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Dissipative soliton interaction in Kerr resonators with high-order
dispersion

Andrei G. Vladimirov, Mustapha Tlidi, Majid Taki

Abstract

We consider an optical resonator containing a photonic crystal fiber and driven coherently
by an injected beam. This device is described by a generalized Lugiato-Lefever equation with
fourth order dispersion. We use an asymptotic approach to derive interaction equations governing
the slow time evolution of the coordinates of two interacting dissipative solitons. We show that
Cherenkov radiation induced by positive fourth-order dispersion leads to a strong increase of the
interaction force between the solitons. As a consequence, large number of equidistant soliton
bound states in the phase space of the interaction equations can be stabilized. We show that the
presence of even small spectral filtering not only dampens the Cherenkov radiation at the soliton
tails and reduces the interaction strength, but can also affect the bound state stability.

1 Introduction

Optical frequency combs generated by micro-cavity resonators have revolutionized many fields of sci-
ence and technology, such as high-precision spectroscopy, metrology, and photonic analog-to-digital
conversion [13]. A particular interest is paid to the soliton frequency combs associated with the for-
mation in the time domain of the so-called temporal cavity solitons – nonlinear localized structures
of light, which preserve their shape in the course of propagation. Temporal dissipative solitons of-
ten called cavity solitons were reported experimentally in mode-locked lasers, micro-cavity resonators
[19, 16], and in coherently driven fiber cavities [20].

In this work we consider a photonic crystal fiber cavity driven by a coherent injected beam. When op-
erating close to the zero dispersion wavelength, high-order chromatic dispersion effects could play an
important role in the dynamics of the system. Taking into account these effects together with spectral
filtering the dimensionless model equation in the mean-field limit reads

∂tU = S − (1 + iθ)U + iU |U |2 + (δ + i) ∂2
τU + β3∂

3
τU + iβ4∂

4
τU, (1)

whereU(τ, t) is the complex electric field envelope, τ is time and t is the slow time variable describing
the number of round trips in the cavity. The parameter S measures the injection rate, θ describes
frequency detuning, second order dispersion and Kerr nonlinearity coefficients are normalized to unity,
β3 and β4 are the third and fourth-order dispersion coefficients, respectively, and 0 < δ � 1 is
the small spectral filtering coefficientm (or in time domain dispersion of the losses) [41]. The optical
losses are determined by the mirror transmission and the intrinsic material absorption. This losses are
normalized to unity.

In the absence of high-order dispersion and spectral filtering, we recover from Eq. (1) the Lugiato-
Lefever equation [21] which is a paradigmatic model to study temporal cavity solitons (see overview
[11, 22]). It is widely applied to describe two important physical systems: passive ring fiber cavity
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with coherent optical injection and driven optical microcavity used for frequency comb generation
[15, 23, 26, 12]. The inclusion of the fourth-order dispersion allows the modulational instability to have
a finite domain of existence delimited by two pump power values [40]. As a consequence, upper homo-
geneous steady state solution becomes modulationally stable and dark dissipative solitons sitting this
solution can appear [39]. In the presence of third order dispersion bright and dark dissipative solitons
become asymmetric and acquire an additional group velocity shift associated with this asymmetry
[4, 38, 28, 42].

Being well separated from one another dissipative solitons can interact via their exponentially decaying
tails and form bound states characterized by fixed distances between the solitons. This weak interac-
tion can be strongly affected by different perturbations, such as periodic modulation [35, 41, 46] and
high-order dispersions [30], which lead to the appearance of the so-called soliton Cherenkov radiation
at the soliton tails [3]. Single soliton self-locking by Cherenkov radiation in a microring resonator with
high order dispersions was studied in [34]. Soliton interaction in the presence of high-order disper-
sions was studied in several works in 1D [30, 28, 32, 31, 46, 42] and 2D settings [27]. However, they
were either focused on the asymmetric soliton interaction in the presence of third-order dispersion
or based mainly on the numerical calculation of the soliton interaction potential. Unlike these works,
here we present an analytical theory of the interaction of two dissipative solitons of the Lugiato-Lefever
equation with fourth-order dispersion term based on the asymptotic approach developed in [14, 18].
In this approach only a single complex number has to be calculated numerically that is the product of
the Cherenkov radiation amplitudes for the soliton itself and the neutral mode of the adjoint operator
obtained by lenearization of the model equation on the soliton solution. Note that asymptotic method
for estimation of the Cherenkov radiation amplitude was discussed in [3, 17]. Furthermore, we show
that similarly to the case of the interacting oscillatory solitons [41], a small spectral filtering effect can
strongly affect the interaction force and the stability properties of the bound soliton states.

