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EFFICIENT MIXING OF PRODUCT WALKS ON PRODUCT GROUPS 

ABSTRACT. We are going to study the mixing behavior of product-type random 
walks on product groups. This study is inspired by the investigation of the relax-
ation of random walks on d-dimensional grids with possibly direction dependent 
mesh size. Typically such walks are des,igned to randomly visit a coordinate direc-
tion and then to carry out a random step within the chosen component according 
to some random walk in this direction. We will derive a dependence of the mix-
ing times of such random walks in terms of the component mixing times. If we 
are free to optimize the random visiting scheme, then we can speed up mixing in 
case the component mixing times vary much. In more homogeneous situations the 
overall mixing time is bounded by a multiple of the sum of the single ones times 
the logarithm of the number of components. 

1. INTRODUCTION 

1 

Suppose we are given d finite groups G1, ... , Gd with random walks driven by the 
respective transition matrices P1, ... , Pd. We are going to study the mixing behavior 
of product-type random walks on the product G := I1~=1 Gi. 

A product-type random walk. is obtained from these components in the following 
way. We choose a convex combination p := (p1, ... , Pd), i.e., Pi 2:: 0, E~=l Pi= 1, 
and compose 

d 

(1) Pp:= :E PiPi, 
j=l ' 

where - indicates the embedding of the component transition matrices into ones for 
G. In conjunction with an initial distribution v on G we obtain a random walk on G 
with respective distribution vP; at the nth step. This corresponds to a mixture of 
the components and means, that with a certain probability we choose a component 
of our product group and then we take a transition according to the random walk 
acting on this component. So we may think of pas a randomized visiting scheme 
being the counterpart of the visiting scheme in the context of Gibbs-type samplers, 
see [6], where this is called a proposal or exploration distribution. This study is 
inspired by the investigation of the relaxation of random walks on d-dimensional 
grids with possibly direction dependent mesh size. Typically such walks are designed 
to randomly pick a coordinate direction and then to carry out a random step within 
the chosen component according to some random walk responsible for this direction. 

The prominent example for this is the walk on the hyper cube Z~, which is studied 
in [3, Ch. 3C, Ex. 2]. However, the component groups are very small, such that the 
overall behavior of the random walk is better than predicted by the considerations 
concerning the components. This is due to "degrees of symmetry". Much closer to 
our intentions is the case Z~ with n being large, which avoids additional degrees of 
symmetry. Asymptotic considerations as carried out in [1] predict relaxation on Z~ 
in time proportional to n2 • We shall make this more precise below. 

Let us mention that a random walk as described above has to compete with a 
Gibbs-type sampler, where (as usual) the components are chosen deterministically 
by a visiting scheme. As it will turn out below, and this is quite obvious, the latter 
scheme is more efficient in a homogeneous situation, where each component looks 
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more or less the same. In non-homogeneous cases it is desirable to visit "expensive" 
components more often than others, such that randomized visiting schemes are 
preferable. The overall performance will be optimal when the randomized visiting 
schemes p are properly chosen in correspondence with the mixing times within the 
components. This will be the topic of Section 5. Roughly speaking, if we denote by 
K(Pj), j = 1, ... , d the mixing times of the components, then we obtain a probability 
O" on {1, ... , d} by 

K(Pj) 
O"j := d ' j = 1, ... 'd. 

I:j=l K(Pi) 
As it will turn out, the entropy H(O") of this probability will determine whether the 
product-type random walk we are going to study can compete with the Gibbs-type 
sampler or not. If the single mixing times do not vary between the components too 
much then the entropy H(O") will be of the order log(d), an additional effort which 
has to be made by our randomized visiting scheme. In case the entropy does not 
depend on the actual number of components, a properly chosen randomized visiting 
scheme allows to compete with Gibbs-type random walks. 

Let us mention that the restriction to products of groups rather than to products of 
arbitrary finite state spaces is not necessary. Much of the results may be generalized. 
To the authors opinion the present setup is easier to access. 

2. AUXILIARY RESULTS 

As described in the Introduction, we suppose that we are given d finite groups 
G1 , ... , Gd with random walks driven by the respective transition matrices P1 , ... , Pd. 
We additionally assume that each Pj is associated a probability µi in the manner 

Pi(~j, 1Ji) := µi( { ~j 1 o1Ji} ), ~i' 1Ji E Gj, j = 1, ... , d. 
It is well known and easy to check, that such random walks are irreducible with 
unique invariant distribution being the uniform distribution Uj, j = 1, ... , d, i.e., 
Uj( ffj}) = 

1
Ji

1
, if the supports of the µi generate the groups Gj, see [1]. 

