is a cone
with opening angle π

2
− arctanM(pk). The surface area of Bk ∩ ∂P in this case is bounded by

1
d−1

∣∣Sd−2
∣∣ ηd−1

k (Mk + 1)2−d. This particularly implies up to a constant independent from k:

ˆ
A∩Q∩P

η̃−α .
∑

k:Bk∩Q 6=∅

ˆ
A∩Bk∩P

η−αk

.
∑

k:Bk∩Q 6=∅

ˆ
A∩Bk∩∂P

η1−αMd−2
[ η
4

]

.
ˆ
A∩B r

4
(Q)∩∂P

η1−αMd−2
[ η
4

]
.

The second integral formula follows in a similar way.

3.2 Mesoscopic Regularity and Isotropic Cone Mixing

Lemma 3.14. Let P(ω) be a stationary and ergodic random open set such that

P(P ∩ I = ∅) < 1 .

Then there exists r > 0 and a positive, monotonically decreasing function f̃ such that almost surely
P(ω) is (r, f̃)-mesoscopic regular.
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Proof. Step 1: For some r > 0 and with positive probability pr > 0 the set (0, 1)d ∩P contains a ball
with radius 5

√
dr. Otherwise, for every r > 0 the set (0, 1)d ∩ P almost surely does not contain an

open ball with radius r. In particular with probability 1 the set (0, 1)d ∩ P does not contain any ball.
Hence (0, 1)d ∩P = ∅ almost surely, contradicting the assumptions.

Step 2: We define
f̃(R) := P

(
@x : B4

√
dr(x) ⊂ BR(0) ∩P(ω)

)
.

The stationary ergodic random measure µ̃ω( · ) := L
(
· ∩P−4

√
dr (ω)

)
has positive intensity λ̃0 >

pr

∣∣∣∣Sd−1
(√

dr
)d∣∣∣∣ and it holds µ̃ω(A) 6= 0 implies the existence of B4

√
dr(x) ⊂ P ∩ B4

√
dr(A).

Assuming that lim infR→∞ f̃ > 0 there exists for every R > 0 a set ΩR ⊂ Ω with µ̃ω(BR(0)) = 0
for every ω ∈ ΩR with ΩR+1 ⊂ ΩR and

Ω∞ :=
⋂
R>0

ΩR satisfies P(Ω∞) = lim inf
R→∞

f̃(R) > 0 .

But for almost every ω ∈ Ω∞ it holds by the ergodic theorem

lim
R→∞

|BR(0)|−1 µ̃ω(BR(0)) ≥ λ0 ,

which implies the existence of B4
√
dr(x) ⊂ BR(0) ∩P(ω), a contradiction.

Definition 3.15 (Isotropic cone mixing). A random set P(ω) is isotropic cone mixing if there ex-
ists a jointly stationary point process X in Rd or 2rZd, r > 0, such that almost surely two points
x, y ∈ X have mutual minimal distance 2r and such that B r

2
(X(ω)) ⊂ P(ω). Further there exists

a function f(R) with f(R) → 0 as R → ∞ and α ∈
(
0, π

2

)
such that with E := {e1, . . . ed} ∪

{−e1, · · · − ed} ({e1, . . . ed} being the canonical basis of Rd)

P(∀e ∈ E : X ∩ Ce,α,R(0) 6= ∅) ≥ 1− f(R) . (3.12)

Lemma 3.16 (A simple sufficient criterion for (3.12)). Let P be stationary ergodic and (r, f̃)-regular.

Then P is isotropic cone mixing with f(R) = 2df̃
((

(tanα)−1 + 1
)−1

R
)

and with

X(ω) := Xr(P(ω)) = 2rZd ∩P−r(ω) =
{
x ∈ 2rZd : B r

2
(x) ⊂ P

}
(3.13)

from Lemma 2.59. Vice versa, if P is isotropic cone mixing for f then P satisfies (1.6) with f̃ = f .

Proof of Lemma 3.16. Because of P(A ∪B) ≤ P(A) + P(B) it holds for a > 1

P
(
∃e ∈ E : @x ∈ BR(aRe) : B4

√
dr(x) ⊂ BR(aRe) ∩P

)
≤ 2df̃(R) .

The existence of B4
√
dr(x) ⊂ BR(aRe)∩P(ω) implies that there exists at least one x ∈ Xr (P (ω))

such that B r
2
(x) ⊂ BR(aRe) ∩P(ω) and we find

P
(
∃e ∈ E : @x ∈ Xr(P) : B r

2
(x) ⊂ BR(aRe) ∩P

)
≤ 2df̃(R) .

In particular, for α = arctan a−1 and R large enough we discover

P
(
∃e ∈ E : Xr(P) ∩ Ce,α,(a+1)R (0) = ∅

)
≤ 2df̃(R) .

The relation (3.12) holds with f(R) = 2df̃
(
(a+ 1)−1R

)
.

The other direction is evident.
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Properties of X

The formulation of Definition 3.15 is particularly useful for the following statement.

Lemma 3.17 (Size distribution of cells). Let P(ω) be a stationary and ergodic random open set that
is isotropic cone mixing for X(ω), r > 0, f : (0,∞) → R and α ∈

(
0, π

2

)
. Then X and its Voronoi

tessellation have the following properties:

1 IfG(x) is the open Voronoi cell of x ∈ X(ω) with diameter d(x) then d is jointly stationary with
X and for some constant Cα > 0 depending only on α

P(d(x) > D) < f

(
C−1
α

D

2

)
. (3.14)

2 For x ∈ X(ω) let I(x) := {y ∈ X : G(y) ∩ Br(G(x)) 6= ∅}. Then

#I(x) ≤
(

4d(x)

r

)d
. (3.15)

Proof. 1. W.l.o.g. let xk = 0. The first part follows from the definition of isotropic cone mixing: We
take arbitrary points x±j ∈ C±ej ,α,R(0) ∩ X. Then the planes given by the respective equations(
x− 1

2
x±j
)
· x±j = 0 define a bounded cell around 0, with a maximal diameter D(α,R) = 2CαR

which is proportional to R. The constant Cα depends nonlinearly on α with Cα → ∞ as α → π
2

.
Estimate (3.14) can now be concluded from the relation between R and D(α,R) and from (3.12).

2. This follows from Lemma 2.30.

Lemma 3.18. Let Xr be a stationary and ergodic random point process with minimal mutual distance
2r for r > 0 and let f : (0,∞)→ R be such that the Voronoi tessellation of X has the property

∀x ∈ rZd : P(d(x) > D) = f(D) .

Furthermore, let n, s : Xr → [1,∞) be measurable and i.i.d. among Xr and let n, s, d be indepen-
dent from each other. Let either

Gn(x)(x) =

{
x+ n(x) (G(x)− x) or

Bn(x)d(x)(x)

be the cell G(x) enlarged by the factor n(x) or a ball of radius n(x)d(x) arround x, let d(x) =
diamG(x) and let

bn(y) :=
∑
x∈Xr

χGn(x)d(x)ηs(x)ξn(x)ζ ,

where η, ξ, ζ > 0 are fixed a constant. Then bn is jointly stationary with Xr and for every r > 1 there
exists C ∈ (0,+∞) such that

E(bpn) ≤ C

 ∞∑
k,N,S=1

(k + 1)d(p+1)+ηp+r(p−1) (S + 1)ξp+r(p−1) (N + 1)d(p+1)+ζp+r(p−1) Pd,kPn,NPs,S

 .

(3.16)

where

Pd,k := P(d(x) ∈ [k, k + 1)) = f(k)− f(k + 1) ,

Pn,N := P(n(x) ∈ [N,N + 1)) ,

Ps,S := P(s(x) ∈ [S, S + 1)) .
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Corollary 3.19. Under the assumptions of Lemma 3.18 let additionally n = const, s = const. Then

E(bp) ≤ C
∞∑

k,N=1

(k + 1)d+(d+η+1)p f(k) .

Proof of Lemma 3.18. We write Xr = (xi)i∈N, di = d(xi), ni = n(xi), si := s(xi). Let

Xk,N,S(ω) := {xi ∈ Xr : di ∈ [k, k + 1), ni ∈ [N,N + 1), si ∈ [S, S + 1)} ,

Ak,N,S :=
⋃

x∈Xk,N,S

Gn(x)(x) , Ak,N :=
⋃
S∈N

Ak,N,S , Xk,N :=
⋃
S∈N

Xk,N,S .

We observe that the mutual minimal distance implies

∀x ∈ Rd : #
{
xi ∈ Xk,N,S : x ∈ Gn(xi)(xi)

}
≤ Sd−1 (N + 1)d (k + 1)d r−d , (3.17)

which follows from the uniform boundedness of cellsGn(x)(x), x ∈ Xk,N and the minimal distance of
|xi − xj| > 2r. Then, writing BR := BR(0) for every y ∈ Rd it holds by stationarity and the ergodic
theorem

P(y ∈ Gni(xi) : xi ∈ Xk,N,S) = lim
R→∞

|BR|−1 |Ak,N ∩BR|Ps,S

≤ lim
R→∞

|BR|−1

∣∣∣∣∣∣BR ∩
⋃

xi∈Xk,N

Gni(xi)

∣∣∣∣∣∣Ps,S
≤ lim

R→∞
|BR|−1

∑
xi∈Xk,N∩BR

∣∣Sd−1
∣∣ (N + 1)d (k + 1)d r−dPs,S

→ Pd,kPn,NPs,S (N + 1)d
∣∣Sd−1

∣∣ (k + 1)d r−d .

In the last inequality we made use of the fact that every cell Gn(x)(x), x ∈ Xk,N , has volume smaller

than Sd−1 (N + 1)d (k + 1)d. We note that for 1
p

+ 1
q

= 1

ˆ
Q

(∑
x∈Xr

χGn(x)d(x)ηs(x)ξn(x)ζ

)p

≤
ˆ
Q

 ∞∑
k=1

∞∑
N=1

∞∑
S=1

 ∑
x∈Xk,N,S

χGn(x)(x) (k + 1)η (N + 1)ξ(S + 1)ζ

p

≤
ˆ
Q

 ∞∑
k,N,S=1

αqk,N,S


p
q
 ∞∑
k,N,S=1

α−pk,N,S

 ∑
x∈Xk,N,S

χGn(x)(x) (k + 1)η (N + 1)ξ(S + 1)ζ

p .

Due to (3.17) we find ∑
x∈Xk,N,S

χGn(x)(x) ≤ χAk,N,S (N + 1)d (k + 1)d
∣∣Sd−1

∣∣
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Figure 3: Gray: a Poisson ball process. Black
balls: balls of radius r > 0. Red Balls: radius
r
2
. The Voronoi tessellation is generated from

the centers of the red balls. The existence of
such tessellations is discussed in Section 3.2.
Blue region: A1,k.

and obtain for q = p
p−1

and Cq :=
(∑∞

k,N,S=1 α
q
k,N,S

) p
q ∣∣Sd−1

∣∣p:
1

|BR|

ˆ
BR

(∑
x∈Xr

χGn(x)d(x)ηs(x)ξn(x)ζ

)p

≤ Cq
1

|BR|

ˆ
BR

(
∞∑

k,N,S=1

α−pk,N,SχAk,N,S (N + 1)dp+ζp (k + 1)dp+ηp (S + 1)ξp

)

→ Cq

(
∞∑

k,N,S=1

α−pk,N,S (k + 1)d(p+1)+ηp (N + 1)d(p+1)+ζp (S + 1)ξpPs,SPd,kPn,N

)

For the sum
∑∞

k,N,S=1 α
q
k,N,S to converge, it is sufficient thatαqk,N,S = (k + 1)−r (N + 1)−r (S + 1)−r

for some r > 1. Hence, for such r it holds αk,N,S = (k + 1)−r/q (N + 1)−r/q (S + 1)−r/q and thus
(3.16).

4 Extension and Trace Properties from (δ,M)-Regularity

4.1 Preliminaries

For this whole section, let P be a Lipschitz domain which furthermore satisfies the following assump-
tion.

Remark 4.1. All calculations that follow in the present Section 4 equally work for arbitrarily distributed
radii ra associated to xa and replacing the constant r, e.g. with

Mau :=

 
B ra

16
(xa)

u , ∇⊥M,au :=

 
B ra

16
(xa)

(∇−∇s)u .

