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Stochastic homogenization on perforated domains I:

Extension operators
Martin Heida

Abstract

This preprint is part of a major rewriting and substantial improvement of WIAS Preprint 2742.
In this first part of a series of 3 papers, we set up a framework to study the existence of uniformly
bounded extension and trace operators for W 1P-functions on randomly perforated domains,
where the geometry is assumed to be stationary ergodic. We drop the classical assumption of
minimaly smoothness and study stationary geometries which have no global John regularity. For
such geometries, uniform extension operators can be defined only from WP to W™ with the
strict inequality » < p. In particular, we estimate the L"-norm of the extended gradient in terms
of the LP-norm of the original gradient. Similar relations hold for the symmetric gradients (for R?-
valued functions) and for traces on the boundary. As a byproduct we obtain some Poincaré and
Korn inequalities of the same spirit.

Such extension and trace operators are important for compactness in stochastic homoge-
nization. In contrast to former approaches and results, we use very weak assumptions: local
(0, M)-regularity to quantify statistically the local Lipschitz regularity and isotropic cone mixing
to quantify the density of the geometry and the mesoscopic properties. These two properties are
sufficient to reduce the problem of extension operators to the connectivity of the geometry.

In contrast to former approaches we do not require a minimal distance between the inclusions
and we allow for globally unbounded Lipschitz constants and percolating holes. We will illustrate
our method by applying it to the Boolean model based on a Poisson point process and to a
Delaunay pipe process, for which we can explicitly estimate the connectivity terms.
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1 Introduction

In 1979 Papanicolaou and Varadhan and Kozlov for the first time independently introduced
concepts for the averaging of random elliptic operators. At that time, the periodic homogenization
theory had already advanced to some extend (as can be seen in the book [23] that had appeared one
year before) dealing also with non-uniformly elliptic operators [17] and domains with periodic holes [3].
The most recent and most complete work for extension operators on periodically perforated domains

is [11].

In contrast, the homogenization on randomly perforated domains is still open to a large extend. Recent
results focus on minimally smooth domains [9, or on decreasing size of the perforations when the
smallness parameter tends to zero [8] (and references therein). The main issue in homogenization on
perforated domains compared to classical homogenization problems is compactness. For elasticity,
this is completely open.
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Extension Operators on perforated domains 3

The results presented below are meant for application in quenched convergence. The estimates for the
extension and trace operators which are derived strongly depends on the realization of the geometry
- thus on w. Nevertheless, if the geometry is stationary, a corresponding estimate can be achieved for
almost every w.

The Problem

In order to illustrate the issues in stochastic homogenization on perforated domains, we introduce the
following example.

Let P(w) C R? be a stationary random open set and let ¢ > 0 be the smallness parameter and
let P(w) be an infinitely connected component (i.e. an unbounded connected domain) of P(w). For
a bounded open domain Q, we consider Q5 (w) = Q N eP(w) and I*(w) = Q N £IP(w)
with outer normal vr- (). For a sufficiently regular and R%valued function © we denote V°u :=
% (Vu + (VU)T) the symmetric part of Vu. A typical homogenization problem then is the following::

—div (|V5u€|p*2 Vsua) = g(u°) on Qp(w),
uw=0 on QN (eP) , (1.1)
Vo P2 Vs - vpe() = f(uf) onI'*(w).

Note that for simplicity of illustration, the only randomness that we consider in this problem is due to
P(w).

One way to prove homogenization of (1.1) is to prove I'-convergence of

et = [ (rvr-cw)+ [ o,

in a suitably chosen space where G’ = g and " = f. Conceptually, this implies convergence
of the minimizers u° to a minimizer of a limit functional but if G or F' are non-monotone, we need
compactness. However, the minimizers are elements of W'*(Q3) := W'?(Q%; R%) and since this
space changes with ¢, there is apriori no compactness of u°, even though we have uniform apriori
estimates on the gradients.

The canonical path to circumvent this issue in periodic homogenization is via uniformly bounded
extension operators U : W'?(Qg) — W'?(Q) that share the property that for some C' > 0
independent from ¢ it holds for all v € W'?(Qg) with u|gang = 0

||vu€u”LP(Q) <C ||vu||LP(Q%) ) Hu€u”LP(Q) <C ||UHLP(Q%) ; (1.2)

see [11, [12], combined with uniformly bounded trace operators, see [7,9]. Such operators have also
been provided for elasticity problems [11], 21}, [30} [31], i.e.

HVSU&UHLP(Q) <C HVSUHLP(Q%) .

The last estimate then allows to use Korn’s inequality combined with Sobolev’s embedding theorem to
find U.u® — ug weakly in WH?(Q).

What is the classical strategy? The existing results on extension and trace operators for random
domains are focused on a.s. minimally smooth domains. A connected domain P C R? is minimally
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smooth [26] if there exist (0, M) such that for every z € OP the set OP N Bs(x) is the graph
of a Lipschitz continuous function with Lipschitz constant less than M. It is further assumed that the
complement Rd\P consists of uniformly bounded sets. This concept leads to almost sure construction
of uniformly bounded extension operators Wlf)f(P) — WLP(R?) [9] in the sense that for every
bounded Q and every u € W'?(Q N P) with u|ga\q = 0 holds

HVUUHL!’(Q) <C HVUHLP(QHP) , HUUHLP(Q) <C “uHLP(QmP) ) (1.3)

with C' independent from Q). Similarly, one obtains for the trace T that [24]

1Tl oiqromy < C (Illniarey + 1 Vulloqre )
Using a scaling argument to obtain e.g. (1.2), such extension and trace operators are typically used in

order to treat nonlinearities in homogenization problems.

Why does this work? The theory cited above is directly connected to the theory of Jones [13] and
Duran and Muschietti [5] on so-called John domains. These are precisely the bounded domains P
that admit extension operators WP (P) — W1P(R?) satisfying

||uu||wl,p(ued) <C HUHWLp(QmP) :

Definition (John domains). A bounded domain P C R? is a John domain (a.k.a (&, )-domain) if
there exists £, > 0 such that for every x,y € P with |z — y| < 0 there exists a rectifiable path
v : [0,1] — P from x to y such that

1
lengthy < — |z —y|  and
€

: el =) |7 () —y
vt e (0,1) ZEl}gif\P|7(t)—z|2‘ ’;)_Hy’U |

Because of the locality implied by 9, it is possible to glue together local extension operators on John
domains such as done in [11] for periodic or [9] for minimally smooth domains. In the stochastic case
one benefits a lot from the uniform boundedness of the components of Rd\P, which allows to split
the extension problem into independent extension problems on uniformly John-regular domains.

Why this is not enough for general random domains! As one could guess from the emphasis that
is put on the above explanations, random geometries are merely minimally smooth. On an unbounded
random domain P, the constant M can locally become very large in points = € 0P, while simultane-
ously, & can become very small in the very same x. In fact, they are not even “uniformly John” as the
following, yet deterministic example illustrates.

Example 1.1. Considering
P:={(z1,22) €R*: IneN: 2 — (2n+1) € (-1,1], 3 < max {1, n|z; — 2n+1)|}}

the Lipschitz constant on (2n, 2n 4 2) is n and it is easy to figure out that this non-uniformly Lipschitz
domain violates the John condition due to the cups. Hence, a uniform estimate of the form (1.3) cannot
exist.
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Extension Operators on perforated domains 5

Therefor, an alternative concept to measure the large scale regularity of a random geometry is needed.
Since the classical results do not excluded the existence of an estimate

\Q\/ sl <€ (igy [y ™)+ < (g [y 7)

(1.4)

|Q|/ vl <0 (g [ V) gl = (g L)

(1.5)

where 1 < r < pand C'is independent from Q, such inequalities will be our goal.

Our results in a nutshell We will provide inequalities of the form (1.4)—({1.5) for a Voronoi-pipe model
and for a Boolean model. On the way, we will provide several concepts and intermediate results that
can be reused in further examples and general considerations such as planed in part Ill of this series.

Scaled versions (replacing € = m ™" in Theorems and[1.18) of (1.4)—(1.5) can be formulated for
functions

u e W()l”gQ(éP nNQ):= {u c W(QnNeP): ul(pynaq = O} ,

and will be of the form

1 1 » 1 1
VU.u —/ Vup) , U.u <C< / up> ,
Q) o VU= <IQ| g VY Q) Jo =g Jy

resp.

1 1 »
VeU.u — Viul? , Uu p )
[Q Ju [Vt = <\Q|/w‘ “') \Q\/ el < (\Q\/w’“‘)

where the support of U.u lies within B_s (Q) for € small enough and some arbitrarily chosen but fixed

g€ (0,1).

B3

Quantifying properties of random geometries

As a replacement for periodicity, we introduce the concept of mesoscopic regularity of a stationary
random open set:

Definition 1.2 (Mesoscopic regularity). LetNP be a stationary ergodic random open set, let f be a
positive, monotonically decreasing function f with f(R) — 0 as R — oo andlett > 0 s.t.

P(3z € Br(0) : B, 5.(z) C Br(0)NP) >1— f(R). (1.6)

Then P is called (r, f)-mesoscopic regular. P is called polynomially (exponentially) regular if 1/f
grows polynomially (exponentially).

As a consequence of Lemmas|[3.14] [3.16|and [3.17| we obtain the following.

Corollary 1.3 (All stationary ergodic random open sets are mesoscopic regular). Let P(w) be a
stationary ergodic random open set. Then there exists v > ( and a monotonically decreasing function
with f(R) — 0 as R — oo such that P is (v, f)-mesoscopic regular. Furthermore, there exists a
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jointly stationary random point process X (w) = (z4),cy and for every a € N it holds B (xq) CP
and for all a,b € N, a # b, it holds |x, — x| > 2t. Construct from X, a Voronoi tessellation of
cells G, with diameter d, = d (:zca) Then for some constant C' > 0 and some monotone decreasing
f:(0,00) = RandC > 0with f(R) < Cf(C~'R) it holds

P(d(za) > D) < f(D).

t, X, and f from Corollary [1.3| will play a central role in the analysis. We summarize some of these
properties in the following.

