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Global existence of solutions to Keller-Segel chemotaxis system
with heterogeneous logistic source and nonlinear secretion

Gurusamy Arumgam, Asha K. Dond, André H. Erhardt

Abstract

We study the following Keller-Segel chemotaxis system with logistic source and nonlinear
secretion:

ut = ∆u−∇ · (u∇v) + κ(|x|)u− µ(|x|)up and 0 = ∆v − v + uγ ,

where κ(·), µ(·) : [0, R] → [0,∞), γ ∈ (1,∞), p ∈ (γ + 1,∞) and Ω ⊂ Rn, n ≥ 2. For
this system, we prove the global existence of solutions under suitable assumptions on the initial
condition and the functions κ(·) and µ(·).

1 Introduction

In this paper, we investigate the following Keller-Segel chemotaxis system, which depends on a logistic
source term [1, 2, 3, 4] and nonlinear secretion [5, 6, 7], and reads as follows:{

ut = ∆u−∇ · (u∇v) + g(x, u)

0 = ∆v − v + uγ
in Ω× (0, T ), (1.1)

with initial values u(·, 0) = u0(x) for x ∈ Ω and homogeneous Neumann boundary conditions
∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω× (0, T ), where Ω ⊂ Rn, n ≥ 2, u denotes the cell density and v denotes the
concentration of chemical signal. In addition, we consider the environment depending logistic source
g(x, u) = κ(|x|)u − µ(|x|)up. The function κ(|x|) represents the self-growth, while µ(|x|) the
self-limitation of the mobile species. This type of system is relevant in the modelling of micro- and
macroscopic population dynamics or tumour invasion processes, see e.g. [2].

Historically, mathematical modelling of chemotaxis phenomenon dates to the pioneering works of
Patlak in the 1950s [8] and Keller-Segel in the 1970s [9, 10]. The study of Keller-Segel (type) system
is motivated by numerous applications, see for instance [11, 12]. The general form of the Keller-Segel
chemotaxis system is given by

ut = ∇ · (φ(u, v)∇u− ψ(u, v)∇v) + f(u, v) and τvt = d∆v + g(u, v)u− h(u, v)v,
(1.2)

where u represents the cell (or organism) density on a given domain Ω ⊂ Rn and v denotes the con-
centration of the chemical signal. The cell dynamics derive from population kinetics and movement,
the latter comprising a diffusive flux modelling undirected (random) cell migration and an advective
flux with velocity dependency on the gradient of the signal. The motility function φ(u, v) describes
the diffusivity of the cells and ψ(u, v) represents the chemotactic sensitivity. The function f(u, v)
describes cell growth and death, while the functions g(u, v) and h(u, v) are kinetic functions that de-
scribe production and degradation of the chemical signal, respectively. Organisms or cell moves from
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a lower concentration to its higher concentration of the chemoattractant, which is known as positive
chemotaxis.

Notice that, the general form of chemotactic term is of the form ψ(u, v, |∇v|) [13]. The important
properties of system (1.2) are self aggregation phenomenon and spatial pattern formation. Due to the
important applications of chemotaxis in medical and biological sciences, the research on chemotaxis
phenomenon has become an increasing interest in applied mathematics.

Main results The principal purpose of this work is to provide the global existence of solutions to the
parabolic-elliptic Keller-Segel system (1.1). The main result reads as follows:

Theorem 1.1. Let Ω be a bounded and smooth domain in Rn, n ≥ 2. Let µ1 > 0, γ > 1, p > γ+1,
q > nγ

2
and κ, µ ∈ C0([0, R])∩C1((0, R)) and let g(x, u) = κ(|x|)u− µ(|x|)up. In addition, we

assume that 0 < α < 2p−1−γ
q+γ

. If

µ(s) ≥ µ1s
α, for all s ∈ [0, R] (1.3)

then there exists a global-in-time classical solution to system (1.1) for any nonnegative initial datum
u0 ∈ C0(Ω).

Notice that the assumption on γ, i.e. γ > 1, is required to guarantee the existence of a unique solution.
Furthermore, we would like to refer to [2, Proposition 1.4] for the case n = 2 and γ = 1.

Plan of the paper In Section 2 we state the local existence of classical solutions and certain prelim-
inaries. Then, in Section 3 we derive a Lq−bound for the cell density u. In Section 4, we derive the
L∞−bound for u and finally, we provide the global existence of solution in Section 5.