However, for simplicity of presentation, we chose to work with constant r from the start.

Assumption 4.2. Let P be an open (unbounded) set and let Xr = (xa)a∈N be a set of points having
mutual distance |xa − xb| > 2r if a 6= b and with B r

2
(xa) ⊂ P for every a ∈ N (e.g. Xr(P), see

(2.51)). We construct from Xr a Voronoi tessellation and denote by Ga := G(xa) the Voronoi cell
corresponding to xa with diameter da with A1,a := B r

2
(Ga). Let Φ̃0 ∈ C∞(R; [0, 1]) be monotone

decreasing with Φ̃′0 > −4
r
, Φ̃0(x) = 1 if x ≤ 0 and Φ̃0(x) = 0 for x ≥ r

2
. We define on Rd the

Lipschitz functions

Φ̃a(x) := Φ̃0 (dist (x,Ga)) and Φa(x) := Φ̃a(x)

(∑
b

Φ̃b(x)

)−1

. (4.1)
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Lemma 2.20 implies

∀x ∈ B r
2
(Ga) : # {b : x ∈ A1,b} ≤

(
4da
r

)d
(4.2)

and thus (4.1) yields for some C depending only on Φ̃0 that

|∇Φa| ≤ Cdda and ∀k : |∇Φk|χA1,a ≤ Cdda . (4.3)

Definition 4.3 (Weak Neighbors). Under the Assumption 4.2, two points xa, xb ∈ Xr are called to be
weakly connected (or weak neighbors), written a ∼∼ b or xa ∼∼ xb if B r

2
(Ga) ∩ B r

2
(Gb) 6= ∅. For

Q ⊂ Rd open we say A1,a ∼∼ Q if B r
2
(A1,a) ∩Q 6= ∅. We then define

Xr(Q) := {xa ∈ Xr : A1,a ∼∼ Q 6= ∅} , Q∼∼ :=
⋃

A1,a∼∼Q

A1,a . (4.4)

In view of Assumption 4.2 we bound δ∆ by r > 0 and recall (3.1). As announced in the introduction,
we apply Corollary 3.7 for n ∈ N (we study mostly n = 1 and n = 2 in the following) to obtain
a complete covering of ∂P by balls Bρ̃n(pni )(pni ), (pni )k∈N, where ρ̃n(p) := 2−5ρn(p). Recalling

(3.2)–(3.3) we define with ρ̃n,i := ρ̃n(pni ), ρ̂n,i := ρ̂n,3(pni ) and

An1,i := Bρ̃n,i(pni ) , An2,i := B3ρ̃n,i(p
n
i ) , An3,i := Bρ̂n,i(pni ) , Bn,i := B 1

8
ρ̃n,i

(pni ) , (4.5)

where we recall the construction of rn,α,i and yn,α,i in (1.16)–(1.17) and note that Bρ̃n,i(pni ) ⊃
Brn,α,i(yn,α,i) independent from α.

Lemma 4.4. For n ∈ N, α ∈ [0, 1] and any two balls An1,i ∩ An1,j 6= ∅ either An1,i ⊂ An2,j or
An1,j ⊂ An2,i and

An1,i ∩ An1,j 6= ∅ ⇒ B 1
2
ρ̃n,i

(pi) ⊂ An2,j and B 1
2
ρ̃n,j

(pj) ⊂ An2,i . (4.6)

Furthermore, there exists a constant C depending only on the dimension d and some d̂ ∈ [0, d] such
that

∀k #
{
j : An1,j ∩ An1,i 6= ∅

}
+ #

{
j : An2,j ∩ An2,i 6= ∅

}
≤ C , (4.7)

∀x #
{
j : x ∈ An1,j

}
+ #

{
j : x ∈ An2,j

}
≤ C + 1 , (4.8)

∀x #
{
j : x ∈ Bρ̂n,j(pj)

}
< C(1 +M[ 3δ

8
, δ
8

],Rd(x))nd̂ . (4.9)

Finally, there exist non-negative functions φn,0 and (φn,i)k∈N independent from α such that for k ≥ 1:
suppφn,i ⊂ An1,i, φn,i|Bn,j ≡ 0 for k 6= j. Further, φn,0 ≡ 0 on allBn,i and on ∂P and

∑∞
k=0 φn,i ≡

1 and there exists C depending only on d such that for all k ∈ N it holds

x ∈ An1,i ⇒ ∀j ∈ N ∪ {0} : |∇φn,j(x)| ≤ Cρ̃−1
n,i . (4.10)

Remark 4.5. We usually can improve d̂ to at least d̂ = d − 1. To see this assume ∂P is flat on the
scale of δ. Then all points pi lie on a d− 1-dimensional plane and we can thus improve the argument
in the following proof to d̂ = d− 1.
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Proof. (4.6) follows from (3.5)2. For improved readability we drop the indeces n and α.

Let k ∈ N be fixed. By construction in Corollary 3.7, every A1,j with A1,j ∩ A1,k 6= ∅ satisfies
ρ̃j ≥ 1

2
ρ̃k and hence if A1,j ∩ A1,k 6= ∅ and A1,i ∩ A1,k 6= ∅ we find |pj − pi| ≥ 1

4
ρ̃k and

|pj − pk| ≤ 3ρ̃k. This implies (4.7)–(4.8) for A1,j and the statement for A2,j follows analogously.

For two points pi, pj such that x ∈ A3,i ∩ A3,j it holds due to the triangle inequality |pi − pj| ≤
max

{
1
4
ρ̂i,

1
4
ρ̂j
}

. Let X(x) :=
{
pi ∈ X : x ∈ B 1

8
ρ̂i

(pi)
}

and choose p̃(x) = p̃ ∈ X(x) such that

δm := δ(p̃) is maximal. Then X(x) ⊂ B 1
4
δm

(p̃) and every pi ∈ X(x) satisfies δm > δi >
1
3
δm.

Correspondingly, ρ̃i >
1
3
δm2−5M̃−n

δi
8

> 1
3
δm2−5M̃−n

3δm
8

for all such pi. In view of (3.5) this lower

local bound of ρ̃i implies a lower local bound on the mutual distance of the pi. Since this distance is
proportional to δmM̃

−n
3δm
8

, this implies (4.9) with d̂ = d. This is by the same time the upper estimate on

d̂.

Let φ : R → R be symmetric, smooth, monotone on (0,∞) with φ′ ≤ 2 and φ = 0 on (1,∞).

For each k we consider a radially symmetric smooth function φ̂k(x) := φ
(
|x−pk|2
ρ̃k

)
and an additional

function φ̃0 (x) = dist( x, ∂P ∪
⋃
k Bn,k ). In a similar way we modify φ̃k := φ̂k dist

(
x,
⋃
j 6=k Bn,j

)
such that φ̃k|Bn,j ≡ 0 for j 6= k. Then we define φk := φ̃/

(
φ̃0 +

∑
j φ̃j

)
. Note that by construction

of rk and yk we find φk|Bk ≡ 1 and
∑

k≥1 φk ≡ 1 on ∂P.

Estimate (4.10) follows from (4.7).

4.2 Extensions preserving the Gradient norm via (δ,M)-Regularity of ∂P

By Lemma 2.3 in case n = 1 there exist local extension operator

Un,i : W 1,p
(
P ∩ An3,i

)
→ W 1,p

(
B 1

8
ρn,i

(pni )\P
)
↪→ W 1,p

(
An2,i\P

)
(4.11)

which is linear continuous with bounds

‖∇Un,iu‖Lp(An2,i\P) ≤ 2Mn,i ‖∇u‖Lp(An3,i∩P) , (4.12)

‖Un,iu‖Lp(A1
2,i\P) ≤ ‖u‖Lp(A1

3,i∩P) . (4.13)

Of course, higher n > 1 are always valid, but the result becomes worse, as we will see. However, in
case ∂P is locally always in the upper half plane, the case n = 0 is also valid, improving the estimates
of the extension operators significantly. This phenomenon is acknowledged through the Definition 1.9
of the extension order.

Definition 4.6. Using Notation 1.10 for every Q ⊂ Rd let

Un,α,Q : C1
(
P ∩ B r

2
(Q)

)
→ C1

(
Q\P

)
,

u 7→ χQ\P
∑
i 6=0

∑
a

Φa (φn,i (Un,i(u− τn,α,iu) + τn,α,iu−Mau) +Mau) .

(4.14)

Due to the defintions, we find
τn,α,iMau =Mau . (4.15)

DOI 10.20347/WIAS.PREPRINT.2849 Berlin 2021



M. Heida 46

Lemma 4.7. Let P ⊂ Rd be a Lipschitz domain (i.e. locally (δ,M)-regular) with δ∆ bounded by
r > 0 and let Assumption 1.8 hold and let d̂ be the constant from (4.9). Then for every bounded open
Q ⊂ Rd with B10r(0) ⊂ Q and 1 ≤ r < p the linear operator

Un,α,Q : W 1,p
(
P ∩ B r

2
(Q)

)
→ W 1,r (Q)

is continuous and writing

fα,n,d̂(M, · ) :=

((
1 +M[ 3δ

8
, δ
8

],Rd

)nd̂ (
1 +M[ 1

8
δ],Rd

)r (
1 +M[ρ̃n],Rd

)α(d−1)
) p

p−r

the operator Un,α,Q satisfies for some C not depending on P

 
Q

|∇ (Un,α,Qu)|r ≤ C

( 
Br(Q)

fα,n,d̂(M)

)r p−r
p
(

1

|Q|

ˆ
Br(Q)∩P

|∇u|p
) r

p

+ C
1

|Q|

ˆ
Q\P

∑
a

χA1,a

∣∣∣∣∣∑
i 6=0

ρ−1
1,iχA1,i

(τn,α,iu−Mau)

∣∣∣∣∣
r

(4.16)

+
1

|Q|

ˆ
Q

∣∣∣∣∣
d∑
l=1

∑
a: ∂lΦa>0

∑
b: ∂lΦb<0

∂lΦa |∂lΦb|
DΦ
l+

(Mau−Mbu)

∣∣∣∣∣
r

(4.17)

 
Q

|Un,α,Qu|r ≤ C0

(
1

|Q|

ˆ
B r

2
(Q)∩P

(1 +M[ 3δ
8
, δ
8

],Rd)
pd̂
p−r

) p−r
p (

1

|Q|

ˆ
Br(Q)∩P

|u|p
) r

p

,

(4.18)

where
DΦ
l+ :=

∑
a6=0: ∂lΦa<0

|∂lΦa| . (4.19)

Remark. Since the covering A1,i is locally finite we find∣∣∣∣∣∑
i 6=0

ρ−1
1,iχA1,i

(τn,α,iu−Mau)

∣∣∣∣∣
r

≤
∑
i 6=0

ρ−r1,iχA1,i
|τn,α,iu−Mau|r .

4.3 Extensions preserving the Symmetric Gradient norm via (δ,M)-Regularity
of ∂P

By Lemmas 3.4 and 2.7 in case n = 2 the local extension operator

Un,k : W 1,p
(
P ∩ An3,k

)
→ W 1,p

(
B 1

8
ρn,k

(pnk)\P
)
↪→ W 1,p

(
An2,k\P

)
(4.20)

is linear continuous with bounds

‖∇sUn,ku‖Lp(B 1
8 ρn,k

(pnk)\P) ≤ CM̃2
n,k ‖∇su‖Lp(An3,k∩P) . (4.21)

Like in Section 4.2 lower values of n are possible, acknowledged by Definition 1.9 of symmetric exten-
sion order.
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Definition 4.8. Using the notation of Definition 1.13 let

Un,α,Q : C1
(
P ∩ B r

2
(Q)

)
→ C1

(
Q\P

)
,

u 7→ χQ\P
∑
k

∑
a

Φa

(
φn,k

(
Un,k

(
u− τ sn,α,ku

)
+ τ sn,α,ku−Ms

a

)
+Ms

au
)

(4.22)

where Un,k are the extension operators on An3,k given by the symmetric extension order of P.