Assumption 1.4. Let P be a Lipschitz domain and assume there exists X, (:Ua)aGN be a set of
pomts having mutual distance |x, — x| > 2t ifa # b and with B« (xa) C P foreverya € N (e.g.

, see (2.51)).

The second important concept to quantify in a stochastic manner is that of local Lipschitz regularity.

Definition 1.5 (Local (9, M )-Regularity). Let P C R? be an open set. P is called (5, M )-regular in
po € OP if there exists an open set U C R%~! and a Lipschitz continuous function ¢ : U — R with
Lipschitz constant greater or equal to M such that OP N B (po) is subset of the graph of the function
0: U—RY 7+ (Z,0(F)) in some suitable coordinate system.

Every Lipschitz domain P is locally (0, M )-regular in every p, € OP. In what follows, we bound §
from above by t only for practical reasons in the proofs. The following quantities can be derived from
local (0, M )-regularity.

Definition 1.6. For a Lipschitz domain P C R? and for every p € 9P and n € NU {0}

A(p) :==sup{3IM > 0: Pis (§, M)-regularinp} , da(p):= #, (1.7)
6<t
M,(p) ;== infinf {M : Pis (n, M)-regularin p} , (1.8)
n>r
pu(p) = sup r (4M,(p)* +2) * (1.9)
r<d(p)

If no confusion occurs, we write § = d. Furthermore, for ¢ € (0, 1] let n(p) = cda(p) or n(p) =
cpn(p),n € Nandr € C%!(9P) and define

N re(z) :=inf {n(Z) : T € OPst z € B, (T)} , (1.10)
My, ra(2) 1= sup {MMi)(i’) 1€ 0Pstxe By )} (1.11)

#) (T
where inf () = sup () := 0 for notational convenience. We also write M, ga(x) := M}, ;1 ra(x) and
)(

7

Nra () = 1y ra (). Of course, we can also consider M, op : p M »(p)(P) as a function on OP,
and we will do this once in Lemma[3.8

When it comes to application of the abstract results found below, it is important to have in mind that 7
and M, are quantities on OP, while 7;,; g and M, ,; ga are quantities on R?. Hence, while trivially

P 0 € (m712)) = Jim 0~ |QI™" [{ € nQ + gy € (m1,72) }
(and similarly for M[mLRd) for every convex bounded open Q, we have in mind

By € () = (im HH 0P Q) H (€ (1Q) NP - € ().

We will prove measurability of 7}, g« and M, ,; ga in Lemma and see how the weighted ex-
pectations of 7, g« and M[m],Rd can be estimated by weighted expectations of M and 7 in Lemma

B.12
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Traces

The first important result is the boundedness of the trace operator.

Theorem 1.7. Let P C R? be a Lipschitz domain, > t > 0 and let Q C R be a bounded open
setand let1 < r < pg < p. Then the trace operator T satisfies for every u € Wlf)cp(P)

r
P

1 1
L <o / l? + | Vaf?
Q| Jqrop Q| /&, ()P

1
4

where for some constant Cy depending only on po, p and r and d and for p = 275 p1 one has

po—r P=pQ
PO R . PP
1 ~ pol—?“ 1 ") <%+1+d) pfpo
=\ Qi s, qon™ Qe e (1 e ’
1c 1e
(1.12)
p—r
P
1 ~ o
C=0C|—= <ﬁRd (1+Mi d>> . (1.13)
Q| By (Q)NOP (301 F
Proof. This is proved in Section |4.6 O

Local Covering of OP
In view of Corollary for every n = 1 or n = 2 there exist a complete covering of OP by balls
Bﬁn (p?) (p7), (p?)ieN’ where pn,(p) := 27°pn(p). We write Pni = Pn(D})-

Definition 1.8 (Microscopic regularity and extension order). The inner microscopic regularity « is
o ;= Inf {6{ Z 0: Vp € 0P5|y ceP: Eﬁ(p)/?)?(l-l—]\/f,;(p)(p)d)(p) C B[)(p)/B(p)} .

In Lemma 3.1]we will see that indeed o < 1.

Definition 1.9 (Extension order). The geometry is of extension order n € N U {0} if there exists
C' > 0 such that for almost every p € JP there exists a local extension operator

U - W By (0) N P) — W (B, () (0))

gpn

HVUUHLP(BéM(p)(p)) <C (1 + M;am(P)) HVUHLP(B%M@)) : (1.14)

The geometry is of symmetric extension order n € NU {0} if there exists C' > 0 such that for almost
every p € 0P there exists a local extension operator

Uu: WLp(Bé(S(p) (p) n P) - WLp(B%pn(p)(p)) )

2
||V8Uu||Lp(B% ) = C <1 + M%&(p)(p)> ||VSU||LP(]B;%6<p)(p)) . (1.15)

pn(p)

Corollary [3.6|shows that every locally Lipschitz geometry is of extension order n = 1 and every locally
Lipschitz geometry is of symmetric extension order n = 2. However, better results for n are possible,
as we will see below.
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Global Tessellation of P

Let X = (1,),cy be a jointly stationary point process with P such that B.(X) C P. In this work, we
will often assume that |z, — x| > 2t for all a # b for simplicity in Sections |5 and @ The existence
of such a process is always guarantied by Lemmas and Its choice in a concrete example
is, however, delicate. Worth mentioning, for most of the theory developed until the end of Section
(Except for Lemmas and [3.18 which are not used before Section [5), is completely independent
from this mutual minimal distance assumption.

From X we construct a Voronoi tessellation with cells (G, ), and we chose for each z, a radius
v, < vwith B, (xa) C G, N P. Again, using Corollary we assume that v, = tis constant for
simplicity.

Extensions I: Gradients

Notation 1.10. Givenn € {0,1} and v € [0, 1] we chose
tnayi o= Pni/32(1 4+ Mj, (Pn,i)®) (1.16)
and some ¥, o ; such that
Brai =B, ., (Unai) CPN IB%% P (Pni) - (1.17)

and for every 7 and a, we define

Tn,aill = ][
B

local averages close to OP and in x,. We say that x, ~~ xy it G, N B,(G,) # 0 and we say
z, € X (Q) if B.(G,) N Q # (). Based on (4.14) we obtain the following extension result.

u, Mu ::][ u,
By (za)

a

6

n,o,i

Ja

Theorem 1.11. Lett > 0 andletP C R? be a stationary ergodic random Lipschitz domain such that
Assumption holds for X = (xa)aeN and P has microscopic regularity o: with extension order n.
Let Q C R” be a bounded open set with 1B 1 (0) C Qandletl < r < p. Furthermore, let

nd r
a(d—1)
E((]. + M[ﬁ,g},Rd> (1 + M[éd]de) (1 + M[ﬁn]de) > < 00

8

then there exist C' > 0 depending only on d, r and p such that for a.e. w there exists an extension
operator Uy, : W' (P(w)) — W.2P(R?) and C,, > 0 such that for every m > 1 and every

loc loc

u € WHP(P(w)) with ulp(wymq = 0 it holds

1 . 1 v
m/ IV (Uu)|” < C, (—d/ |VU|p)
mQ m= JpPnB.(mQ)

1
+ C_/ ﬁirXBt Ga XIB' : n,i
T o oy 2 2 PP X CXE )

i#0  a

T
Thaoith — Mau|

r

+C

Y

1 /
— XB.(Ga) [Matt — Myl
mdPMQEZE: (Ga)

a ar~n~b

r

1 1 ;
o [ <c. (—d / \ur”) |
mQ| J g m® Jpag, (mQ)
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Extension Operators on perforated domains 9

Proof. This is a consequence of Lemma[4.7] O

In case one is interested in a weaker estimate on the extension operator, we propose the following:

Theorem 1.12. Under the assumptions of Theorem let additionally

B() < o

then there exists an extension operator U, : WP (P(w)) — W,2P(R?) such that for every m > 1
and every u € WHP(P(w)) with u|p(wy\mq = 0 it holds

1

1 b
IV U] + o) < C, (—d [ v+ |u|p>) .
m” JPnB.(mQ)

Proof. This is a consequence of the proof of Lemma[4.7] replacing M, u in the definition of U/u by
0. O

Percolation and Connectivity

The terms depending on |Tn7a,iu — ./\/lau| or |./\/lau — ./\/lau| appearing on the right hand side in
Theorem need to be replaced by an integral over |Vu|p. Here, the pathwise topology of the
geometry comes into play. By this we mean that we have to integrate the gradient of u over a path
connecting e.g. p; and x,. Here, the mesoscopic properties of the geometry will play a role. In par-
ticular, we need pathwise connectedness of the random domain, a phenomenon which is known as
percolation in the theory of random sets. We will discuss two different examples to see that these
terms can indeed be handled in application, but shift a general discussion of arbitrary geometries to a
later publication.

Extensions ll: Symmetric gradients
We now turn to the situation that u is a R%-valued function and that the given PDE system yields only
estimates for Vsu = 1 (Vu + (Vu)). We introduce the following quantities:

Definition 1.13. Given n € {0, 1,2} and a € [0, 1] such that such that (1.17) holds for v; = t,, 4
for every ¢ let for i, a

Viailh = ]][B o (Vu—Vou), [m5..u] (@) =V u (z—y,)+ ]][B ( )u,
tn,oni Yn,a,i tn,oi Yn,a,i
Vi ::]I[B ( )(VU—VSU) , (M) (z) :=Vu (ff_x“)Jr][ o
T Ta B Ta

6 6
Using above introduced notation and W do denote R?-valued Sobolev spaces, we find the following.