2 Single peak dissipative soliton

Without high-order dispersion and spectral filtering terms, β3 = β4 = δ = 0, Eq. (1) supports a sin-
gle or multipeak dissipative solitons characterized by damped oscillatory tails [33]. Stable dissipative
solitons have been found in a strongly nonlinear regime, where the modulational instability is subcrit-
ical, i.e., for θ > 41/30. More precisely, they have been found in the pinning region, where the lower
stationary homogeneous solution coexists with a periodic one. The number of dissipative solitons and
their distribution in the cavity are determined by the initial conditions while their maximum peak power
remains constant for fixed values of the system parameters [33]. Note that the stability an bifurcations
of the soliton solutions of the Lugiato-Lefever model with small dissipation were studied analytically in
a number of earlier works, see e.g. [29, 36, 8, 37].

For θ > 41/30 Eq. (1) supports a single peak dissipative soliton solution in the form U(t, τ) =
U0 + u0(τ), where I0 = |U0|2 = const is the intensity of the stationary homogeneous solution
of Eq. (1) and u0(τ) decays exponentially at τ → ±∞. This solution persists also at sufficiently
small β3, β4, and δ. It remains motionless for β3 = 0 and becomes uniformly moving otherwise,
U(t, τ) = U0+u0(τ−vt). Asymptotic analytic theory of the asymmetric dissipative soliton interaction
via Cherenkov radiation induced by the third-order dispersion coefficient β3 was developed in [42].
Below we assume that only small fourth-order dispersion is present, β3 = 0 and |β4| � 1. In this
case we consider only soliton solutions, which are invariant under the symmetry property of Eq. (1),
τ → −τ . For these solutions the soliton velocity is equal to zero, v = 0. Note, that traveling localized
solutions were reported in the undamped Lugiato-Lefever model [7] as well as in the parametrically
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Dissipative soliton interaction 3

driven damped nonlinear Schrödinger equation [47].

The dispersion relation for the small amplitude waves is determined by substituting U(t, τ) = U0 +
A0e

ikτ−iΛt into Eq. (1) and linearizing the resulting equation at U = U0. This yields

Λ = −2I2
0 + i

√
(1 + δk2)2 − I2

0 + k2 − β4k
4.

The phase velocity of the dispersive waves V = <(Λ)/k is shown in Fig. 1(a) for positive (1(a))
and negative (1(b)) β4, as a function of the wave number k. Cherenkov radiation appears when the
phase velocity V coincides with zero soliton velocity as shown in Fig.1(a). It is seen from this figure
that the Cherenkov radiation emitted from the soliton tail occurs only when β4 is positive. Therefore,
below we consider only the case of positive fourth-order dispersion coefficient 0 < β4 � 1 when the
Cherenkov radiation is present. For negative β4 the soliton interaction is only weakly affected by the
small fourth-order dispersion term.

Linear stability of the dissipative soliton solution u0 (τ) is determined by calculating the eigenvalue
spectrum λ of the operator

L̂ (u0) = L̂0 + L̂1 (u0) , (2)

obtained by linearization of Eq. (1) around the soliton solution. Here u0 =

(
u0

u∗0

)
, L̂0 = L̂(0) is

the linear differential operator evaluated at the stationary homogeneous solution U = U0:

L̂0 =

(
−1− iθ + 2iI2

0 + (i+ δ) ∂2
τ + iβ4∂

4
τ iU2

0

−iU∗20 −1 + iθ − 2iI2
0 − (i− δ) ∂4

τ − iβ4∂
4
τ

)
,

and

L̂1 (u0) =

(
2iU∗0u0 + 2iU0u

∗
0 + 2i|u0|2 2iU0u0 + iu2

0

−2iU∗0u
∗
0 − iu∗20 −2iU∗0u0 + 2iU0u

∗
0 − 2i|u0|2

)
.

