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A generalized Haus master equation model for mode-locked

class-B lasers
Michel Nizette, Andrei G. Vladimirov

Abstract

Using the multiscale technique we develop a generalized version of the class-B Haus mode-
locking model that accounts for both the slow gain response to the averaged value of the field
intensity and the fast gain dynamics on the scale comparable to the pulse duration. We show that
unlike the standard class-B Haus mode-locked model, our model is able to describe not only Q-
switched instability of the fundamental mode-locked regime, but also the appearance of harmonic
mode-locked regimes with the increase of the pump power.

1 Introduction

The first successful generation of a stable continuous train of passively mode-locked laser pulses was
reported more than thirty years ago, in a dye laser with a saturable dye [1]. From then on, passive
mode-locking has been recognized as a very powerful technique for generating high-quality picosec-
ond and sub-picosecond laser pulses with fast repetition rates, and ongoing efforts are still devoted to
the design of improved devices producing shorter and shorter pulses.

Owing to the early theoretical analyses of New [2] and Haus [3] [4], the essential physical process
responsible for passive mode-locking is well understood. It relies on the presence of a mechanism for
loss saturation at high laser power, typically implemented as a saturable absorber medium in the opti-
cal cavity. As illustrated in Fig. (1] if the absorber saturates faster than the amplifier medium on arrival
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Figure 1: Qualitative depiction of a typical pulse amplification cycle in a mode-locked laser.

of a pulse, a short temporal window of positive net gain is opened, enabling the pulse amplification
necessary to compensate for round-trip losses. The net gain then quickly becomes negative again as
a consequence of the saturation of the amplifier medium, combined to the relaxation of the absorber
back to it its unsaturated state if the latter is fast enough. This process favors emission in the form of
narrow pulses.

This basic physical picture is supported and has been confirmed many times by numerical and an-
alytical studies of passively mode-locked laser models of various complexities [5] 6, [7) 18, 19}, 10, 11,
12,13}, [14]. From the early work cited above [3| 4] originated a highly successful, universally adopted
model for pulse amplification and shaping that is now known as Haus master equation [15]. It is a

DOI 10.20347/WIAS.PREPRINT.2840 Berlin 2021



M. Nizette, A. G. Vladimirov 2

partial differential equation that describes the temporal evolution of the pulse profile with successive
round-trips. Coupled to appropriate rate equations for the gain and absorber dynamics, it provides a
model that is able to reproduce and quantify the pulse amplification scenario described above.

The same mechanisms that are at play in passive mode-locking are also responsible for a detrimental,
but practically unavoidable physical effect known as Q-switched instability [16} [17, [18] [19, [20] 211, [22]
of a mode-locked regime. This refers to an instability characterized by the build-up of a modulation
of the laser response with a period that typically extends over several round-trips. This process is
the hallmark of class-B lasers, where the photon lifetime in the cavity is comparable to or shorter
than the gain response time. It can be understood qualitatively as an alternation between two states
characterized by different levels of absorber saturation. Initially, the laser field in the cavity is weak and
the absorber is nearly unsaturated. The gain then builds up under the action of pumping for as long
as the absorber can inhibit the amplification of radiation. Eventually, losses are overcome by gain and
strong laser emission turns on, saturating the absorber and gradually depleting the gain medium back
to a sub-threshold value. At this point, the laser field is not amplified any more and decays. The cycle
then starts over.

Understanding the conditions of appearance of Q-switching in a mode-locked laser and determining
experimental conditions under which it can be avoided is of primary importance for the successful
generation of regular trains of mode-locked pulses. Theoretical studies based on Haus master equa-
tion have been very useful to this end [17, 123} 24, 118, 21]. However, the ability of the model to predict
Q-switching requires some particular care in the formulation of the rate equation for the gain. The suc-
cessful formulation is one where the gain response is assumed much slower than the cavity round-trip
time (consistently with the time scale relationship that defines a class-B laser) and responds only to
an average value of laser intensity over time.

Unfortunately, this Q-switching-enabled variant of the gain equation, being insensitive to the pulse
temporal intensity profile within a round-trip, is unable to describe the fast gain depletion-recovery
cycle that accompanies successive pulse amplifications. Therefore, it cannot account for the gain
contribution to pulse shaping, which constitutes a serious shortcoming of the model. The situation
is not too bad if the absorber is fast enough to follow the pulse intensity profile adiabatically (the
so-called fast-absorber case). This occurs, for example, when the saturable losses are provided via
additive-pulse mode locking [25] or Kerr lensing [26]. Then, losses saturate during pulse amplification
and desaturate immediately afterwards, which suffices to create the short window of net gain needed
for mode locking; the contribution from the gain medium is not essential to the process (see Fig. [2a.
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Figure 2: Qualitative depiction of a pulse amplification cycle in a mode-locked laser, in the absence of
gain dynamics, and for a) a fast absorber, b) a slow absorber.

However, the shortcoming mentioned above is critical if the absorber relaxes on a time scale much
longer than the pulse duration (the slow-absorber case). This situation occurs, for example, in a dye
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[27] or semiconductor [6] absorber. In that case, the absorber remains saturated for a while after the
passing of a pulse so that, in the absence of a significant depletion of the gain medium, the net gain
would remain positive for a time interval significantly longer than the pulse duration (see Fig. [2b).
This scenario is incompatible with the simple idea that the net gain remains positive for only a short
time, thereby favoring narrow pulses. It is also certainly questionable from a physical point of view,
as a positive net gain outside of the temporal boundaries of the pulse, and the amplification of the
residual field that would result, is generally thought to favor a detrimental build-up of a macroscopic
field, leading to the eventual destruction of the mode locking pattern. This phenomenon is known as
background instability [11].

The problem has been partly identified in [6], where it has been stated that for very slow gain and
absorber media, absorber saturation alone cannot explain the mode locking of a semiconductor laser.
The full absorber saturation-and-recovery cycle, they argued, should be taken into account in the
description of the amplification mechanism, implying that a semiconductor laser cannot be analyzed
under the usual slow-absorber approximation that consists in neglecting the slow recovery processes
on a time scale comparable to the pulse duration. Their non-approximate treatment of the problem
indeed solved the issue at hand and led to a physically consistent picture of the pulse amplification
cycle. However, their theory still lacks the ability to account for a fast response of the gain medium,
which we regard as a limitation of the model rather than a physical reality. Numerical studies based
on models more sophisticated than Haus master equation indeed suggest that the gain medium does
respond on the pulse time scale, even in class-B lasers [11]. In our view, any accurate modeling of
the core amplification mechanism should account for this, if only because a correct description of the
net gain evolution cycle is essential for the reliable prediction of such very important information as
conditions of background stability.