By definition we verify∇s
(
u− τ sn,α,iu

)
= ∇su as well as

 
Brn,α,i (yn,α,i)

(∇−∇s)
(
u− τ sn,α,iu

)
= 0 ,

 
Brn,α,i (yn,α,i)

(
u− τ sn,α,iu

)
= 0

and similarly forMs
au. Furthermore, it holds

τ sn,α,iMs
au =Ms

au . (4.23)

Lemma 4.9. Let P ⊂ Rd be a locally (δ,M)-regular open set with delta bounded by r > 0 and let
Assumption 1.8 hold and let d̂ be the constant from (4.9). Then for every bounded open Q ⊂ Rd,
1 ≤ r < p the operator

Un,Q : W 1,p
(
P ∩ B r

2
(Q)

)
→ W 1,r (Q)

is linear, well defined and with

f s
α,n,d̂

(M, · ) :=

((
1 +M[ 3δ

8
, δ
8

],Rd

)d̂ (
1 +M[ 1

8
δ],Rd

)2r (
1 +M[ρ̃n],Rd

)α(d−1)
) p

p−r

satisfies
 
Q

|∇s (U2,Qu)|r ≤ C

( 
Br(Q)

f s
α,n,d̂

(M)

)r p−r
p
(

1

|Q|

ˆ
Br(Q)∩P

|∇su|p
) r

p

+ C
1

|Q|

ˆ
Q\P

∑
a

χA1,a

∣∣∣∣∣∑
i 6=0

ρ−1
1,iχA1,i

(
τ sn,α,iu−Ms

au
)∣∣∣∣∣
r

(4.24)

+
1

|Q|

ˆ
Q

∣∣∣∣∣
d∑
l=1

∑
a: ∂lΦa>0

∑
b: ∂lΦb<0

∂lΦa |∂lΦb|
DΦ
l+

(Ms
au−Ms

bu)

∣∣∣∣∣
r

(4.25)

 
Q

|UQu|r ≤ C0

(
1

|Q|

ˆ
B r

2
(Q)∩P

(1 +M[ 3δ
8
, δ
8

],Rd)
2pd̂
p−r

) p−r
p (

1

|Q|

ˆ
Br(Q)∩P

|u|p
) r

p

,

(4.26)

where DΦ
l+ is given by (4.19)

4.4 Support

Theorem 4.10. For both operators given in (4.14) and (4.22) the following holds: For every bounded
open set Q with 0 ∈ Q and n0, n1 ∈ N let

∀M > 1 : Q̃M :=
⋃

xa∈Xr∩MQ

Br(Ga) .
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If the mesoscopic regularity function f̃ of P satisfies f̃(D) ≤ CD−
d−1
α

+β for some C > 0, α ∈
(0, 1) and β > 1 then there exists almost surely M0 > 1 such that for every M > M0 it holds
Q̃M ⊂ BMα(MQ).

Proof. We consider two balls Br(0) ⊂ Q ⊂ BR(0) with r > 0.

We write QM := MQ and BM,α,Q := BMα(QM) for α ∈ (0, 1) with B{
M,α,Q := Rd\BM,α,Q. For

k ∈ N we introduce
QM,k := {x ∈ QM : dist(x, ∂QM) ∈ [k, k)}

and find

P
(
Q̃M ⊂ BM,α,Q

)
= 1−

∑
k

P
(
∃xa ∈ QM,k ∩ Xr : Br(Ga) ∩ B{

M,α,Q 6= ∅
)
.

On the other hand,

P
(
∃xa ∈ QM,k ∩ Xr : Br(Ga) ∩ B{

M,α,Q 6= ∅
)

≤ P
(
∃xa ∈ QM,k ∩ Xr : B2da(xa) ∩ B{

M,α,Q 6= ∅
)

≤ C∂QMP
(
da >

k

2
+Mα

)
≤ CMd−1

(
k

2
+Mα

)−( d−1
α

+β1+β2)
≤ CM−β1

(
k

2

)−β2
where C depends only on the minimal mutual distance of the points, i.e. r, and the shape of Q. Now,
since β > 1 we can choose β2 > 1 and find

P
(
Q̃M ⊂ BM,α,Q

)
≥ 1− CM−β1 .

Since the right hand side converges to 1 as M →∞, we can conclude.

4.5 Proof of Lemmas 4.7 and 4.9

Lemma 4.11. Let αi, ui, i = 1 . . . n, be a family of real numbers such that
∑

i αi = 0 and let
α+ :=

∑
i:αi>0 αi. Then ∑

i

αiui =
∑
i:αi>0

∑
j:αj<0

αi |αj|
α+

(ui − uj) .

Proof. ∑
i

αiui =
∑
i:αi>0

αiui +
∑
j:αj<0

αjuj

=
∑
i:αi>0

αi
∑
j:αj<0

−αj
α+

ui +
∑
j:αj<0

αj
∑
i:αi>0

αi
α+

uj

=
∑
i:αi>0

∑
j:αj<0

αi |αj|
α+

(ui − uj) .
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Proof of Lemma 4.7. For improved readability, we drop the indeces n and α in the following.

We prove Lemma 4.7, i.e. (4.16) as (4.18) can be derived in a similar but shorter way. Lemma 4.9 can
be proved in a similar way with some inequalities used below being replaced by the “symmetrized”
counterparts. We will make some comments towards this direction in Step 4 of this proof.

For shortness of notation (and by abuse of notation) we write
 
P∩Q

g :=
1

|Q|

ˆ
P∩Q

g ,

 
Q\P

g :=
1

|Q|

ˆ
Q\P

g

and similar for integrals over B r
2
(Q) ∩ P and B r

2
(Q)\P. For simplicity of notation, we further drop

the index 1 in the subsequent calculations.

We introduce the quantities

M̃ρ̃,i := Mρ̃(pi)(pi) , M̃δ,1,i := M 1
8
δ(pi)

(pi) , M̃δ,2,i := M 3
8
δ(pi)

(pi)

note that ρ̃i ≤ 1
8
δi as well as

√
4M2

i + 2 ≤ 2M̃i. Writing

ui := Ui (u− τiu) + τiu on A2,i

ui,a := Ui (u− τiu) + τiu−Mau on A2,i ∩ A1,a

on A2,i, The integral over∇ (UQu) can be estimated via

 
Q\P
|∇ (UQu)|r ≤ Cr (I1 + I2 + I3) (4.27)

I1 :=

 
Q\P

∣∣∣∣∣∑
i 6=0

∑
a

Φaφi∇ui,a

∣∣∣∣∣
r

, I2 :=

 
Q\P

∣∣∣∣∣∑
i 6=0

∑
a

ui,aΦa∇φi

∣∣∣∣∣
r

,

I3 :=

 
Q\P

∣∣∣∣∣∑
i 6=0

∑
a

ui,aφi∇Φa

∣∣∣∣∣
r

. (4.28)

Step 1: Using (1.14) and∇ui,a = ∇ui as well as
∑

a Φa = 1 we conclude

I1 =

 
Q\P

∣∣∣∣∣∑
i 6=0

φi∇ui

∣∣∣∣∣
r

≤
 
Q\P

∑
i 6=0

φi |∇ui|r ≤
 
Q\P

∑
i 6=0

χA1,i
|∇ui|r

≤ C
∑
i 6=0

 
Q

χA2,i
|∇ui|r ≤ C

∑
i 6=0

M̃ r
δ,2,i

 
B r

2
(Q)∩P

χA3,i
|∇u|r .

It only remains to estimate
∑

i χA3,i
(x). After a Hölder estimate and using M̃δ,2,i ≤ 1 +M[ 1

8
δ],Rd on

A3,i, we obtain∑
i 6=0

M̃ r
δ,2,i

 
Q∩P

χA3,i
|∇u|r ≤

 
B r

2
(Q)∩P

∑
i 6=0

χA3,i

(
1 +M[ 1

8
δ],Rd

)r
|∇u|r

≤

 
B r

2
(Q)∩P

(∑
i 6=0

χA3,i

) p
p−r (

1 +M[ 1
8
δ],Rd

) rp
p−r


p−r
p ( 

B r
2

(Q)∩P
|∇u|p

) r
p

.

(4.29)
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Step 2: Concerning I2, we first observe that for each j 6= 0 it holds

χA1,j\Puj,a∇φ0 + χA1,j\P
∑
i 6=0

uj,a∇φi = 0 . (4.30)

We use
∑

j∈N χA1,j
≥ χA1,i

for every i ∈ N together with (4.30) and (4.7) to obtain

 
Q\P

Φa

∣∣∣∣∣∑
i 6=0

ui,a∇φi

∣∣∣∣∣
r

≤ C

 
Q\P

Φa

∣∣∣∣∣∑
j 6=0

χA1,j

∑
i 6=0

(ui,a − uj,a)∇φi + uj,a∇φ0

∣∣∣∣∣
r

(4.7)
≤ C

 
Q\P

Φa

∑
j 6=0

χA1,j

∑
i:A1,i∩A1,j 6=∅

|ui,a − uj,a|r |∇φi|r +

∣∣∣∣∣∑
j 6=0

χA1,j
uj,a∇φ0

∣∣∣∣∣
r
 .

Note that
∀a, b, i, j : ui,a − uj,a = ui,b − uj,b = ui − uj . (4.31)

Furthermore ui and uj are defined onA2,i andA2,j respectively and ui = uj on Brj(pj) and Bri(pi)
because of (4.6). Furthermore, both functions can be extended from A2,i and A2,j to ũi and ũj on
B4ρ̃i(pi) and B4ρ̃j(pj) respectively using Lemma 2.1 such that for some C independent from i, j

k = i, j : ‖∇ũk‖Lr(B4ρ̃k
(pk)) ≤ C ‖∇ũk‖Lr(A2,k) .

Since ũi = ũj on Brj(pj) and Bri(pi) we chose k(i, j) such that for M̃k(i,j) = 1+min {Mρ̃,i,Mρ̃,j}
and it holds by the Poincaré inequality (2.13), the microscopic regularity α and the estimate (3.4)
ˆ
A1,i∩A1,j

|ui,a − uj,a|r |∇φi|r ≤ Cρ−ri

ˆ
A1,k(i,j)

|ũi − ũj|r ≤ CM̃
α(d−1)
k(i,j)

ˆ
A2,k(i,j)

|∇ (ũi − ũj)|r .

We obtain with microscopic regularity α, the finite covering (4.8) and the proportionality (3.5) that
 
Q\P

∑
a

ΦaχA1,j

∑
i:A1,i∩A1,j 6=∅

|ui,a − uj,a|r |∇φi|r =

 
Q\P

χA1,j

∑
i:A1,i∩A1,j 6=∅

|ũi − ũj|r |∇φi|r

≤ C

|Q|
∑

i:A1,i∩A1,j 6=∅

M̃
α(d−1)
k(i,j)

ˆ
A2,j

|∇ (ũi − ũj)|r

≤ C

|Q|
∑

i:A1,i∩A1,j 6=∅

M̃
α(d−1)
k(i,j)

(ˆ
A2,i

|∇ũi|r +

ˆ
A2,j

|∇ũj|r
)

≤ C

|Q|
∑

i:A1,i∩A1,j 6=∅

(ˆ
A3,i∪A3,j

M̃ r
[ 1
8
δ],Rd

(
1 +M[ρ̃],Rd

)α(d−1) |∇u|r
)
.

Next we estimate from (4.10)

 
Q\P

∑
a

Φa

∣∣∣∣∣∑
j 6=0

χA1,j
uj,a∇φ0

∣∣∣∣∣
r

≤ C

 
Q\P

∑
a

Φa

(∑
j 6=0

ρ−rj χA1,j
|Uj (u− τju)|r +

∣∣∣∣∣∑
j 6=0

ρ−1
j χA1,j

(τju−Mau)

∣∣∣∣∣
r)

.
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Using once more Assumption 1.8 and

∇Uj (u− τju) = ∇ (Uj (u− τju) + τju) = ∇uj (4.32)

and
∑

a Φa = 1 we infer from (2.13)

C

 
Q\P

∑
a

Φa

∑
j 6=0

ρ−rj χA1,j
|Uj (u− τju)|r ≤ C

|Q|
∑
j 6=0

(1 +Mρ̃,j)
α(d−1)

ˆ
A2,j

|∇uj|r .