2 Preliminaries

In this section, we state the local existence of solutions to system (1.1), which is based on a fixed point
argument.

Lemma 2.1. Under the assumption of Theorem 1.1, there exists Tmax ∈ (0,∞] and a local-in-time
classical solution (u, v) to system (1.1) uniquely determined such that

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) (2.1)

v ∈ ∩q>nC0([0, Tmax);W
1,q(Ω)) ∩ C2,0(Ω× (0, Tmax)) (2.2)

and
∫

Ω
v(·, t)dx = 0 for all t ∈ (0, Tmax). Moreover, this solution is nonnegative in u, radially

symmetric if u0 is radially symmetric and such that if Tmax <∞, then

lim
t→Tmax

sup ‖u(·, t)‖L∞(Ω) =∞. (2.3)

We omit the proof of Lemma 2.1, since it is similar to the one in [14, Theorem 2.1]. In addition, the
solution u satisfies the following L1 estimate:
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Lemma 2.2. Under the assumption of Lemma 2.1 and for any nonnegative function u0 ∈ C0(Ω), let
(u, v) be the local in time classical solution of system (1.1). Then, u satisfy∫

Ω

u(·, t)dx ≤ K, for all t ∈ (0, Tmax), where K = max

{∫
Ω

u0,
k1

µ1

|Ω|
}
.

The proof of Lemma 2.2 is similar to the proof of [15, Lemma 2.2]. Furthermore, to make the paper
self-contained we provide some basic inequalities.

Lemma 2.3 (Interpolation inequality, [16]). Assume 1 ≤ s ≤ r ≤ t ≤ ∞ and 1
r

= θ
s

+ (1−θ)
t
.

Suppose also u ∈ Ls(Ω) ∩ Lt(Ω). Then u ∈ Lr(Ω) and

‖u‖Lr(Ω) ≤ ‖u‖θLs(Ω)‖u‖1−θ
Lt(Ω). (2.4)

Lemma 2.4 (Lemma 5.1 [17]). Let y(t) ≥ 0 satisfy
dy

dt
+ c1y

α ≤ c2,

y(0) = y0

with some constants c1, c2 > 0 and θ ≥ 1. Then we have

y(t) ≤ max

{
y0,

(
c2

c1

) 1
α
}
, t > 0.

In addition, we will need the following lemma, which is established in [18, Lemma 1.3] and reads as
follows:

Lemma 2.5. Let (et∆)t≥0 be the Neumann heat semigroup in Ω, and λ1 > 0 denote the first
nonzero eigenvalue of−∆ in Ω under the Neumann boundary conditions. Then there exist constants
C1, . . . , C4 depending on Ω only which have the following properties

(i) If 1 ≤ q ≤ p ≤ ∞ then

‖et∆w‖Lp(Ω) ≤ C1

(
1 + t−

n
2

( 1
q
− 1
p )

)
e−λ1t‖w‖Lq(Ω) for all t > 0

holds for all w ∈ Lq(Ω) satisfying
∫

Ω
w = 0.

(ii) If 1 ≤ q ≤ p ≤ ∞ then

‖∇et∆w‖Lp(Ω) ≤ C2

(
1 + t−

1
2
−n

2
( 1
q
− 1
p )

)
e−λ1t‖w‖Lq(Ω) for all t > 0

is true for each w ∈ Lq(Ω).

(iii) If 2 ≤ p <∞ then
‖∇et∆w‖Lp(Ω) ≤ C3e

−λ1t‖w‖Lp(Ω)

for all t > 0 is valid for all w ∈ W 1,p(Ω).

(iv) Let 1 < q ≤ p <∞. Then

‖et∆∇ · w‖Lp(Ω) ≤ C4

(
1 + t−

1
2
−n

2
( 1
q
− 1
p )

)
e−λ1t‖w‖Lq(Ω) for all t > 0

holds for all w ∈ (C∞0 (Ω))n. Consequently, for all t > 0 the operator et∆∇· possesses a uniquely
determined extension to an operator from Lq(Ω) into Lp(Ω), with norm controlled according to the
last inequality.
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3 Lq−bound for u

In this section, we establish the Lq−bound for the solution u of the system (1.1).