Owing to its mathematical simplicity, Haus master equation has been tremendously useful in under-
standing passive mode locking. Unfortunately, as argued above, the choice of a particular formulation
of the rate equation for the gain dynamics conditions the ability or inability of the model to describe such
important phenomena as Q-switching or the gain contribution to pulse shaping. The model originally
put forth by Haus to explain mode locking in the case of slow absorbers [4] is valid for class-A lasers
but lacks the ability to predict Q-switching in class-B lasers, and conversely, the Q-switching-enabled
variant used in [21] does not reveal any gain dynamics on the pulse time scale. To our knowledge, no
formulation so far accounts for both effects simultaneously, and researchers have traditionally been
forced to choose one variant or the other depending on which effect was foremost in the focus of their
study, or to resort to more complex models if both were equally important.

The purpose of this work is to overcome this shortcoming. Using an approach based on multiscale
expansion we derive a model for the gain dynamics that generalizes the conventional formulations
and which, coupled to Haus master equation, describes both Q-switching and the gain depletion-
recovery cycle in a satisfactory way. The benefit is that a single version of Haus model allows the
study of both phenomena. Unlike the extended Haus master equations obtained empirically in [28]
the gain evolution on the slow time scale is included as an additional equation, rather then boundary
condition. Furthermore, one can note that the discussion in [28] is incomplete since it ignores the
previous models of soliton [29] and passive [3, 21] mode-locking, which include slow gain evolution
equations.

In this introductory section, we stated the problem in a non-technical way. We make our objective more
precise in Sec.[2 by introducing the two conventional versions of the Haus model discussed above and
the underlying assumptions, as well as examining their respective limitations from a more mathemat-
ical point of view. We define the classifications into class-A and class-B lasers and into fast and slow
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absorbers in terms of relative magnitudes of model parameters, and state the corresponding usual ap-
proximations. We pinpoint one of the assumptions of the model as the source of its shortcomings. We
then derive, in Sec. (3} a new model for the gain dynamics with the limiting assumption relaxed, which
is our main result. We only give the outline of the method; the calculations themselves are too lengthy
to be included in the main body of this paper and are relegated to appendices. In Sec.[d} we check the
validity of the new model formulation with the help of numerical simulations, and emphasize its ability
to predict both Q-switching and a fast depletion-relaxation cycle of the gain medium. Conclusions are
given in Sec.

2 Conventional model formulations

In order to understand how two different versions of Haus partial-differential equation model arise for
different types of lasers and why both fall short of including all the relevant physics, it is helpful to
review briefly their derivations from more fundamental principles (see also Appendix A of [21] for a
more detailed treatment in the particular case of class-B lasers). Our starting point is a difference-
differential model for passive mode locking due to Haus [6]:

1 d?
a(T+r)—a(T):§(d2@+g—q—k)a(T) (1a)
dg
ﬁ =Yg (gmax - g) - Sgga27 (1b)
dg
7 = o (Gmax — @) — 8490%, (1c)

where 1" represents time, a denotes the instantaneous amplitude of the laser field, and g and ¢ stand
respectively for the gain and saturable losses per round-trip. The parameters giax and gmax denote
their unsaturated values. The time difference r represents the cold cavity round-trip time (that is, the
round-trip time for a weak fluctuation of the field inside the cavity at transparency). The parameter d
introduces an intrinsic limit of the narrowness of the pulse due to the finite bandwidth of the optical
cavity. It has the dimension of a time, and provides an estimate of a lower bound for the pulse duration.
It is typically significantly shorter than the round-trip time r. k represents the linear cavity losses, so
that the net gain per round-trip is given by g — ¢ — k. Finally, 7, and v, are the relaxation rates
of the gain and absorber media, and s, and s, are saturation coefficients. Note that that although
the difference-differential model (1) is free from the limitations of the partial-differential Haus models
discussed below it also has an important drawback: the smoothness of its solution is reduced each
round trip number. Physically this means that the high frequency perturbations of the solution grow
with the round trips.

2.1 Field equation

Haus partial-differential master equation is easily derived as a limit of the difference-differential field
equation for a large cavity bandwidth and a weak net gain. To this end, we introduce a formal
smallness parameter ¢, in terms of which we define the scales of the gain and absorber variables ¢
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A generalized Haus master equation model 5

and ¢ and of the pulse duration measure d by performing the following substitutions in the model :

9=, Gmax — € Gmax, (2a)
4=, Gmax — € Gmax; (2b)
k — &%k, (2c)
d — ed. (2d)

Note that € has no physical meaning; it is used simply as an order parameter in the forthcoming limit
calculations and will disappear from the resulting final equations. We further introduce a two-scale
expansion for the time variable:

d 9 ,0

@:aﬂLEE, 3)

in terms of which the delayed variable a (7" + ) in the field equation can be expressed as

a(T+r)=a(t+rT+er) f:a(t—f—r,r)—l—eQr%(t—l-r,T). (4)

Substituting the scaling (2) and then the expansions (3) and (4) into the difference-differential equation
and keeping corrections only to the order of €2 gives

da 1 0?
a(t+r)—a(t)+er (t+r)—25 <d 752—1—9 q k>a(t). (5)

Finally, equating separately the coefficients of like powers of ¢ on either side of Eq. gives the
following two equations:

53

da 1 ( , 9?
ot?

d——l—g—q—k)a, a(t+r)=al(t). (6)

The first one is the Haus partial-differential master equation, and the second one provides a periodic
boundary condition for it.

Note how Eg. (6) involves the two different time scales ¢ and 7 as independent variables. The validity of
this two-dimensional representation of time relies on the property of quasi-continuous pulse evolution
between successive round-trips. This means that the temporal profile of the pulse inside the cavity
varies little from one round-trip to the next, as a consequence of the weak net gain assumption. The
difference between the amplitudes of two successive emitted copies of the pulse in the left-hand side of
Eq. then appears in Eq. (6) approximated as a continuous derivative, where 7 thus represents the
slow time variable in terms of which the pulse evolution and shaping processes are described (or, more
generally, any process that takes place over several round-trips). In contrast, the role of the fast time
variable ¢ is to express the instantaneous configuration of the field in the cavity at a particular stage
of its evolution, as well as any other process that occurs on the time scale of the round-trip or faster.
The periodic boundary condition in Eq. (6) reflects the approximate periodicity of the pulse train over a
few round-trips. Eq. (6) is the simplest possible formulation of Haus master equation. Extensions exist
that account for the complex nature of the field amplitude a (to include phase dynamics) and other
physical effects (such as group velocity dispersion, Kerr effect, or linewidth enhancement factors) [15].
However the specific problem addressed in this paper does not require such extensions (nor does it
preclude their use).
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2.2 Absorber equation