Now we make use of the extension estimate (1.14) to findˆ
A2,j

|∇uj|r ≤ CM r
δ,1,j

ˆ
A3,j∩P

|∇u|r

which in total implies for f12(M) =
(

1 +M[ 1
8
δ],Rd

) rp
p−r (

1 +M[ρ̃],Rd
) pα(d−1)

p−r

I1 + I2 ≤ C

 
B r

2
(Q)∩P

(∑
i 6=0

χA3,i

) p
p−r

f12(M)


p−r
p ( 

B r
2

(Q)∩P
|∇u|p

) r
p

+ C

 
Q\P

∑
a

Φa

∣∣∣∣∣∑
j 6=0

ρ−1
j χA1,j

(τju−Mau)

∣∣∣∣∣
r

.

Making use of (4.9) we find ∣∣∣∣∣∑
i 6=0

χA3,i

∣∣∣∣∣ ≤ (1 +M[ 3δ
8
, δ
8

],Rd

)d̂
,

and it only remains to estimate I3.

Step 3: We observe with help of
∑

a∇Φa = 0 and
∑

i 6=0 φi = φ0 that∑
i 6=0

∑
a

ui,aφi∇Φa =
∑
i 6=0

uiφi
∑
a

∇Φa +
∑
a

Mau∇Φa =
∑
a

Mau∇Φa .

and Lemma 4.11 yields

I3 =

 
Q\P

∣∣∣∣∣φ0

∑
a

Mau∇Φa

∣∣∣∣∣
r

≤
 
Q\P

∣∣∣∣∣
d∑
l=1

∑
a: ∂lΦa>0

∑
b: ∂lΦb<0

∂lΦa |∂lΦb|
DΦ
l+

(Mau−Mbu)

∣∣∣∣∣
r

.

Step 4: Concerning the proof of Lemma 4.9 we follow the above lines with the following modifications.

We use the Nitsche extension operators. Hence, instead of (1.14) we use (1.15). The local extended
functions are called

ui := Ui (u− τ si u) + τ si u on A2,i

ui,a := Ui (u− τ si u) + τ si u−Ms
au on A2,i ∩ A1,a

and (4.31) remains valid. We find it worth mentioning that∇s (τ si u−Ms
au) = 0 and hence

∇s (φiΦaui,a) =
1

2
(∇(φiΦa)⊗ ui,a + ui,a ⊗∇(φiΦa)) + φiΦa∇sU2,i (u− τ si u) .
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We furthermore replace Lemma 2.1 by Lemma 2.6 and the Poincaré inequality (2.13) by (2.23). Finally
we observe that (4.32) is replaced by

∇sUj (u− τju) = ∇s (Uj (u− τju) + τju) = ∇suj

4.6 Traces on (δ,M)-Regular Sets, Proof of Theorem 1.7

Proof. We use the covering of ∂P by Bi := A1
1,i and set ρ̃i := ρ̃1,i, ρ̂i := ρ̂i,5(p1

k) and write

Mi = Mρ̂i(p
1
k), B̂i := Bρ̂i(p1

k). Due to Lemma 2.5 we find locally

‖T u‖Lp0 (∂P∩Bk) ≤ Cp0,p0 ρ̃
− 1
p0

k

√
4M2

k + 2

1
p0

+1

‖u‖W 1,p0(B̂k) . (4.33)

We thus obtain

1

|Q|

ˆ
Q∩∂P

∣∣∣∣∣∑
k

φkTku

∣∣∣∣∣
r

≤

 1

|Q|

ˆ
B 1

4
(Q)∩∂P

∑
k

χBk ρ̃
− 1
p0−r

k


p0−r
p0

 1

|Q|
∑
k

ˆ
B 1

4
(Q)∩∂P

χBk ρ̃k |Tku|
p0

 r
p0

which yields by the uniform local bound of the covering, η̃ defined in Lemma 3.12, twice the application
of (3.10) and (4.33)

1

|Q|

ˆ
Q∩∂P

∣∣∣∣∣∑
k

φkTku

∣∣∣∣∣
r

≤ C

(
1

|Q|

ˆ
Q∩∂P

ρ
− 1
p0−r

5,Rd

) p0−r
p0

·

·

(
1

|Q|

ˆ
Q∩P

∑
k

χB̂k

√
4M2

k + 2

1
p0

+1

(|∇u|p0 + |u|p0)

) r
p0

.

With Hölders inequality and replacing Mk by M[ 1
32
δ],Rd , the last estimate leads to (1.12). The second

estimate goes analogue since the local covering by A2,k is finite.

5 The Issue of Connectedness

Remark 5.1. The following Lemmas 5.2 and 5.3 also hold with τi andMa replaced by τ si andMs
a

respectively.

Lemma 5.2. Under Assumptions 1.8, 4.2 let (fj)j∈N be non-negative and have support suppfj ⊃
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B r
2
(xj) and let

∑
j∈N fj ≡ 1. Writing X(Q) := {xj : suppfj ∩Q 6= ∅}, and

F 1
s,ι(Q) :=

(
1

|Q|

ˆ
P∩Qr∩Rd3

|ρ̃Rd |−
sr
s−r M̃2−ι

) s−r
s

F 2
s,s̃,ι(Q) :=

(
1

|Q|

ˆ
B r

2
(Q)\P

M̃
(ι−2)(s̃−r)
r(s−s̃)

)r s−s̃
s̃s

F 3
s (Q, u) :=

 1

|Q|

ˆ
P∩Qr

∑
i 6=0: ∂lφi∂lφ0<0

∑
xa∈X(Q)

fa
|∂lφi|
Dl+

|τiu−Mau|s
 r

s

F 3,s
s (Q, u) :=

 1

|Q|

ˆ
P∩Qr

∑
i 6=0: ∂lφi∂lφ0<0

∑
xa∈X(Q)

fa
|∂lφi|
Dl+

|τ si u−Ms
au|

s

 r
s

for every l = 1, . . . d and r < s̃ < s it holds

1

|Q|

ˆ
Q\P

∑
a

∑
i 6=0

ρ−r1,iχA1,i
χA1,a |τn,α,iu−Mau|r ≤

{
F 1
s,2(Q)F 3

s (Q)

F 1
s,d(Q)F 2

s,s̃,d(Q)F 3
s (Q, u)

,

and

1

|Q|

ˆ
Q\P

∑
a

∑
i 6=0

ρ−r1,iχA1,i
χA1,a

∣∣τ sn,α,iu−Ms
au
∣∣r ≤ {F 1

s,2(Q)F 3,s
s (Q)

F 1
s,d(Q)F 2

s,s̃,d(Q)F 3,s
s (Q, u)

.

Proof. We find from Hölder’s and Jensen’s inequality

1

|Q|

ˆ
P∩Q

∑
i 6=0: ∂lφi∂lφ0<0

∑
a

ρ−r1,i

|∂lφi|
Dl+

fa |τiu−Mau|r

≤

{
F 1
s,2(Q)F 3

s (Q)

F 1
s,d(Q)F 2

s,s̃,d(Q)F 3
s (Q)

.

The second part follows accordingly.

Lemma 5.3. Under Assumptions 1.8, 4.2 for every l = 1, . . . d and α̃ > 0 it holds

1

|Q|

ˆ
P∩Q

∣∣∣∣∣∣
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(Mku−Mju)

∣∣∣∣∣∣
r

≤

 1

|Q|

ˆ
P∩Q

 ∑
j: ∂lΦj<0

d
α̃s+drs
s−r

j χ∇Φj 6=0

 s
s−r


s−r
s

· . . .

· · · ·

 1

|Q|

ˆ
P∩Q

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
−α̃ s

r
j |∂lΦj|
DΦ
l+

|Mku−Mju|s
 r

s

,

with the similar formula holding forM• replaced byMs
•.
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Proof. We observe with help of (4.3) and with Lemma 3.17.2)

∀x : sup
k
|∂lΦk| (x) ≤ sup

{
|∇Φk(x)| : x ∈ B r

2
(Gk)

}
≤ C sup

{
ddk : x ∈ Gk

}
, (5.1)

sup
x∈B r

2
(Gj)

|∂lΦj| (x) ≤ Cddj . (5.2)

We write

I :=
1

|Q|

ˆ
P∩Q

∣∣∣∣∣∣
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) (Mku−Mju)

∣∣∣∣∣∣
r

and find

I ≤ C
1

|Q|

ˆ
P∩Q

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

|∂lΦk|r |∂lΦj|
DΦ
l+

|Mku−Mju|r

≤ C
1

|Q|

ˆ
P∩Q

 ∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
α s
s−r

j |∂lΦk|
sr
s−r |∂lΦj|

DΦ
l+

 s−r
s

· . . .

· · · ·

 ∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
−α s

r
j |∂lΦj|
DΦ
l+

|Mku−Mju|s
 r

s

.

Now we make use of (5.1) and once more of Lemma 3.17.2) to obtain for the first bracket on the right
hand side an estimate of the form

|∂lΦk|
sr
s−r |∂lΦj| ≤ |∂lΦk| |∂lΦk|

sr
s−r−1 |∂lΦj| ≤ C |∂lΦk| d

d sr−s+r
s−r

j ddj ≤ C |∂lΦk| d
d sr
s−r

j ,

which implies

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
α s
s−r

j |∂lΦk|
sr
s−r |∂lΦj|

DΦ
l+

≤ C
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

d
α s
s−r

j d
dsr
s−r
j |∂lΦk|
DΦ
l+

≤ C
∑

j: ∂lΦj<0

d
α s
s−r

j d
dsr
s−r
j χ∇Φj 6=0 ,

where we used
∑
|∂lΦk| = DΦ

l+. From Hölder’s inequality the Lemma follows.

6 Sample Geometries

6.1 Delaunay Pipes for a Matern Process

For two points x, y ∈ Rd, we denote

Pr(x, y) :=

{
y + z ∈ Rd : 0 ≤ z · (x− y) ≤ |x− y|2 ,

∣∣∣∣z − z · (x− y)
x− y
|x− y|

∣∣∣∣ < r

}
,
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the cylinder (or pipe) around the straight line segment connecting x and y with radius r > 0.

Recalling Example 2.48 we consider a Poisson point process Xpois(ω) = (xi(ω))i∈N with intensity
λ (recall Example 2.48) and construct a hard core Matern process Xmat by deleting all points with a
mutual distance smaller than dr for some r > 0 (refer to Example 2.49). From the remaining point
process Xmat we construct the Delaunay triangulation D(ω) := D(Xmat(ω)) and assign to each
(x, y) ∈ D a random number δ(x, y) in (0, r) in an i.i.d. manner from some probability distribution
δ(ω). We finally define

P(ω) :=
⋃

(x,y)∈D(ω)

Pδ(x,y)(x, y)
⋃

x∈Xmat

B r
2
(x)

the family of all pipes generated by the Delaunay grid “smoothed” by balls with the fix radius r around
each point of the generating Matern process.

Since the Matern process is mixing and δ is mixing, Lemma 2.34 yields that the whole process is still
ergodic. We start with a trivial observation.

Corollary 6.1. The microscopic regularity of P is α = 0 (Def. 1.8) and it holds d̂ = d− 1 in Lemma
4.4. Furthermore both the extension order and the symmetric extension order are n = 0.

Proof. This follows from the fact that ∂P can be locally represented as a graph in the upper half space
with P filling the lower half space.

Lemma 6.2. For the Voronoi tessellation (Ga)a∈N corresponding to Xmat holds

P(da ≥ D) ≤ exp
(
−λ
∣∣Sd−1

∣∣ (4D)d
(

1− e−λ|Sd−1|(dr)d
))

.

Proof. For the underlying Poisson point process Xpois it holds for the void probability inside a ball
BR(x)

P(Xpois(BR(x)) = 0) = PR,0 := e−λ|Sd−1|Rd .
The probability for a point x ∈ Xpois to be removed is thus 1 − Pdr,0 and is i.i.d distributed among
points of Xpois. The total probability to not find any point of Xmat is thus given by not finding a point of
Xpois plus the probability that all points of Xpois are removed, i.e.

P(Xmat(BR(x)) = 0) =
∞∑
n=0

e−λ|A|
λn |A|n

n!
(1− Pdr,0)n

= exp (−λ |A|+ λ |A| (1− Pdr,0)) = e−λ|A|(1−Pdr,0) .