A random walk on the product G := IJ1=i Gi is constructed as follows. We first 
embed the random walks Pj, j = 1, ... , d into the product by letting 

(2) µi({x}) := {µ
0
i(ffj}) ,if x = (e1, ... ,~i, ... ,ed) 

, otherwise 

and the corresponding transition matrices 

(3) 
Above, the symbols ej, j = 1, ... , d denote the corresponding neutral elements in 
Gj. Hence, the random walks Pj accept transitions in the components Gj only. We 
mention the following 

Lemma 1. The convolution µi * µi, i =f:. j is commutative, precisely we have for 
any x = (~1 , ... , ~d) the equality 

µi * µj ( { x}) = µj * µi ( { x}) = µi ( { ~i}) µj ( { ~j}). 
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Proof. We have 
µi * µj ( { x}) = L µi ( { z}) µj ( { z-1 o x}). 

zEG 

To make the first factor non-vanishing, z. = ( e1 , ... , (i, ... , ed) is required. Anal-
ogously, the second factor is nonzero only, if (i = fr From both requirements we 
conclude that the sum reduces to only one summand z = ((1, ... , (d) with 

;-l = { ~l , for l = i or l = j ':,, l = 1, ... ,d. ez , else 

D 

We recall from the Introduction that a product-type random walk is obtained 
from these components by choosing a convex combination p := (p1, ... , Pd), i.e., 
Pj 2:: 0, L,~=l Pj = 1, and compose 

d 

(4) Pp:= LpjFj. 
j=l 

We mention that the random walk Pp is again driven by a single probability on G, 
namely µP := L,~=l Piilj· Again, if all µj have a G;-generating support and if all Pj 
are positive, then Pp is ergodic with unique invariant distribution U on G. 

In addition to the examples presented in Section 1 we introduce the following 

Example. Let Ui, j = 1, ... , d, denote the uniform distributions on Gi and con-
sider the random walk Qj, describing an i.i.d. walk on Gj, hence 

1 
Qj(~j, T/j) := Uj( { ~j 1 

0 T/j}) = IGjl' ~j, T/j E Gj, j = 1, ... 'd. 

Let Ui, j = 1, ... , d denote the embeddings of Ui into G. The following observation 
is easily checked. 

1. The convolution Ui * Ui equals Ui, j = 1, ... , d. 
2. In view of Lemma 1 we have U[ 1 * · · · * U~d = U whenever all r 1, ... , rd are 

positive. 
As above, given p we construct Up and Qp as mixtures, cf. (4). 
Now, given p the random walk QP is important as it reduces all considerations 

concerning mixing times to the properties of the visiting scheme p, since within the 
component one step will suffice to reach stationarity. 

The mixing behavior of random walks shall be quantified in terms of the variation 
distance of measures. Given a (signed) measure A on some (finite) set X we denote 
by 

1 
11A11 x : = max I A (A) I = - """" I A ( { x}) I· 

ACX 2 L_; 
xEX 

Whenever it will be clear from the context, we will suppress the subscript indicating 
the set the measure is living on. Let us however mention that for a· measure Aj on 
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Gj the corresponding embedded ).j on G obeys 11).illa = 11-Aillar Moreover, if two 
measures allow a convolution then it has variation norm less then the product of 
the single norms. 

The following facts will be important, cf. [3, Ch. 3.]. 

Lemma 2. Let P be a random walk on G ·associated to a probability µ. Let v be an 
initial distribution of a random walk driven by P. We have fork ;::: 1 

llvPk - Ulla::; llµ*k - Ulla· 

VVe also explicitly state an estimate, similar to the one in Lemma (7.9) in [2]:. 
Let U denote the uniform distribution on G. For an arbitrary Pon G and constant 

0 <a< 1 set Ac~:= {x E G, P({x})::; aU({x})}. 

