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On the existence of energy-variational solutions in the context of
multidimensional incompressible fluid dynamics

Robert Lasarzik

Abstract

We define the concept of energy-variational solutions for the Navier–Stokes and Euler equa-
tions and prove their existence in any space dimension. It is shown that the concept of energy-
variational solutions enjoys several desirable properties. Energy-variational solutions are not only
known to exist and coincide with local strong solutions, but the operator, mapping the data to
the set of energy-variational solutions, is additionally continuous and all restrictions and all con-
catenations of energy-variational solutions are energy-variational solutions again. Finally, different
selection criteria for these solutions are discussed.

Keywords: Existence, Navier–Stokes, Euler, incompressible, fluid dynamics, generalized solu-
tions.

MSC 2020: 35D99, 35Q30, 35Q31, 76D05

1 Introduction

The Navier–Stokes and Euler equations are the standard models for incompressible fluid dynamics.
Both are recurrent tools in computational fluid dynamics for weather forecast, micro fluidic devices [31]
or industrial processes like steel production [1]. There exists a vast literature concerning the Navier–
Stokes and Euler equations. In case of the Navier–Stokes equation, we only mention here the ex-
istence proof for weak solutions in three dimension by Leray [25] and the weak-strong uniqueness
result due to Serrin [30]. In the context of the Euler equations, the existence of weak solutions in any
space dimension is already known for special initial data (see [11]) also fulfilling the energy inequal-
ity (see [12]). This result was proven via the convex integration technique. This technique grants the
existence of infinitely many and also non-physical weak solutions. Additionally, it was proven for the
Navier–Stokes equations via similar techniques that there exist infinitely many weak solutions that
do not fulfill the energy inequality [6]. But what is lacking in the literature so far is an existence re-
sult for the Navier–Stokes equations in space dimensions larger than four and for the Euler equation
with general initial data. Revisiting the previously introduced dissipative solutions for the equations
of incompressible fluid dynamics, we refine this concept by introducing energy-variational solutions.
As the name already suggests, this notion of generalized solutions is based on a variation of the un-
derlying energy-dissipation principle. The relative energy inequality can be seen as a variation of the
energy-dissipation principle with respect to sufficiently regular functions.

Dissipative solutions were proposed by P.-L. Lions [26, Sec. 4.4] in the context of the Euler equations.
The current author applied this concept in the context of nematic liquid crystals [20] and nematic elec-
trolytes [3]. It was observed that natural discretizations complying with the properties of the system,
like energetic or entropic principles, as well as algebraic restrictions converge naturally to a dissi-
pative solution instead of a measure valued solution (see [3] and [22] for details). In comparison to
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measure-valued solutions, the degrees of freedom are heavily reduced and no defect measures oc-
cur, which are especially difficult to approximate. The relative energy inequality, which is at the heart of
the dissipative and energy-variational solution concept is also a recurrent tool in PDE theory to prove
for instance weak-strong uniqueness [21], stability of stationary states [20], convergence to singular
limits [14], or to design optimal control schemes [22]. An advantage in comparison to distributional or
measure-valued solutions is that the solution set inherits the convexity of the energy and dissipation
functional, which permits to define appropriate uniqueness criteria [23].

The definition of energy-variational solutions follows a similar idea as the definition of dissipative solu-
tions, both rely on the so-called relative energy inequality, which compares the solution to smooth test
functions fulfilling the PDE only approximately. But the relative energy inequality for energy-variational
solutions is refined such that the resulting inequality becomes an equality for smooth solutions. The
nonlinear-convective terms are not only estimated by the relative energy but included in the under-
lying dissipation potential. Furthermore, the relative energy inequality holds for all given intervals
(s, t) ⊂ [0,T ]. This is achieved by introducing an additional variable E in time. The difference of
E and the energy E (vvv) measures the discrepancy between weak and strong convergence in every
point in time. If the auxiliary variable E coincides with the energy E a.e. in (0,T ), the weak formulation
is fulfilled. By introducing this additional variable the solution concept has the semi-flow property, every
concatenation and restriction of the solutions to a sub or super time interval is an energy-variational
solution again. Still the properties of the relative energy inequality remain present, it is preserved for
sequences converging in the weak topologies of the associated natural energy and dissipation spaces.
Thus in comparison to standard weak solutions, energy-variational solutions have the advantage that
no strong convergence is needed in order to pass to the limit in this formulation. Only Helly’s selection
principle is used in order to infer the existence of the additional defect variable. The existence result
only relies on standard constructive proofs, i.e., a Galerkin discretization in the case of the Navier–
Stokes equations and the vanishing viscosity limit in the case of the Euler equations.

Since the energy and dissipation functionals in the considered cases are convex, the set of energy-
variational solutions is convex and weakly∗ closed. This allows to identify selection criteria in order to
select the physically relevant solution. Following the ideas of [4, 8, 9, 23], we propose the selection
principle of maximal dissipation. This says that the physically relevant solution dissipates energy at
the highest rate, hence minimizes the energy in every point in time. This principle becomes even more
apparent in thermodynamical consistent systems, where the maximized dissipation implies maximal
entropy (see for instance [15] and [7, Sec. 9.7]).

In [23], the set of dissipative solutions together with the time integral of the energy functional is identi-
fied as a suitable convex structure on which such a minimization problem can be defined. The resulting
maximally dissipative solution is indeed well-posed in the sense of Hadamard. The result of the article
at hand applies this technique to energy-variational solutions and the selected unique solution for a
strictly convex functional of the variables inherits the semi-flow property. In comparison to such general
selection criteria via an convex function integrated in time, we consider the minimization at finitely-
many points-in-time. Interestingly, this point-wise minimization is well defined for energy-variational
solutions and implies additional regularity. In the finitely-many point-in-time the auxiliary variable E
coincides with the energy E and the solution is right-continuous with respect to the strong topology in
L2(Ω).

It is worth noticing that in the framework of energy-variational solutions it is possible to pass to the limit
in the quadratic convection term without any strong compactness argument. Only arguments from the
direct method of the calculus of variations are needed. It is possible to pass to the limit in the quadratic
term, using an additional variable, which catches the difference between weak and strong convergence
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of the energy. Usually compact embeddings and a priori estimates of the time derivative are used
to infer strong convergence via some Aubin–Lions argument (compare to [33]). These ingredients
are irrelevant in the present proof, since it only relies on weak convergence in natural spaces and
the weakly-lower semi-continuity of the underlying energy and dissipation functionals. The proposed
technique seems to be very powerful and easily adapted to other systems of PDEs. Hence, this gives
hope that the new approach may allows to prove the existence of energy-variational to some PDE
systems. This includes multidimensional conservation laws [4], liquid crystals [21], heat-conducting
complex fluids [24], or GENERIC systems in general (see [15] and [23]).

Plan of the paper: After providing some notation and preliminaries in Section 2.1, the different solu-
tion concepts of weak and energy-variational solutions are defined in Section 2.2. Then, we state the
main Theorems in Section 2.3 and prove them afterwards (see Section 3).

2 Definitions and main theorems

2.1 Preliminaries

Before, we provide the definitions and main results, we collect some notation and preliminary results.

Notations: Throughout this paper, let Ω⊂Rd be a bounded Lipschitz domain with d ≥ 2. The space
of smooth solenoidal functions with compact support is denoted by C ∞

c,σ (Ω;Rd). By L2
σ (Ω) and

H1
0,σ (Ω) we denote the closure of C ∞

c,σ (Ω;Rd) with respect to the norm of L2(Ω) and H1(Ω),

respectively. Note that L2
σ (Ω) can be characterized by L2

σ (Ω) = {vvv ∈ L2(Ω)|∇·vvv = 0 in Ω ,nnn ·vvv =
0 on ∂Ω}, where the first condition has to be understood in the distributional sense and the second
condition in the sense of the trace in H−1/2(∂Ω). By nnn, we denote the outer normal vector of Ω.

The dual space of a Banach space V is always denoted by V ∗ and equipped with the standard norm;
the duality pairing is denoted by 〈·, ·〉 and the L2-inner product by (·, ·). The total variation of a function
E : R→R is given by |E|TV(0,T ) = sup0<t0<...<tn<T ∑

N
k=1|E(tk−1)−E(tk)| where the supremum is

taken over all finite partitions of the interval [0,T ]. We denote the space of all functions of bounded
variations on [0,T ] by BV([0,T]).

Note that the total variation of a monotone decreasing nonnegative function only depends on the initial
value, i.e.,

‖E‖TV(0,T ) = sup
0<t0<...<tn<T

N

∑
k=1
|E(tk−1)−E(tk)| ≤ E(0)−E(T )≤ E(0) .

The symmetric part of a matrix is given by AAAsym := 1
2(AAA+AAAT ) for AAA ∈ Rd×d . For the product of two

matrices AAA,BBB ∈ Rd×d , we observe

AAA : BBB =AAA : BBBsym , if AAAT =AAA .