We have calculated numerically the soliton solution and the eigenvalue spectrum λ of the operator
L̂ (u0) by discretizing Eq. (1) on an uniform grid of 2000 points on the interval τ ∈ [0, 80] with periodic
boundary conditions. The result is shown in Fig. 2 for β3 = β4 = δ = 0. The continuous spectrum
lies on the line <(λ) = −1, while the discrete spectrum of the soliton is symmetric with respect
to this line [5]. For the parameter values of Fig. 2 apart from two real eigenvalues: zero eigenvalue,
λ = 0, associated with the translational symmetry of the Lugiato-Lefever equation and symmetric one,
λ = −2, soliton has two symmetric pairs of complex conjugated eigenvalues. The right pair of these
complex eigenvalues is responsible for an Andronov-Hopf bifurcation taking place with the increase of
the injection parameter S. The decay rates of the soliton tails depend on the eigenvalues µ satisfying
the characteristic equation

β2
4µ

8+2β4µ
6+
[
1 + δ2 + 2β4(2I0 − θ)

]
µ4+2(2I−θ−δ)µ2+

[
1− I2

0 + (2I0 − θ)2
]

= 0. (3)

obtained by linearization of the Eq. (1) with ∂tU = 0 at the homogeneous steady state solution
U = U0.

In the case when the high-order dispersion and spectral filtering are absent β3 = β4 = δ = 0, Eq.
(3) gives two pairs of complex conjugate eigenvalues:

µ
(0)
1,2 = ±

√
θ − 2I0 + i

√
1− I2

0 (4)

and µ(0)∗
1,2 , which determine the decay and oscillation rates of the soliton tails. For example, for S = 2.0

and θ = 3.5 we have µ(0)
1,2 = ± (1.6837 + 0.275817i), which means that in the absence of high-

order dispersions the soliton tail oscillations are strongly damped. This might explain the fact that
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Figure 1: Phase velocity V of small dispersive waves with positive (a) and negative (b) fourth-order
dispersion coefficient β4, and β3 = 0. Solid line corresponds to β4 = 0.025 (a) and β4 = −0.025
(b). Dashed line corresponds to β4 = 0. The parameter values are S = 1.8, θ = 3.5, and δ = 0.02.

without soliton Cherenkov radiation it is hardly possible to observe experimentally the formation of
bound states with large distances between the solitons [20].

For nonzero but sufficiently small fourth-order dispersion coefficient, 0 < β4 � 1, the eigenvalues (4)
of Eq. (3) are only slightly perturbed. However, in addition to (4) two more pairs of complex conjugate
eigenvalues, µ3,4 and µ∗3,4, appear. For zero spectral filtering coefficient, δ = 0, they are given by

µ3,4 = ∓i

√√√√ 1

2β4

[
1 +

√
1− 4β4

(
2I0 − θ + i

√
1− I2

0

)]
. (5)

It is seen that real (imaginary) parts of µ3,4 in Eq. (5) vanish (diverge) in the limit β4 → 0. When the
spectral filtering coefficient is nonzero, δ > 0, analytical expressions for the eigenvalues µ3,4 become
very cumbersome. However, in the limit β4 = O(δ)� 1 we get:

µ3,4 = ∓
√
β4


√

(1 + δ/β4)2 − I2
0

2

+ i

(
1

β4

+
θ − 2I0

2

)
+O (δ)

]
. (6)

Due to the presence of the eigenvalues µ3,4 and µ∗3,4 the tails of the soliton of Eq. (1) with β3 = 0
and 0 < β4 � 1 become weakly decaying and fast oscillating, which favors the formation of soliton
bound states, and can be referred to as the soliton Cherenkov radiation [3]. Note, that when β4 is
sufficiently small, the term δ/β4 describing in Eq. (6) the contribution of spectral filtering into the
real part of µ3,4 can lead to a considerable increase of the decay rate of the soliton tails without
significant change of their oscillation frequency. For example, for S = 2.0, θ = 3.5, β4 = 0.025 ,
and δ = 0.02 we get µ3 = −0.123 − 6.529i, while for the same parameter set and δ = 0 one
obtains µ3 = 0.063 − 6.528i. Numerically calculated intensity profile of the soliton solution of Eq.
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Dissipative soliton interaction 5

Figure 2: Soliton solution of the Lugiato-Lefever equation (1) with β3 = β4 = δ = 0 (a) and eigenvalue
spectrum obtained by numerical linear stability analysis of this solution (b). Other parameters are the
same as in Fig. 1.