Lemma 3. For any 0 < a < 1 and set Aa as above we have 

llP - Ull 2:: (1 - a)U(Aa)· 

Proof. By our assumption on Aa we obtain P(A~) ;::: 1 - aU(Aa) and consequently 
1 

!IP- Ull = 2 :E IP({x}) - U({x})I 
xEG 

1 1 2:: 2 :E(l-a)U({x})+ 2 :E IP({x})-U({x})I 
xEAa xEA~ 

2:: ~(1 - a)U(Aa) + ~P(A~) - ~U(A~) 
2:: (1 - a)U(Aa)· 

D 

We turn to the study of mixing times. Our approach is close to [1]. Given a 
random walk P on a set X with invariant distribution 7r we let for k > 1 the 
number 

dk(P) :=max ll8xPk - 7rll. 
xEX 

As a function of k E N it is easily seen to be decreasing. Further, as will be clear 
below it makes sense to measure the time to reach stationarity in terms of this 
quantity. So we agree to let 

(5) K(P) := min { k E 1\1, dk(P) :S ;e} · 
Moreover the quantity dk(P) is close to being submultiplicative. Precisely we have 

Lemma 4. For any k E N the fallowing inequality holds true 

dl·k(P)::; (2dk(P))L. 

Especially, with k := K(P) we obtain dl·K(P)(P) ::; e-L. 
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Proof. We introduce another auxiliary quantity, cf. [1] 

Pk(P) := max llc>xPk - 6yPkll · x,yEX 

5 

It is known from Lemma (3.5) in [1] that this is submultiplicative and that Pk(P) ::; 
2dk(P). In fact we even have 

(6) dk(P) ::; Pk(P) ::; 2dk(P), 
where it only remains to prove the left-hand side inequality. But this follows from 
the invariance of 7r under pk. Indeed it yields 

2ll6xPk - 7rll = L IP:,z - 'Irzl 
zEX 
L IP:,z - L 'ffyP;,zl 
zEX yEX 

< LIL 'Iry(P:,z - p;,z)I 
zEX yEX 

< L 'ffy L IP:,z - p;,zl 
yEX zEX 

< 2pk(P). 
Since this is valid for any initial value x E X we have proved (6). Now it is straight-
forward to prove the assertions of the lemma. D 

Remark 1. The important though easy to prove dk(P) ::; Pk(P) was observed by 
E. Behrends and is reproduced here with kind permission. 

Thus we may think of K ( P) as a threshold level starting from which the conver-
gence to stationarity is exponential. 

We close this section with some facts about multinomial distributions, which will 
occur very naturally below. Given a d-tuple f = (r1, ... , rd) of natural numbers 
with ri + ... rd = k we denote by (;) := ri!~:rd! and rmin := minj=l, ... ,d rj. Let Pk,p 
denote the multinomial distribution on {O, ... , k }d with point masses 

d 

Pk,p((r1, ... , rd)) = (~) n P?, if r1 + ... rd= k. 
J=l 

A detailed exposition with further references can be found in [4, Ch. 11.2]. We 
mention th.at the component distributions of Pk,p are respective binomial ones Bk,pi 
with respective Pi· The following lemma is probably well known. Since we are not 
aware of any reference we include the proof. 

Lemma 5. For any d, convex combination p and k EN we have 
d 

1 - e-L-1=1(I-pj)k < P ("r · = O") < "°'(1 - p·)k. _ k,p mm _ L....J J 

j=l 
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Proof. An upper bound is provided with 

d 

Pk,p("rmin = O")::::; LPk,p("rj = O") 
j=l 

d d 

= L Bk,pj ( {O}) = 2:(1- Pi)k. 
j=l j=l 

A tight lower bound is obtained by using an inequality due to Mallows, [5], which says 
that the multinomial distribution obeys a strong (negative) correlation principle. We 
have 

d d 

Pk,An {rj > o}) ::::; IT Pk,p( {rj > o} ). 
j=l j=l 

Since each component is distributed binomially, this amounts to 

d 

Pk,p("rmin > O") ::::; IT (1 - (1 - Pi)k). 
j=l 

Applying the geometric - arithmetic mean inequality we arrive at 

(7) 
d 

Pi (" r · > O") < (1 - ~ '°'(1 - p ·)k)d < e- '221=1 (1-Pi )k k,p mm _ d L_...; J _ 
j=l 

from which the proof can be completed. D 

3. THE MIXING OF Qp 

Let us investigate the mixing behavior of the random walk Q P introduced before. 
For this particular type of walk one can expect that the mixing behavior does not 
really depend on the underlying groups but rather on the number d of such. This is 
supported by Proposition 1 below. 

Recall the definition of the multinomial distribution Pk,p as introduced above. We 
have 

Lemma 6. For fixed d, convex combination p and natural k we have 

d . 