Furthermore, it holds aaa⊗bbb : AAA = aaa ·AAAbbb for aaa,bbb ∈ Rd , AAA ∈ Rd×d and hence aaa⊗aaa : AAA = aaa ·AAAaaa =
aaa ·AAAsymaaa. By (A)sym,− we denote the negative semi-definite part of the symmetric part of the matrix
A∈Rd×d . By I, we denote the identity matrix in Rd×d and by R+ := [0,∞) the positive real numbers.

The following lemma provides the connection between the almost everywhere pointwise formulation
of an inequality with the weak one.
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Lemma 2.1. Let f ∈ L1(0,T ) and g ∈ L∞(0,T ) with g≥ 0 a.e. in (0,T ). Then the two inequalities

−
∫ T

0
φ
′(t)g(t)d t +

∫ T

0
φ(t) f (t)d t ≤ 0

for all φ ∈ C 1
c((0,T )) with φ ≥ 0 for all t ∈ (0,T ) and

g(t)−g(s)+
∫ t

s
f (τ)dτ ≤ 0 for a.e. t, s ∈ (0,T ) (1)

are equivalent.

Moreover, there exists a function h ∈ BV([0,T]) such that h = g a.e. in (0,T ) and the inequality (1)
holds for every s, t ∈ (0,T ) with g replaced by h.

Proof. Since this is a rather standard lemma, only a short comment on the proof is provided. For the if-
direction, one may argues by inserting an approximating sequence of the indicator function χ[s,t] for φ .
To infer the only-if-direction, we sum up the second inequality for any partition 0 < t1 < .. . < tN < T
of [0,T ] to infer

N−1

∑
n=0

φ(ξk)[g(tn+1)−g(tn)]+
N−1

∑
n=0

φ(ξk)
∫ tn+1

tn
f (τ)dτ ≤ 0 with ξn ∈ (tn, tn+1) .

Passing to the limit in the partition, gives the integral in the sense of Stieltjes (cf. [27, Chap. 8, Sec. 6]).
An integration-by-parts in the first term implies the first inequality in Lemma 2.1.

From inequality (1), we infer that the function t 7→ g(t) +
∫ t

0 f (s)ds is a monotone function a.e.
on (0,T ). Redefining g on a set of measure zero gives a function h that such that t 7→ h(t) +∫ t

0 f (s)ds is monotone, thus BV([0,T]), which implies since
∫ t

0 f (s)ds is absolutely continuous that
h ∈ BV([0,T]).

Additionally, we use a lemma that provides the lower semi-continuity of convex functionals.

Lemma 2.2. Let A ⊂ Rd+1 be a bounded open set and f : A×Rn×Rm→R+ with d,n,m ≥ 1, a
measurable nonnegative function such that f (yyy, ·, ·) is lower semi-continuous on Rn×Rm for a.e. yyy∈
A, and f is convex in the last entry. For sequences {uuuk}k∈N ⊂ L1

loc(A;Rn), {vvvk}k∈N ⊂ L1
loc(A;Rm),

and functions uuu ∈ L1
loc(A;Rn) and vvv ∈ L1

loc(A;Rm) with

uuuk→uuu a.e. in A and vvvk ⇀ vvv in L1
loc(A;Rn)

it holds

liminf
k→∞

∫
A

f (yyy,uuuk(yyy),vvvk(yyy))dyyy≥
∫

A
f (yyy,uuu(yyy),vvv(yyy))dyyy .

The proof of this assertion can be found in [18].

The following property of BV([0,T])-functions can for instance be found in [17].

Lemma 2.3. Let E : R→R be a function of bounded variation, E ∈BV([0,T]). Then E is continuous
up to a countable subset of (0,T ) and the left- and right-limits are uniquely defined in every interior
point, i.e.,

E(t−) = lim
s↗t

E(s) E(t+) = lim
s↘t

E(s) for all t ∈ (0,T )

and with one-sided limits at the end points. The usual choice are the so-called “cadlag” (continuity a
droit limit a gauche) representations by defining E(t) := E(t+).
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Lemma 2.4 (Weak and strong continuity). Let vvv ∈ C w([0,T ];L2
σ (Ω)) and E : L2

σ (Ω)→[0,∞) be
given by E (vvv) := 1

2‖vvv‖
2
L2(Ω)

. Assume that there exists a function E ∈ BV([0,T]) such that E(s) ≥
E (vvv(s)) for all s ∈ [0,T ] and additionally that there exists a t0 ∈ [0,T ] such that E(t0) = E (vvv(t0))
then the function vvv is right-hand continuous in t0 with respect to the strong topology. If t0 is a continuity
point of E , vvv is continuous in t0 with respect to the strong topology.

Proof. The left-hand side continuity of E in t0, the weakly-lower semi continuity of the functional E
together with the weak convergence of vvv(s) to vvv(t0) as s↘ t0 leads to the chain of inequalities

E(t0) = lim
s↘t0

E(s)≥ liminf
s↘t0

E (vvv(s))≥ E (vvv(t0)) = E(t0) .

From the uniform convexity of L2(Ω) together with the weak convergence, we infer that lims↘t0 vvv(s) =
vvv(t0) in the strong topology of L2

σ (Ω). The same chain of inequalities holds for the right-hand limit
s↗ t0, in the case that E is continuous in t0.

2.2 Definitions

First we recall the Navier–Stokes and Euler equations,

∂tvvv+∇·(vvv⊗vvv)−ν∆vvv+∇p = fff and ∇·vvv = 0 in Ω× (0,T ) ,
vvv(0) = vvv0 in Ω ,

ν(I−nnn⊗nnn)vvv = 0 and nnn ·vvv = 0 on ∂Ω× (0,T ) .
(2)

By writing the boundary conditions in this way, the system incorporates the Navier–Stokes system
with no-slip conditions for ν > 0 and the Euler equations for ν = 0. Indeed, for ν > 0, the tan-
gential and normal part of the velocity field vanish such that this is equivalent to vvv = 0 on ∂Ω×
(0,T ). For the case of ν = 0, i.e., no friction, only the normal component vanishes on the bound-
ary. The underlying natural energy and dissipation spaces are given by X = L∞(0,T ;L2

σ (Ω))∩
L2(0,T ;H1

0,σ (Ω)) for ν > 0 and X0 = L∞(0,T ;L2
σ (Ω)) for ν = 0 and the space of test-functions is

given by Y=X∩L2(0,T ;H2(Ω))∩L1(0,T ;W 1,∞(Ω))∩H1(0,T ;(L2
σ (Ω))∗) for ν > 0 and Y0 =

X0 ∩L1(0,T ;W 1,∞(Ω))∩H1(0,T ;(L2
σ (Ω))∗) for ν = 0. The space Y is chosen smooth enough

such that the Stokes operator (for ν > 0) and the convection term map Y to L1(0,T ;(L2
σ (Ω))∗). The

right-hand side fff is assumed to be in Z, where Z := L2(0,T ;H−1(Ω))+L1(0,T ;L2(Ω)) for ν > 0
and Z0 := L1(0,T ;L2(Ω)) for ν = 0.

To the energy E : L2
σ (Ω)→R given by E (vvv) = 1

2‖vvv‖
2
L2

σ (Ω)
, we define the relative energy R :

L2
σ (Ω)×L2

σ (Ω)→R+ by

R(vvv|ṽvv) = 1
2
‖vvv− ṽvv‖2

L2(Ω) , (3a)

and the system operator Aν : Y→L1(0,T ;(L2
σ (Ω))∗) via

〈Aν(ṽvv), ·〉= 〈∂tṽvv+(ṽvv ·∇)ṽvv−ν∆ṽvv− fff , ·〉 , (3b)

which has to be understood in a weak sense, at least with respect to space.

Note that the system operator does not include boundary conditions, since they are encoded in the
underlying spaces. This may change for different boundary conditions.
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Definition 2.5. We consider a regularity weight K : L2
σ (Ω)→[0,∞] and define its domain in a stan-

dard way via D(K ) := {ṽvv ∈ X|K (ṽvv) ∈ L1(0,T )+} . We assume that there is a fine enough topol-
ogy on D(K ) such that K is continuous and C 1([0,T ];C ∞

c,σ (Ω;Rd)) is dense in D(K ) with
respect to this topology. We always assume that K (0) = 0.

The form K is called admissible for ν > 0 if the relative form Wν : X×Y→L1(0,T ) given by

Wν(vvv|ṽvv) = ν‖∇vvv−∇ṽvv‖2
L2(Ω)−

∫
Ω

((vvv− ṽvv) ·∇)(vvv− ṽvv) · ṽvvdxxx+K (ṽvv)R(vvv|ṽvv) (4)

is nonnegative for all vvv ∈ X and all ṽvv ∈ Y∩D(K ). Similarly, the form K0 is called admissible for
ν = 0 if the relative form W0 : X0×Y0→L1(0,T ) given by

W0(vvv|ṽvv) =
∫

Ω

(vvv− ṽvv)T · (∇ṽvv)sym(vvv− ṽvv)dxxx+K0(ṽvv)R(vvv|ṽvv) . (5)

is nonnegative for all vvv ∈ X0 and all ṽvv ∈ Y0∩D(K0).