Theorem 1.14. Lett > 0 and let P C R be a stationary ergodic random Lipschitz domain such that
Assumption holds for X = (a:a)a en and P has microscopic regularity o with symmetric extension
ordern < 2. Let Q C R? be a bounded open set with B1(0) C Q andlet1 < r < py < p.
Furthermore, let !

nd 2r
a(d-1)
]E(<1 + M[%‘;,g],Rd> (1 + M[éa},n«d) (1 + Mz, z4) ) < o0
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then hen there exist C' > 0 depending only on d, r, s and p such that for a.e. w there exists an
extension operator U, : W (P(w)) — W*(R%) and C,, > 0 such that for every m > 1 and

loc

every u € Wl’p(P(w)) with u|p )\ q = 0 it holds

AR (1 / )
— ViU <Oy | — Viul?
Q) Jo IV @) QA e "

+C@ /;\PZZpIZXAI'LXQha

1#0

Z Z Z 0,®, |8;<1>b| (Meu — Meu)

|Q| Q =1 a:9;P4,>0 b: 9, P, <0

\QI/ ol < <IQ| /Mmp W)' ’

Proof. This is a consequence of Lemma O

S
oot — MG, u’

Theorem 1.15. Under the assumptions of Theorem[1.74 let additionally

P

B("

then there exists an extension operator U, : W7 (P(w)) — W' (R%) such that for every m > 1
and every u € WHP(P(w)) with u|p(w)\mq = 0 it holds

) <

1 1 »
—=1 [ (VU] + Usu|") < Cy (—d/ (IVul” + Iu!”))
m” JPnB.(mQ)

Proof. This is a consequence of the proof of Lemma replacing M:u in the definition of U/u by
0. O

Discussion: Random Geometries and Applicability of the Method

In Section|[6] we discuss two standard models from the theory of stochastic geometries. The first one is
a system of random pipes: Starting from a Poisson point process and deleting all points with nearest
neighbor closer than 2t and introducing the Delaunay neighboring condition on the points, every two
neighbors are connect through a pipe of random thickness 29, where ¢ is distributed i.i.d among the
pipes and we complete the geometry by adding a ball of radius % around each point. Defining for
bounded open domains Q C R?andn € N

u € Wola(nQ PNnQ):={ue WP NnQ): ulsnq =0},

and using W instead of W for R%-valued functions, we find our first result:

Theorem 1.16. In the pipe model of Section/et]P(d(x, y) < 8o) < Cs56F andletl <r < s <p
be such that max {p(;fd) p(2d—s—1) } < B and - < B+d—1. Thena = n = 0 both for extension

s p—s
and symmetric extension order and there almost surely exists an extension operatorL{ : Wlif(P) —
W,iP(R?) and constants C, R > 1 such that for allm € N and every u € W’ Bme (P NmQ) it

holds
1

1 H
— V (Uu)|" < C —/ Vup>
ImQ| Rdl (L)l (md Pme| |
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Furthermore there almost surely exists an extension operator i : W, >(P) — W *(R?) and a

constant C' > 0 such that for allm € N and every u € Wé’g(mQ) (PNmQ)

1 1 »
—_— Ve (Uw)|" < C —/ Vsup) .
ImQ| Rd| (L)l (md Pme| |

In both cases for every 3 € (0, 1) the following holds: for some mo > 1 depending on w and every
m > my the support of Uu lies within B,,,1-5(mQ).

Proof. The proof is given at the very end of Section|6.1 O

Corollary 1.17. IfP(§(z,y) < dg) < Cse™% " then the last theorem holds for every 1 < r < p.

In Section[6.2| we study the Boolean model based on a Poisson point process in the percolation case.
Introduced in Example wiII consider a Poisson point process Xpois(w) = (2;(w));cy With
intensity \ (recall Example [2.48). To each point x; a random ball B; = B;(z;) is assigned and the
family B := (B;),.y is called the Poisson ball process. We say that z; ~ x; if |2; — x;] < 2. In
case A > ). the union of these balls has a unique infinite connected component (that means we have
percolation) and we denote X,.is ~ the sellection of all points that contribute to the infinite component
and P, (w) := Uiexpois,oo B; this infinite open set and seek for a corresponding uniform extension
operator. The connectedness of P is hereby essential. We use results from percolation theory that
otherwise would not hold.

Here we can show that the micro- and mesoscopic assumptions are fulfilled, at least in case P is given
as the union of balls. If we choose P as the complement of the balls, the situation becomes more
involved. On one hand, Theorem[6.8| shows that & and n change in an unfortunate way. Furthermore,
the connectivity estimate remains open. However, some of these problems might be overcome using
a Matern modification of the Poisson process. For the moment, we state the following.

Theorem 1.18. In the boolean model of Section[6.4 it holds o« = 0 in case P = P, and both the
extension order and the symmetric extension order aren = 0. If d < p and
pr
p—r
Then there almost surely exists an extension operator U = W,5P(P) — W' (R%) and a constant
C > 0 such that for allm € N and every u € Wol”gQ(P NmQ)

<2, r<d+?2

1 1 »
L vuwr<c (—d/ ywp) |
|mQ| mQ m PrmQ

If furthermore

d+2
2

then there almost surele exists an extension operator U : W *(P) — W, *(R?) and a constant

C > 0 such that for allm € N and every u € Wé:gQ(P NmQ)

r<

1 1 »
- Ve (Uuw)|" < C (—d/ |Vsu|p> :
\mQ| mQ m= JpAmQ

In both cases for every 5 € (0, 1) the following holds: for some mq > 1 depending on w and every
m > my the support of Uu lies within B,,,1-5(mQ).

Proof. The proof is given at the very end of Section [6.2 O
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Notes
Structure of the article

We close the introduction by providing an overview over the article and its main contributions. In
Section [2| we collect some basic concepts and inequalities from the theory of Sobolev spaces, ran-
dom geometries and discrete and continuous ergodic theory. We furthermore establish local regularity
properties for what we call n)-regular sets, as well as a related covering theorem in Section In Sec-
tion [2.13] we will demonstrate that stationary ergodic random open sets induce stationary processes
on Z%, a fact which is used later in the construction of the mesoscopic Voronoi tessellation in Section

In Section [3| we introduce the regularity concepts of this work. More precisely, in Section [3.1] we
introduce the concept of local (§, M )-regularity and use the theory of Section in order to establish
a local covering result for OP, which will allow us to infer most of our extension and trace results. In
Section [3.2) we show how isotropic cone mixing geometries allow us to construct a stationary Voronoi
tessellation of R? such that all related quantities like “diameter” of the cells are stationary variables
whose expectation can be expressed in terms of the isotropic cone mixing function f. Moreover we
prove the important integration Lemma[3.78]

In Sections we finally provide the aforementioned extension operators and prove estimates for
these extension operators and for the trace operator. In Section [6|we study the sample geometries.

A Remark on Notation

This article uses concepts from partial differential equations, measure theory, probability theory and
random geometry. Additionally, we introduce concepts which we believe have not been introduced
before. This makes it difficult to introduce readable self contained notation (the most important aspect
being symbols used with different meaning) and enforces the use of various different mathematical
fonts. Therefore, we provide an index of notation at the end of this work. As a rough orientation, the
reader may keep the following in mind:

We use the standard notation N, Q, R, Z for natural (> 0), rational, real and integer numbers. P
denotes a probability measure, [E the expectation. Furthermore, we use special notation for some
geometrical objects, i.e. T? = [0, 1)? for the torus (T equipped with the topology of the torus), ¢ =
(0, 1)¢ the open interval as a subset of R¢ (we often omit the index d), B a ball, C a cone and X a set
of points. In the context of finite sets A, we write # A for the number of elements.

Bold large symbols (U, Q, P.,. . .) refer to open subsets of R? or to closed subsets with 0P = oP.
The Greek letter I refers to a d — 1 dimensional manifold (aside from the notion of I"-convergence).

Calligraphic symbols (A, U, ...) usually refer to operators and large Gothic symbols (B, ¢, ...)
indicate topological spaces, except for 2.

Outlook

This work is the first part of a triology. In part Il, we will see how to apply the extension and trace
operators introduced above.

In part lll we will discuss general quantifyable properties of the geometry that are eventually accessible
also to computer algorithms that will allow to predict homogenization behavior of random geometries.

DOI 10.20347/WIAS.PREPRINT.2849 Berlin 2021



Extension Operators on perforated domains 13

2 Preliminaries

We first collect some notation and mathematical concepts which will be frequently used throughout
this paper. We first start with the standard geometric objects, which will be labeled by bold letters.

2.1 Fundamental Notation and Geometric Objects

Throughout this work, we use (e;) 1....a for the Euclidean basis of R? By C' > 0 we denote any

=
constant that depends on p and d but no further dependencies unless explicitly mentioned. Such
mentioning may expressed in some cases through the notation C(a, b, . . . ). Furthermore, we use the
following notation.

Unit cube The torus T = [0, 1)? is quipped with the topology of the metric

d — min |z —
(,y) = min |z —y + 2|

. In contrast, the open interval I¢ := (0, 1) is considered as a subset of R%. We often omit the index
d if this does not provoke confusion.

Balls Given a metric space (M, d) we denote B, (z) the open ball around = € M with radius
r > 0. The surface of the unit ball in R? is S*~!. Furthermore, we denote for every A C R? by
B,.(A) = UxEA B, (z).

Points A sequence of points will be labeled by X := (), -
A cone inR%is usually labeled by C. In particular, we define for a vector v of unit length, 0 < a < 5
and R > 0 the cone

Crar(x):={2€Bgr(zx) : z-v>|zlcosa} and C,,(x):=C,4(z).
Inner and outer hull We use balls of radius ~ > 0 to define for a closed set P C R the sets

P, :=B.(P):= {x e R? : dist (z,P) < 7“} ,

(2.1)
P_, :=RN [B,(R'\P)] :={z e R : dist (z,R*\P) >r} .