(8) D (1- l~il )Pk,p("r min = O") :::; llU;k - Ull :::; 2Pk,p("rmin = O" ). 
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Proof. According to Lemma 1 we have 

u;k = (t PP;) •k 
J=l 

L G) rr (P1ti1 r 
r1 + ... +rd=k J=l 

1 

(9) L G) fcp?U + L (~)fl (PAf. 
r1 + ... +rd=k J=l r1 + ... +rd=k J=l 

rmin>O rmin=O 

Consequently we obtain 

11u;k - Ull ~II (1- r,t~o=k (~)DP?) Ull 
d 

+ 11 L G) u (p;ti; r 11 
ri + ... +rd=k J=l 

rmin=O 

~2 L G)fIP? 
r1 + ... +rd=k J=l 

rmin=O 

(10) = 2Pk,p ("rmin = O"). 
This proves the right-hand side inequality. 

7 

The left-hand side inequality is based on Lemma 3. Applying this estimate with 
P := U*k and p 

a:= Pk,p("rmin > O"), 
we infer from equation (9) above that on the set 

d 

A0 := IJ (G; \ {e;}) i=l 
the assumptions of Lemma 3 are fulfilled. This easily accomplishes the proof of the 
lemma. D 

In "typical" situations with groups having many elements, say that rr;=l (1 - 1Jj1) 
close to 1, the mixing behavior is completely determined by the time required to 
touch every component with high (occupancy) probability. This probability will be 
precisely estimated from both sides and leads to a description of the mixing behavior 
of QP. 

The . sharp bounds from Lemma 5 immediately yield 

1 The symbol IT in conjunction with measures denotes the convolution throughout. In view of 
Lemma 1 this may sometimes be identified with a product as usual. 
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Proposition 1. Let p be a fixed convex combination. If the groups Gi are rich 
enough such that rr;=l (1 - ,Jj,) ;::: ~, then 

ll8xQ; - Ull 2:: ~' e 
unless k ;::: d(0.5 +log( d)). 

On the other hand, for any initial distribution v we obtain 

[[vQ!o - U[[ ::; 21e, 

if k 2:: d(2.5 + log(d)) by the choice of Po = (~, ... , ~). 

Remark 2. This result has an interesting interpretation. Since the uniform distribu-
tion of a product is the product of the corresponding uniform distributions, exactly 
d steps are required for its generation if we sequentially choose the components. 
If we agree to pick components at random. uniformly on { 1, ... , d} then the effort 
multiplies by approximately 1 +log( d). 
Proof of Proposition 1. The proof is an immediate consequence of Lemmas 5 and 6. 
We only mention that the lower bound in (7) is minimized by letting p = p0 = 
(~, ... , ~). In this case the sum reduces to de-kfd and yields with k = d(0.5+log(d)) 
the estimate 

1 - e- L,f=1(I-p;)k 2:: 1 - e-e-1/2. 

from which the first assertion follows by noting that under our assumptions on G 
we obtain 

k 4 e-1/2) 1 ll8xQp - u11 2: 5(1 - e- ;::: e· 
On the other hand it is easy to see that with k ;::: d(2.5 +log( d)) the desired upper 
bound is obtained, completing the proof of the proposition. D 

4. MIXING WITH FIXED p 

The basic step towards determination of· the mixing time on product groups is 
the following 

Proposition 2. Let k ;::: 1 and p be fixed. For probabilities µP we have 
d d kp· 

llµ;k - u;kll ~Le-~+ L 11µ]=?-J+i - Uill-
i=l j=l 

Proof. Arguing as in the proof of Proposition 1 we obtain 

µ;k - u;k = r):..=k G) (il (Piftifi - il (Pili) r;) . 
Taking into account that for measures Ai, ... , Ad and vi, ... , vd on G we have 

Il Ai -D Vj = t (fj Ai) (A1 - v1) Utvi) . 
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We arrive at 

llµ;k - u;k11 ~ L (~) fl>? t llJLr' - u;i 11 
r1 + ... +rd=k J=l l=l 

= t (~ (~)P?(l ~ P1)k-r'llJL? - ifi'll) 

~ t (Bk,pz({o, ... ' Lk;i J }) + m.~ llii? - uz11) 
l=l · rz>L 2 J 

d d kp· 

~Le-~+ Lllµ}=?-J+i _ Uill-(11) 
L=1 l=l 

To derive the first sum in (11) we used the well known estimate 

Bk,p( { 0, ... , L k:J}) ~ e-¥, 

which is a consequence of Okamoto's result, see [?, Ch. 3.8]. The proof is complete. 
D 

To proceed recall the definition of the mixing times K(P) in (5). The main result 
in this section is 

Theorem 1. Assume we are given finite groups G1 , ... , Gd with random walks 
P1, ... , Pd acting on them. Suppose that these random walks are associated proba-
bilities µ 1, ... , µd. For a convex combination p we have 