Example 2.6. The standard example for a choice for K are the usual Serrin-type norms:

K (ṽvv) = K s,r
ν (ṽvv) = c‖ṽvv‖s

Lr(Ω) for
2
s
+

d
r
= 1 (6)

with r∈ (d,∞) and s∈ (2,∞). Indeed Hölder’s, Gagliardo–Nirenberg’s, and Young’s inequality provide
the estimate for ν > 0∣∣∣∣∫

Ω

((vvv− ṽvv) ·∇)(vvv− ṽvv) · ṽvvdxxx
∣∣∣∣≤ ‖vvv− ṽvv‖Lp(Ω)‖∇vvv−∇ṽvv‖L2(Ω)‖ṽvv‖L2p/(p−2)(Ω)

≤ cp‖vvv− ṽvv‖(1−α)

L2(Ω)
‖∇vvv−∇ṽvv‖(1+α)

L2(Ω)
‖ṽvv‖L2p/(p−2)(Ω)

≤ ν

2
‖∇vvv−∇ṽvv‖2

L2(Ω)+ c‖ṽvv‖2/(1−α)

L2p/(p−2)(Ω)

1
2
‖vvv− ṽvv‖2

L2(Ω) ,

(7a)

where α is chosen according to Gagliardo–Nirenberg’s inequality by

α = d(p−2)/2p for d ≤ 2p/(p−2) .

In the case of ν = 0, we may choose K0(ṽvv) := ‖(∇ṽvv)sym,−‖C (Ω) in order to estimate

((vvv− ṽvv)⊗ (vvv− ṽvv);(∇ṽvv)sym)≤ 2‖(∇ṽvv)sym,−‖C (Ω)

1
2
‖vvv− ṽvv‖2

L2(Ω) . (7b)

The estimate (7) imply that Wν is nonnegative.

Remark 2.1. In contrast to previous publications, we want the form K to be general and not specif-
ically chosen. This makes the solution concept of energy-variational solutions more selective and
especially allows the vanishing viscosity limit in the proof of Theorem 2.14. The form K is chosen in
a way that the relative form Wν is nonnegative, convex, and weakly-lower semi-continuous. Indeed,
since Wν is quadratic in vvv and nonnegative, it is a standard matter to prove the convexity of the map-
ping vvv 7→ Wν(vvv|ṽvv). The mapping vvv 7→ Wν(vvv|·) is continuous in the strong topology in H1

0,σ (Ω) and

L2
σ (Ω) for ν > 0 and ν = 0, respectively. Thus this mapping is weakly-lower semi-continuous (see

for instance [13, Chap. 1, Cor. 2.2]).

The assumption on the topology on D(K ) and the continuity of K is of a technical nature. In-
stead of the choice D(K ) = L2(0,T ;L∞(Ω)∩H1

0,σ (Ω)) and K (ṽvv) = c‖ṽvv‖2
L∞(Ω) we rather chose
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the finer topology of D(K ) = L2(0,T ;C 0(Ω)∩H1
0,σ (Ω)) and K (ṽvv) = c‖ṽvv‖C (Ω) in the case

ν > 0. It would also be possible to choose some intermediate separable space allowing jumps
(see [29, Example 1.4.10 ]). For ν = 0, we choose instead of D(K ) = L1(0,T ;W 1,∞(Ω)∩L2

σ (Ω))
and K (ṽvv) = 2‖(∇ṽvv)sym,−‖L∞(Ω) the finer topology of D(K ) = L1(0,T ;C 1

0(Ω)∩ L2
σ (Ω)) and

K (ṽvv) = 2‖(∇ṽvv)sym,−‖C (Ω). These finer choices allow us to use the approximation property by den-
sity arguments. But also the case of the coarser topologies and associated L∞-norms could be made
rigorous by an adapted method.

Definition 2.7 (energy-variational solution). A pair (vvv,E) is called an energy-variational solution if
(vvv,E)∈X∩C w([0,T ];L2

σ (Ω))×BV([0,T]) and E(t)≥ E (vvv(t)) for all t ∈ [0,T ], and for all admis-
sible forms K : X⊃D(K )→L1(0,T )+ according to Definition 2.5, the relative energy inequality

R(vvv(t)|ṽvv(t))+E(t)−E (vvv(t))

+
∫ t

s
Wν(vvv,ṽvv)+ 〈Aν(ṽvv),vvv− ṽvv〉−K (ṽvv) [R(vvv|ṽvv)+E−E (vvv)]dτ

≤R(vvv(s)|ṽvv(s))+E(s−)−E (vvv(s)) (8)

holds for all t > s ∈ [0,T ] and for all ṽvv ∈ Y∩D(K ). The initial value vvv(0) = vvv0 is attained in the
weak sense.

Remark 2.2 (Reformulation). Inserting the definition of the system operator Aν , we infer the reduced
relative energy inequality

[E− (vvv,ṽvv)]
∣∣∣t
s−

+
∫ t

s
ν (∇vvv;∇vvv−∇ṽvv)+(vvv⊗vvv;∇ṽvv)+(vvv,∂tṽvv)+K (ṽvv) [E (vvv)−E]dτ ≤ 0 (9)

for all t > s ∈ [0,T ] and for all ṽvv ∈ Y∩D(K ).

Remark 2.3 (Properties of energy-variational solutions). By the Definition 2.7 it is immediately clear
that any energy-variational solution on an interval [0,T ] is also an energy-variational solution on any
sub interval (s, t) for all s, t ∈ (0,T ). Furthermore, let (vvv1,ξ 1) be an energy-variational solution on
the interval (0, t) and (vvv2,E2) an energy-variational solution on the interval (t,T ) with vvv2(t) = vvv1(t)
and E2(t)≤ E1(t). Then the concatenation of (vvv1,E1) by (vvv2,E2), i.e., the function (vvv,E) given by{

(vvv(t),E(t)) = (vvv1(t),E1(t)) for t ∈ [0, t)
(vvv(t),E(t)) = (vvv2(t),E2(t)) for t ∈ [t,T ]

is again an energy-variational solution on [0,T ]. This is the new key ingredient in comparisson to the
previously introduced dissipative solutions [23].

Remark 2.4 (Comparison to dissipative solutions). Another difference of the proposed energy-var-
iational solution framework in comparison to dissipative solutions lies in the definition of the relative
form Wν . In dissipative solution concepts, the terms in the relative dissipation were only estimated
from below by zero (see [26] and [23]). The new insight is that these terms in Wν can be kept and
do not have to be estimated. This also leads to the fact that the relative energy inequality is actually
an equality for smooth solutions. Indeed in this case the energy inequality (10) is an equality and thus
also the relative energy inequality becomes an equality. Furthermore, for the regularity weight K , we
allow a family of functions. Finally, the introduction of the auxiliary variable E allows to write down the
relative energy inequality before applying the Gronwall argument and formulating the relative energy
inequality on any sub-interval of [0,T ].
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Corollary 2.8 (Refinement of dissipative solutions). Let (vvv,E) be an energy-variational solution ac-
cording to Definition 2.7 with E(0) = E (vvv0). Then vvv is a dissipative solution, i.e. for an admissible
K ≥ 0 according to Definition 2.5, it holds that

R(vvv(t)|ṽvv(t))+
∫ t

0
〈Aν(ṽvv),vvv− ṽvv〉e

∫ t
s K (ṽvv)dτ dτ ≤R(vvv0|ṽvv(0))e

∫ t
0 K (ṽvv)ds ,

for a.e. t ∈ (0,T ) and for all ṽvv ∈ Y∩D(K ). This is the definition according to Lions (see [26,
Sec. 4.4]). This implies that in the case E(0) = E (vvv0), energy-variational solutions fulfill the so-called
weak-strong uniqueness property. If a strong solution exists locally-in-time, every energy-variational
solution coincides with this strong solution as long as the latter exists.

Proof. Let (vvv,E) be a energy-variational solution according to Definition 2.7. From the condition on
the initial values, we infer

R(vvv(t)|ṽvv(t))+E(t)−E (vvv(t))+
∫ t

0
Wν(vvv,ṽvv)+ 〈Aν(ṽvv),vvv− ṽvv〉dτ

≤R(vvv0|ṽvv(0))+
∫ t

0
K (ṽvv)[R(vvv|ṽvv)+E−E (vvv)]dτ

for a.e. t ∈ (0,T ) and for all ṽvv∈Y∩D(K ). Gronwall’s inequality and the property that E−E (vvv)≥ 0
as well as Wν ≥ 0, implies the assertion.

Definition 2.9 (weak solution). A function vvv is called a weak solution with the strong energy inequality
if vvv ∈ X fulfills the strong energy inequality

1
2
‖vvv‖2

L2(Ω)

∣∣∣t
s
+
∫ t

s
ν‖∇vvv‖2

L2(Ω) dτ ≤
∫ t

s
〈 fff ,vvv〉dτ for a.e. s < t ∈ (0,T ) (10)

and the weak formulation

−
∫ T

0

∫
Ω

vvv∂tϕϕϕ dxxxd t +
∫ T

0

∫
Ω

(ν∇vvv : ∇ϕϕϕ− (vvv⊗vvv) : ∇ϕϕϕ)dxxxd t =
∫ T

0
〈 fff ,ϕϕϕ〉d t +

∫
Ω

vvv0 ·ϕϕϕ(0)dxxx

(11)

for every ϕϕϕ ∈ C 1
c([0,T ))⊗C ∞

c,σ (Ω;Rd).