The gain g and absorber g must be described by their own evolution equations in order to provide a
closed dynamical system together with Haus master equation (6). The absorber equation is obtained
trivially by substituting Egs. (2) and (3) into Eq. and then retaining only the leading-order terms in
€, which gives an equation that is formally identical to Eq. , but with I" replaced with £:

Jq
a = Yq (Qmax - Q) - Sqqa2' (7)

Because Eq. is linear in g, its most general solution is the sum of a periodic contribution with the
same period as a? and an exponentially decaying term that lasts only for a few round-trips. With the
restriction to solutions in which the transient contribution has already died out, we can thus impose on
Eq. (7) the same periodic boundary condition as on Eq. (6) for their compatibility as a coupled system:

q(t+r)=q(t). 8)

Two cases are usually distinguished about the time scales involved in Eq. (7). The first is that of a fast
absorber, which refers to a situation where the absorber relaxes on a time scale much shorter than the
pulse duration: ’yq_l < d. This time scale relationship allows the adiabatic elimination of the absorber
variable ¢ as an explicit function of the field intensity a2, which is achieved by setting the left-hand side
of the absorber rate equation (/) to zero and solving it for g. This yields

Qm ax

= - 9
1+%;15qa2 ( )

q
The other distinguished case is that of a slow absorber, when the absorber relaxes on a time scale
much longer than the pulse duration, but comparable to the round-trip time or shorter: d < %—1 S
This situation often justifies the neglecting of the relaxation term 7, (¢max — q) in Eq. during the
absorber depletion stage, so that the explicit solution for ¢ is now a function of the cumulated field

energy up to time ¢:
t
q = g1 exp (—Sq/ dt a2) , (10)
t1

where ¢, represents the absorber state just before the pulse arrival, and ¢, is the corresponding instant
in time. Eq. holds for the duration of a pulse; after that, the neglected relaxation process takes
over as the laser field vanishes. Note that for both fast and slow absorbers, the relaxation process is
assumed to occur on a time scale not longer than the round-trip time, and is consistently described in
Eq. (7) in terms of the fast time variable ¢ rather than the slow time variable 7.

2.3 Gain equation

For the gain medium, a similar dichotomic classification based on the relaxation rate -y, exists, but the
reference time scale is different. A laser for which the gain relaxation takes place on a time scale com-
parable to the round-trip time or slower (fyg_l < r)is called a class-A laser. In contrast, a laser whose
gain medium relaxes over many round-trips (79_1 > r)is called a class-B laser. This classification will
be used to determine which time variable (¢ or 7) is involved in the description of the gain relaxation
process. Unlike the absorber rate equation, we shall see that there is no single formulation of the rate
equation for the gain that will handle both cases, so one must choose from the outset which kind of
laser is involved.
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A generalized Haus master equation model 7

2.3.1 Gain equation for a class-A laser

In a class-A laser, the gain response time is not especially long compared to the round-trip time. The
derivation of the gain rate equation thus does not require any particular assumption on the relaxation
and saturation rates v, and s,, and is entirely parallel to that of the absorber rate equation (/) and of
its boundary condition (8). We obtain:

dg
5 = Vo (Gmax —9) = 899"  g(t+7)=g(1). (11)
Together, Egs. (6), (7). (8) and form a closed system for the field, absorber, and gain medium in a

class-A laser.

The validity of Eq. does not extend to class-B lasers, however. A simple argument for this is that
a correct class-B laser model should reduce, in the absence of fast mode-locking dynamics, to the
classical pair of rate equations that describes a single-mode emission [17} (18], namely:

da 1

—==9—q- 12
" 2(9 q—k)a, (12a)
dg

dT = ng (gmax - g) - Sgga2- (12b)

But while dropping the dependence in the fast time variable ¢ in Eq. (6) gives the correct rate equation
(12a) for the field, dropping it in Eq. gives a simple algebraic equation from which the gain can be
solved as a function of the field intensity:

gmax
9= 1T 1. 2 (13)
L+, 18,02
instead of the expected rate equation (72b). In fact, so far as ¢-independent solutions are considered,
the explicit expression (9) for ¢ holds no matter whether the absorber is fast or slow, so Egs. (9) and
can be both substituted into the field rate equation (12a) to give a single closed rate equation for
the field amplitude a:

d 1 max max
rod = J — ¢ —k)a. (14)
dr = 2 \1+q,1s50% 1+ 7,1s,02

It is a known fact from elementary dynamical system theory that oscillations cannot arise from a
single ordinary differential equation such as Eq. (14). This provides evidence (in the particular case of
single-mode emission) that Q-switching cannot arise from the class-A formulation of the gain rate
equation.

2.3.2 Gain equation for a class-B laser

A different equation for the gain is therefore required for a proper description of Q-switching in a class-
B laser. In order to account for the slowness of the gain relaxation and saturation processes, we must
supplement the scaling (2) with the following substitution relations:

Vg — 5279, Sg — 52sg. (15)
Substituting Egs. (2) and into Eq. then gives
dg 2 2
d_T =& [f)/g (gmax_g) _Sgga } . (16)
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M. Nizette, A. G. Vladimirov 8

The structure of Eq. justifies the application of an averaging method [30]. This consists in taking
the gain variable g as independent of the fast time variable ¢, expressing the time derivative in the
left-hand side in terms of the slow time variable 7 (using the relation 7 = 27, and averaging the
right-hand side over one period in . We thus obtain:

dg - o " 2
d_ =Yg (gmax_g) — SggT / dt a”. (17)
T 0

The form of the gain equation was used successfully in [21] to predict Q-switching. For particular
solutions independent of the fast time ¢, Eq. reduces to the correct single-mode rate equation
(12b), so Eq. passes the simple validity test that the class-A gain equation did not pass.
However, Eq. involves only the mean intensity over one round-trip, so according to it, the gain
cannot respond to fast field variations. Although consistent with the assumption that the gain medium
is much slower, this introduces a serious new limitation in the model. Indeed, consider a mode-locked
class-B laser with a slow absorber. In view of Eq. , the net gain ¢ — ¢ — k during the passing of a
pulse is given by

t
g—q—k:g—qup(—sq/ dtaQ)—k, (18)
t1

where g and g; are independent of ¢. This expression is a monotonously increasing function of ¢,
in agreement with Fig. [2b, and consistently with the fact that the only dynamical process taken into
account by Eq. is the absorber saturation, which only contributes to a gradual increase of the
net gain. As argued in the introduction, the monotonous net gain evolution is not confirmed (at least
for common operating conditions) by numerical simulations of the delay differential equation (DDE)
mode-locked laser model, which suggest to the contrary that some fast dynamics of the gain medium
does play a significant role in shaping the net gain profile, even in class-B lasers [11].