From here one concludes.

Remark 6.3. The family of balls Br(x) can also be dropped from the model. However, this would imply
we had to remove some of the points from Xmat for the generation of the Voronoi cells. This would
cause technical difficulties which would not change much in the result, as the probability for the size
of Voronoi cells would still decrease exponentially.

Lemma 6.4. Xmat is a point process for P(ω) that satisfies Assumption 4.2 and P is isotropic cone
mixing for Xmat with exponentially decreasing f(R) ≤ Ce−R

d
and it holds n = 0 and α = 0.

Furthermore, assume there exists Cδ, aδ > 0 such that P(δ(x, y) < δ0) ≤ Cδe
−aδ 1

δ0 , then P(M̃ >
M0) ≤ Ce−aM0 for some C, a > 0. If P(δ(x, y) < δ0) ≤ Cδδ

β
0 then for every R ∈ (0,∞) it holds

E
(
MR

[ δ
2

],Rd

)
+ E

(
δ̃
−(β+d−1)

Rd

)
< CE(|x− y|), (6.1)

where E(|x− y|) is the expectation of the length of pipes.
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Proof. Isotropic cone mixing: For x, y ∈ 2drZd the events
(
x+ [0, 1]d

)
∩Xmat and

(
y + [0, 1]d

)
∩

Xmat are mutually independent. Hence

P
((
k2dr [−1, 1]d

)
∩ Xmat = ∅

)
≤ P

(
[−1, 1]d ∩ Xmat = ∅

)kd
.

Hence the open set P is isotropic cone mixing for X = Xmat with exponentially decaying f(R) ≤
Ce−R

d
.

Estimate on the distribution of M : By definition of the Delaunay triangulation, two pipes intersect only
if they share one common point x ∈ Xmat.

Given three points x, y, z ∈ Xmat with x ∼ y and x ∼ z, the highest local Lipschitz constant on
∂
(
Pδ(x,y)(x, y) ∪ Pδ(x,z)(x, z)

)
is attained in

x̃ = arg max
{
|x− x̃| : x̃ ∈ ∂Pδ(x,y)(x, y) ∩ ∂Pδ(x,z)(x, z)

}
.

It is bounded by

max

{
arctan

(
1

2
^ ((x, y), (x, z))

)
,

1

δ(x, y)
,

1

δ(x, z)

}
,

where α := ^ ((x, y), (x, z)) in the following denotes the angle between (x, y) and (x, z), see
Figure 4. If dx is the diameter of the Voronoi cell of x, we show that a necessary (but not sufficient)
condition that the angle α can be smaller than some α0 is given by

dx ≥ C
1

sinα0

, (6.2)

where C > 0 is a constant depending only on the dimension d. Since for small α we find M ≈ 1
sinα

,
and since the distribution for dx decays subexponentially, also the distribution for M at the junctions
of two pipes decays subexponentially. However, inside the pipes, we find ∆(p) = 2δ(x, y) and hence
δ∆(p) = δ(x, y). Due to the cylindric structure, we furthermore find essential boundedness of M .
This also implies α = n = 0 inside the pipes. At the junction of Balls and pipes we find ∂P to be in
the upper half of the local plane approximation and hence also here α = n = 0 can be chosen (see
also Remarks 2.4 and 2.8).

Concerning the expectation of M[ δ
2

],Rd and δRd , we only have to accound for the pipes by the above
argumentation since the other contribution to M is exponentially distributed. In particular, we find for
one single pipe Pδ(x,y)(x, y) that

ˆ
Pδ(x,y)(x,y)

δ−α−d+1
Rd ≤ C |x− y| δ(x, y)−α ,

and hence (6.1) due to the independence of length and diameter. It thus remains to proof (6.2).

Proof of (6.2): Given an angle α > 0 and x ∈ Xmat we derive a lower bound for the diameter ofG(x)
such that for two neighbors y, z of x it can hold ^ ((x, y), (x, z)) ≤ α. With regard to Figure 4, we
assume |x− y| ≥ |x− z|.
Writing dx := d(x) the diameter of G(x) and α̃ = ^ ((x, z), (z, y)), w.l.o.g let y = (d1 +
d2, 0, . . . , 0), where d1 + d2 < dx and d1 = |y − z| cos α̃. Hence we can assume
z = (d2,− |y − z| sin α̃, 0 . . . 0) and in what follows, we focus on the first two coordinates only. The
boundaries between the cells x and z and x and y lie on the planes

hxz(t) =
1

2
z + t

(
|y − z| sin α̃

d2

)
, hxy(s) =

1

2
y + s

(
0
1

)
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�
�

Figure 4: Sketch of the proof of
Lemma 6.4 and estimate (6.2).

respectively. The intersection of these planes has the first two coordinates

ixyz :=

(
d1 + d2

2
,−1

2
|y − z| sin α̃ +

1

2

d1d2

|y − z| sin α̃

)
.

Using the explicit form of d2, the latter point has the distance

|ixyz|2 =
1

4
|y − z|2 +

1

4
d2

2 +
1

4

d2
2 cos2 α̃

sin2 α̃

to the origin x = 0. Using |y − z| sin α̃ = |z| sinα and d2 = |y| − |z| cosα we obtain

|ixyz|2 =
1

4

(
|y − z|2

(
1 +

(|y| − |z| cosα)2 cos2 α̃

|z|2 sin2 α

)
+ (|y| − |z| cosα)2

)
.

Given y, the latter expression becomes small for |y − z| small, with the smallest value being |y − z| =
dr. But then

cos2 α̃ = 1− sin2 α̃ = 1− (|z| sinα)2

|y − z|2

and hence the distance becomes

|ixyz|2 =
1

4

(
(dr)2

(
1 +

(|y| − |z| cosα)2 ((dr)2 + |z|2 sin2 α
)

(dr)2 |z|2 sin2 α

)
+ (|y| − |z| cosα)2

)
.

We finally use |y| = |z| cosα−
√

(dr)2 − |z|2 sin2 α and obtain

|ixyz|2 =
1

4

(
(dr)2

(
1 +

(
(dr)4 − |z|4 sin4 α

)
(dr)2 |z|2 sin2 α

)
+
(
(dr)2 − |z|2 sin2 α

))
.

The latter expression now needs to be smaller than dx. We observe that the expression on the right
hand side decreases for fixed α if |z| increases.

On the other hand, we can resolve |z| (y) = |y| cosα −
√
|y|2 sin2 α + (dr)2. From the conditions

|y| ≤ dx and |ixyz| ≤ dx, we then infer (6.2).

Theorem 6.5. Assuming E
(
δ−s−d + δ1+s−2d

) p
p−s < ∞ and using the notation of Lemma 5.2 the

above constructed P has the property that for 1 ≤ r < s < p there almost surely exists C > 0 such
that for every n ∈ N and every u ∈ W 1,p

0,∂(nQ)(P ∩ nQ) 1

|nQ|

ˆ
P∩nQ

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
−α̃ s

r
j |∂lΦj|
DΦ
l+

|Mku−Mju|s
 r

s

+ F 3
s (nQ, u)

≤ C

(
1

|nQ|

ˆ
P∩nQ

|∇u|p
) r

p

,
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and for every u ∈W1,p
0,∂(nQ)(P ∩ nQ)

 1

|nQ|

ˆ
P∩nQ

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
−α̃ s

r
j |∂lΦj|
DΦ
l+

∣∣Ms
ku−Ms

ju
∣∣s r

s

+ F 3,s
s (nQ, u)

≤ C

(
1

|nQ|

ˆ
P∩nQ

|∇su|p
) r

p

.

Lemma 6.6. For every bounded open set Q with 0 ∈ Q and n0, n1 ∈ N let

∀M > 1 : Q̃M,n0,n1
:=

⋃
xa∈Xmat

Bn0da (xa)∩MQ6=∅

Bn1da(xa) .

Then for fixed n0 and n1 there almost surely exists r > 0 such that for every M > 1 it holds
Q̃M,n0,n1

⊂MrQ

Proof. There exists r0 < R such that Br0(0) ⊂ Q ⊂ BR(0) we assume w.l.o.g Q = BR(0). We
denote QM := MQ and observe that |∂QM |

|QM |
≤ CM−1 where |∂QM | := Hd−1(∂QM). For

QM,a,b :=
{
x ∈ Rd\QM : a < dist(x,QM) < b

}
,

we observe that #
(
QM,a,b ∩ Xmat

)
≤ CMd−1(b − a) due to the minimal mutual distance. The

probability that at least one x ∈ QM,a,b ∩ Xmat satisfies Bn0d(x)(x) ∩QM 6= ∅ is given by

P(QM , a, b) : = P
(
∃x ∈ QM,a,b ∩ Xmat : Bn0d(x)(x) ∩QM 6= ∅

)
=
∞∑
k=1

k P
(
k = #QM,a,b ∩ Xmat

)
P
(
d >

a

n0

)

≤ P
(
d >

a

n0

)
e−λ|QM,a,b|

∞∑
k=1

λk
∣∣QM,a,b

∣∣k
(k − 1)!

= P
(
d >

a

n0

)
λ
∣∣QM,a,b

∣∣ .
Now let r > 0 and observe

∣∣QM,a,b

∣∣ ≤ C (b − a) (b+MR)d−1 while P
(
d > a

n0

)
≤ Ce−αa

d
.

Then the probability that there exists x ∈ Xmat\QrM such that Bn0d(x)(x) ∩QM is smaller than

∞∑
k=0

P(QM , (r − 1)M + k, (r − 1)M + k + 1)

=
∞∑
k=0

P
(
d >

(r − 1)M + k

n0

)
λ
(
(rM + k + 1)d − (rM + k)d

)
≤ e−α((r−1)M)d(rM)d

∞∑
k=0

e−αk
d

λ(k + 2)d ,

and the right hand side tends uniformly to 0 as r →∞.

Proof of Theorem 6.5. In what follows, we will mostly perform the calculations for τ si andMs
a since

these calculations are more involved and drop n except for the last Step 4.
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We first estimate the difference |Ms
au−Ms

bu| for two directly neighbored points xa ∼ xb of the
Delaunay grid. These are connected through a cylindric pipe

Pδ,a,b = P (xa, xb, δ(a, b)) := conv
(
Bδ(a,b)(xa) ∪ Bδ(a,b)(xb)

)
with round ends and of thickness δ(a, b) and total length |xa − xb|+ 2δ(a, b) < 2 |xa − xb| and we
first introduce the new averages in the spirit of (2.27)

Mδ
au :=

 
Bδ(xa)

u , Ms,δ
a u(x) := ∇⊥a,δu(x− a) +

 
Bδ(xa)

u .

As for (4.15) and (4.23) we obtain

Mδ1
a1
Mδ2

a2
u =Mδ2

a2
u , Ms,δ1

a1
Ms,δ2

a2
u =Ms,δ2

a2
u .

For every i, a ∈ N with pi ∈ Br(Ga) there exists almost surely ai ∈ N such that pi and xai
are connected in P through a straight line segment (i.e. pi lies on the boundary of one of the pipes
emerging at xai or in Br(xai)) and

|τiu−Mau|s ≤ 2s (|τiu−Maiu|
s + |Maiu−Mau|s) ,

|τ si u(x)−Ms
au(x)|s ≤ 2s

(∣∣τ si u(x)−Ms
ai
u(x)

∣∣s +
∣∣Ms

ai
u(x)−Ms

au(x)
∣∣s) .

The second term is of “mesoscopic type”, while the first term is of local type. We will study both types
of terms separately.

Step 1: Using (2.28)–(2.29), we observe for neighbors a ∼ b

|Ms
au−Ms

bu|
s ≤

∑
k=a,b

∣∣∣Ms
ku−M

s,δ(a,b)
k u

∣∣∣s +
∣∣∣Ms,δ(a,b)

a u−Ms,δ(a,b)
b u

∣∣∣s
≤ CF s,1

s (x, δ(a, b)) (|x− xa|s + |x− xb|s)(
‖∇su‖sLs(B r

16
({xa,xb})) + |xa − xb|2s ‖∇su‖sLs(Pδ,a,b)

)
. (6.3)

where
F s,q
s (x, δ) :=

(
δ−d + δ−s−d + δ1+s−2d

)q
. (6.4)

Step 2: For reasons that we will encounter below, we define

Iα :=
1

|Q|

ˆ
P∩Q

∑
a:B4da (xa)∩Q 6=∅

χBr(Ga)

∑
b:B4db

(xb)∩Q6=∅
db≤da, |xa−xb|≤3da

d
−α s

r
a |Ms

au−Ms
bu|

s .