2.3 Main results

The main results of the paper at hand are the following.

Proposition 2.10. Let vvv be a weak solution according to Definition 2.9. Then there exists an energy-
variational solution (uuu,E) according to Definition 2.7 such that vvv = uuu a.e. in Ω× (0,T ) with E(t) =
E (uuu(t)) for a.e. t ∈ (0,T ).

Proposition 2.11. Let (vvv,E) ∈ X∩C w([0,T ];L2
σ (Ω))×BV([0,T]) be an energy-variational solu-

tion solution according to Definition 2.7. Assume that the regularity measure K is homogeneous of
rank one, i.e., K (αṽvv) = αK (ṽvv) for all α ∈ [0,∞).

Then it holds that

E
∣∣∣r
q
+
∫ r

q
ν‖∇vvv‖2

L2(Ω)−〈 fff ,vvv〉dτ ≤ 0 for a.e. q < r ∈ (s, t) (12a)
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and∫ t

s
(ν (∇vvv,∇ṽvv)− (vvv⊗vvv;∇ṽvv)− (vvv,∂tṽvv)−〈 fff ,ṽvv〉)dτ ∈ B

(
0,
∫ t

s
K (ṽvv) [E−E (vvv)]dτ

)
(12b)

for all ṽvv ∈ C 1
c((s, t);C

∞
0,σ (Ω)) and all s < t ∈ (0,T ). Here B(0,r) denotes the ball in R around 0

with radius r.

Proposition 2.12. Let (vvv,E) ∈ X∩C w([0,T ];L2
σ (Ω))×BV([0,T]) be an energy-variational solu-

tion according to Definition 2.7. Assume that E(τ) = E (vvv(τ)) for a.e. τ ∈ (s, t), with s < t ∈ (0,T ).
Then it holds that

1
2
‖vvv‖2

L2(Ω)

∣∣∣r
q
+
∫ r

q
ν‖∇vvv‖2

L2(Ω)−〈 fff ,vvv〉dτ ≤ 0 for a.e. q < r ∈ (s, t) (13a)

and ∫ t

s
(ν (∇vvv,∇ṽvv)− (vvv⊗vvv;∇ṽvv)− (vvv,∂tṽvv)−〈 fff ,ṽvv〉)dτ = 0 (13b)

for all ṽvv ∈ C 1
c((s, t);C

∞
0,σ (Ω)).

Remark 2.5. If the auxiliary variable E coincides the the actual energy E (vvv), then the Navier–Stokes
equation is fulfilled in the weak sense.

Proposition 2.13. Let (vvv,E) be an energy-variational solution according to Definition 2.7. Then the
relative energy inequality (8) of Definition 2.7 can be equivalently written as

∂t (E(t)− (vvv(t),ṽvv))+ν (∇vvv(t);∇vvv(t)−∇ṽvv)+(vvv(t)⊗vvv(t);∇ṽvv)−〈 fff (t),vvv(t)− ṽvv〉

+K (ṽvv)
(

1
2
‖vvv(t)‖2

L2(Ω)−E(t)
)
≤ 0 . (14)

for a.e. t ∈ (0,T ) and all ṽvv ∈ C ∞
0,σ (Ω). The time derivatives of E has to be understood in the usual

BV([0,T]) sense, the sense of Radon measures and the time-derivative of vvv in the weak sense.

Theorem 2.14 (Main result). Let Ω ⊂ Rd for d ≥ 2 be a bounded Lipschitz domain, ν ≥ 0. Let R,
Wν , K , and Aν be given as above in (3) and let K fulfill Definition 2.5 with E(0) = E (vvv0).

Then there exists at least one energy-variational solution vvv ∈ X to every vvv0 ∈ L2
σ (Ω) and fff ∈ Z in

the sense of Definition 2.7. The set of solutions S (vvv0, fff ) ⊂ X×BV([0,T]) consists of the pairs
(vvv,E) being an energy-variational solution according to Definition 2.7 to a given initial-value vvv0 ∈
L2

σ (Ω) and right-hand side fff ∈ Z. The set S (vvv0, fff ) is convex and weakly∗-closed in the topology of
X×BV([0,T]). Moreover, a set A⊂S (vvv0, fff ) with sup(vvv,E)∈A E(0)< ∞ is compact in this topology.

Additionally, the set-valued mapping S : L2
σ (Ω)×Z→X×BV([0,T]), which maps (vvv0, fff ) to the

solution set consisting of elements (vvv,E) ∈ S (vvv0, fff ) is continuous in the set valued sense, i.e., if
(vvvn

0, fff n)→(vvv0, fff ) in L2
σ (Ω)×Z, then the associated solutions sets S (vvvn

0, fff n) converge to S (vvv0, fff )
in the Kuratowski sense with respect to the topology induced by the weak∗-convergence in X×
BV([0,T]).

This means, that to every element (vvv,E)∈S (vvv0, fff ) and every sequence (vvvn
0, fff n)→(vvv0, fff ), we may

construct a sequence {(vvvn,En)} such that

(vvvn,En)→(vvv,E) in X×BV([0,T]) .

DOI 10.20347/WIAS.PREPRINT.2834 Berlin, April 22, 2021/rev. December 21, 2023



R. Lasarzik 10

(which is referred to as lower semi-continuity), and if there exists a sequence (vvvn
0, fff n)→(vvv0, fff ) and a

sequence (vvvn,En)
∗
⇀ (vvv,E) with (vvvn,En) ∈S (vvvn

0, fff n) then (vvv,E) ∈S (vvv0, fff ) (which is referred to
es upper semi-continuity).

Remark 2.6 (Initial condition). The initial condition will in fact be attained in the strong sense. Indeed,
since the function E can be decomposed into the sum of a monotonously decreasing function and
a absolutely continuous function such that lims↘0 E(s) ≤ E(0). Additionally, vvv is weakly continuous
and E weakly-lower semi-continuous and E(0) = E (vvv(0)). Together, we infer in the same way as in
the proof of Lemma 2.4 that lims↘0 ‖vvv(s)−vvv0‖L2(Ω) = 0.

Remark 2.7. In the case of d = 2, 3 or 4, the existence of weak solutions to the Navier–Stokes
equations is well known (see for instance [33]). Due to Proposition 2.10, this also proves the existence
of energy-variational solutions. The new result of the preceding theorem is expanding the existence of
energy-variational solutions to any space dimension.

The above definition seems to be suitable to define reasonable selection criteria for solutions. By a
designed strictly convex functional one may selects a unique suitable solution. The next proposition
even guarantees some kind of well-posedness.

In the following, we denote the set St0(vvv0,E0, fff ) as the set of energy-variational solutions (vvv,E) ∈
S (vvv0, fff ) according to Definition 2.7 for a given value vvv(t0) = vvv0 and right-hand side fff such that it
holds E(t0−) = E0 .

Proposition 2.15. Let the assumptions of Theorem 2.14 be fulfilled. Let the functional J : [0,T ]×
L2

σ (Ω)× [0,∞) be measurable in the first variable and continuous, strictly convex and coercive in the
second two variables. We consider the Nemitzkii mapping (vvv,E) 7→

∫ T
0 J(t,vvv,E)d t that is continu-

ous with respect to the strong topology and weakly-lower semi-continuous with respect to the weak
topology (cf. [13, Chap. I, Cor. 2.2]) on L2(0,T ;L2

σ (Ω))×Lp(0,T ) for p ∈ [1,∞). Then there exists
a unique minimizer (vvv∗,E∗) of the optimization problem

min
(vvv,E)∈St0(vvv0,E (vvv0), fff )

∫ T

0
J(t,vvv,E)d t (15)

and the optimization problem is well-posed in the sense that

argmin(vvv,E)∈S0(vvvn
0,E

n
0 , fff

n)

∫ T

0
J(t,vvv,E)d t ∗⇀ argmin(vvv,E)∈S0(vvv0,E (vvv0), fff )

∫ T

0
J(t,vvv,E)d t

in X×BV([0,T]) for initial values vvvn
0→vvv0 in L2

σ (Ω) and right-hand sides fff n→ fff in Z. Note that the
minimizer is unique such that the above convergence is actually a convergence of a singleton and not
a set. The sequence {En

0} ⊂ [E (vvv0),∞) is such there exists a constant C > 0 with En
0 −E (vvv0) ≤

C‖vvvn
0−vvv0‖2

L2(Ω)
.