2.4 Origin of the model shortcomings

We have shown on mathematical grounds that both the Q-switching-enabled gain model and the
class-A gain model suffer shortcomings when applied to class B lasers: while Eq. is unable
to predict Q-switching, Eq. is unable to describe the fast response of the gain medium to the
passing of a pulse. The two models in fact miss part of the physics for opposite reasons: in Eq. (17),
the gain medium is not fast enough to follow the fast intensity variations, whereas in Eq. it is not
slow enough to endow the system with the necessary inertia to develop slow oscillations

Since both Egs. and are obtained as limits of the more general Eq. (1b), the key to obtaining
a unified model capable of describing both phenomena is to drop some of the scaling assumptions
@, ([15). To identify which ones can be retained and which are to be relaxed, we note that part of the
success of the more complex model studied in [11] stems from its extended validity into the regime
of strong amplification that typically holds in semiconductor lasers. This observation suggests recon-
sidering the appropriateness of the weak-gain assumption (2a). A strong enough pumping of the gain
medium may indeed be required to compensate for its slow responsiveness to intensity variations and
create a modulation the gain profile of sufficient depth to induce a non-negligible contribution to pulse
shaping. Moreover, both the pumping rate and the lasing threshold usually influence the range of vari-
ation of the gain, which hints at the need to drop the weak cavity loss assumption too. In the next
section, we show that a multiple-scale analysis based on a set of assumptions weakened along those
lines does indeed yield a model for the gain dynamics with the desired properties.
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3 Improved model formulation

Before proceeding, we note that the derivation of difference-differential model from fundamental
principles already incorporates an assumption of weak gain and losses [6] (as is manifest from their
linearity in g, ¢, and k). One may therefore legitimately question its appropriateness as a starting point
for an analysis that is intended to retain validity for a larger range of gain than the classical theories
presented in Sec.|2| To settle this point, we consider also the DDE model used in [11], which holds for
arbitrary gain and losses:

d 1 1
(1 + dﬁ) a(T+R)=Kz2exp {5 (9 — Q)l a(T), (19a)
d
% =Yg (gmax - g) — Sy [eXp (g) - 1] exp (_q) a27 (19b)
d
G = o (G = 0) = 5[~ exp (~0)] @, (19¢)

where A(T') is the electric field envelope at the entrance of the absorber medium, G(7") and Q(T')
are gain and loss introduced by the amplifying and absorber sections, respectively, and T is time. R is
the cold cavity round trip time, D is the inverse spectral filtering width, and K is the attenuation factor
per cavity round trip. The parameters ¢,,,q. and g¢.q. describe the unsaturated gain and absorption,
while s and s, are the saturation factors of the corresponding sections. For simplicity we have omitted
in Egs. the linewidth enhancement factors introduced in [11] to describe semiconductor lasers and
assumed that A is real. However, all the calculations below can be trivially generalized to the complex
case when the linewidth enhancement factors are present.

In view of Eq. (194), the quantity In (K') represents the gain above cavity threshold. Let us introduce

new variable n, such as

n(l—%>=g+ln(K) (20)

Close to the threshold we can consider the following scaling

n — €N, (21a)

=€ Gmax = € Gmax; (21b)
d — ed, (21c)

Vg = X, Sy — €28y (21d)

with small €. Eq. can be viewed as a weakened form of the low-gain assumption (2a), as it
allows the gain variations to cover a larger range (on the order of ¢ instead of £2). Also, we allow
arbitrarily large values of the pumping term g.,.x and of the linear losses k. In all other respects, the
scaling is identical to Egs. and together. Substituting the expression for g obtained from
Eq. together with the relation R = r — ¢D and then Egs. into Egs. and keeping only
the highest-order terms in € gives:

1 d?
a(T+7r)—a(T) = 5 (E2d2ﬁ +en— 52q) a(T)+ O (53) , (22a)
dn — - 2 3
d—Tzs[Pg—efygn—(Sg+€sgn)a} +0 (%), (22b)
dg
d_T = Yq (Qmax - Q) - Sqqa2 + 0 (62) ) (22c)
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In order to understand how two different versions of Haus partial-differential equation model arise for
different types of lasers and why both fall short of including all the relevant physics, it is helpful to
review briefly their derivations from more fundamental principles (see where

1 1

P, =7, [gmax + In (K)], Vg =Yg — §ng Sy = (K_l - 1) Sg, Sg = 5(3[(_1 —1)s,.
(23)
Similarly to the DDE model in view of the field equation (Ta), the quantity
n=g—=k (24)

represents the gain above cavity threshold. Following our considerations given above, we seek an
asymptotic limit of the difference-differential equations with the scaling for € small. One can
easily check that this leads a system equivalent to Egs. up to O (52) corrections. This level of
accuracy is sufficient to justify all calculations in this paper, which establishes the equivalence of the

models (1) and in the limit (21).

The equations have been used to derive a generalized class B laser version of the Haus master
equations. Note that since all quantities in Eq. involved in the absorber equation is identical
to Egs. (@) and (15), the asymptotic absorber equation (7) and its boundary condition (8) thus remain
valid in the limit considered here, so Eq. does not require any further analysis. From now on, we
focus all our efforts on dealing with the remaining field equation and gain equation (22b). Our
method now proceeds in two steps. The first one is a strict (though not straightforward) application of
multiple-scale analysis. Because the calculations are too lengthy to be presented in the body of this
section, they are relegated to Appendix Al The result is a system of equations equivalent to Egs.
for small €, which are listed as Egs. (B.2)—(B.7) and commented on in the self-contained Appendix B]

The asymptotic equations (B.2)—(B.7) can be useful in their own right as they would provide a good
starting point for an all-analytical bifurcation study of mode-locked class-B lasers (though such an
endeavour falls outside of the scope of the present paper and will be left for future work). They are not
the final result of the present analysis, however. Keeping in mind that our goal is to find a generalized
gain model to be coupled to Haus master equation (6), we note that Egs. (B.2)—(B.7) present the
drawback of not involving the physical field and gain variables directly. The relations between those
and the asymptotic dynamical variables are in fact rather complicated. As a second step in the analysis,
therefore, we perform various transformations (given in Appendix [C) to recast Egs. (B.2)—(B.7) into a
much more physically transparent form. This procedure is not a strict application of asymptotic analysis
as it involves inhomogeneous transformations (i.e., the summing of quantities proportional to distinct
powers of £). Nevertheless, it satisfies our goal by yielding Haus master equation coupled to a new
model for the gain dynamics. Namely, we obtain

da 1 0?
r—= — dg— n — a, a(t T:at, 25
=3 (Pgatn-d)a atrn=aw 25
which are just Eq. (6) expressed in terms of the gain above threshold n together with Egs. (7),(8), and
the system
on NN AN 2
E = Sg <T /0' a‘dt — a s (263.)
dn —— S
= Py =7, — (S +34m)r i a“dt, (26b)
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where m = r~ ! fOT ndt represents the average gain over one round-trip and the parameters P,, Vg
Sy, and 5, are defined by Es. (23).