Assume χBr(Ga)χA1,i
6≡ 0. Then it holds pi ∈ B2dai

(xai) which implies

1

|Q|

ˆ
P∩Qr

∑
i 6=0

∑
xa∈X(Q)

fa
|∂lφi|
Dl+

∣∣Ms
au−Ms

ai
u
∣∣s

≤ 1

|Q|

ˆ
P∩Qr

∑
xa∈X(Q)

∑
xb∈Xmat

B2db
(xb)∩Br(Ga)6=∅

∑
i:xai=xb

faχA1,i
|Ms

au−Ms
bu|

s

≤ 1

|Q|
C

ˆ
P∩Qr

∑
xb∈Xmat

∑
xa∈X(Q)

B2db
(xb)∩Br(Ga)6=∅

χBr(Ga) |Ms
au−Ms

bu|
s .

(6.5)
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Hence, we encounter the conditions Br(Ga) ∩Q 6= ∅ and B2db(xb) ∩ Br(Ga) 6= ∅ as well as

|xa − xb| ≤ 3 max {da, db} .

In particular, we conclude the symmetric condition

B4da(xa) ∩Q 6= ∅ , B4da(xb) ∩Q 6= ∅ , B2da(xa) ∩ B2db(xb) 6= ∅

and
R.H.S of (6.5) ≤ I0 . (6.6)

Similarly

1

|Q|

ˆ
P∩Q

∑
a: ∂lΦa>0

∑
b: ∂lΦb<0

d
−α s

r
b |∂lΦb|
DΦ
l+

|Mau−Mbu|s ≤ Iα . (6.7)

Step 3: We now derive an estimate for Iα. For pairs (a, b) with db ≤ da, |xa − xb| ≤ 3da let
ya,b :=

(
y1, . . . , yn(a,b)

)
be a discrete path on the Delaunay grid of Xmat with length smaller than

2 |xa − xb| (this exists due to [28]) that connects xa and xb. By the minimal mutual distance of points,
this particularly implies that n(a, b) ≤ 6da/2r and the path lies completely within B4.5 da(xa). Be-
cause

|Ms
au−Ms

bu|
s ≤ n(a, b)s

n(a,b)−1∑
k=1

∣∣∣Ms
yk
u−Ms

yk+1
u
∣∣∣s

≤ 6dsa/2r

n(a,b)−1∑
k=1

∣∣∣Ms
yk
u−Ms

yk+1
u
∣∣∣s

it holds with (6.3)

|(Ms
au−Ms

bu) (x)|s ≤ Cdsa

ˆ
B6da (xa)

(∑
e∼f

F s,1
s (δ(e, f)) (|x− xe|s + |x− xf |s) ·

· |xe − xf |2s
(
χB r

16
(xe) + χB r

16
(xf) + ds−1

a χPδ,e,f

))
|∇su|s

We make use of |x− xe|s ≤ 2s (|x− xa|s + |xa − xe|s) ≤ 2s (|x− xa|s + dsa) and |xe − xf |2s ≤
Cd2s

a and Be,f := B r
16

({xe, xf}) ∪ Pδ,e,f to find

|(Ms
au−Ms

bu) (x)|s ≤ Cd4s
a

ˆ
B6da (xa)

(∑
e∼f

F s,1
s (δ(e, f)) (|x− xa|s + dsa) χBe,f

)
|∇su|s .

In the integrals Iα, any of the integrals
´
χBr(Ga) |Ms

au−Ms
bu|

s has |x− xa| < 2da and we can
use an estimate of the form

|(Ms
au−Ms

bu) (x)|s ≤ Cd5s
a

ˆ
B6da (xa)

(∑
e∼f

F s,1
s (δ(e, f))χBe,f

)
|∇su|s .

With this estimate, and using

# {b : B4db(xb) ∩Q 6= ∅, db ≤ da, |xa − xb| ≤ 3da} ≤ Cdda
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the integral Iα can be controlled through

Iα ≤
1

|Q|

ˆ
P

∑
a:B4da (xa)∩Q 6=∅

d
2d+5s−α s

r
a χB6da (xa)

(∑
e∼f

F s,1
s (δ(e, f))χBe,f

)
|∇su|s .

Denoting

f(ω) :=
∑
a

d
2d+5s−α s

r
a χB6da (xa) ,

f(ω,Q) :=
∑

a:B4da (xa)∩Q6=∅

d
2d+5s−α s

r
a χB6da (xa) ,

g(ω) :=
∑
e∼f

F s,1
s (δ(e, f))χBe,f ,

and using u ≡ 0 outside Q, we observe

Iα ≤
(

1

|Q|

ˆ
P

f(ω,Q)
p
p−s g(ω)

p
p−s

) p−s
p
(

1

|Q|

ˆ
P∩Q
|∇su|p

) s
p

.

Step 4: Since every quantity related to the distribution of da is distributed exponentially, we can be
very generous with this variable. We observe

1

|Q|

ˆ
P∩Qr

∑
a

fa
∑
i 6=0

|∂lφi|
Dl+

∣∣τ si u−Ms
ai
u
∣∣s ≤ 1

|Q|

ˆ
P∩Qr

∑
i 6=0

χA1,i

∣∣τ si u−Ms
ai
u
∣∣s

but for every fixed x (and using that x ∈ B2dai
(xai)) using again Jensens inequality

ˆ
A1,i

∣∣τ si u(x)−Ms
ai
u(x)

∣∣s ≤ C

ˆ
Bri (yi)

(∣∣∇ (u−Ms
ai
u
)∣∣s dsai +

∣∣u−Ms
ai
u
∣∣s) .

Having this in mind, we may sum over all yi to find

1

|Q|

ˆ
P∩Qr

∑
a

fa
∑
i 6=0

|∂lφi|
Dl+

∣∣τ si u−Ms
ai
u
∣∣s

≤ 1

|Q|

ˆ
Q∩P

C
∑
a

χ2da

∑
b∼a

dsa χP (xa,xb,δ(a,b)) (|∇ (u−Ms
au)|s + |u−Ms

au|
s) .

With the splitting u −Ms
au = u −Ms,δ(a,b)

a u +Ms,δ(a,b)
a u −Ms

au and Lemmas 2.18 and 2.17 it
follows with F s,1

s from (6.4)

1

|Q|

ˆ
P∩Qr

∑
a

fa
∑
i 6=0

|∂lφi|
Dl+

∣∣τ si u−Ms
aiu
∣∣s

≤ 1

|Q|
C
∑
a

∑
b∼a

F s,1
s (δ(a, b))

(
‖∇u‖sLs(B r

16
(xa)∪B r

16
(xb))

+ (2da)
s ‖∇u‖sLs(P (xa,xb,δ(a,b)))

)
dd+s
a

by a restructuration, the right hand side is bounded by

1

|Q|

ˆ
Q∩P

C

(∑
a

χ2dad
3s+d
a

)
g(ω) |∇su|s

≤ C

(
1

|Q|

ˆ
Q∩P

f1(ω)
p
p−sBg(ω)

p
p−s

) p−s
p
(

1

|Q|

ˆ
Q∩P
|∇su|p

) s
p

,
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where

f1(ω) :=
∑
a

χ2da (2da)
s+d

Step 4: We can replace in the above calculations Q by nQ. By Lemma 6.6 we can extend f(ω, nQ)
to f(ω)|RnQ for some fixed R > 1 and on RQ we can use standard ergodic theory. Hence, the
expressions in δ and da converge to a constant as n→∞ provided

E
(

(f1g)
p
p−s + (fg)

p
p−s

)
<∞ . (6.8)

However, f , f1 and g are stationary by definition and f and g or f1 and g are independent. Since f
and f1 clearly have finite expectation by the exponential distribution of da and Lemma 3.18, we only
mention that due to the strong mixing of δ and its independence from the distribution of connections

E(g
p
p−s ) ≤ E

(∑
e∼f

χBe,f

)
E
((
δ−s−d + δ1+s−2d

) p
p−s
)

and thus (6.8) holds.

The work [28] which we used in the last proof also opens the door to demonstrate the following result
which will be used in part III of this series to prove regularity properties of the homogenized equation.

Theorem 6.7. For fixed y0 ∈ Xmat and every ỹ ∈ Xmat let P (y0, ỹ) = (y0, y1(ỹ), . . . , yN(ỹ))N∈N
with yN(ỹ) = ỹ be the shortest path of points in Xmat connecting y0 and ỹ in P and having length
L(y0, ỹ). Then there exists

γy0,ỹ : [0, L(y0, ỹ)]× B r
16

(0)→ P

(t, z) 7→ γy0,ỹ(t, z)

such that γy0,ỹ(t, ·) is invertible for every t and
∥∥∂tγy0,ỹ∥∥∞ ≤ 2. For R > 1 let

Ny0,R(x) := #
{
ỹ ∈ BR(y0) ∩ Xmat : ∃t : x ∈ γy0,ỹ

(
t,B r

16
(0)
)}

.

Then there exists C > 0 such that for every y0 it holds

Ny0,R(x) ≤ C

(
Rd −

(x
2

)d)
for |x− y0| < 2R , Ny0,R(x) = 0 else.

Proof. The function γy0,ỹ consists basically of pipes connecting yi(ỹ) with yi+1(ỹ) that conically be-
come smaller within the ball B r

2
(yi(ỹ)) before entering the pipe and vice versa in B r

2
(yi+1(ỹ)). Defin-

ing

Ny0,r,R(x) := #
{
ỹ ∈ (BR(y0)\Br(y0)) ∩ Xmat : ∃t : x ∈ γy0,ỹ

(
t,B r

16
(0)
)}

[28] implies Ny0,r,R(x) = 0 for all |x− y0| > 2R but also due to the minimal mutual distance
Ny0,r,R(x) ≤ CRd−1(R− r), where C depends only on r and d.

Hence writing bxc := min {n ∈ N : n+ 1 > x} we can estimate for every K ∈ N

Ny0,K(x) ≤
K−1∑
k=0

Ny0,k,k+1(x) ≤ C
K−1∑
k=bx2c

(k + 1)d−1 ≤ C

(
Kd −

⌊x
2

⌋d)
.
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We close this section by proving Theorem 1.16.

Proof of Theorem 1.16. The statement on the support is provided by Theorem 4.10 and the fact that
we restrict to functions with support in mQ. Hence in the following we can apply all cited results to
Bm1−β(mQ) instead of mQ. According to Lemmas 4.7 and 5.2–5.3 and to Theorem 6.5 we need
only need to ensure

E
(
δ−s−d + δ1+s−2d

) p
p−s + E

(
1 +M[ 1

8
δ],Rd

)r
+ E |ρ̃Rd |−

sr
s−r <∞ ,

since da is distributed exponentially and the corresponding terms are bounded as long as r 6= s 6= p.
We note that the exponential distribution of M allows us to restrict to the study of δ and ρ̃.

According to Lemma 6.4 it is sufficient that max
{
p(s+d)
p−s ,

p(2d−s−1)
p−s

}
≤ β and sr

s−r ≤ β+ d− 1.

6.2 Boolean Model for the Poisson Ball Process

The following argumentation will be strongly based on the so called void probability. This is the proba-
bility P0(A) to not find any point of the point process in a given open set A and is given by (2.49) i.e.
P0(A) := e−λ|A|. The void probability for the ball process is given accordingly by

P0(A) := e−λ|B1(A)| , B1(A) :=
{
x ∈ Rd : dist(x,A) ≤ 1

}
,

which is the probability that no ball intersects with A ⊂ Rd.

Theorem 6.8. Let P (ω) :=
⋃
iBi(ω) (or P (ω) := Rd\

⋃
iBi(ω)) and define

δ̃(x) := min
{
δ(x̃) : x̃ ∈ ∂P s.t. x ∈ B 1

8
δ(x̃)(x̃)

}
,

where min ∅ := 0 for convenience. Then ∂P is almost surely locally (δ,M) regular and for every
γ < 1, β < d+ 2 it holds

E
(
δ−γ
)

+ E
(
δ̃−γ−1

)
+ E

(
M̃β

[0]

)
<∞ .