One can consider these sets as inner and outer hulls of P. The last definition resembles a concept of
“negative distance” of z € P to P and “positive distance” of z & P to JP. For A C R? we denote
conv(A) the closed convex hull of A.

The natural geometric measures we use in this work are the Lebesgue measure on R?, written | A| for
A C R? and the k-dimensional Hausdorff measure, denoted by #* on k-dimensional submanifolds
of R (for k < d).

2.2 Simple Local Extensions and Traces

In the following, we formulate some extension and trace results. Although it is well known how such
results are proved and the proofs are standard, we include them for completeness since we are par-
ticularly interested in the dependence of the operator norm on the local Lipschitz regularity of the
boundary.

The following is well known:
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Lemma 2.1. Forevery 1 < p < oo there exists C,, > 0 such that for every R > (0 there exists an
extension operatord : W1P(Br(0)) — W1P(Byr(0)) such that

||VUU||LP(BQR 0)) = <Gy ||vu||LP(IBR(O) :

Let P C R? be an open set and let p € OP and J > 0 be a constant such that B;(p) N P is graph
of a Lipschitz function. We denote

M(p,6) :=inf{M: 3¢: U CR" - R
¢ Lipschitz, with constant M s.t. Bs(p) N OP is graph of ¢} . (2.2)

Remark 2.2. For every p, the function M (p, -) is monotone increasing in ¢.

Lemma 2.3 (Uniform Extension for Balls). Let P C R? be an open set, 0 € OP and assume there
exists § > 0, M > 0 and an open domain U C Bs(0) C R4~ such that OP N Bs(0) is graph of
a Lipschitz function ¢ : U C R4 — R? of the form p(%) = (&, $()) in Bs(0) with Lipschitz
constant M and p(0) = 0. Writing x = (Z,x4) and defining p = 0v/4M? + 2" there exist an
extension operator

CCIEES O
such that for
A(0,P, p) i= (7, —2q +20(3)) : (5,) € B,(0)\P} C By(0), 2.
and for every p € [1, oo the operator
U WA, P, p)) = W(B,(0),
is continuous with
[Uull o, onp) < Nllzoaop,p) - VU o, 0np) < 2M VUl poaop,p) - (25)

Remark 2.4. In case ¢(Z) > 0 we find A (0, P, p) C B,(0).

Proof of Lemmal2.3 In case ¢(Z) = 0 we consider the extension operator I/, : WHP(R4! x
(—00,0)) — WLP(R?) having the form (compare also [6} chapter 5], [1])

u(z) ifzg <0

u (T, —xq) ifxg>0

(Uyu) (x) = {

The general case follows from transformation. O

Lemma 2.5. Let P C R? be an open set, 0 € 0P and assume there exists 6 > 0, M > 0
and an open domain U C Bs(0) C R such that OP N Bs(0) is graph of a Lipschitz function
¢ U C RTY — R of the form (%) = (&, ¢(Z)) in Bs(0) with Lipschitz constant M and
©(0) = 0 and define p = d/AM? + 2 7! . Writing x = (Z,x,) we consider the trace operator
T : C'(PNBs(0)) — C (9P NB,(0)). Foreveryp € [1,00] and every r < p(( )) the operator
T can be continuously extended to

T: W' (P Bs(0) = L'(9P NB,(0)),

such that

d(p—r)

1T ull @opre, o) < Crpp™ 7

1 Tl
TVAM? + 27 |ullys s, o) - (2.6)
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Proof. We proceed similar to the proof of Lemma/[2.3]

Step 1: Writing B, = B,.(0) togetherwith B = {x € B, : 4 < 0}and X, := {x € B, : 4 =0}
we recall the standard estimate

(/Ellup)igcﬁp (/BI|V“’J);+</BIUP>’1’ |

which leads to

1 1 1
r ' dlp—r) 1 P ! P ’
/ W | < Copp™ [ / Val' ]+ / u
s, By By

Step 2: Using the transformation rule and the fact that 1 < |det Dy| < /4M?2 + 2 we infer (2.6)
similar to Step 2 in the proof of Lemma[2.3]

1 1
T l r
/ lul" | < VAM? 427 / luo el
OPMB, (0) S5

1 1
a(p—r) 1 1 ? »
< Cppp™ 7 TIVAME R ( (/ \V(uw)p> v </ |uoso|p)
o By
dp—r) _1 Iy
Scr,pp P T AM? + 27
1 1
p P
p (/ |(Vu) o pl? det Dcp) + (/ |u o [P det Dgo)
B, B,
and from this we conclude the Lemma with =" (B,") C B5(0). O

2.3 Local Nitsche-Extensions

In this work, we will use bold letters for R%-valued function spaces. In particular, we introduce for
I<p<o©

L?(Q) := LP(u; RY),
W'?(Q) :={ueL’(Q) : Vue LP(Q;R™")} .
From [5] we know that on general Lipschitz domains an estimate like the following holds:

Lemma 2.6. Forevery 1 < p < oo there exists a constant C' > 0 depending only on the dimension
d > 2 such that the following holds: For every radius R > ( there exists an extension operator
Ur : Wl’p(BR(O)) — Wl,p(BQR(())) such that

IV* Urt)llwro@,p0) < C IV ullwroga)) -

Again, we will need a refined estimate on extensions on Lipschitz domains which explicitly accounts
for the local Lipschitz constant.
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Lemma 2.7 (Uniform Nitsche-Extension for Balls). For every d > 2 there exists a constant C'y
depending only on the dimension d such that the following holds: Let P C R? be an open set,
0 € OP and assume there exists 6 > 0, M > 0 and an open domain U C Bs(0) C R4?
such that OP N Bs(0) is graph of a Lipschitz function ¢ : U C R4 — RY of the form ¢(Z) =
(Z,¢(z)) in Bs(0) with Lipschitz constant M and ¢(0) = 0. Writing = (Z,x,) and defining

p= 5\/m_1 and
A0,P,p):={(Z,zq) €P : || < p, 34 < Cy(1+M?)}, 2.7)
and for every p € [1, o] there exists a continuous operator
U: WA, P, p)) — W(B,(0),
such that for some constant C' independent from (0, M) and P it holds
IV U s, op ey < C (L+ M) (IVull 1o a0 p,)) - (2.8)

Remark 2.8. In case ¢(Z) > 0 the proof reveals A (0, P, p) C B,,(0) for some ¢ depending only
on the dimension d.

In order to prove such a result we need the following lemma.

Lemma 2.9 ([26] Chapter 6 Section 1 Theorem 2). There exist constants cy, co, c3 > 0_such that for
every open set P C R? with local Lipschitz boundary there exists a function dp Rd\P[3 — R with

cidp(z) < dist(z,P) < codp(z),
\V/iE{l,...,d}l ‘8ldp($)| SC:J,,
Vik € {l,....d}: |0,0kdp ()| < c5|dp(z)] " .

From the theory presented by Stein [26] we will not get an explicit form of C'ys but only an upper bound
that grows exponentially with dimension d.

Proof of Lemmal2.ZL We use an idea by Nitsche [20], which we transfer from p = 2 to the general
case, thereby explicitly quantifying the influence of M. For simplicity we write Ps := P N B;s(0) and
Pg := Bs(0)\P and assume that x € Py iff x € B5(0) and z4 < ¢(Z).

As observed by Nitsche, it holds

Ve e PE: 0< (14 M%) 2 (24— 6(7)) < dist(z,0P) < 24 — (%) |

N

and together with Lemma we can define dp y(z) := 2cy (1 + M?)2 dp(z) and find for ¢ >

max {20%, 40263} that

N[

2 (24— ¢(7)) < dpu(w) < c(1+M?)? (24— 6(7))
Vie {1,....d}: Oudp ar(z)| < e (1+ M?)?
Vi, ke {1, Ce ,d} . lﬁiakdpM(:c)] S C (1 —+ Mz) ’dp}]y[(.%‘)’_l .
Ifp € C(][1,2]) satisfies
2 2
/ Yt dt =1, / Fb(t) dt = 0. 2.9)
1 1
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Nitsche introduced z := (&, 24 — Adp s (2)) and proposed the following extension on z € PL:
2
w(z) = / BON) (u(2) + Mia(2) Bidp ar()) .
1

One can quickly verify that this maps C'(P;) onto C(Bp(O)). In what follows, we write €[u](x) :=
Véu(x) and particularly e;;[u](x) := 3 (d;u; + 0;u;) as well as ;[u] () = e5;[u](x,) for z € PL.
Then for z € PX N B,(0)

/ PO (2)(2) + Nde s () () + Ay i (1) () 2.10)
+)\ 8zdP,M(x) 8jdp,M( )5dd< ) + )\8 8 dp M( )Ud(l')\)) (2.11)
From the fundamental theorem of calculus we find
A
ug(zy) = ug(zr) + 5(:%)/ Oqug(xy) dt
1

which leads by to
2 2 2
/ zﬂ()\)Aaﬁjdp,M(x) ud(x,\) d\ = 82-8jdp7M(x) dp,M(x) / edd[u] (l’t) dt/ w()\))\ dX.
1 1 w

We may now apply |- |” on both sides of 1.; integrate over PC N B,(0) and use the integral
transformation theorem for each A to find

lefulll o (B8, 0y) < € (14 M2) lle[ulll e, -

2.4 Poincaré Inequalities

We denote for bounded open A C R4
W(ldfT(A) = {u € W17P(A) : Jdo: B(x) CAV ][ u = 0} ‘
| r(2)

Note that this is not a linear vector space.

Lemma 2.10. Foreveryp € [1,00) there exists C,, > 0 such that the following holds: Let0 < r < R
and x € B(0) such thatB,(x) C Br(0) then for every u € WP (Bx(0))

Rd—l Rd
[lEosnion < Co (P2 VUl + 7 i)« (@12
and for every u € W(lo’i ((Br(0)) it holds
p P e P! p
[l oy < G (5) (14 (5) ) IVl maon - (2.13)
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Remark. In case p > d we find that holds iff u(x) = 0 for some = € B, (0).