The minimizer inherits the semi-flow property in the sense that for a solution (vvv,E) with

(vvv,E) ∈ argmin(ṽvv,Ẽ)∈S0(vvv0,E0, fff )

∫ T

0
J(t,ṽvv, Ẽ)d t

it holds that for the minimizer (uuu,F) fulfilling

(uuu,F) ∈ argmin(ṽvv,Ẽ)∈St0(vvv(t0),E(t0), fff )

∫ T

t0
J(t,ṽvv, Ẽ)d t

that (vvv(t),E(t)) = (uuu(t),F(t)) for a.e. t ∈ [t0,T ].
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But the above selection criteria are quite restrictive, since they only allow functionals J to be defined
on the whole time domain, i.e., integrated in time. As the next result shows, it seems to be desirable to
define point-wise selection criteria, which is possible due to the fact that the solutions are well-defined
point-wise in time and not only point-wise almost everywhere.

Proposition 2.16. Let the assumptions of Theorem 2.14 be fulfilled. For any given finite set of points
{t1, . . . , tN} ⊂ [0,T ], there exists an energy-variational solutions (vvv,E) according to Definition 2.7
such that

E(t j) = E (vvv(t j)) for all j ∈ {1, . . . ,N} .

Additionally it holds that vvv is left-continuous with respect to the strong topology in every point t j with
j ∈ {1, . . . ,N}.

The above result only holds in finitely many points. Assuming that it would hold in every point, we end
up with the Definition 2.17 of minimal energy-variational solutions.

Definition 2.17 (Minimal energy-variational solution). A pair (vvv,E) is called a minimal energy-varia-
tional solution if (vvv,E) is an energy-variational solution according to Definition 2.7 with

E(t)≤ Ē(t)

for all t ∈ [0,T ] and all energy-variational solutions (v̄vv, Ē) ∈ X according to Definition 2.7 for a given
initial value vvv0 ∈ L2

σ (Ω) and right-hand side fff ∈ Z with E(t−) = Ē(t−) and vvv(t) = v̄vv(t).

In this article, we do not prove the existence of solutions according to Definition 2.17. We only propose
these solutions as a reasonable concept and show that a solution fulfilling this definition is also a weak
solution.

Proposition 2.18. Assume that a minimal energy-variational solution (vvv,E) according to Defini-
tion 2.17 exists. Then it holds that E(t) = E (vvv(t)) such that this solution is actually a weak solution
according to Definition 2.9, which is a consequence of Proposition 2.12.

We remark again that we do not claim to have proven the existence of weak solutions in any space
dimension.

Remark 2.8. We note that the Definition 2.17 is well defined. Due to the fact that the function E is a
BV([0,T]) function and thus the limit lims↘t E(s) = E(t+) = E(t) exists and is unique for all t ∈
[0,T ). Note that due to the inequality (38), only negative jumps with lims↘t E(s) = E(t+) = E(t)≤
lims↗t E(s) = E(t−) are allowed. The increasing contribution to E are only due to the right-hand
side fff and thus, by construction absolutely continuous. Note also that the pointwise minimization in
the case of t = 0 immediately implies that E(0) = 1/2‖vvv0‖2

L2(Ω)
, since the relative-energy inequality

is automatically fulfilled for t = s = 0.

The selection criteria can be understood in the way that the selected solution fulfills a minimization
problem in every point in time, for every t ∈ [0, t0] the solution (vvv,E) solves the minimization problem

(vvv(t),E(t)) = argmin (uuu,F)∈S (vvv0, fff )
(uuu(t),F(t−))=(vvv(t),E(t−))

F(t) . (16)

Remark 2.9 (Selection criterion). The proposed selection criterion relies on the insight that a physi-
cally relevant solution dissipates energy at the highest rate (see [8] or [9]). This leads to a minimized
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energy (compare the energy inequality (10), which is formally an equality). In a thermodynamical con-
sistent system, the energy would be constant, but the maximized dissipation leads to a maximized en-
tropy (see [15] for instance). This criterion was introduced as the entropy rate admissibility criterion [9].
There are different works on the entropy rate admissibility criterion applied to different systems. For
instance, in the case of scalar conservation laws it was shown that this criterion coincides with the
Oleinik-E condition and thus the usual entropy admissibility criterion for solutions with finitely many
shocks (see [9] or [7, Thm. 9.7.2] for the result). Since this criterion was proven to select the physically
relevant solution in these scarcely available examples of nonlinear PDEs that are well understood, it
may also does this for more involved systems (like the ones we consider here).

3 Proofs of the main theorems

3.1 Energy-variational and weak solutions

First, we show that the velocity vvv of a weak solution is an energy-variational solution.

Proof of Proposition 2.10. Let vvv be a weak solution to the Navier–Stokes and Euler equations (2) with
strong energy inequality for ν ≥ 0.

For a test function ṽvv ∈ Y, we find by testing the system operator Aν(ṽvv) by φ ṽvv with φ ∈ C 1
c([0,T ))

and standard calculations that∫ T

0
φ 〈Aν(ṽvv),ṽvv〉d t =

−
∫ T

0
φ
′1
2
‖ṽvv(t)‖2

L2(Ω) d t +
∫ T

0
φ

(
ν‖∇ṽvv‖2

L2(Ω)−〈 fff ,ṽvv〉
)

d t−φ(0)
1
2
‖ṽvv(0)‖2

L2(Ω) . (17)

Testing again the system operator Aν(ṽvv) by φvvv and choosing ϕϕϕ to be φ ṽvv in (11) with φ ∈ C 1
c([0,T ))

(or approximate it appropriately), we find

−
∫ T

0
φ
′
∫

Ω

vvv · ṽvvdxxxd t +
∫ T

0
φ

(∫
Ω

(2ν∇vvv : ∇ṽvv− (vvv⊗vvv) : ∇ṽvv+(ṽvv ·∇)ṽvv ·vvv)dxxx
)

d t

=
∫ T

0
φ 〈Aν(ṽvv),vvv〉d t +φ(0)

∫
Ω

vvv0 · ṽvv(0)dxxx+
∫ T

0
φ〈 fff ,ṽvv+vvv〉d t . (18)

Reformulating (10) by Lemma 2.1, adding (17), as well as subtracting (18), let us deduce that

−
∫ T

0
φ
′1
2
‖vvv− ṽvv‖2

L2(Ω) d t +ν

∫ T

0
φ‖∇vvv−∇ṽvv‖2

L2(Ω) d t−φ(0)
1
2
‖vvv0− ṽvv(0)‖2

L2(Ω)

−
∫ T

0
φ

(∫
Ω

((ṽvv ·∇)ṽvv ·vvv− (vvv⊗vvv) : ∇ṽvv)dxxx
)

d t +
∫ T

0
φ 〈Aν(ṽvv),vvv− ṽvv〉d t ≤ 0 (19)

for all φ ∈ C1
c ([0,T ]) with φ ≥ 0 a.e. on (0,T ). We adopt some standard manipulations using the

skew-symmetry of the convective term in the last two arguments and the fact that vvv and ṽvv are diver-
gence free, to find

−
∫

Ω

((ṽvv ·∇)ṽvv ·vvv− (vvv⊗vvv) : ∇ṽvv)dxxx = −
∫

Ω

((vvv ·∇)(vvv− ṽvv) · ṽvv+(ṽvv ·∇)ṽvv · (vvv− ṽvv))dxxx
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= −
∫

Ω

((vvv− ṽvv) ·∇)(vvv− ṽvv) · ṽvvdxxx

for ν > 0 and

−
∫

Ω

((ṽvv ·∇)ṽvv ·vvv− (vvv⊗vvv) : ∇ṽvv)dxxx =
∫

Ω

(vvv− ṽvv)T · (∇ṽvv)sym (vvv− ṽvv)dxxx (20)∫
Ω

((vvv− ṽvv)⊗ ṽvv) : ∇ṽvvdxxx+
∫

Ω

(ṽvv ·∇)ṽvv · (vvv− ṽvv)dxxx

=
∫

Ω

(vvv− ṽvv)T · (∇ṽvv)sym (vvv− ṽvv)dxxx (21)

for ν = 0. Inserting this into (19), adding as well as subtracting Kν(ṽvv)R(vvv|ṽvv), we conclude

−
∫ T

0
φ
′1
2
‖vvv(t)− ṽvv(t)‖2

L2(Ω) d t

+
∫ T

0
φ

[
Wν(vvv|ṽvv)+ 〈Aν(ṽvv),vvv− ṽvv〉−K (ṽvv)

1
2
‖vvv− ṽvv‖2

L2(Ω)

]
ds≤ 0

for every function ṽvv ∈ Y∩D(K ) and all φ ∈C1
c ((0,T )) with φ ≥ 0 a.e. on (0,T ). After applying

Lemma 2.1, we may choose the variable E such that E ≥ E (vvv) a.e. in (0,T ) and (8) is fulfilled
everywhere.

Proof of Proposition 2.11. We assume that (vvv,E) ∈ Xν ∩ C w([0,T ];L2
σ (Ω))× BV([0,T]) is an

energy-variational solution according to Definition 2.7. Firstly, we observe that the relative energy
inequality (8) with ṽvv = 0 gives the energy inequality (12a).