(1) with small fourth-order dispersion coefficient β4 = 0.025 is depicted in Fig. 3 together with the
corresponding eigenvalue spectrum of the operator L̂ (u0) defined by Eq. (2).

Note, that the proof of the reflectional symmetry property of the discrete soliton spectrum with respect
to the <λ = −1 line given in [5] is trivially generalized to the case when even high order dispersions
are present. Nevertheless, the soliton spectrum shown in Fig. 3 does not possess this symmetry
property due to the presence of nonzero spectral filtering coefficient δ = 0.02. Furthermore, as it is
seen from Fig. 3, for δ = 0.02 real parts of the complex conjugate eigenvalues, responsible for the
Andronov-Hopf bifurcation of the soliton, are shifted to the left from the imaginary axis as compared to
those shown in Fig. 2 obtained for δ = 0.

Sufficiently far away from the soliton core its trailing tail can be represented in the form

u0(τ) ∼ a3e
µ3τ + a4e

µ∗3τ ,when τ → +∞, (7)

where the Cherenkov radiation amplitude a3 is exponentially small in the limit β4 → 0 [3, 17], a4 =
paa

∗
3, and for β4 = O(δ)� 1 we get

pa = i
1−

√
1− I2

0

A∗20

(
δ

β4
√

1−I20
+ 1

) +O (δ) , (8)

where pa is independent of β4 at δ = 0. Numerically for S = 2.0, θ = 3.5, δ = 0.02, and β4 = 0.025
we obtain pa ≈ 0.0571 + 0.0833i.

3 Interaction between dissipative solitons

The study of weak dissipative soliton interaction in optical systems and, in particular, in the Lugiato-
Lefever equation has a relatively long history [14, 18, 24, 25, 45, 9, 1, 10, 2, 6, 43, 44, 35]. Two or
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Figure 3: Soliton solution of the Lugiato-Lefever equation (1) with β4 = 0.025 and δ = 0.02 (a); eigen-
value spectrum obtained by numerical linear stability analysis of this solution (b). Other parameters
are the same as in Fig. 1.

more solitons will interact through their overlapping oscillatory tails when they are sufficiently close
to one another. In what follows, we investigate the interaction between two dissipative solitons. We
consider the limit of weak overlap when the solitons are well separated from each other and derive the
interaction equations describing the slow time evolution of the soliton coordinates denoted by τ1,2. To
this end, let us first rewrite Eq. (1) in a general form:

∂tU = F̂U, (9)

where U =

(
U
U∗

)
, F̂U =

(
f̂U

f̂ ∗U∗

)
, and f̂ is the differential operator defined by the RHS of

Eq. (1). We look for the solution of Eq. (9) in the form

U(τ, t) = U0 + u1 + u2 + ∆u(τ, t). (10)

Here u1,2 = u0 (τ − τ1,2) are two unperturbed soliton solutions, with slowly evolving in time coordi-
nates τ1,2 (εt), ∆u(τ, t) = O(ε) is a small correction to the superposition of two solitons, and small
parameter ε describes the weakness of the overlap of the two solitons. Substituting Eq. (10) into the
model equation (9) and collecting first order terms in ε we obtain the following linear inhomogeneous

equation for ∆u =

(
∆u
∆u∗

)
:

L̂(u1 + u2)∆u = −∂xu1∂tτ1 − ∂xu2∂tτ2 − F̂ (u1 + u2), (11)

where the linear operator L̂ (u) is defined by Eq. (2). Due to the translational invariance of Eq. (1)
this linear operator evaluated at the soliton solution u0 has zero eigenvalue corresponding to the so-

called translational neutral (or Goldstone) mode v0 =

(
v0

v∗0

)
with v0 = du0/dτ , L̂ (u0) v0 = 0.