Proof. In a first step, we assume z = 0 and R = 1. The underlying idea of the proof is to compare
every u(y), y € B1(0)\B,(0) with u(rz). In particular, we obtain for y € B;(0)\B,(0) that

1
u(y) = u(ry) +/ Vulry +t(1 —r)y) - (1 —r)ydt
0
and hence by Jensen'’s inequality
1
< ([ 19+ o0 9l =0 o de )l )
0

We integrate the last expression over B (0)\B,.(0) and find

/ B1(0)\B- (0 Iy = /sd 1 / (/01 \Vu(rsy +¢(1 —r)sv)[’ (1 —r)Ps? dt) s™ dsdy
t/“ - h&ryﬂpdy
/Sd 1/ </ Vu(tw)P (1—r)7ts" 1dt) d-14s

L ey

0)\B(0

<c/ ds s~ —/ dttdl/ V()P (1 — rp-tsr!
rs Sd—1

/ fu(ry)? dy
B1(0)\B(0)

1
< O IVullin @, 0 + 72 lullis @, 0)) -

For general * € B;(0), use the extension operator I : Wl’p(IB% (0)) — WP(B,(0)) such that
||uu||W17P(B4(O y = C ||u||W1P (B1 (0)) @Nd VU ul[y, P(Ba(0) = C ||vu||W1P (0))- Since B1(0) C
Bs(x) C B4(0) we infer

HUHLp (B1(0)) < HUUHLP(BQ <C ( HVZ/{UHLP (Ba(x rd HUUHLP(BT ) :
and hence (2.12). Furthermore, since there holds HuHL,,(B1 < ClIVulllsm, oy for every u €
W(lo’g’(IB%l(O)), a scaling argument shows ||u||Lp y < Cr? ||Vu||Lp(B ) for every
W(O’f’ (B1(0)) and hence (2.13). For general R > 0 use a scaling argument. O

A similar argument leads to the following, where we remark that the difference in the appearing of % is
due to the fact, that integrating the cylinder needs no surface element %1,

Corollary 2.11. Forevery p € [1,00) andr > 0 there exists C}, > 0 such that the following holds:
Letr < L, P, := B&Y(0) x (0,L) and x € Py, such that B,(x) C Py, then for every
u < Wl,p(PLT)

L
6050 < Co (22 190y, + = Nl ) 219
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and if additionally f;, () U = 0 then

HUHLI’ (PL.,) (Lp Hvu”m (Pp.» + LrP! HVUHLI’(B ) ) (2.15)

Lety € Pr, suchthatB,(y) C Py, then foreveryu € WP(Py )
Lot

2.5 Korn Inequalities

Lp bt deuHLP(PLT) : (2.16)

We introduce on open sets A C R? the Sobolev space

Wgﬁ(o)(A) = {uEWl’p Vi, g /8u] ; —0} .

To the authors best knowledge, the following is the most general Korn inequality in literature.

Theorem 2.12 ([5] Theorem 2.7 and Corollary 2.8). Let1 < p < oo ande € (0,1) andé > 0. Then
there exists a constant C,, > 0 depending only on d, p, € and § such that for every bounded open set
A € R with § > 0 such that § /diamA > § and with the property
Vo,y€ A, |z —yl<d: FyeC([0,1]; A), v(0) = z, v(1) = y such that:
ele —y@®lly —v@®)] ¢ @17)
T =Y

1
I(v) < B |z —y| and Vt e (0,1): dist(y(t),04) >

it holds
Vu € W o (A) 1 [Vl oy < Co V2l oy - (2.18)

Remark 2.13. In the original work the claimed dependence of C, was on d, p, €, d and A with the
observation that (2.18) is invariant under scaling of A. However, this scale invariance results in the
dependence on d, p, € and 6 /diam A since ¢, p and d are not sensitive to scaling of A.

Definition 2.14. Domains A C R? satisfying (2.17) for some ¢ € (0,1) and § > 0 are called
(¢, 6)-John domains or simply John domains.

Corollary 2.15. Forevery 1 < p < oo there exists C,, depending only on d and p such that for every
bounded open convex set A C R? the estimate (2.18) holds.

We furthermore introduce the set

Wéﬁ(o)yr(A) = {u c W'P(A) : 3o : B.(x) CA V Vi,j: / ( )(‘)L»uj — Qju; = 0}

which is not a vector space.

Lemma 2.16 (Mixed Korn inequality). Letl <p < ocande,d € (0,1). Then there exists a constant
C, > 0 depending only on d, p, € and ¢ such that for every (¢, 0)-John domain A C B,(0) and for
everyr € (0,1) and every x € A withB,.(x) C A it holds

- (A
Vu e W) [[Vulup C(LJ) IVl + IV els ) - (219

Furthermore,

1

1, . A ’A| P s
Vu e WL o (A) ¢ [Vl < G, (W) (Hv uHLp(A)) . (2.20)
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Unfortunately, we do not have a reference for a comparable Lemma in the literature except for [25] in
case p = 2. The author strongly supposes a proof must exist somewhere, however, we provide it for
completeness.

Proof. Let C, be the constant from Theorem for domains with a diameter less than 2 and sup-
pose (2.19) was wrong. Then there exists a sequence of (¢, d)-John domains A,, C B;(0) with
T, € Ap,rn € (0,1) with B,., (2,,) C A, and functions u,, € W*(A,,) such that

1
[Anl )7 ]
1= HvunHLP( > G, (‘Sd 1 pd n (”V unHLP(An) + ||vun||Lp(Bm(xn))) ‘

We define VL (up) = fA (Vu, — Vou,) and u, | (z) = u,(z) — Vi(u,)x with Viu, | =
V*u,. Hence by (2.18)

Vi — Vi (un) < CplIVPun, Ll oa,y = Co VUl o4,
(An)

‘LP(An)

We directly infer with C,, := |S‘|ii‘?|‘rd
1 1 _
s _ 1L
CoCE (I ulisay + IVbnllogs, ) =05 G [V = )| 0.
(2.21)
Furthermore, we find
YO8 i L
IVanllsny = [Tr)|],, = [Ton=Tatw)]
Lval > _ R vl
Hv" (un) LP(An) IVtnllzoany HVU” Vi (tn) Lr(An) ]
and hence HV_#(un) " — 1 due to (2.21). Since VX (u,,) are constant, it holds
LP(Ay,
_ P _
C || VE(un) — [V
Lr(Bry, (wn)) Lr(An)
and we infer from a similar calculation
1 _ 1
C’#Z(Vun ) —I—HVun—V# un( )ZO;; VL (uy,
IVisullzoge,, oy (tn) L7 (Br,, (2n)) (1) L7 (Br,, (xn))
> V)|
LP(Ay)

This implies HV_#(%)

— 0 by (2.21), a contradiction. Hence, (2.19) holds with C'p = nC,

LP(Ay)
for some n € N.
Estimate (2.20) now follows from 2.19') and (2. 18|) and the definition of Wv’ﬁ(o) (Br(0)). O

2.6 Korn-Poincaré Inequalities

Generalizing the above Korn inequality to a Korn-Poincaré inequality, we define

1
W

(0),VL(0),r (BR(O)) = {U c Wl’p(Br(O)) : ELCE : BT(.CE) C BR(O) V

B (z) r(x)
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Lemma 2.17 (Mixed Korn-Poincaré inequality on balls). For every p € [1,00) there exists C,, > 0
such that for every R > 0, € (0, R) and every x € Bg(0) with B,.(x) C Br(0) it holds

R S
Vu € WgéivL(O),r(BR(o)) C VUl @) < Cr < ) IV*ull o5 0)) > (2.22)
[z g0y = o <T> (1 + <r> RP IV ull7s 3 00)) -
(2.23)

Proof. Apply Lemma for R = 1 and use a simple scaling argument to obtain

R\ / .
IVull 1o @0y < Cv (7) (“V “HLP(BT(O))) :

Afterwards apply Lemma O

Lemma 2.18 (Mixed Korn-Poincaré inequality on cylinders). For every p € [1,00) andr > 0 there
exists C,, > 0 such that the following holds: Letr < L, Pr, := (0, L) x B¢~1(0) andx € Py,
such thatB,.(x) C Py, then for every u € Wl’p(PL,T)

L\? s
\WM&WMﬁﬂ%((>|W ullp, )+ HVWMB@)- .24

Furthermore,

2p p+1

L S
nwm&”sc(—wvmmmT+

L
IVl s MMWAQ, 2.25)

and if additionally v € Wl’p o (Pp..) then

(0),r
L2
||VUHL,, (PL.,) C 0 HVSUHLP (PL.,) HUHLP (PL.,) < Cp— HvSuHLz7 (PL.,) (2.26)

Defining V su = {5, (Vu — V°u) and

(M%) (z) = V{su(x —a) + ][ u (2.27)

Bs(a)

we find for a, b with Bs(a), Bs(b) C Py, for everyu € W*(Py,,) that

et @) - ] @f < cle-ar 2 ) e
op conv(Bs (a)UB; (b))

Furthermore, for every 6 < r we find

(M) () = [MEu] ()"
<o((§) e ()0 ()) I e
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Proof. Step1:W..o.gwe assume L € N, a = 1e;,b= (L — })e;, 7 = 1 and define

1
Pui= (key +[0.1) < B{0)) . By = ke, + By 5o )

riu(z) = {Mﬁ(’i;)elu] () = []i (Vu- vsu)} T+ ]{3 2

Then we find by Lemma[2.16]
IVull o) < C (I (4 = 7)) + [Vl o)

< C (V" Ul o) + 197Ul o) -

Since V17 u is constant, we find

K-1 p
IVTRull e, < C IV, P>+C<ZHV Teau—miu)| p) -

Furthermore, we find

T,j(u—T,jHu):]i <Vu—]i (Vu—Vsu)—Vsu>x+]{3 (u—]{g u)
k k41 k k1

_ 5 5 _ 5 S
=Tt — T U = Tk+1<“ — Thu) .