Lemma 3.1. Assume that γ > 1, p > γ + 1, q > nγ
2

and let 0 < α < 2p−1−γ
q+γ

. Then

‖u(·, t)‖Lq(Ω) ≤ c for all t ∈ (0, Tmax).

Proof. Testing the first equation of the system (1.1) with uq−1, q > nγ
2
> 1, we get∫

Ω

utu
q−1dx =

∫
Ω

∆uuq−1dx−
∫

Ω

∇ · (u∇v) · uq−1 +

∫
Ω

κ(|x|)uuq−1dx

−
∫

Ω

µ(|x|)upuq−1dx.

Integration by parts leads to

1

q

d

dt

∫
Ω

uqdx =− 4(q − 1)

q2

∫
Ω

|∇u
q
2 |2dx+ (q − 1)

∫
Ω

uq−1∇v · ∇udx

+

∫
Ω

κ(|x|)uqdx−
∫

Ω

µ(|x|)up+q−1dx.

(3.1)

Next, multiplying the second equation of the system (1.1) by uq, we get∫
Ω

∆vuqdx−
∫

Ω

uqvdx+

∫
Ω

uq+γdx = 0

and integration by parts yields

−q
∫

Ω

uq−1∇u∇vdx−
∫

Ω

uqvdx+

∫
Ω

uq+γdx = 0.

This implies

q

∫
Ω

uq−1∇u∇vdx = −
∫

Ω

uqvdx+

∫
Ω

uq+γdx, (3.2)

Substituting (3.2) into (3.1), we obtain

1

q

d

dt

∫
Ω

uqdx+
4(q − 1)

q2

∫
Ω

|∇u
q
2 |2dx ≤ (q − 1)

q

∫
Ω

uq+γdx+

∫
Ω

κ(|x|)uqdx

−
∫

Ω

µ(|x|)up+q−1dx.

(3.3)

Estimating the integrand of the first term on the right-hand side of (3.3), we get

uq+γ ≤ ε1|x|α(uq+γ)
p+q−1
q+γ +

p− 1− γ
p+ q − 1

(|x|αε1)−
q+γ
p+q−1

p+q−1
p−1−γ

= ε1|x|αup+q−1 +
p− 1− γ
p+ q − 1

(|x|αε1)−
q+γ
p−1−γ ,

(3.4)
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where we used Young’s inequality with the exponents p+q−1
q+γ

and p+q−1
p−1−γ . Due to p > γ + 1 we have

p− γ − 1 > 0 and p+ q − 1 > q + γ. Thus, 0 < q+γ
p+q−1

< 1 and 0 < p−1−γ
p+q−1

< 1. Using (1.3), we
get

−
∫

Ω

µ(|x|)up+q−1dx ≤ −µ1

∫
Ω

|x|αup+q−1dx. (3.5)

Choosing ε1 = q
q−1

µ1, then inequality (3.4) becomes∫
Ω

uq+γdx ≤ q

q − 1
µ1

∫
Ω

|x|αup+q−1dx+ c1(p, q, µ1, γ)

∫
Ω

|x|−α
q+γ
p−1−γ dx

≤ q

q − 1
µ1

∫
Ω

|x|αup+q−1dx+ c1(p, q, µ1, γ)

∫ R

0

r1−α q+γ
p−1−γ dr.

(3.6)

Substituting (3.5), (3.6) into (3.3), we arrive at

1

q

d

dt

∫
Ω

uqdx+
4(q − 1)

q2

∫
Ω

|∇u
q
2 |2dx ≤ µ1

∫
Ω

|x|αup+q−1dx

+ c1(p, q, µ1, γ)

∫ R

0

r1−α q+γ
p−1−γ dr

+ ‖κ‖L∞(Ω)

∫
Ω

uqdx− µ1

∫
Ω

|x|αup+q−1dx

≤ c
∫

Ω

uqdx+ c1(p, q, µ1, γ1)

∫ R

0

r1−α q+γ
p−1−γ dr

≤ c2

∫
Ω

uqdx+ c1.