Furthermore, it holds d̂ ≤ d− 1 and α = 0 in inequalities (4.9) and (4.4). Furthermore the extension
order and symmetric extension order are both n = 0. If P (ω) := Rd\

⋃
iBi(ω) the above holds with

α replaced by 1 and with extension order n = 1 and symmetric extension order n = 2.

Remark 6.9. We observe that the union of balls has better properties than the complement.

Proof. We study only P (ω) :=
⋃
iBi(ω) since Rd\

⋃
iBi(ω) is the complement sharing the same

boundary. Hence, in case P(ω) = Rd\
⋃
iBi(ω), all calculations remain basically the same. How-

ever, in the first case, it is evident that α = 0 and n = 0 because the geometry has only cusps and
no dendrites and we refer to Remarks 2.4 and 2.8.

In what follows, we use that the distribution of balls is mutually independent. That means, given a ball
around xi ∈ Xpois, the set Xpois\ {xi} is also a Poisson process. W.l.o.g. , we assume xi = x0 = 0
with B0 := B1(0). First we note that p ∈ ∂B0 ∩ ∂P if and only if p ∈ ∂B0\P, which holds with
probability P0(B1(p)) = P0(B0). This is a fixed quantity, independent from p.

Now assuming p ∈ ∂B0\P, the distance to the closest ball besides B0 is denoted

r(p) = dist(p, ∂P\∂B0)
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with a probability distribution

Pdist(r) := P0(B1+r(p))/P0(B1(p)) .

It is important to observe that ∂B0 is r-regular in the sense of Lemma 2.24. Another important feature
in view of Lemma 3.2 is r(p) < ∆(p). In particular, δ(p) > 1

2
r(p) and ∂B0 is (δ, 1)-regular in case

δ <
√

1
2
. Hence, in what follows, we will derive estimates on r−γ , which immediately imply estimates

on δ−γ .

Estimate on γ: A lower estimate for the distribution of r(p) is given by

Pdist(r) := P0(B1+r(p))/P0(B1(p)) ≈ 1− λ
∣∣Sd−1

∣∣ r . (6.9)

This implies that almost surely for γ < 1

lim sup
n→∞

1

(2n)d

ˆ
(−n,n)d∩∂P

r(p)−γ dHd−1(p) <∞ ,

i.e. E(δ−γ) <∞.

Intersecting balls: Now assume there exists xi, i 6= 0 such that p ∈ ∂Bi ∩ ∂B0. W.l.o.g. assume
xi = x1 := (2x, 0, . . . , 0) and p =

(√
1− x2, 0, . . . , 0

)
. Then

δ(p) ≤ δ0(p) := 2
√

1− x2

and p is at least M(p) = x√
1−x2 -regular. Again, a lower estimate for the probability of r is given by

(6.9) on the interval (0, δ0). Above this value, the probability is approximately given by λ
∣∣Sd−1

∣∣ δ0 (for
small δ0i.e. x ≈ 1). We introduce as a new variable ξ = 1 − x and obtain from 1 − x2 = ξ(1 + x)
that

δ0 ≤ Cξ
1
2 and M(p) ≤ Cξ−

1
2 . (6.10)

No touching: At this point, we observe that M is almost surely locally finite. Otherwise, we would
have x = 1 and for every ε > 0 we had x1 ∈ B2+ε(x0)\B2−ε(x0). But

P0(B2+ε(x0)\B2−ε(x0)) ≈ 1− λ2
∣∣Sd−1

∣∣ ε → 1 as ε→ 0 .

Therefore, the probability that two balls “touch” (i.e. that x = 1) is zero. The almost sure local bound-
edness of M now follows from the countable number of balls.

Extension to δ̃: We again study each ball separately. Let p ∈ ∂B0\P with tangent space Tp and
normal space Np. Let x ∈ Np and p̃ ∈ ∂B0 such that x ∈ B 1

8
δ(p̃)(p̃), then also p ∈ B 1

8
δ(p̃)(p̃) and

δ(p) ∈ (7
8
, 7

6
)δ(p̃) and δ(p̃) ∈ (7

8
, 7

6
)δ(p) by Lemma 2.24. Defining

δ̃i(x) := min
{
δ(x̃) : x̃ ∈ ∂Bi\P s.t. x ∈ B 1

8
δ(x̃)(x̃)

}
,

we find
δ̃−γ ≤

∑
i

χδ̃i>0δ̃
−γ
i .

Studying δ0 on ∂B0 we can assume M ≤M0 in (3.8) and we find
ˆ
P

χδ̃0>0δ̃
−γ−1
0 ≤ C

ˆ
∂B0\P

δ−γ .

DOI 10.20347/WIAS.PREPRINT.2849 Berlin 2021



Extension Operators on perforated domains 65

Hence we find ˆ
P

δ̃−γ−1 ≤
∑
i

ˆ
P

χδ̃i>0δ̃
−γ−1
i ≤

∑
i

C

ˆ
∂Bi\P

δ−γ .

Estimate on β: For two points xi, xj ∈ Xpois let Circij := ∂Bi ∩ ∂Bj and B 1
8
δ̃(Circij) :=⋃

p∈Circij
B 1

8
δ̃(p)(p). For the fixed ball Bi = B0 we write Circ0j and obtain |Circ0j| ≤ Cδd0 with

δ0 from (6.10). Therefore, we findˆ
Circ0j

(1 +M(p))β ≤ δd0(1 +M(p))β ≤ Cξ−
1
2

(β−d) .

We now derive an estimate for E
(´

B1+r(0)
M̃β
)
. To this aim, let q ∈ (0, 1).

Then x ∈ B2−qk+1(0)\B2−qk(0) implies ξ ≥ qk+1 and

ˆ
B1+r(0)

M̃β ≤ C +
∞∑
k=1

∑
xj∈B2−qk+1 (0)\B

2−qk (0)

ˆ
Circ0j

(1 +M(p))β

≤ C +
∞∑
k=1

∑
xj∈B2−qk+1 (0)\B

2−qk (0)

C
(
qk+1

)− 1
2

(β−d)

The only random quantity in the latter expression is #
{
xj ∈ B2−qk+1(0)\B2−qk(0)

}
. Therefore, we

obtain with E(X(A)) = λ |A| that

E
(ˆ

B1+r(0)

M̃β

)
≤ C

(
1 +

∞∑
k=1

(
qk − qk+1

) (
qk+1

)− 1
2

(β−d)

)

≤ C

(
1 +

∞∑
k=1

(
qk
)− 1

2
(β−d−2)

)
.

Since the point process has finite intensity, this property carries over to the whole ball process and we
obtain the condition β < d+ 2 in order for the right hand side to remain bounded.

Estimate on d̂: We have to estimate the local maximum number ofA3,k overlapping in a single point in
terms of M̃ . We first recall that ρ̂(p) ≈ 8M̃(p)ρ̃(p). Thus large discrepancy between ρ̂ and ρ̃ occurs
in points where M̃ is large. This is at the intersection of at least two balls. Despite these “cusps”, the
set ∂P consists locally on the order of ρ̂ of almost flat parts. Arguing like in Lemma 4.4 resp. Remark
4.5 this yields d̂ ≤ d− 1.

It remains to verify bounded average connectivity of the Boolean set P∞ or its complement. Associ-
ated with the connected component Xpois,∞ there is a graph distance

∀x, y ∈ Xpois,∞ d(x, y) := inf {l(γ) : γ path in Xpois,∞ from x to y} .

Using this distance, we shall rely on the following concept.

Definition 6.10 (Statistical Strech Factor). For x ∈ Xpois,∞ and R > r we denote

S(x,R) := max
y∈Xpois,∞∩BR(x)

d(x, y)

R
, S(x) := sup

R>r
S(x,R) ,

the statistical local strech factor S(x,R) and statistical (global) strech factor S(x).
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Lemma 6.11. There exists S0 > 1 depending only on d and λ such that for x ∈ Xpois,∞ it holds

∀S > S0 : P(S(x) > S) ≤ 2µ

ν
e−

ν
2µ
S .

In order to prove this, we will need the following large deviation result.

Theorem 6.12 (Shape Theorem [29, Thm 2.2]). Let λ > λc. Then there exist positive contants µ, ν
and k0 such that the following holds: For every k > k0

P(S(0, k) > µ) ≤ e−νk .

Proof of Lemma 6.11. We have

S(0, k) > αµ ⇔ ∃x, y ∈ Bk(0) : d(x, y) ≥ αµk ,

S(0, αk) > µ ⇔ ∃x, y ∈ Bαk(0) : d(x, y) ≥ αµk ,

i.e.
P(S(0, k) > αµ) ≤ P(S(0, αk) > µ) ≤ e−

ν
µ

(αµ)k .

One quickly verifies for k ∈ N that S(0, k) ≤ S and S(0, k + 1) ≤ S implies S(0, k + r) ≤ 2S for
all r ∈ (0, 1). Hence we find

P(S(x) > S) ≤
∑
k∈N

P
(
S(0, k) >

S

2

)
≤
∑
k∈N

e−
ν
2µ
Sk ≤ 2µ

ν
e−

ν
2µ
S .

While the choice of the points (pi)i∈N ⊂ ∂P is clearly specified in Section 4.1, there is lots of room in
the choice and construction of Xr. In what follows, we choose Xr in the form (2.51). Then we find the
following:

Theorem 6.13. Under the above assumptions on the construction of P∞, as well as p > d and using
the notation of Lemma 5.2, for every 1 ≤ r < s < p there almost surely exists C > 0 such that for
every n ∈ N and every u ∈ W 1,p

0,∂(nQ)(P∞ ∩ nQ)

 1

|nQ|

ˆ
P∞∩nQ

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
−α̃ s

r
j |∂lΦj|
DΦ
l+

|Mku−Mju|s
 r

s

+ F 3
s (nQ, u)

≤ C

(
1

|nQ|

ˆ
P∞∩nQ

|∇u|p
) r

p

,

and for every u ∈W1,p
0,∂(nQ)(P̃ ∩ nQ)

 1

|nQ|

ˆ
P∞∩nQ

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
−α̃ s

r
j |∂lΦj|
DΦ
l+

∣∣Ms
ku−Ms

ju
∣∣s r

s

+ F 3,s
s (nQ, u)

≤ C

(
1

|nQ|

ˆ
P∞∩nQ

|∇su|p
) r

p

.
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Lemma 6.14. Let Xpois be a Poisson point process with finite intensity. Generate a Voronoi tessellation
from Xpois and for each xa ∈ Xpois let da be the diameter of the corresponding Voronoi cell. Then for
each n ∈ N the following function has finite expectation

fn :=
∑
a

χBnda (xa) .

Note that this statement is not covered by Lemma 3.18 due to the lack of a minimal distance between
the points.

Proof. Given the condition 0 ∈ Xpois we observe

E
(
χBnd0 (0)

)
(x) ≤

∞∑
k=0

P(d0 ∈ [k, k + 1))χBk+1(0)(x) .

Since P(d0 ∈ [k, k + 1)) ≤ e−αk for some α > 0, we infer

E
(
χBnd0 (0)

)
(x) ≤ Ce−α|x| .

From here, we conclude with the exponentially in N decreasing probability to find more than N points
within [0, 1]d:

E

 ∑
xa∈Xpois∩[0,1]d

χBnda (xa)

(x) ≤ Ce−β|x| ,

for some β > 0. Summing up over all cubes we infer

E(fn)(0) ≤ C
∑
k∈Zd

e−β|x−k| ≤ C
∑
N∈N

Nd−1e−βN <∞ .

Similar to the proof of Theorem 6.5 it will be necessary to introduce the following quantity for y ∈
Xpois,∞ based on (2.27):

Ms
yu(x) := ∇⊥y,ru(x− y) +

 
Br(y)

u .

An important property ofMs
y is the following.

Lemma 6.15. Let y1, y2 ∈ Xpois,∞ with |y1 − y2| < 2 and δ := 1
2

sup
{
r : Br

(
1
2

(y1 + y2)
)
⊂ P̃

}
.