This implies by V77 — Tiu) — V?) (u — 77u) and Lemma|2.16(and Theorem|2.12
f ( k Bk+1 k
HV (Tli+1“ TRU HLP (Pri1) <C ”VTI?H — TRU ||LP(Bk+1)
<C|V(u— Tku)HLP (Bjt1)
A s
<< O (IV" (w = 720 pqo ey + IV (4 = )i, )

S C HVSUHLP (Pr41UPy) -

Since the last inequality implies

K-1 P
(Z HV (TZHU B T’iu) HLl(Pk-‘rl)) < kPO HVSUHLP( 0,K)xB{~1(0))

k=0

and [|Vrgull7,p,) < C (HVSUHL,, pyy T IVUllLo s, ) by Lemma [2.16|we find in total

IV rgull7, Pr) = C Hvu”m Bo) T CKr! HVSUH L ((0,K)xBI1(0))

Adding the last inequality from K = 0 to K = L implies (2.24) through scaling. Applying Corollary
2.11|we infer that (2.25) and (2.26).

Step 2: We observe that Step 1 also holds for P, ,. being replaced by conv(Bs(a) U Bs(b)). Writing
wy = u — M u we find from the above calculations

p

M0y — Mg’éu)p (z) = ’Ms’é (u - MZ’%) ()

< (C— = (]ac — a|p/ \Vub - Vsub\p +/ |ub\p) .
0 Bs(a) Bs(a)
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Using that u;, € W%g; -
2.1/

Step 3: W.lo.g. a = 0. Writing @(y) := u(y) — (V%u) y with fBT(O) u = fBr(O)ﬂwe infer (2.29)
from Lemmas[2.16 and 2.10] via

. (conv(Bs(a) U Bs(b))), we find (2.28) with help of (2.26) and Lemma

(0),

‘[Mf{lu] () — [Mg’éu} (x)‘p <C Vu— Viu — ﬁu ! |z + ][ u—][ u ’
B1(0) B1(0) Bs(0)
<C (‘vu—%u‘pﬂvsu@ yx|p+][ u—][ ap
B1(0) B1(0) B;(0)

<C (5*d [l 1V ull 5, 0y + 0" (1 + 5pid> ”vaHiP(Bl(o))) '

O

2.7 Voronoi Tessellations and Delaunay Triangulation

Definition 2.19 (Voronoi Tessellation). Let X = (x;)._,, be a sequence of points in R? with z; # .

if 7 # k. For each x € X let

i€N

Gz)={yeR!: vieX\{z}: [z —y| <|Z—y|}.

Then (G(;)),y is called the Voronoi tessellation of R? w.r.t. X. For each = € X we define d(z) :=
diamG(z).

We will need the following result on Voronoi tessellation of a minimal diameter.

Lemma 2.20. Lett > 0 and let X = (z;),. be a sequence of points in R? with |z; — xy| > 2t
ifi # k. Forx € XletZ(zx) := {yeX: Gy) NB(G(x)) #0}. Theny € Z(x) implies
|z —y| < 4d(z) and

4d(x))d

T

#L(x) < ( (2.30)

Proof. LetX; = {z; € X : H 190G, NIG;) > 0} the neighbors of x; and dj, := d(z;). Then
all z; € Xsatisfy |z, — x;| < 2d,. Moreover, every € X with |Z — x| > 4d), has the property
that dist( 0G (Z), x ) > 2dy, > di + vand T & Zj. Since every Voronoi cell contains a ball of
radius t, this implies that #Z;, < [Byg, (zx)|/ |B:(0)] = (%)d. O

T

Definition 2.21 (Delaunay Triangulation). Let X = (xi)ieN be a sequence of points in R? with z; #*
xy if i # k. The Delaunay triangulation is the dual unoriented graph (see Def. ?2? below) of the Voronoi
tessellation, i.e. we say D(X) := {(z,y) : H" ' (0G(x) NOG(y)) # 0}.

2.8 Local n-Regularity

Definition 2.22 (- regularity). For a function 7 : 0P — (0, r| we call P n-regular if

1
Vp e dP, ¢ € (O, 5) , D€ By (p) NOP = n(p) > (1 —e)n(p) . (2.31)
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7 oS
/ - T~
[ T N
/ \\/&/ )
:/ ) \} Figure 1: Anillustration of n-regularity. In The-
I T/ orem [2.25| we will rely on a “gray” region like
oA . L
\\ TN A in this picture.
\ B !
N ~ - - /
N -7

Remark 2.23. This concept and its consequences from Lemma|2.24]and Theorem [2.25|will be exten-
sively used later to cover OP by a suitable family of open balls.

Lemma 2.24. Let P be a locally n-regular set forn : OP — (0,t). Thenn : P — R is locally
Lipschitz continuous with Lipschitz constant 1 and for every e € (0, 3) and p € B.,(p) N P it holds

1 —
——n(p) > () > n(p) — p— 5l > (1= 2)n(p). 232
Furthermore,
p—pl < emax{n®)n()} = Ip—pl< ——min{np).n(B)}  (@39)

Proof. Let p,p such that |[p — p| < in(p) with e,; = inf{e : |p — p| < en(p)}. This means
€ € ey 3) iffn(p) > (1 —€) n(p) and we find
n(p) 2 n(p) — Ip — bl = n(p) — &pam(p) > (1 —&)n(p)

which implies [p — p| < $=-1(p) and the local Lipschitz continuity by a symmetry argument in p, p.
This in turn leads to n(p) > (1 — 1) n(p) or

= 1:277(1?) < %(n(p) ~lp—#) < T—n(p) < 1 —125

1 1—e¢
implying (2.32) and continuity of 7).
In order to prove (2.33), w.l.o.g. let n(p) < n(p). Then

n(p) n(p),

lp—p| <en(p) < 577(19) :

1—
O

Theorem 2.25. LetI" C R? be a closed set and let (-) € C(T") be bounded and satisfy for every
e € (0,2) andfor [p — p| < en(p)
1—e¢
1—2¢

n(p) >n(p) >np) —lp—p > (1 —-¢)np). (2.34)

and define 1j(p) = 27X n(p), K > 2. Then for every C' € (0, 1) there exists a locally finite covering
of I' with balls By, (px) for a countable number of points (py),.y C I' such that for every i # k
with Bﬁ(pi)(pi) N Bﬁ(pk)(pk) # () it holds

2K—1 -1 ~ ~ 2K—1 ~
— W) <0pk) < se—71(p:)
2 2 —1
and oy min {7 (pi), ()} 2 [pi — pil = Cmax {7(pi), 7(pw) }
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Proof. We chose § > 0, n € N such that (1 — 1) (1 —4) > C. W.o.lg. assume i) < (1 — ).

n
Consider () := [0, %] d, let ¢y ... ,« denote the n? elements of [0, 1)¢ N % andletQ,; = Q+z+q,
2 € 7% We set By =0,T1 =T, n :=(1— §)k and for £ > 1 we construct the covering using
inductively defined open sets ;) and closed set I';, as follows:

1 Define I'y; = I'y. Fori = 1, ..., n¢ do the following:

1.1 Forevery z € Z% do

if 3p € (Usz,i) NTki, 7(p) € (ks 1] thensetd,; = By (p), X.; = {p}
otherwise setb,, =0, X,,=0.
1.2 Define B(k)ﬂ‘ = UzeZd bz,i and Fk,i—i—l = Fk,i\B(k),z‘ and X(k),i = UzeZd XZ’Z’.
Observe: p1,p2 € Xu); implies [p1 —po| > (1—2)m, and p3 € Xy, Jj < i

implies p1 & B,, (p3) and hence |p; — p3| > n. Similar, p3 € X, I < k, implies
|1 — P3| > m > .

2 Define 'y := Fk,nd-‘rl! X = LJz X(k),i-
The above covering of I' is complete in the sense that every x € I’ lies in one of the balls (by
contradiction). We denote X := |J, Xi = (ps);cy the family of centers of the above constructed

covering of I' and find the following properties: Let p1, po € X be such that B,y (p1) N Biip,) (D2) #
(0. W.l.o.g. let 77(p1) > 7(p2). Then the following two properties are satisfied due to (2.34)

1 It holds |1011<7—1 po| < 2n(p1) < 2K—1,17](p1) and henCiE%ﬁ(pQ)(pg) C B227Kn(pl)(p1) and
1(p2) > 25e=t1(p1)- Furthermore 7j(p1) > 7i(p2) > Z5r=rti(p1).

2 Let k such that 77(p1) € (Mg, Mkv1]- If @lso 77(p2) € (M, Mk+1] then the observation in Step
1.(b) implies [p1 — pa| > (L= 3)me = (1= 3) (L= 0)(p1). 1 7(p2) & [, 1) then
1(p2) < i and hence py & Bji(,) (p1), implying [p1 — pa| > 7(p1).

Due to our choice of n and 4, this concludes the proof. O

2.9 Dynamical Systems

Assumption 2.26. Throughout this work we assume that (), % , P) is a probability space with count-
ably generated o -algebra .% .

Due to the insight in [10], shortly sketched in the next two subsections, after a measurable transfor-
mation the probability space {2 can be assumed to be metric and separable, which always ensures

Assumption

Definition 2.27 (Dynamical system). A dynamical system on €2 is a family (7,),cra of measurable
bijective mappings 7, : £2 — {2 satisfying (i)-(iii):

(i) Ty O Ty = Tuy , To = id (Group property)

(i) P(r_.B) =P(B) VxR B € .7 (Measure preserving)
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(i) A: RIxQ—Q (z,w)— T,w is measurable (Measurability of evaluation)

Aset A C Qis almost invariantif P ((A U 7, A) \ (AN 7,A4)) = 0. The family
I ={AeF : VxeR'P((AUTA)\ (ANT,A)) =0} (2.36)
of almost invariant sets is o-algebra and
E (f|-#) denotes the expectation of f : 2 — Rw.rt. .7 . (2.37)

A concept linked to dynamical systems is the concept of stationarity.