Secondly, we infer from the relative energy inequality (8) and Lemma 2.1 that

−
∫ t

s
φ
′[R(vvv|ṽvv)+E−E (vvv)]+φK (ṽvv)[R(vvv|ṽvv)+E−E (vvv)]dτ

+
∫ t

s
φ [Wν(vvv|ṽvv)+ 〈Aν(ṽvv),vvv− ṽvv〉]dτ ≤ 0

for all φ ∈C1
c (s, t) with φ ≥ 0 a.e. on (s, t). The Definition of Wν implies

−
∫ t

s
φ
′[R(vvv|ṽvv)+E−E (vvv)]+φK (ṽvv) [R(vvv|ṽvv)+E−E (vvv)]dτ

+
∫ t

s
φ

[
ν‖∇vvv−∇ṽvv‖2

L2(Ω)− (((vvv− ṽvv) ·∇)(vvv− ṽvv),ṽvv)+K (ṽvv)R(vvv|ṽvv)+ 〈Aν(ṽvv),vvv− ṽvv〉
]

dτ ≤ 0

(22a)

for ν > 0 and

−
∫ t

s
φ
′[R(vvv|ṽvv)+E−E (vvv)]+φK0(ṽvv) [R(vvv|ṽvv)+E−E (vvv)]d t

+
∫ t

s
φ [((vvv− ṽvv)⊗ (vvv− ṽvv),(∇ṽvv)sym)+K0(ṽvv)R(vvv|ṽvv)+ 〈A0(ṽvv),vvv− ṽvv〉]dτ ≤ 0 (22b)

for ν = 0. For the system operator Aν , we find
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∫ t

s
φ 〈Aν(ṽvv),vvv− ṽvv〉dτ =

∫ t

s
φ
′1
2
‖ṽvv‖2

L2(Ω) dτ

+
∫ t

s
φ [(∂tṽvv,vvv)+ν (∇ṽvv,∇vvv−∇ṽvv)− ((ṽvv ·∇)(vvv− ṽvv),ṽvv)−〈 fff ,vvv− ṽvv〉]dτ

for all φ ∈ C 1
c((s, t)) with φ ≥ 0 a.e. on (s, t). Inserting this into (22), we may deduce

−
∫ t

s
φ
′
[

1
2
‖vvv‖2

L2(Ω)− (vvv,ṽvv)+E−E (vvv)
]
+φK (ṽvv) [E−E (vvv)]dτ

+
∫ t

s
φ [ν (∇vvv,∇vvv−∇ṽvv)+(vvv⊗ (vvv− ṽvv),∇ṽvv)+(∂tṽvv,vvv)−〈 fff ,vvv− ṽvv〉]dτ ≤ 0 . (23)

Again the skew-symmetry of the trilinear form in the last two entries is used. Choosing ṽvv = αũuu and
multiplying the inequality by 1/α for α > 0, we find

1
α

(
−
∫ t

s
φ
′
[

1
2
‖vvv‖2

L2(Ω)+E−E (vvv)
]

dτ +
∫ t

s
φ

[
ν‖∇vvv‖2

L2(Ω)−〈 fff ,vvv〉
]

dτ

)
+
∫ t

s
(vvv,∂t(φũuu))dτ−

∫ t

s
φ [ν (∇vvv,∇ũuu)− ((vvv⊗vvv),∇ũuu)−〈 fff ,ũuu〉]dτ

≤
∫ t

s
φK (ũuu)(E−E (vvv))dτ . (24)

Note that the term ((vvv ·∇)ṽvv,ṽvv) vanishes since vvv is solenoidal. Additionally, it is used that K is homo-
geneous of rank one. For α→∞ the first line in (24) vanishes and in the resulting inequality we may
observe that ũuu occurs linearly such that by inserting ũuu as well as −ũuu, we receive two inequalities,

−
∫ t

s
φK (ũuu)(E−E (vvv))dτ

≤
∫ t

s
(vvv,∂t(ũuuφ))d t−

∫ t

s
φ [ν (∇vvv,∇ũuu)− ((vvv⊗vvv),∇ũuu)−〈 fff ,ũuu〉]dτ

≤
∫ t

s
φK (ũuu)(E−E (vvv))dτ . (25)

By defining ṽvv =−φũuu, we may observe the formulation (12b).

Proof of Proposition 2.12. This proof is very similar to the previous proof. All arguments in the previous
proof up to the inequality (23) are independent of the rank-1-homogeneity of K . Thus choosing
ṽvv = αũuu in (23) and multiplying by 1/α implies (24) with E ≡ E (vvv). Thus for α→∞, we infer due to
the linearity of the test function ũuu the relation (12b) with E ≡E (vvv), which is nothing else than (13b).

Proof of Proposition 2.13. We may consider the reduced relative energy inequality (9) for t = t + h
and s = t and multiply the inequality by 1/h. Taking the limit h↘ 0 in the resulting inequality, we infer
that

1
h

∫ t+h

t
ν (∇vvv;∇vvv−∇ṽvv)+(vvv⊗vvv;∇ṽvv)+(∂tṽvv,vvv)−K (ṽvv) [E−E (vvv)]dτ−→

ν (∇vvv(t);∇vvv(t)−∇ṽvv(t))+(vvv(t)⊗vvv(t);∇ṽvv(t))+(∂tṽvv(t),vvv(t))−K (ṽvv(t)) [E(t)−E (vvv(t))]

for a.e. t ∈ (0,T ) since all appearing terms are Lebesgue integrable.
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Energy-variational solutions 15

Since E is a BV([0,T]) function, its derivative is a Radon measure (see [27, Chap. 8, Sec. 8], or [17,
Thm. 2.13]). For the mixed term in the relative energy, we infer by the product rule for weak derivatives
that

lim
h↘0

1
h
[(vvv(t +h),ṽvv(t +h))− (vvv(t),ṽvv(t))] =

d

d t
(vvv(t),ṽvv(t)) = (∂tvvv(t),ṽvv(t))+(vvv(t),∂tṽvv(t)) (26)

for a.e. t ∈ (0,T ). Note that the weak derivative ∂tvvv exists. Indeed, by choosing the regularity weight
K (ṽvv) := ‖(∇ṽvv)sym,−‖C (Ω), which is homogeneous of rank one, we may find by Proposition 2.11
that (12b) and especially (25) in the proof of Proposition 2.11 holds. In inequality (25), we may define
the linear form lll : C 1

0((0,T );H1
0,σ (Ω)∩C 1

0(Ω;Rd))→R by

〈lll,ṽvv〉 :=
∫ T

0
(vvv,∂tṽvv)d t

≤
∫ T

0
ν(∇vvv;∇ṽvv)− (vvv⊗vvv;∇ṽvv)−〈 fff ,ṽvv〉+K (ṽvv)[E (vvv)−E]d t

≤ − ν

2
‖vvv‖2

L2(0,T ;H1
0,σ (Ω))

+
ν

2
‖ṽvv‖2

L2(0,T ;H1
0,σ (Ω))

+‖vvv‖2
L∞(0,T ;L2

σ (Ω))
‖ṽvv‖L1(0,T ;W 1,∞)

+‖ fff‖Z
(
‖vvv‖L∞(0,T ;L2

σ (Ω))+‖vvv‖L2(0,T ;H1
0,σ (Ω))

)
+‖ṽvv‖L1(0,T ;C 1

0(Ω))‖E−E (vvv)‖L∞(0,T ) .

By Hahn-Banach’s theorem [5, Thm. 1.1], there exists an element

∂tvvv ∈ (L1(0,T ;C 1
0(Ω))∩L2(0,T ;H1

0,σ (Ω)))∗ ⊂ L2(0,T ;(H1
0,σ (Ω)∩W 2,p(Ω))∗)

for some p > d, which agrees with the definition of the weak solution.

Thus, for a.e. t ∈ (0,T ), we may identify

lim
h↘0

1
h
[E(t +h)−E(t)− (vvv(t +h),ṽvv(t +h))+(vvv(t),ṽvv(t))] =

d

d t
[E(t)− (vvv(t),ṽvv(t))]

which is well-defined a.e. in (0,T ) in the sense of Radon measures (see [27, 17]). Note that the
pointwise inequality is equivalent to the inequality in the distributional sense, i.e.,

−
∫ T

0
φ
′ [E(t)− (vvv(t),ṽvv(t))]d t

+
∫ T

0
φ [ν (∇vvv(t);∇vvv(t)−∇ṽvv(t))+(vvv(t)⊗vvv(t);∇ṽvv(t))+(∂tṽvv(t),vvv(t))]d t

−
∫ T

0
φK (ṽvv(t)) [E(t)−E (vvv(t))]d t ≤ 0

for all φ ∈ C ∞
c (0,T ) with φ ≥ 0 on (0,T ).

3.2 Existence of energy-variational solutions

In order to prove existence of energy-variational solutions, we pass to the limit in the relative energy
inequality. Therefore, we do not need any strong compactness arguments, which are essential in
existence proofs for weak solutions to nonlinear PDEs. The formulation of the relative energy inequality
allows to pass to the limit only relying on weakly-lower semi-continuity of the associated functionals
and Helly’s selection principle.
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Proof of Theorem 2.14. The proof is based on the usual Galerkin approximation together with stan-
dard weak convergence techniques. We divide the proof in different steps.