The rate equation is similar to the conventional gain rate equation for a class-B laser pre-
sented in Sec. |2 in that it involves the field intensity averaged over one round-trip time, and is not
sensitive to the details of the mode-locked emission pattern. Those two equations would in fact be
completely equivalent, were it not for the presence of a different saturation coefficient s, in Eq.
and for the fact that Eq. describes only the mean value of the gain over one round-trip. Based
on the knowledge of the evolution of this mean value, Eq. determines the full depletion-recovery
cycle of the gain. The formulation of Haus master equation does not involve the ¢-independent
solution 7 of Eq. directly, but the t-dependent solution n of Eq. that averages to 7. In that
sense, Egs. extend Eq. by accounting for the fast gain dynamics on a time scale compara-
ble to the duration of a mode-locked pulse while retaining on average the slow dynamics of Eq.
responsible for Q-switching.

The correction to the saturation coefficient finds its justification in the multiple-scale expansion
of the delayed term a(T" — ) in Eq. (224). According to the calculations of Appendix [A] limiting the
expansion to the first derivative as in Eq. (4) is not valid anymore in the limit (21). The second derivative
does play a role in the analysis, and leads to a contribution to the net gain that is found to be equivalent
to an effective decrease of the gain saturability.

da 1 0?
raz§<d2¥+g—q—k>a, a(t+r) =a(t), @)
Jq _
5 =0 — Vg0 — Sqqa°,  q(t+7r)=q(t), (28)
@ = rl/ a?dt — a?, (29)
ot o
d— r
=g =79~ kg / a’dt, (30)
T 0

where g = r~! [ gdt, k = 24=%, g0 = P, + kg, go = Yglmax, and 5, = 54/.S,. Note finally that

by introducing new variable § = g — g we can rewrite Eq. in the form

Ja 1 0?
r—=-|d=—=+3+3—q—Fka, a(t+r)=al(t), 31
5 2( 5 TITg—a ) (t+7)=a(t) (31)
while the equations (28)-(30) remain unchanged except for the replacement g — g:
8"' T
99 _ 7“1/ a?dt — a. (32)
ot 0

then one can easily see that the extended Haus model becomes equivalent to the conventional class-B

haus model (6), (7), and if we set g = 0in and abandon Eq. (32).

4 Numerical results

An algorithm for solving the formulation of Haus model that incorporates the gain equations and
(30) should proceed as follows. An initial condition for this problem is the profile a (¢, 79) of the field
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in the cavity at 7 = 7, which is periodic in ¢ with period r, together with the single value g (1) of
the mean gain at 7 = 7. The absorber depletion-recovery profile ¢ (t, 7o) is then determined from
Eq. with the periodic boundary condition (8), and the gain depletion-recovery profile n (¢, 7o)
is computed from Eq. (26a). Since any solution of Eq. automatically has the same period as
a?, the periodicity of ¢ (t,70) does not have to be imposed explicitly. However, Eq. determines
its solutions only up to an arbitrary additive constant, which is to be fixed by the integral condition
g=r" for gdt. The knowledge of ¢ (¢, 79) and g (t, 79) then provides enough data to compute the
field profile a (¢, 79 + dt) one time step dt later, using Haus master equation together with its
periodic boundary condition. Likewise, the mean gain g (7o + dt) one step later is computed from Eq.
(30). Starting data is then available for the next integration step.

40

w
(=)

HML

peak power
N
()

—_
(=]

o

0 05 1.0 15 20 25 3.0
90

Figure 3: Pulse peak power a? as a function of the pump parameter go obtained using the generalized
Haus model, Egs. (27)-(30). QSML, FML, and HML denote Q-switched, fundamental, and harmonic
(with two pulses per cavity round trip) mode-locking regimes, respectively. Parameter values are: r =
2.5,k=0.519,¢=1.0,7 =75 1073, vy =0.2,5, =7.0,d = 0.02.

We have solved the generalized Haus model (27)-(30) numerically using the split-step method with
1024 Fourier modes. The resulting bifurcation diagram presenting the evolution of pulse peak power
a? with the increase of the pump parameter g is shown in Fig. |3l It is seen that apart from the funda-
mental mode-locked (FML) regime with a single pulse per cavity round trip, this model can demonstrate
harmonic mode-locking (HML) regime with two pulses per cavity round trip time, as well as Q-switched
mode-locking (QSML) regime with periodically oscillating pulse peak power corresponding to a cloud
of points in Fig. [3| The slow time evolution of the pulse peak power of the QSML regime is shown in
Fig.[4|a) together with the fast time evolution of the intensities of the FML and HML regimes, see Figs.
M(b) and [4c), respectively.

Bifurcation diagram similar to that shown in Fig. |3} but calculated using the conventional class-B Haus
model, which neglects the fast gain variation on the pulse width timescale is shown in Fig. [5l This
model can be obtained by by setting g = 0 in Eq. and abandoning Eq. (32). It is seen that
although the conventional model describes the Q-switched and fundamental mode-locking regimes
rather well, it fails to describe the appearance of harmonic mode-locking regime, which emerges with
the increase of the pump parameter gy. Furthermore, the conventional model predicts slightly slower
growth of the pulse peak power with gy and broader mode-locked pulses than the generalized Haus

model (27)-(30).
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Figure 4: Time traces obtained by numerical integration of the generalized Haus model, Egs. -.
(a) — Q-switched mode-locking, pulse peak power as a function of slow time 7. (b) — Fundamental
mode-locked regime, intensity a? as a function of the fast time ¢. (c) — Harmonic mode-locking regime
with two pulses per cavity round trip, intensity a? as a function of the fast time . Other parameters are
the same as in Fig.
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Figure 5: Bifurcation diagram similar to that shown in Fig. [3, but obtained with conventional class-B
Haus model. QSML and FML denote Q-switched and fundamental mode-locking regimes, respectively.
Parameter values are the same as in Fig. @