The adjoint linear operator L̂† (u) obtained from L̂ (u) by transposition and complex conjugation also

has zero eigenvalue with the eigenfunction w0 =

(
w0

w∗0

)
, which is referred below as the “adjoint
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Figure 4: RHS of Eq. (16) as a function of the soliton separation τ2 − τ1. Black (red) dots indicate
the separations of the two solitons in stable (unstable) bound states calculated numerically. Parameter
values: S = 2.0, θ = 3.5, δ = 0.02 and β4 = 0.025.

neutral mode”, L̂† (u0) w0 = 0. Below we will assume that w0 satisfies the normalization condition
〈w0 · u0〉 =

∫∞
−∞ (w0 · u0) dτ = 2

∫∞
−∞< (w∗0u0) dτ = 1. Far away from the soliton core the

asymptotic behavior of adjoint neutral mode is given by:

w0(τ) ∼ b3e
µ∗3τ + b4e

µ3τ , τ → +∞, (12)

with b4 = pbb
∗
3, where asymptotic expression for pb coincides with that of pa given by Eq. (8).

When the two interacting solitons are located sufficiently far away from one another the solvability
conditions of Eq. (11) can be written as

∂tτ1,2 ≈ G1,2, G1,2 =
〈
w1,2 · F̂ (u1 + u2)

〉
, (13)

where we approximated the adjoint neutral modes of the operator L̂†(u1 + u2) by the adjoint neutral

modes w1,2 = w0(τ − τ1,2) of the operators L̂†(u1,2).

In order to derive the soliton interaction equations we need to calculate G1,2 in Eq. (13). To this end
we split the integral in Eq. (13) into two parts and using the relations L̂†(u1,2)w1,2 = 0 together with
the fact that u1 and w1 (u2 and w2) are small for τ ∈ [0,+∞) (τ ∈ (−∞, 0]), where the origin of
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Figure 5: A stable bound state of two dissipative solitons corresponding to a black point in Fig. 4,
δ = 0.02. (a) – intensity distribution, (b) – eigenvalue spectrum. Other parameter values are the same
as for Fig. 4.

Figure 6: Unstable bound state of two dissipative solitons corresponding to a red point in Fig. 4,
δ = 0.02. (a) – intensity distribution, (b) – eigenvalue spectrum. Other parameter values are the same
as for Fig. 4.
.
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Dissipative soliton interaction 9

Figure 7: The same bound bound state as shown in Fig. 5, but calculated for δ = 0. (a) – intensity
distribution, (b) – eigenvalue spectrum. Bound state is unstable with respect to an Andronov-Hopf
bifurcation.

coordinates τ = 0 corresponds to the central point between two solitons, (τ2 + τ1) /2 = 0, we get

G1,2 =
〈
w1,2 · F̂ (u1 + u2)

〉
1,2

+
〈
w1,2 · F̂ (u1 + u2)

〉
2,1

≈
〈
w1,2 · F̂ (u1 + u2)

〉
1,2

≈
〈
w1,2 · L̂(u1,2)u2,1

〉
1,2
−
〈
L̂†(u1,2)w1,2 · u2,1

〉
1,2

= (δ + i)
[〈
w1,2∂

2
τu2,1

〉
1,2
−
〈
u2,1∂

4
τw1,2

〉
1,2

]
+ iβ4

[〈
w1,2∂

4
τu2,1

〉
1,2
−
〈
u2,1∂

4
τw1,2

〉
1,2

]
+ c.c. (14)

with 〈w · u〉1 =
∫ 0

−∞ (w · u) dτ , 〈w · u〉2 =
∫∞

0
(w · u) dτ and L̂†(u1,2)w1,2 = 0.

Next, performing integration by parts and using the symmetry properties of the soliton and its neutral
modes, u0(τ) = u0(−τ), ∂τu0(τ) = −∂τu0(−τ), w0(τ) = −w0(−τ), and ∂τw0(τ) = ∂τw0(τ)
we get:

G1,2 ≈ ±
[
(δ + i)

(
w∗1,2∂τu2,1 − u2,1∂τw

∗
1,2

)
+iβ4

(
w∗1,2∂

3
τu2,1 − u2,1∂

3
τw
∗
1,2 − ∂τw∗1,2∂2

τu2,1

+ ∂2
τw
∗
1,2∂τu2,1

)]
τ=0

+ c.c. =

± [(δ + i) ∂τ (w
∗
0u0)− iβ4 (w∗0∂

3
τu0 + u0∂

3
τw
∗
0

+ ∂τ (∂τw
∗
0∂τu0))]τ=(τ2−τ1)/2 + c.c. (15)