Step 1, Galerkin approximation: Since the space H1
0,σ (Ω) is separable and the space of smooth

solenoidal functions with compact support, C ∞
c,σ (Ω;Rd), is dense in H1

0,σ (Ω), there exists a Galerkin

scheme of H1
0,σ (Ω), i.e., {Wn}n∈N with closH1

0,σ (Ω)(limn→∞Wn)=H1
0,σ (Ω). Let Pn : L2

σ (Ω)−→Wn

denote the L2
σ (Ω)-orthogonal projection onto Wn. The approximate problem is then given as follows:

Find an absolutely continuous solution vvvn with vvvn(t) ∈Wn for all t ∈ [0,T ] solving the system

(∂tvvvn +(vvvn ·∇)vvvn,www)+ν (∇vvvn;∇www) = 〈 fff ,www〉 , vvvn(0) = Pnvvv0 for all www ∈Wn . (27)

A classical existence theorem (see Hale [16, Chapter I, Theorem 5.2]) provides, for every n ∈ N, the
existence of a maximal extended solution to the above approximate problem (27) on an interval [0,Tn)
in the sense of Carathéodory.

Step 2, A priori estimates: It can be deduce that Tn = T for all n ∈ N if the solution undergoes no
blow-up. With the standard a priori estimates, we can exclude blow-ups and thus deduce global-in-time
existence. Testing (27) by vvvn, we derive the standard energy estimate

1
2

d

d t
‖vvvn‖2

L2(Ω)+ν‖∇vvvn‖2
L2(Ω) = 〈 fff ,vvv

n〉 . (28)

For fff ∈ Z = L2(0,T ;H−1(Ω))⊕L1(0,T ;L2(Ω)) for ν > 0, the right-hand side can be estimated
appropriately. Indeed, there exist two functions fff 1 ∈ L2(0,T ;H−1(Ω)) and fff 2 ∈ L1(0,T ;L2(Ω))
such that we may estimate with Hölder’s, Young’s, and Poincaré’s inequality that

〈 fff ,vvvn〉 ≤ ν

2
‖∇vvvn‖2

L2(Ω)+
C
2ν
‖ fff 1‖2

H−1(Ω)+‖ fff 2‖L2(Ω)

(
‖vvvn‖2

L2(Ω)+1
)
. (29)

Inserting this into (28) allows to apply a version of Gronwall’s Lemma in order to infer that {vvvn} is
bounded and thus weakly∗ compact in X such that there exists a vvv ∈ X with

vvvn ∗⇀ vvv in X . (30)

From (28), we observe∫ T

0

∣∣∣∣ d

d t
‖vvvn‖2

L2(Ω)

∣∣∣∣d t ≤ 2
∫ T

0
ν‖∇vvvn‖2

L2(Ω)+ |〈 fff ,vvv
n〉|d t

and by the boundedness of the sequence {vvvn} in X as well as (29) that the sequence of functions
on [0,T , {‖vvvn‖2

L2(Ω)
}n∈N is bounded in BV([0,T]). By Helly’s selection principle, we may infer that

there exists a function E ∈ BV([0,T]) such that

1
2
‖vvvn(t)‖2

L2(Ω)→E(t) for all t ∈ (0,T ) . (31)

Step 3, Discrete relative energy inequality: In order to show the convergence to energy-variational
solutions, we derive a discrete version of the relative energy inequality. Assume ṽvv ∈ Y∩D(K ).
Adding (28) and (27) tested with −Pnṽvv, we find

1
2

d

d t
‖vvvn‖2

L2(Ω)+ν (∇vvvn;∇vvvn−∇Pnṽvv) = 〈 fff ,vvvn−Pnṽvv〉+(∂tvvvn,Pnṽvv)+((vvvn ·∇)vvvn,Pnṽvv) . (32)
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For the system operator Aν , we observe that

〈Aν(Pnṽvv),vvvn−Pnṽvv〉=

(∂tPnṽvv,vvvn)− d

d t
1
2
‖Pnṽvv‖2

L2(Ω)+ν (∇Pnṽvv,∇vvvn−∇Pnṽvv)+((Pnṽvv ·∇)Pnṽvv,vvvn)−〈 fff ,vvvn−Pnṽvv〉 .

Adding to as well as subtracting from (32) the term 〈Aν(Pnṽvv),vvvn−Pnṽvv〉 leads to

1
2

d

d t
‖vvvn−Pnṽvv‖2

L2(Ω)+
(

ν‖∇vvvn−∇Pnṽvv‖2
L2(Ω)+ 〈Aν(Pnṽvv),vvvn−Pnṽvv〉

)
=
(
((vvvn ·∇)vvvn,Pnṽvv)+((Pnṽvv ·∇)Pnṽvv,vvvn)

)
. (33)

By some algebraic transformations, we find

((vvvn ·∇)vvvn,Pnṽvv)+((Pnṽvv ·∇)Pnṽvv,vvvn)

= (((vvvn−Pnṽvv) ·∇)(vvvn−Pnṽvv),Pnṽvv)
+((Pnṽvv ·∇)(vvvn−Pnṽvv),Pnṽvv)+((Pnṽvv ·∇)Pnṽvv,vvvn−Pnṽvv) . (34)

For the first term on the right-hand side of (34), we observe

ν‖∇vvvn−∇Pnṽvv‖2
L2(Ω)− (((vvvn−Pnṽvv) ·∇)(vvvn−Pnṽvv),Pnṽvv) = Wν(vvvn|Pnṽvv)−K (Pnṽvv)R(vvvn|Pnṽvv) .

For the second term on the right-hand side of (34), we find with an integration-by-parts (or the usual
skew-symmetry in the second two variables of the trilinear convection term) that

((Pnṽvv ·∇)(vvvn−Pnṽvv),Pnṽvv)+((Pnṽvv ·∇)Pnṽvv,vvvn−Pnṽvv) = 0 .

In order to find the discrete version of the relative energy inequality, the term Kν(Pnṽvv)R(vvv|Pnṽvv) is
added and subtracted to (33) and the resulting equality is integrated over (s, t) such that

R(vvvn(t)|Pnṽvv(t))+
∫ t

s
[Wν(vvvn|Pnṽvv)+ 〈Aν(Pnṽvv),vvvn−Pnṽvv〉−K (Pnṽvv)R(vvvn|Pnṽvv)]ds

=R(vvvn(s)|Pnṽvv(s)) (35)

for a.e. s, t ∈ (0,T ) and ν > 0.

Step 4, Passage to the limit: Via Lemma 2.1, the equality (35) may be relaxed to an inequality and
written as

−
∫ T

0
φ
′R(vvvn|Pnṽvv)ds

+
∫ T

0
φ [Wν(vvvn|Pnṽvv)+ 〈Aν(Pnṽvv),vvvn−Pnṽvv〉−K (Pnṽvv)R(vvvn|Pnṽvv)]ds≤ 0

for all φ ∈C1
c (0,T ) with φ ≥ 0 a.e. on (0,T ). Since C 1([0,T ];C ∞

c,σ (Ω;Rd)) is also dense in Y, we
may observe the strong convergence of the projection Pn, i.e.,

‖Pnṽvv− ṽvv‖L2(0,T ;H1
0,σ (Ω))+‖Pnṽvv− ṽvv‖L2(0,T ;Ld/2(Ω))→0 as n→∞ for all ṽvv ∈ Y∩D(K ) . (36)

This together with (30) allows to pass to the limit in the second term via the weakly-lower semi-
continuity of the convex functional Wν (see Lemma 2.2 and Remark 2.1). Since vvvn only occurs linearly
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in the term including Aν on the left-hand side, we may also pass to the limit in this term. Indeed, the
time derivative may be interchanged with the projection Pn such that

(∂tPnṽvv,vvvn−Pnṽvv) = (Pn∂tṽvv,vvvn−Pnṽvv) = (∂tṽvv,vvvn−Pnṽvv) ,

where it was used that Pn is an orthogonal projection. This together with (36) imply that the consistency
error vanishes, i.e.,∫ T

0
φ 〈Aν(ṽvv)−Aν(Pnṽvv),vvvn−Pnṽvv〉ds

= ν

∫ T

0
φ (∇ṽvv−∇Pnṽvv;∇vvvn−∇Pnṽvv))ds

+
∫ T

0
φ (((ṽvv−Pnṽvv) ·∇)ṽvv+(Pnṽvv ·∇)(ṽvv−Pnṽvv),vvvn−Pnṽvv)ds

≤ ν‖φ‖L∞(Ω)‖∇ṽvv−∇Pnṽvv‖L2(0,T ;L2(Ω))‖∇vvvn−∇Pnṽvv‖L2(0,T ;L2(Ω))

+‖φ‖L∞(Ω)‖ṽvv−Pnṽvv‖L2(0,T ;Ld/2(Ω))‖∇ṽvv‖L∞(0,T ;L2d/(d−2)(Ω))‖vvv
n−Pnṽvv‖L2(0,T ;L2d/(d−2)(Ω))

+‖φ‖L∞(Ω)‖Pnṽvv‖L∞(0,T ;Ld(Ω))‖∇ṽvv−∇Pnṽvv‖L2(0,T ;L2(Ω))‖vvvn−Pnṽvv‖L2(0,T ;L2d/(d−2)(Ω)) .