Time dependence of the net gain parameter n = g — ¢ — k (see Eq. ) and field intensity a? on the
fast time ¢ is shown in Figs. [|and[7]for the generalized and conventional class-B Haus models, respec-
tively. It is seen from Fig. [6(a) that in the generalized class-B Haus model with the pump parameter
go = 1.0 the net gain window corresponds to a short time interval when the pulse intensity is large.
For larger pumps [see Fig.[6|b) corresponding to go = 3.0], however, positive net gain appears before
the pulse triggering the so-called leading-edge instability [11], which eventually gives rise to a har-
monic mode-locking regime. Unlike the generalized model, the conventional class-B Haus model does
not demonstrate the development of leading edge instability with the increase of the pump parameter,
see Figs.[7(a) and (b). Furthermore, since the fast gain saturation in absent in the conventional model,
the net gain window is limited by the absorber saturation only. This is why the pulse widths obtained
with the conventional model (see Figs.[7(a) and (b)) are broader than those shown in Fig. [6]

5 Conclusions

Although, unlike the DDE mode-locking model, the Haus master equations are based on low gain and
loss approximation, which limits the parameter range of their validity, they are widely used and serve
as an efficient tool for the analysis of mode-locked devices, such as e.g. fiber and solid state lasers.
This is not only due to the availability of well developed tools for analytical and numerical analysis of
nonlinear PDEs, but also because of the possibility of straightforward inclusion of the group velocity
dispersion into the master equations. On the contrary, the inclusion of the chromatic dispersion into
the DDE mode-locking models is not that straightforward, see [31}[32]. Another limitation of the partial
differential master equations, is that unlike difference-differential Haus model (), the development of
adequate PDE models of mode-locked class B lasers require a careful formulation of the equations
describing gain dynamics on different time scales. In particular, while the class A version of the Haus
master equations (6), (7), and is not applicable to describe mode-locking in class B lasers and
fails to describe Q-swithed instability of the mode-locked regime, the class B model (6), (7), and (17),
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Figure 6: Pulse amplitude a? (black line) and net gain 7) (gray line) obtained with the generalized Haus
model (27)-(30) as functions of the fast time ¢. (a) — go = 1.0; (b) — g0 = 3.0. Other parameters are

the same as in Fig. E}
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Figure 7: The same as Fig. @but obtained with the conventional class-B Haus model. (a) — gg = 1.0;
(b) = g0 = 3.0. Other parameters are the same as in Fig.
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which accounts for the slow time scale evolution of the gain, is capable of describing Q-switched mode-
locking regime, but fails to predict a transition to harmonic mode-locking regimes with the increase of
the pumping parameter. On the other hand, the solution of the difference-differential Haus model
(1), which is free from these limitations, loses smoothness with increasing round trip number and
hence exibits an instability at large frequencies. Here, using asymptotic expansions, we have derived
a generalized version of the Haus PDE model including the equations tor the slow and fast scale gain
evolution, instead of the time dependent boudary condition proposed in [28]. Our numerical simulations
indicate that our generalized model allows to describe both the Q-switched mode-locking and the
development of harmonic mode-locking regimes.

Appendix A Multiple-scale analysis of Eqgs. (22)

We first introduce a multiple-scale expansion for time. By analogy with Eq. (3), we name the fastest
time scale t and the slower ones 7; and 7s:

d o 8 L0 \
= _— — . A.1
T at+eaT1+58T2+O(e) (A.1)

The delayed variable a (7" + r) in the field equation (22a) can be expressed in terms of the various
time scales in the expansion (A.1) as follows:

a(T+r) = a(t+r,71+5r,72—|—52r)
0 r? 9 0
= |1 —_— 2 ——— —_— t O (£%). A.2
[ +6raﬂ+€ (20712+T672)]a( +r,1,7)+0 (7). (A2)
We further expand:

a=ap+cay +e2ay + O (53) , n=ng+en; +e’*ng+ O (53) ) (A.3)

Substituting Egs. and and then Eq. into Egs. and equating the coefficients of like
powers of € separately leads to a hierarchy of linear problems. A study of their solvability conditions
will provide a set of equations equivalent to Egs. in the limit of small .

A1 O (") problem

The O(£°) problem is:

ao (t+ 1) — ap(t) =0, (A.4a)
6710 o
oo, (A.4b)

and gives a periodic boundary condition for the field amplitude aq and the information that the leading-
order gain component 1y does not vary on the fastest time scale t.
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A2 O (¢') problem

The O(e!) problem is:

0o 1
a1 (t+71) —ai(t) = <—7’¥ + 5“0) ao, (A.5a)
1
9, 0
B =g P S, (A5b)

The validity of the expansions for all times requires that a; and n; be bounded functions of t.
This imposes the vanishing of the right-hand side of Eq. (A.5a) and the vanishing of the average of the
right-hand side of Eq. (A.5b) over all ¢, which leads to the following solvability conditions:

day _ 1 (A.6a)
T—— = —MNoQ .
87’1 2 070
P P, — S,a*, (A.6b)

where a is the quadratic average field amplitude over one round-trip:

Ei(Tl, ’7'2) = \/7“1 / dt a%(t, 71, 7'2). (A7)
0

The quantity @ defined by
ap = aa (A.8)

thus represents the emission pattern normalized so that
T
r_l/ dta® =1. (A.9)
0

It will be advantageous to express the field variable a, everywhere in terms of the decomposition (A.8),
as we will find @ and @ to be governed separately by their own evolution equations. First, the O (50)
equation (A.4a) for the field translates to a periodic boundary condition for a:

a(t+r)=nalt). (A.10)

Next, substituting Eq. into the solvability condition for the field gives

(6&; Naa) L
7‘ + = 5Moaa. (A11)

o or ) T2

Multiplying both sides of Eq. by @, integrating over ¢, and using the normalization condition
further yields
da 1 _
Ta—Tl = Enoa, (A.12)
which, together with the solvability condition for the gain, defines a closed system for the aver-
age field amplitude @ and leading-order gain ng. This system is a conservative oscillator that describes

Q-switching and admits the first integral

H () = (2r) ' n{ + Sya* — Py In (P, S,a°) . (A.13)

DOI 10.20347/WIAS.PREPRINT.2840 Berlin 2021



A generalized Haus master equation model 19

The slow evolution of the Q-switching energy H on the slowest time scale 7 is as yet undetermined.

Substituting Eq. for @ back into Eq. gives
da
on

which means that the normalized emission pattern @ does not vary on the time scale 7; of Q-switching.

Finally, substituting the solvability conditions (A.6) and the decomposition (A.8) back into the O (')
problem (A.5), we obtain

=0, (A.14)

ay (t + 7") — ap (t) = O, (A158.)
8711 O\ ~
e Sy (1—a%)a”. (A.15D)

Eq. (A.153) is a periodic boundary condition for a;. Eq. is an evolution equation for the small
gain correction on the fast time scale ¢. Because its right-hand side averages to zero over one round-
trip, its solutions 11 are periodic with period 7.