(3.7)

In order to ensure the integral
∫ R

0
r1−α q+γ

p−1−γ dr is well defined, we need the condition 1−α q+γ
p−1−γ >

−1. From this, we can derive the condition for α, i.e. 0 < α < 2p−1−γ
q+γ

. If we choose α = 2p−1−γ
q+γ

or α > 2p−1−γ
q+γ

, then we get a contradiction for q > 1. Set y(t) :=
∫

Ω
uqdx. Then, (3.7) becomes

an ODE y′(t) ≤ c2y(t) + c1. Finally, Lemma 2.4 yields y(t) ≤ max

{
y(0), c1

c2

}
. This implies

‖u(·, t)‖Lq(Ω) ≤ c for all t ∈ (0, Tmax), where the constant c > 0.

4 L∞−bound for u

In order to prove the global existence of solutions it is necessary to derive a L∞ estimate. Thus, we
derive the L∞−bounds of u and v by using the Lq−bound from Lemma 3.1.

Lemma 4.1. Let Ω be a bounded and smooth domain in Rn, n ≥ 2. Let γ > 1, p > γ + 1, q > nγ
2

,
0 < α < 2p−1−γ

q+γ
and u belongs to Lq(Ω) and let (u, v) be a local-in-time classical solution to (1.1)

in Ω× (0, Tmax) for some Tmax > 0. Then, there exist c > 0 such that

‖v‖W 1,s(Ω) ≤ c‖u‖Lq∗ (Ω), n < s < q∗ :=
nq

nγ − q
and v ∈ L∞(Ω). (4.1)
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Proof. From Lemma 3.1 we have that u(·, t) is bounded in L∞((0, Tmax);L
q(Ω)). Then, by the

standard elliptic regularity results, cf. [19, Theorem 19.1], applied to the second equation of (1.1)
which warrant that

‖v‖W 2,q/γ(Ω)) ≤ c‖u‖Lq/γ(Ω) (4.2)

hence ‖∇v‖W 1,q/γ(Ω) ≤ c. The Sobolev embedding theorem [20, Corollary 7.11], [21, Corollary 1.3.1]

or [22] gives v ∈ Cm(Ω), 0 ≤ m < 2 − nγ
q

and ∇v ∈ Ls(Ω) for all n < s < q∗ := nq
nγ−q . In

particular, we have
‖v‖Ls(Ω) + ‖∇v‖Ls(Ω) ≤ c

for some positive constant c > 0. Since W 1,s(Ω) ↪→ L∞(Ω), we also derive ‖v‖L∞(Ω) ≤ c.

Lemma 4.2. Let the hypotheses of Lemma 4.1 be satisfied and let (u, v) be a local-in-time classical
solution to (1.1) in Ω× (0, Tmax) for some Tmax > 0. Then, there exist c > 0 such that

‖u(·, t)‖L∞((0,Tmax)×Ω) ≤ c for all t ∈ (0, Tmax). (4.3)

Proof. By the variation of constants formula, we can write

u(·, t) = et∆u0 −
∫ t

0

e(t−τ)∆∇ · (u(·, τ)∇v(·, τ))dτ +

∫ t

0

k(|x|)e(t−s)∆u(·, τ)dτ

−
∫ t

0

µ(|x|)e(t−τ)∆up(·, τ)dτ.

(4.4)

Using the positivity of u, we can rewrite (4.4) as

u(·, t) ≤et∆u0 −
∫ t

0

e(t−τ)∆∇ · (u(·, τ)∇v(·, τ))dτ +

∫ t

0

k(|x|)e(t−τ)∆u(·, τ)dτ.

Taking sup norm on both sides of the last inequality

‖u(·, t)‖L∞(Ω) ≤‖et∆u0‖L∞(Ω) +

∫ t

0

‖e(t−τ)∆∇ · (u(·, τ)∇v(·, τ))‖L∞(Ω)dτ

+

∫ t

0

‖k(|x|)e(t−τ)∆u(·, τ)‖L∞(Ω)dτ

=:‖u1(·, t)‖L∞(Ω) + ‖u2(·, t)‖L∞(Ω) + ‖u3(·, t)‖L∞(Ω).