Definition 2.28 (Stationary). Let X be a measurable space and let f : 2 x RY — X. Then f is
called (weakly) stationary if f(w,z) = f(7,w,0) for (almost) every .

Definition 2.29. A family (An)nEN C R%is called convex averaging sequence if

(i) each A, is convex
(ii) foreveryn € Nholds A,, C A1

(iii) there exists a sequence r,, with r, — 00 as n — oo such that B, (0) C A,,.

We sometimes may take the following stronger assumption.

Definition 2.30. A convex averaging sequence A, is called regular if

|An|71#{z €Z: (z+T)NOA, #0} — 0.
The latter condition is evidently fulfilled for sequences of cones or balls. Convex averaging sequences
are important in the context of ergodic theorems.

Theorem 2.31 (Ergodic Theorem [4] Theorems 10.2.1l and also [27]). Let(A,), .y C R? be a convex
averaging sequence, let (T,),cra be a dynamical system on Q) with invariant o-algebra .# and let
f: © — R be measurable with |E(f)| < co. Then for almost all w € €2

1A, 7! ’ f(rpw)dz — E(f].#). (2.38)

We observe that E (f|.#) is of particular importance. For the calculations in this work, we will partic-
ularly focus on the case of trivial .#. This is called ergodicity, as we will explain in the following.

Definition 2.32 (Ergodicity and mixing). A dynamical system (7.),cra On a probability space (2, 7, IP)
is called mixing if for every measurable A, B C (2 it holds

lim P(ANT,B)=P(A)P(B). (2.39)

[|f| =00

A dynamical system is called ergodic if

lim
n—00 (Qn)d

/ P(AN7,B)dz = P(A)P(B). (2.40)
[_nvn}d
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Remark 2.33. a) Let Q = {wo = 0} with the trivial o-algebra and 7,wg = wp. Then T is evidently
mixing. However, the realizations are constant functions f,,(z) = c on R¢ for some constant c.

b) A typical ergodic system is given by {2 = T with the Lebesgue o-algebra and P = L the Lebesgue
measure. The dynamical system is given by 7,5 := (x +y) mod T.

c) It is known that (7, ),cra is ergodic if and only if every almost invariant set A € .# has probability
P(A) € {0, 1} (see [4] Proposition 10.3.1l1) i.e.

[VeP((r,AUA)\ (1 ANA)=0] = P(A) €{0,1}. (2.41)
d) It is sufficient to show (2.39) or (2.40) for A and B in a ring that generates the o-algebra .%. We
refer to [4], Section 10.2, for the later results.
A further useful property of ergodic dynamical systems, which we will use below, is the following:

Lemma 2.34 (Ergodic times mixing is ergodic). Let (2, Z, P) and (Q, Z, I@’) be probability spaces
with dynamical systems (7),cre and (7,),cra respectively. Let ) := Q) x () be the usual product
measure space with the notation w = (W, w) € Q for® € Q and & € Q. If 7 is ergodic and 7 is
mixing, then 7, (W, w) = (T,w, T,W) is ergodic.

Proof. Relying on Remark-c ) we verify (2 - 0) by proving it for sets A = A x Aand B=Bx B
which generate .# = . ® .%. We make use of AN B = (A N B> X (A N B) and observe that

P(ANT,B) = ]P((A N mé) x (,21 N @jg)) - P(A N+ B’) I?’(fl N7, )
—P(ANB)B(An%B) + [P(An#B) -P(AnB)| P(An7B).
Using ergodicity, we find that

lim (2711)0[ /[_M]d IP’(A N B) I@([l N %xé)dx = I@’((A N B)) I@([l N B)
—P(ANB). (2.42)

D:Jz

>

For n > R we find

1 / 5
(2n)* i

The last two limits (2.42) and (2.43) imply (2.40). O

Remark 2.35. The above proof heavily relies on the mixing property of 7. Note that for 7 being only
ergodic, the statement is wrong, as can be seen from the product of two periodic processes in T x T
(see Remark [2.33). Here, the invariant sets are given by I4 := {((y +2) mod T, z) : y € A}
for arbitrary measurable A C T.

DOI 10.20347/WIAS.PREPRINT.2849 Berlin 2021



M. Heida 28

2.10 Random Measures and Palm Theory

We recall some facts from random measure theory (see [4]) which will be needed for homogeniza-
tion. Let EDT(Rd) denote the space of locally bounded Borel measures on R? (i.e. bounded on every
bounded Borel-measurable set) equipped with the Vague topology, which is generated by the sets

{,u : /fdu € A} for every open A C R and f € C’C(Rd).

This topology is metrizable, complete and countably generated. A random measure is a measurable

mapping
te: Q@ — MMRY),  wr

which is equivalent to both of the following conditions
1 For every bounded Borel set A C R the map w + p1,,(A) is measurable

2 Forevery f € C.(R?) the map w — [ f du, is measurable.

A random measure is stationary if the distribution of 1, (A) is invariant under translations of A

that is 1, (A) and p,(A + z) share the same distribution. From stationarity of i, one concludes

the existence (|10, 22] and references therein) of a dynamical system (Tgc)xeRd on ) such that
w(A+ 1) = .., (A). By a deep theorem due to Mecke (see [19, 4]) the measure

_ / / 9(5) Xa(7w) djau(s) dP(w)

can be defined on €2 for every positive g € Ll(]R{d) with compact support. pp is independent from
g and in case 1, = L we find up = P. Furthermore, for every B(R?) x B({2)-measurable non
negative or up X L- integrable functions f the Campbell formula

/Rdfm ) djao () dP(w /Rd/fxwdup w) do

holds. The measure (i, has finite intensity if up () < +o0.

We denote by
E,.(f|7) := / f the expectation of f w.r.t. the o-algebra .# and uip . (2.44)
Q

For random measures we find a more general version of Theorem[2.31

Theorem 2.36 (Ergodic Theorem [4] 12.2.VIIl). Let (2, % ,P) be a probability space, (An)neN c R?
be a convex averaging sequence, let (T,.),cra be a dynamical system on ) with invariant o -algebra
S andlet f : Q0 — R be measurable with [, | f| djip < occ. Then for P-almost all w € §

|A, |7 /A F(ew) dpy () — B, (F17) (2.45)

Given a bounded open (and convex) set Q C (2, it is not hard to see that the following generalization
holds:
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Theorem 2.37 (General Ergodic Theorem). Let (£2,.%,IP) be a probability space, Q C R? be a
bounded open set with 0 € Q, let (7,.) ,cra be a dynamical system on ) with invariant o -algebra .%
and let f : Q2 — R be measurable with [, | f| dyip < co. Then for P-almost allw € € it holds

Vo € Co(Q): n™ /Q (p(%)f(uw) dpy(z) = E, (f|F) /Q ©. (2.46)

Sketch of proof. Chose a countable dense family of functions ¢ € Cy(Q) that spans L'(Q) and
that have support on a ball. Use a Cantor argument and Theorem to prove the statement for a
countable dense family of Cp(Q). From here, we conclude by density.

The last result can be used to prove the most general ergodic theorem which we will use in this
work: O

Theorem 2.38 (General Ergodic Theorem for the Lebesgue measure). Let (2, %, P) be a probability
space, Q C R? be a bounded open set with 0 € Q, let (7,,),crae be a dynamical system on ) with
invariant o-algebra % and let f € LP($; up) and ¢ € L1(Q), where 1 < p,q < oo, i + % = 1.
Then for P-almost all w € € it holds

wt [ et B [ o

Q

Proof. Let o5 € C(Q) with || — @5l pa(qy < 0- Then

ot [ et =5 [

<llo = vl (v | i )’
—d w)dr — E
n / el () dx B () /Q o5

+

+Em>(f!f)/Q\90 sl

which implies the claim. O

2.11 Random Sets

The theory of random measures and the theory of random geometry are closely related. In what
follows, we recapitulate those results that are important in the context of the theory developed below
and shed some light on the correlations between random sets and random measures.

Let F(R?) denote the set of all closed sets in R?. We write

o — {F eFMRY . FNV # @} itV Cc R? isanopen set, (2.47)
F¥i= {FeFRY) : FNK =0} ifK CR” isacompactset. (2.48)

The Fell-topology 7 is created by all sets §y and FX and the topological space (F(R?), Ir) is
compact, Hausdorff and separable[18].

Remark 2.39. We find for closed sets F),, F in R? that F,, — F if and only if [18]

1 for every x € F there exists x,, € I, such that z = lim,,_,, z,, and
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2 if F),, is a subsequence, then every convergent sequence xz,, with z,, € I, satisfies
limy o0 T, € F.

If we restrict the Fell-topology to the compact sets R(Rd) it is equivalent with the Hausdorff topology
given by the Hausdorff distance

d(A, B) = max < sup inf |z — y| , supinf |x — .
(5 =yt = st 12—

Remark 2.40. For A C RY closed, the set
F(A) :={FeFRY) : FCA}
is a closed subspace of F(IR?). This holds since

FRINF(A) ={BeF(R?) : BN(RNA) #0} =Fraya s open.

Lemma 2.41 (Continuity of geometric operations). The maps 7, : A — A+x andbs : A — Bs(A)
are continuous in § (R?).

Proof. We show that preimages of open sets are open. For open sets V' we find

. @) ={FeI®RY) : FNV #0} ={FeFR) : FN7,V#0} =3, v,
b (Fv) = {F € 3RY : B(F)NV £ 0} = {F € FRY) : FABs(V) # 0} = Fvye

The calculations for 7, (%) = ™+ and b; ' (F*) = F»* are analogue. O

Remark 2.42. The Matheron-o -field o is the Borel-o-algebra of the Fell-topology and is fully charac-
terized either by the class Fy of FX.