Then there exists f : B1({y1, y2})→ R such that∣∣Ms
y1
u(x)−Ms

y2
u(x)

∣∣s ≤ C ‖f∇su‖sLsB1({y1,y2})
,

|My1u(x)−My2u(x)|s ≤ C ‖f∇su‖sLsB1({y1,y2})
,

and ˆ
B1({y1,y2})

|f |
sp
p−s ≤ Cδ

s(p−d)
p−s −1 . (6.11)

Furthermore for some fixed C > 0 and for every y ∈ Xpois,∞ˆ
B1(y)

∑
i

χBρ̃i (pi)
∣∣τ si u−Ms

yu
∣∣s +

∑
xa∈Xr

χB r
16

(xa)

∣∣Ms
au−Ms

y

∣∣s ≤ C ‖∇su‖sLs(B1(y)) . (6.12)

ˆ
B1(y)

∑
i

χBρ̃i (pi) |τiu−Myu|s +
∑
xa∈Xr

χB r
16

(xa) |Mau−My|s ≤ C ‖∇su‖sLs(B1(y)) . (6.13)

DOI 10.20347/WIAS.PREPRINT.2849 Berlin 2021



M. Heida 68

Proof. We only treat the vector valued case, the other is proved similarly using results from Section

2.4. W.l.o.g let y1 = ye1 and y2 = −ye1. Let n = min
{
n ∈ N : B2−nr(0) ⊂ P̃

}
, i.e. δ ∈

(2−n−1r, 2−nr). Furthermore, let αk := 2r
∑k

j=1 2−(n−j) for k = 1, . . . , n and α−k = −αk with
α0 = 0. Using (2.27), for every number j = −n, . . . , n let further

Ms
ju :=Ms,r2−(n−|j|)

αje1
.

Then for j ≥ 0 we find from Lemma 2.18∣∣Ms
ju(x)−Ms

j+1u(x)
∣∣s ≤ C

(∣∣∣Ms,r2−(n−j)

αje1
u(x)−Ms,r2−(n−j)

αj+1e1
u(x)

∣∣∣s +

+
∣∣∣Ms,r2−(n−j)

αj+1e1
u(x)−Ms,r2−(n−j−1)

αj+1e1
u(x)

∣∣∣s)
≤ (r2−n)s−d2j(s−d) ‖∇su‖s

Ls(conv(Br2−(n−j) ({αje1,αj+1e1}))∪Br2−(n−j−1) (αj+1e1))

Defining

f̃ s :=
∑
j

(r2−n)s−d2j(s−d)χconv(Br2−(n−j) ({αje1,αj+1e1}))∪Br2−(n−j−1) (αj+1e1)

and using local finiteness of the covering as well as

|conv (Br2−(n−j)({αje1, αj+1e1})) ∪ Br2−(n−j−1)(αj+1e1)| ≤ C
(
rd2−d(n−j)) ,

we find with (s−d)p
p−s + d = s(p−d)

p−s − 1 = s(1−d)−p+s
p−s = 2s−d−p

p−s δ

ˆ
B1({y1,y2})

∣∣∣f̃ ∣∣∣ spp−s ≤ C
∑
j

(r2−n)
(s−d)p
p−s 2j

(s−d)p
p−s rd2−d(n−j)

≤ Cδ
s(p−d)
p−s

ln2
r
δ∑

j=1

2j
s(1−d)
p−s ≤ Cδ

s(p−d)
p−s δ−1

From here we conclude the first part. Inequality (6.12) follows from the fact that ρ̃i ∝ ri and the
disjointness of the balls B r

16
(xa) with Bri(pi) and Lemma 2.17 with r = const.

Proof of Theorem 6.13. We work with the enumeration (pi)i∈N and Xr = (xa)a∈N and make use of
the underlying point process Xpois: For every a ∈ N there exists yxa ∈ Xpois such that xa ∈ B1(yxa)
for every pi there almost surely exists a unique ypi ∈ Xpois such that pi ∈ B1(ypi). Due to the minimal
mutual distance of points in Xr, we can conclude the following: Since pi ∈ Br(Ga), Br(xa) ⊂ P̃ ∩Ga

there exists a constant C depending only on r and d such that always

|ypi − yxa | ≤ C da . (6.14)

Since

|τ si u−Ms
au|

s ≤ 3
(∣∣∣τ si u−Ms

ypi
u
∣∣∣s +

∣∣Ms
yxa
u−Ms

au
∣∣s +

∣∣∣Ms
yxa
u−Ms

ypi
u
∣∣∣s)

we find
1

|Q|

ˆ
P∩Qr

∑
i 6=0

∑
xa∈X(Q)

fa
|∂lφi|
Dl+

|τ si u−Ms
au|

s ≤ I1 + I2 + I3
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where we provide and estimate I1, I2 and I3 as follows: First, we observe there exists n0 such that
n0r > 1. Then with help of (6.12)

I1 :=
1

|Q|

ˆ
P∩Qr

∑
i 6=0

∑
xa∈X(Q)

fa
|∂lφi|
Dl+

∣∣∣τ si u−Ms
ypi
u
∣∣∣s

≤ 1

|Q|

ˆ
P∩Qr

∑
xa∈X(Q)

fa
∑

yb∈Xpois,∞

∑
pi∈∂B1(yb)

|∂lφi|
Dl+

∣∣τ si u−Ms
yb
u
∣∣s

≤ 1

|Q|

ˆ
P∩Qr

∑
xa∈X(Q)

χB2da (xa)

∑
yb∈Xpois,∞

∑
pi∈∂B1(yb)

χBρ̃i (pi)
∣∣τ si u−Ms

yb
u
∣∣s

≤ C

 1

|Q|

ˆ
P∩Qr

 ∑
xa∈X(Q)

χB2da (xa)

∑
yb∈Xpois,∞

χB1(yb)


p
p−s


p−s
p (

1

|Q|

ˆ
P∩Qr

|∇u|p
) s

p

.

Because of Lemmas 3.18 and 6.14 and the exponential decay of probabilities of da the first integral
on the right hand side is always bounded. Note that (6.12) also implies

I2 :=
1

|Q|

ˆ
P∩Qr

∑
i 6=0

∑
xa∈X(Q)

fa
|∂lφi|
Dl+

∣∣Ms
yxa
u−Ms

au
∣∣s

≤ 1

|Q|

ˆ
P∩Qr

∑
xa∈X(Q)

fa d
d
a

∣∣Ms
yxa
u−Ms

au
∣∣s

≤

 1

|Q|

ˆ
P∩Qr

 ∑
yb∈Xpois,∞

∑
xa∈X(Q)∩B1(yb)

d2d
a


p
p−s


p−s
p (

1

|Q|

ˆ
P∩Q1

|∇u|p
) s

p

.

Again, the first integral on the right hand side is bounded.

Last, the term

I3 :=

ˆ
P∩Qr

∑
i 6=0

∑
xa∈X(Q)

fa
|∂lφi|
Dl+

∣∣∣Ms
yxa
u−Ms

ypi
u
∣∣∣s

is the most tricky part.

We find a path Y (yxa , ypi) = (y1, . . . , yn(xa,pi)) such that y1 = yxa , yn(xa,pi) = ypi such that yj ,
yj+1 are neighbors. By our assumptions, for every two points y, ỹ ∈ Xpois,∞ with y − ỹ < 2r, the
convex hull of Br({y, ỹ}) lies in P∞. Hence we iteratively replace sequences (. . . yi, yi+1, yi+2, . . . )
in the path Y by (. . . yi, yi+2, . . . ) if |yi+2 − yi| < 2r. Hence, w.l.o.g we obtain from (6.14) and the
definition of the statistical strech factor

n(xa, pi) ≤ 2
LengthY

r
≤ 2r−1CdaS(yxa) .

Therefore, for y ∈ Xpois,∞ with χB1(y)χGa 6= 0 we observe and the shortest path Y (xa, ypi) and with
Lemma 6.15∣∣∣Ms

yxa
u−Ms

ypi
u
∣∣∣s ≤ (2r−1CdaS(yxa)

)s n(xa,ypi )−1∑
k=1

∣∣∣Ms
yk
u−Ms

yk+1
u
∣∣∣s

≤
(
2r−1CdaS(yxa)

)s n(xa,ypi )−1∑
k=1

‖f∇su‖sLs
B1({yk,yk+1})

.
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Now all points yi ∈ Y (xa, ypi) lie within a radius of 2CdaS(yxa) around xa, wich implies

I3 ≤
ˆ
P∩Qr

∑
xa∈X(Q)

χB2CdaS(yxa )(xa)d
d
af

s |∇su|s

≤

 1

|Q|

ˆ
P∩Qr

 ∑
xa∈X(Q)

χB2CdaS(yxa )(xa)d
d
af

s


p
p−s


p−s
p (

1

|Q|

ˆ
P∩Q1

|∇u|p
) s

p

.

Now, by independence of the respective variables, the constant in front converges toE

 ∑
xa∈X(Q)

χB2CdaS(yxa )(xa)d
d
a


p
p−s

Ef
ps
p−s


p−s
p

.

The first term in the product can be estimated with help of Lemma 3.18 and is bounded for every p
and s by the exponential distribution of da and S. The second term can be estimated similarly.

A further important property which we will not use in this work, but which is central for part III of this
series is the following result.

Theorem 6.16. Let Xpois,∞,r :=
{
x ∈ Xpois,∞ : ∀y ∈ Xpois,∞\{x} |x− y| > r

8

}
be a Matern

reduction of the infinite component. For fixed y0 ∈ Xpois,∞,r and every ỹ ∈ Xpois,∞,r let P (y0, ỹ) =
(y0, y1(ỹ), . . . , yN(ỹ))N∈N with yN(ỹ) = ỹ be the shortest path of points in Xpois,∞,r connecting y0

and ỹ in P and having length L(y0, ỹ). Then there exists

γy0,ỹ : [0, L(y0, ỹ)]× B r
16

(0)→ P

(t, z) 7→ γy0,ỹ(t, z)

such that γy0,ỹ(t, ·) is invertible for every t and
∥∥∂tγy0,ỹ∥∥∞ ≤ 2. For R > 1 let

Ny0,R(x) := #
{
ỹ ∈ BR(y0) ∩ Xmat : ∃t : x ∈ γy0,ỹ

(
t,B r

16
(0)
)}

.

Then for every y0 there exists almost surely C > 0, S > 0 such that it holds

Ny0,R(x) ≤ C

(
Rd −

(x
2

)d)
for |x− y0| < SR , Ny0,R(x) = 0 else.

Proof. The function γy0,ỹ consists basically of pipes connecting yi(ỹ) with yi+1(ỹ) that conically be-
come smaller within the ball B 1

2
(yi(ỹ)) to fit through the connection between two neighboring balls.

Defining

Ny0,r,R(x) := #
{
ỹ ∈ (BR(y0)\Br(y0)) ∩ Xpois,∞,r : ∃t : x ∈ γy0,ỹ

(
t,B r

16
(0)
)}

we apply Lemma 6.11 instead of [28] implies Ny0,r,R(x) = 0 for all |x− y0| > SR but also due to
the minimal mutual distanceNy0,r,R(x) ≤ CRd−1(SR−r), whereC depends only on r and d. From
here we follow the proof of Theorem 6.7.

We close this section and this work by proving Theorem 1.18.
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Proof of Theorem 1.18. The statement on the support is provided by Theorem 4.10 and the fact that
we restrict to functions with support in mQ. Hence in the following we can apply all cited results to
Bm1−β(mQ) instead of mQ. According to Lemmas 4.7 and 5.2–5.3 and to Theorem 6.13 we need
only need to ensure p > d as well as

E
(

1 +M[ 1
8
δ],Rd

)kr
+ E |ρ̃Rd |−

sr
s−r <∞ ,

where k = 1 for the simple extension case and k = 2 for the symmetric extension case. Since da is
distributed exponentially and the corresponding terms are bounded as long as r 6= s 6= p, we observe
that we do not have to care about the involved polynomial terms.

According to Theorem 6.8 it is sufficient that sr
s−r < 2 (i.e. pr

p−r < 2) and kr < d+ 2.
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