Finally, substituting into Eq. (15) the asymptotic relations (7) and (12) we obtain:

d (τ2 − τ1)

dt
≈ − 12√

β4

e−γ(τ2−τ1)<
[(

1− iδ
3

)(
a3b
∗
3e
−iΩ(τ2−τ1) − pap∗ba∗3b3e

iΩ(τ2−τ1)
)]
, (16)
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d (τ2 + τ1)

dt
= 0, (17)

where γ = <(µ3) ≈
(√

β4/2
)√

(1 + δ/β4)− I2
0 , Ω = −=(µ3) ≈ 1/

√
β4 +

√
β4 (θ − 2I0),

and the Cherenkov radiation coefficients a3 and b3 are exponentially small in the limit β4 → 0. For
S = 2.0, θ = 3.5, d = 0.02, and β4 = 0.025 numerically we get a3 ≈ −0.158 + 0.149i and
b3 ≈ 0.017 + 0.136i. Finally, neglectingO (δ) terms and taking into account that in the leading order
in δ we have pa = pb ≡ p, Eq. (16) can be rewritten in the form:

d (τ2 − τ1)

dt
≈ 12√

β4

e−γ(τ2−τ1)|a3b3|
(
|p|2 − 1

)
cos [Ω (τ2 − τ1) + arg (b3/a3)] . (18)

The RHS of Eq. (18) is plotted in Fig. 4, where the intersections of the black solid line with axis of
abscissas correspond to the soliton bound states. Examples of stable and unstable soliton bound
states calculated numerically are shown in Figs. 5 and 6, respectively, together with the most unstable
eigenvalues of the operator L̂ evaluated on the bound state solutions.

Finally, in Fig. 7 we present the same soliton bound state as the one shown in Fig. 5, but calculated
for δ = 0. It is seen that the eigenvalue spectrum of this state contains many discrete eigenvalues,
which split from the continuous spectrum, and that it is oscillatory unstable due to the presence of
two complex conjugate eigenvalues with positive real parts. Therefore, we can conclude that in the
absence of spectral filtering the one-dimensional asymptotic equations (16)-(18) can be insufficient
to describe the soliton interaction. The derivation of the interaction equations taking into account an
Andronov-Hopf bifurcation of the soliton bound states in the presence of fourth-order dispersion is
beyond the scope of this study. A related problem concerning the effect of oscillatory instability on the
soliton interaction was studied in [41].

4 Conclusions

We have considered an all fiber photonic crystal cavity coherently driven by an injected field. The
intracavity field inside the fiber experiences self-phase modulation, dispersion, optical injection, and
optical losses. Its space-time evolution can be described by the Lugiato-Lefever equation with high
order dispersion, where, in addition, we have taken into account small spectral filtering term. We have
first discussed the properties of a single dissipative soliton and derived asymptotic expressions for the
soliton Cherenkov radiation amplitudes. We have focused our analysis on the regime, where the forth
order dispersion and the spectral filtering coefficients are small, 0 < β4, δ � 1. Second, we have
investigated the interaction between two dissipative solitons in the case when they are well separated
from each other. Assuming a weak overlap of soliton tails, we have established analytically the inter-
action law (Eqs. 18) governing the slow time evolution of the coordinates of two interacting solitons.
We have shown that although the Cherenkov radiation due to the small fourth-order dispersion can
strongly enhance the soliton interaction and thus lead to the formation of a large number of soliton
bound states, in the absence of spectral filtering these states can be unstable with respect to an oscil-
latory instability even when single soliton is well below the Andronov-Hopf bifurcation threshold. This
means that taking into consideration in the interaction equations additional degrees of freedom respon-
sible for the Andronov-Hopf bifurcation (as it was done in Ref. [41]) can be necessary to describe the
soliton interaction in the generalized Lugiato-Lefever model (1) with zero spectral filtering coefficient,
δ = 0. On the other hand, the inclusion of small but sufficiently large spectral filtering, 0 < δ � 1,
allows to suppress the oscillatory instability and to keep the interaction equation one-dimensional.
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