Definition 2.43 (Random closed / open set according to Choquet (see [18] for more details)).

a) Let (2,0,P) be a probability space. Then a Random Closed Set (RACS) is a measurable
mapping
A:(Q,0,P) — (F,05)

b) Let 7, be a dynamical system on (2. A random closed set is called stationary if its characteristic
functions x a(.) are stationary, i.e. they satisfy X 4(.)(Z) = Xa(r,w)(0) for almost every w €
for almost all 2 € R?. Two random sets are jointly stationary if they can be parameterized by
the same probability space such that they are both stationary.

c) A random closed set I' : (2,0, P) — (§,035) w — I'(w) is called a Random closed
C*-Manifold i ['(w) is a piece-wise C*-manifold for P almost every w.

d) A measurable mapping
A:(Q0,P) — (§,03)

is called Random Open Set (RAOS) if w — R¥\ A(w) is a RACS.
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The importance of the concept of random geometries for stochastic homogenization stems from the
following Lemma by ZAd'hle. It states that every random closed set induces a random measure. Thus,
every stationary RACS induces a stationary random measure.

Lemma 2.44 ([32] Theorem 2.1.3 resp. Corollary 2.1.5). Let §,, C & be the space of closed m-
dimensional sub manifolds of R? such that the corresponding Hausdorff measure is locally finite.
Then, the o-algebra o N §,, is the smallest such that

Mg :§m =R M H"(MnN B)

is measurable for every measurable and bounded B C R,

This means that
Mpga : T — MR M — H™(M N -)

is measurable with respect to the o-algebra created by the Vague topology on Dﬁ(Rd). Hence a
random closed set always induces a random measure. Based on Lemma [2.44] and on Palm-theory,
the following useful result was obtained in [10] (See Lemma 2.14 and Section 3.1 therein). We can
thus assume w.l.0.g that € is a separable metric space.

Theorem 2.45. Let (2,0, P) be a probability space with an ergodic dynamical system 7. Let A :
(Q,0,P) — (F,05) be a stationary random closed m-dimensional C*-Manifold.
There exists a separable metric space Qc W(Rd) with an ergodic dynamical system T and a

mapping A : (Q, Bg,P) — (3, 05) such that A and A have the same law and such that A still is
stationary. Furthermore, (x,w) — T,w is continuous. We identify Q0 = Q, A = Aand T = 7.

Also the following result will be useful below.

Lemma 2.46. Let /1 be a Radon measure on R? and let Q C R? be a bounded open set. Let
SoCS (Q) be such that §o — R, A — u(A) is continuous. Then

m: § % Fo— M(RY) (P,B)H{AHM(AHB) Bck
0 else

is measurable.
Proof. For f € C.(R?) we introduce m ; through

fodu BcCP

my: (P, B) — {0 slse

and observe that m is measurable if and only if for every f € C. (Rd) the map my is measurable
(see Section[2.10). Hence, if we prove the latter property, the lemma is proved.

We assume f > 0 and we show that the mapping m is even upper continuous. In particular, let
(P,,B,) — (P,B)in§ x §, and assume that B, C P, for all n. > Nj. Since Q is compact,
Remark 2. implies that B C P N Q Furthermore, since f has compact support, we find
‘an fdp— [, fdu‘ < |l |(Br) — p(B)| — 0. On the other hand, if there exists a subse-
quence such that B,, ¢ P, for all n, then either B ¢ P and m¢(P,, B,) =0 — my(P,B) =0
or B C Pand0 = lim,_,ocmys(Pn, By) < [ fdp = myg(P,B). For f < 0 we obtain lower
semicontinuity and for general f the map m is the sum of an upper and a lower semicontinuous
map, hence measurable. O
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2.12 Point Processes

Definition 2.47 ((Simple) point processes). A Z-valued random measure /i, is called point process.
In what follows, we consider the particular case that for almost every w there exist points (24 (w)), o
and values (ay, (w)),.cy in Z such that

Ho = Z ak5mk(w) .

keN

ke

The point process /i, is called simple if almost surely for all k£ € N it holds a;, € {0, 1}.

Example 2.48 (Poisson process). A particular example for a stationary point process is the Poisson
point process 11, = X, with intensity A. Here, the probability P(X(A) = n) to find n points in a
Borel-set A with finite measure is given by a Poisson distribution

A" A"
A4l

n!

P(X(A) = n) (2.49)

with expectation E(X(A)) = A |A|. Shift-invariance of (2.49) implies that the Poisson point process
is stationary.

We can use a given random point process to construct further processes.

Example 2.49 (Hard core Matern process). The hard core Matern process is constructed from a given
point process X, by mutually erasing all points with the distance to the nearest neighbor smaller than
a given constant r. If the original process X, is stationary (ergodic), the resulting hard core process
is stationary (ergodic) respectively.

Example 2.50 (Hard core Poisson—Matern process). If a Matern process is constructed from a Pois-
son point process, we call it a Poisson—Matern point process.

Lemma 2.51. Let i, be a simple point process with a, = 1 almost surely for all k € N. Then
Xy = (zx(w))yen is @ random closed set of isolated points with no limit points. On the other hand,
if Xy = (2x(w)),en is @ random closed set that almost surely has no limit points then i, is a point
process.

Proof. Let i, be a point process. For open V' C R and compact K C R? let

1

frale) = dist(z, RN (VN BR(0))),  fK(x) = max{ -1

dist(z, K), 0 } :

Then fy,g is Lipschitz with constant 1 and f;* is Lipschitz with constant 3 and support in B;s(K).
Moreover, since i, is locally bounded, the number of points x;, that lie within B, (X) is bounded. In
particular, we obtain

X@v)=UJ {w : Adfv,Rduw > 0} ,

R>0

X3 =N {w ) f dp > 0} :

d
§>0 R

are measurable. Since Fy and FX generate the o-algebra on § (Rd), it follows that w — X, is
measurable.
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In order to prove the opposite direction, let X,, = (z(w)) <y be a random closed set of points. Since
X has almost surely no limit points the measure ., is locally bounded almost surely. We prove that
[ IS @ random measure by showing that

VfedC. (Rd) . F:w— f dpu, is measurable.

R4

For 0 > 0 let i, (A) := (|S*!]6%) " L(ANB;s(X,)). By Lemmas [2.41|and [2.46|we obtain that
Fs © w o [o. fdud are measurable Moreover, for almost every w we find Fs (w) — F(w)
uniformly and hence F' is measurable. O

Corollary 2.52. A random simple point process |1, is stationary iff X, is stationary.

Hence we can provide the following definition based on Definition [2.43

Definition 2.53. A point process /i, and a random set P are jointly stationary if P and X are jointly
stationary.

Lemma 2.54. Let X, = (z;) ;en be a Matern point process from Example with distance r and
let for § < & be B(w) := J, Bs(x;). Then B(w) is a random closed set.

Proof. This follows from Lemma [2.41} X,, is measurable and X — B,(X) is continuous. Hence
B (w) is measurable. O

2.13 Dynamical Systems on Z

Definition 2.55. Let (Q, 32*, If”) be a probability space. A discrete dynamical system on Qisa family

(72)erza of measurable bijective mappings 7, : Q) — Q satisfying (i)-(iii) of Definition with RY re-
placed by Z?. Aset A C ()is almost invariant if for every z € rZ%itholds P (AU 7,A) \ (AN 7,A))
0 and 7 is called ergodic w.r.t. rZ¢ if every almost invariant set has measure 0 or 1.

Similar to the continuous dynamical systems, also in this discrete setting an ergodic theorem can be
proved.

Theorem 2.56 (See Krengel and Tempel'man [16, 27]). Let (A,), oy C R¢ be a convex averaging

sequence, let (7,) ,c,z4 be a dynamical system on Q) with invariant -algebra . andlet f : Q! — R
be measurable with |E( f)| < oc. Then for almost all & €

AT D f(R@) = rE(f|S) (2.50)
2€EA,NrZd
In the following, we restrict to » = 1 for simplicity of notation.

Let 2y C R? We consider an enumeration (&) of Z% such that Q0 := QZ' = QN and write
O = (Wey, Wey, ... ) = (W1, W0,...)forallw (). We define a metric on € through

o J—
o L |Wng — @og |
d Wz) = o — W7 el
(@1, W) Z 2P 1+ W1 g, — Wag, |

We write §2,, :== Q¢ and N,, := {k € N: k > n + 1}. The topology of () is generated by the open
sets A x QISI”, where for some n > 0, A C (2, is an open set. In case () is compact, the space
is compact. Further, Qis separable in any case since () is separable (see [14]).
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Lemma 2.57. Suppose for every n € N there exists a probability measure IP,, on (,, such that for
every measurable A, C ,, it holds P, (A, X QF) =P, (A,). Then P defined as follows defines
a probability measure on €2:

P(A, x Q") =P, (A,).

Proof. We consider the ring

R=|J{AxQ" : AcCQ,is measurable}

neN

and make the observation that I? is additive and positive on R and IP(()) = 0. Next, let (Aj) jex be an
increasing sequence of sets in R such that A := U Aj € R. Then, there exists A, C 27 such that
A = A, x QSI" and since A; C Ay C -+ C A, forevery j > 1, we conclude A; = A X QN" for
some A; C Q,. Therefore, P(A;) = IP’n(A ) = P,(A) = P(A) where A = A X QN" We have
thus proved that P : R — [0, 1] can be extended to a measure on the Borel-o-Algebra on § (See [2,
Theorem 6-2]). O

We define for z € Z% the mapping
7200, W T,w, where (%Zd))fi = We,+- component wise .

Remark 2.58. In this paper, we consider particularly 2y = {0, 1}. Then Q= QZ is equivalent to
the power set of Z% and every & € Qisa sequence of 0 and 1 Correspondlng