Finally, by multiplying both sides of Eq. by n; and integrating over one period in ¢, we find an

identity that will be useful later on:
' '
/dtnlz/ dt @*n;. (A.16)
0 0

A3 O (¢*) problem

The O (¢?) problem is:

(t+7)—ax(t) = | — i+1 + o i+1 d28—2+n — a
@U@=\ Ty, Tl M 20r2  om 2\ T T %
(A.173)
6712_ 6711 8 _ 2

The following calculations involve many variable changes and make heavy use of the field amplitude
decomposition (A.8), of the normalization condition (A.9), of the Q-switching oscillator equations
and (A.12), and of which variable is independent of which time scale. For the sake of concision, we
omit from now on any reference to those in most places where they are invoked.

Boundedness of as and 1. in ¢ requires the vanishing of the right-hand side of Eq. (A.17a) and of the
average of the right-hand side of Eq. over all ¢, leading to the solvability conditions

o 1 Lo [ 0 1,0 . Aisa
—— = - = =|l-—=——-r—+= — — .
Ton, ") M ghad 2012 or 2\ e aa

o _, [" SO A 0
e 1/0 dt ny + 2S,ar 1/0 dt aa; = — (872 + 7, + 540 ) no (A.18b)
Those can be rewritten as

8@ 1 ,\ ~ ~—10a da + 1 (A.193)
———n'la=|—r — .
871 2 07y 8t2
on' 0 1 0
— +2S,a a’ad = — A.19b
87'1 + (67'2 +’Yg+SgCL +2n087_1) Ny, ( )
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in terms of the effective saturation coefficient s, given in Eq. and of the auxiliary variables a’, @,
n’, and 7’ defined as

T
d=a'ate, ad=rt / dt a%d’, (A.20a)
0

T - 1 "
n =mng — 3 (P, — S,a°) — an, n = r_l/ dtn'. (A.20Db)
0
Multiplying both sides of Eq. (A.19a) by a, integrating over one period in ¢, and using the identity
(A.16) yields, together with Eq. (A.19b), the following linear ¢-independent inhomogeneous system for
two unknowns @’ and n’:

oa 1., ., 0a I
Iy — eyl 2 dt a2 A.21
Taﬁ 2” ra (97'2 27’ /0‘ @4 ( a)
on’' 0 1 0
42830 = — | — 4+~ 450+ Sng— A21b
an +254aa (872 + 74+ 540 +2n0871)n0’ ( )
where we have defined
~ —
a = a, (A.22a)
_ r a\”
n o= n—-dr! / ar (22 . (A.22b)
0 ot

Fredholm’s solvability condition requires that the right-hand side of the system (A.21) be orthogonal to
the solutions of the adjoint homogeneous problem. After a few calculations, we find that this condition
can be written in matrix form as

T —7"&/*1% — l7“1/ dt a%q
/0 dm [ —2 (Pg - Sgﬁz) ng ] - < o o o i) o ) =0, (A.23)

where 17 denotes the period of the Q-switching oscillator as defined by Egs. (A.6b) and (A.12). Using
the expression (A.13) for the Q-switching energy H, Eq. (A.23) simplifies to

Ty r
r— = Tfl/ dry | (P, — Sya*) r—l/ dt a*q — (3, +540°) ng | . (A.24)
d7-2 0 0 g

Eqg. (A.24) determines the slow evolution of the Q-switching oscillation cycle. Its right-hand side in-
volves the normalized emission pattern @, whose evolution is as yet undetermined. We therefore now
need an equation for .

To this end, we multiply both sides of Eq. (A.21a) by @ and subtract it side by side from Eq. (A.19a),

obtaining
oa’ 0 1 0? "
ri— = |—-r—+ = (d*= +7' + rl/ dta*q—q)|a, A.25
o, { o, 2( o , T (A25)
where we have defined
ad=d-1d, (A.26a)
n=n-7n. (A.26b)
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Boundedness of @’ in 7, requires the vanishing of the average of the right-hand side of Eq. (A.25) over
all 7, leading to the following solvability condition:

da 0? I "
— = d2— Tr dry (7! / @’q—q|l|a A.27
raTQ BIE) +n+ /0 T (T ; dta*q—q || a, ( )

where we have defined .
1
n=1T" / dnn'. (A.28)
0

Eq. (A.27) provides an equation for @ that depends on 7.

A complementary equation for 72 in terms of @ can be derived from the fast gain equation (A.15b) using
the relations (A.200), (A.22b), (A.26b), and (A.28) between the various auxiliary gain variables:

on n
a—? =5, (1-a*) 17! / dra’. (A.29)
0

Appendix B Asymptotic form of Egs. (22)

We now summarize the results of the multiple-scale analysis of Appendix[Aland collect all the obtained
asymptotic equations in a single place, renaming the leading-order gain component ng as

ng =n (B.1)

for the sake of notation uniformity. According to Eq. (A.8), the field amplitude a can be decomposed to
leading order as the product of a slow-varying envelope @ and of a normalized emission pattern a:

a = aa, (B.2)

both governed by their own evolution equations.

Egs. (A.27) and (A.29) form a system that couples the emission profile @ to some fast gain component

n:
oa 1[.,0 h R A N
TaTZ_E[dWJF + 17 /0 dm (r /0 dta q—q)]a, (B.3a)
on .
0—7; =S, (1-a*) 1" / dra®, (B.3b)
0

where T is the Q-switching period, to be defined more precisely below. Eq. bears some sim-
ilarity to Haus master equation (g), while Eq. determines the depletion-and-recovery profile of
the gain over one round-trip. In view of Egs. (A.14) and (A.28), @ and 12 do not vary on the Q-switching
time scale 1y, so they do not contain any information about Q-switching oscillations. In order to form
a well-posed problem, the partial-differential system (B must satisfy some boundary conditions or
other constraints. Those are provided by Egs. (A.9) and (A.10):

=a(t), (B.4a)

(B.4b)

\m
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Eq. (B.44) is a periodic boundary condition for the emission pattern @. The solution 7 of the fast gain
equation (B.3b) is defined up to an additive contribution that depends only on the slowest time scale
T2, and whose value is to be adjusted so that the normalization condition holds for all 7o.

Coupled equations for the slow-varying field amplitude @ and the leading-order gain component 1 are
provided by Egs. (A.6b) and (A.12):

da 1__
ra—ﬁ = §na, (B.5a)
g—: — P, — S, (B.5b)

In view of Eqs. (A.4b) and (A.7), @ and n do not vary on the fast time scale t. Egs. (B.5) define
a conservative oscillator whose orbits describe Q-switching cycles. Those are characterized by the
values H of a first integral provided by Eq. (A.13):

H = (2r)"'5 + S,a* — P, In (P, 1 S,a%) . (B.6)

The Q-switching period 7 can be computed as the period of @ and n in 7, according to Egs. .
The evolution of @ and n on all time scales, and thus the full Q-switching dynamics, is completely
determined by the additional knowledge of the evolution of the Q-switching energy H on the slowest
time scale 7». It is provided by Eq. (A.24):

Ty r
re— = Tll/ dr {(Pg — S,a%) 7’1/ dt a*q — (7, +5,a°) 0°| (B.7)
0 0

where 5, is given by Eq. (23).