(4.5)

Now, we use the known smoothing estimates for the Neumann heat semigroup that is Lemma 2.5 to
estimate R.H.S of (4.5). First we estimate ‖u1(·, t)‖L∞(Ω) as follows

‖u1(·, t)‖L∞(Ω) ≤C1

(
1 + t−

n
2

( 1
1
− 1
∞ )

)
e−λ1t‖u0‖L1(Ω) ≤ C1(1 + t−

n
2 )e−λ1t‖u0‖L1(Ω). (4.6)

Next, we estimate ‖u2(·, t)‖L∞(Ω) : for all t > 0 and r > n, we have

‖e(t−τ)∆∇ · (u(·, τ)∇v(·, τ))‖L∞(Ω) ≤C2

(
1 + (t− τ)−

1
2
−n

2
( 1
r
− 1
∞ )

)
e−λ1(t−τ)‖u(·, τ)∇v(·, τ)‖Lr(Ω)

≤C2(1 + (t− τ)−
1
2
− n

2r )e−λ1(t−τ)‖u(·, τ)∇v(·, τ)‖Lr(Ω),

(4.7)
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where λ1 is the first non-zero eigenvalue of −∆ in Ω under the Neumann boundary condition. Since
s > n, we take n < r < s to estimate (4.7). By using Hölder’s inequality and Lemma 3.1 and Lemma
4.1, we gain that

‖u(·, τ)∇v(·, τ)‖Lr(Ω) ≤‖u(·, τ)‖
L

rs
(s−r) (Ω)

‖∇v(·, τ)‖Ls(Ω).

Next, using the interpolation inequality (2.4) and (4.1) in the above inequality, we obtain that

‖u(·, τ)‖
L

rs
(s−r) (Ω)

≤‖u(·, τ)‖θL∞(Ω)‖u(·, τ)‖(1−θ)
Lq(Ω), (4.8)

where θ = 1 − (s−r)q
rs
∈ (0, 1), cf. e.g. [23, page 12]. For any given t ∈ (0, Tmax), let us define the

function N : (0, Tmax)→ R, t→ supt∈(0,t) ‖u(·, t)‖L∞(Ω) such that

N(t) := sup
t∈(0,t)

‖u(·, t)‖L∞(Ω).

Substituting (4.8) into (4.7) and using Lemma 4.1, we gain that

‖e(t−τ)∆∇ · (u(·, τ)∇v(·, τ))‖L∞(Ω) ≤C2(1 + (t− τ)−
1
2
− n

2r )e−λ1(t−τ)‖u(·, τ)‖θL∞(Ω)‖u(·, τ)‖(1−θ)
Lq(Ω).

Therefore, we have

‖u2(·, τ)‖L∞(Ω) ≤ C2

∫ t

0

(1 + (t− τ)−
1
2
− n

2r )e−λ1(t−τ)‖u(·, τ)‖θL∞(Ω)‖u(·, τ)‖(1−θ)
Lq(Ω)dτ.

By using Lemma 3.1, the above inequality becomes

‖u2(·, τ)‖L∞(Ω) ≤ C2

∫ t

0

(1 + (t− τ)−
1
2
− n

2r )e−λ1(t−τ)‖u(·, τ)‖θL∞(Ω)dτ. (4.9)

Finally, similar to [24] – By the order property of the Neumann heat semigroup (et∆)t≥0 due to the the
maximum principle – we estimate∫ t

0

‖k(|x|)e(t−τ)∆u(·, τ)‖L∞(Ω)dτ ≤ C3. (4.10)

Substituting (4.6), (4.9) and (4.10) into (4.5) and recalling the definition of N(t), we obtain that

N(t) ≤ C4 + C5N
θ(t).

Since θ ∈ (0, 1) and by means of [23, Lemma 2.4], we can deduce,

N(t) ≤ c, (4.11)

where c is a positive constant. Finally, the right hand side of (4.11) is independent of t ∈ (0, Tmax)
and thus, the uniform boundedness of ‖u(·, t)‖L∞((0,Tmax);L∞(Ω)) is obtained.

5 Proof of Theorem 1.1

In the last section, we prove Theorem 1.1. The proof is based on the previous results and is done by
contradiction.
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Proof. The proof is based on the contradiction. Assume that Tmax < ∞. From Lemma 4.2 we have
that

‖u(·, t)‖L∞((0,Tmax);L∞(Ω)) ≤ C for all t ∈ (0, Tmax),

Which is a contradiction to the blow-up criterion (2.3). Hence, Tmax =∞ and

‖u(·, t)‖L∞((0,∞);L∞(Ω)) ≤ C.

Therefore this completes the proof of main theorem.
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