(12) 

Proof. Let k ~ 8 ( maxi=l, ... ,d K~:;)) (1 +LI+ log(8d)J) be fixed. We have for any 
initialµ 

llµ;k - u11 . < llµ;k - u;kll + 11u;k - Ull 

(13) 
d d kp. d l~J 1 

< 2Le-kPi+Le-T-+Lllµz 2 + -Uzll. 
l=l l==l l=l 

This last estimate is based on Propositions 1 and 2. By our assumption on k the 
first and second summands above can be bounded by ie. It can further be deduced 
from this assumption that !Sf ~ (1 + Ll + log(8d)j)K(Pz), such that an application 
of Lemma 4 yields 

llifJ+i - Udl ~ B~e 
from which the proof can be completed. D 

We study two applications. The first one is an "a-lazy" walk on Zn· 
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Example. Given 0 ::; a ::; 1, the a-lazy walk on Zn is supposed to have a transition 
matrix given by 

pa(f,, TJ) = { 
12a , . if rJ = f, ± 1 ' 
a , if rJ = f, 

hence it rests with a certain rate a. Although this walk could be studied directly 
using the Upper Bound Lemma, cf. (3, Ch. 3C], the following simple argument 
immediately provides for n 2:: 7 and odd the bound 

(14) 
2 

K(Pa) ::; 8-n-. 
1-a 

Indeed, the a-lazy walk on Zn may be regarded as a product walk on Zn x { 0} with 
p = (1;a, a), where the first component walk is just the "busy", i.e., 

Pi ( f,' rJ) = { ! , if rJ = f, ± 1 . 
0 , else 

Now Theorem 1 together with the bound provided in (3, Ch. 3C) yields estimate (14). 

Example. We further extend the busy walk to a lazy one on Z~ by letting 

pa(x, y) = { i;-; '.if I:;=l lf.j - T/jl == 1. 
a , if y = x 

This walk also may be regarded as a product one on Zn x ... x Zn x {O} for p = 
d-fold 

( 1;-da, ... , 1;-da, a), such that Theorem 1 yields (for some absolute constant C > 0) 

2 
K(Pa) ::; C-n-dlog(d). 

1-a 
For the most natural choice a= 2d~l we infer that such lazy walk does not lead to 
significantly longer times to approach stationarity. 

5. OPTIMIZING EFFICIENCY WITH RESPECT TO p 

Below we allow to design our random walk Pp to fit the mixing properties of the 
components by varying p. A crude look at the bound provided in Theorem 1 tells 
that it is good to choose Pi proportional to the mixing times K(Pj)· A more closer 
look leads to improved estimates in case the mixing times of the components are 
very different. 

For this purpose we introduce the following notation. Given groups Gi with 
random walks Pi having mixing times K (Pi) we let 

d 

K, := LK(Pj) 
j=l 

and ·- K(Pi) 
(Jj .- ' j == 1, ... 'd. 

K, 
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The d-tuple a = ( a 1, ... , ad) gives rise to a probability and we let 
d 

H (a) := - E ai log( ai) 
j=l 

denote the entropy of a. 
The main result is 

Theorem 2. Let 
a· (3 - log(a ·)) 

P ·- J J 
i .- H(a) + 3 ' 

such that this provides a convex combination p. This specific combination p leads to 
(15) inf K(Pp) :s; K(Pp) :s; lB~(H(a) + 3)J + 1. 

p 

Proof. Let k ~ lB~(H(a) + 3)J + 1. With the choice of p we arrive at 
kp· 

kpi ~ -f ~ 3 - log(aj), j = 1, ... , d. 

Arguing as in the proof of Theorem 1 we arrive at an estimate like in (13) ·and can 
bound the first two sums by e-3 . To bound the third sum we observe 

kp· kp· 
l-f J + 1 ~ -f ~ 4l3 - log(ai)JK(Pj), 

such that Lemma 4 yields 
d k d E llµll ~ J+l - Uzll :s; E e-4(3-log(crj))+l :s; e-11, 

j=l j=l 
thus the overall error can be bounded by 2~. D 

Of course, the above result lacks of an appropriate lower bound. As the discussion 
concerning Z~ in the Introduction and Lemma 6 suggest, some assumption on the 
richness of the components has to be made. This has to be clarified in future 
research. 

Let us close mentioning that optimizing the a-lazy walk on Z~ with respect to 
the choice of a yields quickest convergence for a= 0, hence the busy one. 
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