Finally, the system (B.2)—(B.7) is closed by its coupling to the absorber equation and its periodic
boundary condition (8).

Appendix C Equivalence of Eqs. (25)-(26) to Egs. (B.2)-(B.7) in
the limit (21)

Egs. (B.2)-(B.7) involve the three independent time variables ¢, 71, and 75. Our first step towards
casting them into the form (25)—(26) consists in recombining 7; and 73 into a single slow-time variable
7. To this end, our strategy is to propose the following multiple-scale expansion for 7:

d 0 0

—=—+e—+0(e), C.1

dr  0n 01y ( ) (©1)
and then devise (by means of educated guesswork) a set of equations in the ¢ and 7 variables that
admit Egs. (B.2)—(B.7) as a limit for small €. We then explicitly check the correctness of that limit to
establish formally the equivalence of the two formulations. This can be viewed as a multiple scale
analysis applied backwards.

First, the equations (B.3) for @ and 1 suggest

da 1 2 0% ~

R - — 2
T@T 5¢ dat2+n +r /Odtaq q}a, (C.2a)
on' 9\ ~

Fr Sy (1—1a%)a* (C.2b)
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as equivalent for small €. It is indeed easily checked that the application of an averaging method to
Eq. (C.24) yields Eq. with the definition (A.28) for 71 in terms of 72/, and that the combination of
Egs. (A.28) and leads to Eq. (B.3b).

Next, Eq. for the slow evolution of Q-switching oscillations suggest modifying the conservative
oscillator as follows:

T’E =5 (n —er /0 dta q) a, (C.3a)
on . o\ ~
a—:_l =P, - Sga2 —€ (% + EgaQ) n. (C.3b)

We now check that Egs. (B.5)—(B.7) are a limit of Egs. for small € as follows. We substitute the
expansions and
a=ay(1+¢ed)+0(?), n=ng+en +0/(c) (C4)

into Egs. and equate separately the coefficients of like powers of ¢, obtaining a hierarchy of
problems for the coefficients of the expansions 1» The O (50) problem is equivalent to Egs. 1}
The O (¢') problem is

da’ 1, ~—1 dag | " ~2
— —=-n = — — — = dt C.5
r8T1 2n rag or, 2r /0 aq, (C.5a)
on’ . 0 2\ ~
5+ 25,020 = — (% +7,+ §ga2) no, (C.5b)
1 2

and is formally identical to Egs. with the sole exception of the absence of the last term in Eq.
(A.21b). By the same reasoning as in Appendix [A] therefore, a solvability condition for Egs.
is provided by Eg. with the last term of the second element of the column vector removed.
Because that term vanishes in the integration over one period in 71, however, the presence of this
term does not matter, and the solvability condition simplifies to Eq. (A.24).

The analysis so far establishes that in the limit for small ¢, the two time scales 7; and 7, can be
recombined into a single time variable 7 by replacing the equations for @ and 1 with Egs.
and the equations (B.5)—(B.7) for @ and 72 with Egs. (C.3). We now want to cast the two field equations
and into a single equation for the combined field amplitude @ given by Eq. (B.2). To this
end, we multiply both sides of Eq. by @ and both sides of Eq. by @ and add the two
resulting equations. Keeping in mind that a does not depend on ¢, we obtain

Ja 1 5 02
g =3 (< gmrn—ea)e °o
where we have defined
n=nmn+en. (C.7)

Eq. further yields a periodic boundary condition for a:

a(t+r)=alt). (C.8)

An equation for the recombined gain variable n is then obtained by differentiating both sides of Eq.
(C.7) with respect to t, substituting Eq. (C.2b), and keeping in mind that 2 does not depend on ¢:

on ( 1 /T 2 2)
— =S |r dta®* —a” ), (C.9)
ot g 0
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where we have combined the field decomposition (B.2) and the normalization condition (B.4b) to ex-
press a° as follows:

@t = 7‘_1/ dt a®. (C.10)
0

Eq. alone determines 1 only up to an additive contribution that depends only on 7. An extra
constraint is required to obtain a well-posed problem, and provided by differentiating both sides of Eq.
with respect to 7 and integrating over one period in ¢, which gives

- r an . _ s B r _ - r aﬁ/
r 1/0 dtang—SgaZ—g(yg—l—sgaQ)r 1/0 dtn+er 1/0 dt% (C.11)

Now, note that the equation (C.2b) for n’ and the normalization condition (B.4b) imply that 72’ is periodic
in t with the same period as a2. A useful relation can be obtained by multiplying both sides of Eq.
by @ and both sides of Eq. (C.2b) by 2’ and integrating the two resulting equations over one period in

t. This gives
7 T T 2
/dtﬁ’:/ dta2ﬁ’:d2/ dt (@> , (C.12)
0 0 0 at

which, in view of Eq. (C.2a), further entails

r aﬁ/
/0 dt e O (e). (C.13)

Substituting the expression (C.10) for a2, the expression for 72 obtained from Eq. (C.7), and Eq. (C.13)
into Eq. (C.11) gives

on -1 " 2 — - -1 " 2| — 2
5, = Po—=Sur Odta —e (7, +5,r Odta n+0 (%), (C.14)

where m = ! for ndt represents the average gain over one round-trip.

Finally, neglecting O(£?) terms in (C.9) and introducing the new variables m = n + S,/3, and

m =T+ S,/3, and in we can rewrite Egs. (C.6), (C.8), (C.9), and

1 2
r%zé(sdQ%%—m—eq—k)a, a(t+r)=al(t), (C.15)
om <1/T 2 2)
—— =S |r dta®* —a” ), (C.16)
ot g 0
a_m_P_S -1 Tdtz— N 5t rdt2 n CA7
o7 L g7 ; a e\ 7yt Sgr ; a” | n, (C.17)

Egs. (C.6). (C.8), (C.9), and together are asymptotic to Egs. (B.2)—(B.7) in the limit for small
. (The O (52) corrections in Eq. can be safely neglected without invalidating this result.) On
the other hand, the same Egs. (C.6), (C.8), (C.9), and can be obtained by carrying out the
substitutions (21) and 7 — £~ into Egs. (25)—(26), which proves the equivalence of Eqgs. (25)—(26)
to Egs. (B.2)—(B.7) with the scaling (21).
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