Weak convergence of vvvn in L2(0,T ;H1
0,σ (Ω)) implies that the norms of vvvn on the right-hand side are

bounded independent of n. Note that dimension d = 2 is excluded at this point. But the proof can also
be adapted to dimension two. The strong convergence (36) allows to pass to the limit on the right-hand
side, which vanishes. The strong convergence of the projection Pn to the identity on L2

σ (Ω) as n→∞

allows to pass to the limit in the initial values, too. Finally, we observe from (30), (31), and (36) that

R(vvvn|Pnṽvv)→R(vvv|ṽvv)+E−E (vvv) a.e. in (0,T ) ,

for a.e. t ∈ (0,T ). As a consequence, we observe that the relative energy inequality (8) holds in the
limit a.e. in (0,T ). Now choosing t = T and s = 0 in (8) as well as K (ṽvv) = 2‖(∇ṽvv)sym,−‖C (Ω)
from (25) we find similar to the proof of Proposition 2.13 that

−
∫ T

0
〈∂tvvv,ṽvv〉d t = − (vvv(T ),ṽvv(T ))+(vvv0,ṽvv(0))+

∫ T

0
(∂tṽvv,vvv)d t

≤
∫ T

0
ν(∇vvv,∇ṽvv)+((vvv ·∇)vvv,ṽvv)−〈 fff ,ṽvv〉− (E−E (vvv))K (ṽvv)d t

(37)

The right-hand side is known to be bounded. We observe∫ T

0
ν(∇vvv,∇ṽvv)+((vvv ·∇)vvv,ṽvv)−〈 fff ,ṽvv〉− (E−E (vvv))K (ṽvv)d t

≤ ν‖∇vvv‖L2(Ω×(0,T ))‖∇ṽvv‖L2(Ω×(0,T ))+‖vvv‖2
L∞(0,T ;L2(Ω))‖ṽvv‖L1(0,T ;W 1,∞(Ω))

+‖ fff‖Z
(

ν‖∇ṽvv‖L2(Ω×(0,T ))+‖vvv‖L∞(0,T ;L2(Ω))

)
+2‖E−E (vvv)‖L∞(0,T )‖ṽvv‖L1(0,T ;C 1

0(Ω)) .

On the left-hand side of the inequality (37), the definition of the weak-time derivative appears. On the
right-hand side, the terms depending on vvv and E are bounded. The existence of such an element ∂tvvv
can be deduced by Hahn-Banach’s theorem similar to the proof of Proposition 2.13 on page 15. Taking
the supremum over all test functions, we observe that

‖∂tvvv‖L2(0,T ;((H1
0,σ (Ω)∩W 2,p(Ω))∗) = sup

ṽvv ∈ L2(0,T ;H1
0,σ (Ω)∩W 2,p(Ω)),

‖ṽvv‖L2(0,T ;H1
0,σ (Ω)∩W 2,p(Ω)) = 1

−〈∂tvvv,ṽvv〉 ≤C for p > d .
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From a standard lemma, we infer since L2
σ (Ω) is reflexive that

C w([0,T ];(H1
0,σ (Ω)∩W 2,p(Ω))∗)∩L∞(0,T ;L2

σ (Ω))⊂ C w([0,T ];L2
σ (Ω))

and from this that vvv ∈ C w([0,T ];L2
σ (Ω)) (see [32]). Thus the pointwise evaluation in (8) is well-

defined.

Step 5, Vanishing viscosity limit ν→0: Now, we focus on the case ν = 0. Therefore, we consider a
sequence {(vvvν ,Eν)}ν∈(0,1) of energy-variational solutions to the Navier-Stokes equations according
to Theorem 2.14 for ν→0. These solutions fulfill Definition 2.7 with Wν given by (4). Inserting ṽvv = 0
in this definition, we find the usual energy estimate

Eν(t)−Eν(s)+
∫ t

s
ν‖∇vvvν‖2

L2(Ω)−〈 fff ,vvv
ν〉dτ ≤ 0 (38)

for a.e. s, t ∈ (0,T ) such that with the usual estimates of the right-hand side, i.e., (29) with fff 1 = 0
(Note that Z0 = L1(0,T ;L2(Ω))), we find by (38) for s = 0 and using E ≥ E (vvv) that

‖vvvν(t)‖2
L2(Ω)+

∫ t

0
ν‖∇vvvν‖2

L2(Ω) ds≤ ‖vvv0‖2
L2(Ω)+

∫ t

0
‖ fff 2‖L2(Ω)

(
‖vvvν‖2

L2(Ω)+1
)

ds .

Via Gronwall’s lemma we infer fff , vvv0 and E(0)-dependent bounds on vvv in X. Note that in the current
case E (vvv0) = E(0). Thus, we deduce the weak convergence of a subsequence in the energy space,
i.e.,

vvvν ∗
⇀ vvv in X0

with X0 as given above by X0 := L∞(0,T ;L2
σ (Ω)).

Using the same estimates as in step Step 4 for the time derivative, we may deduce that

vvvν→vvv in C w([0,T ];L2
σ (Ω))

and thus pointwise for all t ∈ (0,T ). Revisiting (38), we infer that the function

t 7→ Eν(t)+
∫ t

0
ν‖∇vvvν‖2

L2(Ω)−〈 fff ,vvv
ν〉ds

is a monotonously non-increasing function and thus a function of bounded variation [27]. Since for
{vvvν} ⊂ X and fff ∈ Z, the function ν‖∇vvvν‖2

L2(Ω)
−〈 fff ν ,vvv〉 is integrable such that

∫ t
0 ν‖∇vvv‖2

L2(Ω)
−

〈 fff ,vvv〉ds is absolutely continuous and thus of bounded variation. The sum and difference of func-
tions of bounded variation are known to be of bounded variation again (see [27, Chap. 8,Thm. 3]),
such that{Eν} is a bounded sequence in BV([0,T]), where the associated bound on ‖Eν‖TV(0,T )
again depends on E(0) = E (vvv0) and fff . Additionally, we may select via Helly’s theorem a pointwise
converging subsequence

Eν ∗
⇀E in BV([0,T]) ,

Eν→E pointwise everywhere in [0,T ] .

Note that the bound does not depend on ν since the essential a priori estimates are independent of
ν .

With the usual skew-symmetry in the last two entries of the trilinear form, we find

−(((vvvν − ṽvv) ·∇)(vvvν − ṽvv),ṽvv) = ((vvvν − ṽvv)⊗ (vvvν − ṽvv),(∇ṽvv)sym) .
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This can be used to rewrite the relative energy inequality (8) into[
Eν − (vvvν ,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]∣∣∣t
s

+
∫ t

s

[
ν‖∇vvvν −∇ṽvv‖2

L2(Ω)+ν (∇ṽvv;∇vvvν −∇ṽvv)
]

dτ

+
∫ t

s

[
W0(vvvν |ṽvv)+ 〈A0(ṽvv),vvvν − ṽvv〉−K (ṽvv)

(
Eν − (vvvν ,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

)]
dτ ≤ 0 (39)

for all ṽvv ∈ Y0∩D(K )∩L2(0,T ;H2(Ω)) and all ν > 0. First, we decrease the number of admis-
sible regularity measures K , in order to make them independent of ν , K0 : Y0→R+ is chosen
such that W0 given by (5) is convex and weakly lower semi-continuous in vvv and continuous in ṽvv (see
Definition 2.7). In the first and last line of (39), we may pass to the limit by the weak∗ convergence of
{(vvvν ,Eν)} in X0∩C w([0,T ];L2

σ (Ω))×BV([0,T]), the lower semi-continuity of W0 and the linear
occurrence in all other terms. For the second line, we observe the estimates∫ t

s

(
ν‖∇vvvν −∇ṽvv‖2

L2(Ω)+ν (∇ṽvv;∇vvvν −∇ṽvv)
)

dτ

≥
∫ t

s

(
ν‖∇vvvν −∇ṽvv‖2

L2(Ω)+
√

ν‖∇vvvν −∇ṽvv‖L2(Ω)

√
ν‖∇ṽvv‖L2(Ω)

)
d t

≥
∫ t

s

(
ν

2
‖∇vvvν −∇ṽvv‖2

L2(Ω) ds− ν

2
‖∇ṽvv‖L2(Ω)

)
dτ

≥ − ν

2
‖∇ṽvv‖L2(Ω×(s,t))→0 as ν→0 .

We infer that the relative energy inequality (8) is fulfilled in the limit ν→0. This proves the existence of
energy-variational solutions to the Euler equations and thus the assertion. In order to allow more gen-
eral test functions, i.e., ṽvv∈Y0∩D(K0) instead of Y∩D(K ) one may use usual density arguments
and the continuity of K0 in Y0∩D(K0).

Step 6, Solution set: Let (vvv,E) be an energy-variational solution according to Definition 2.7. First, we
observe that E is indeed a function of bounded variation by choosing ṽvv≡ 0, similar to (38). Secondly,
let (vvv1,E1) and (vvv2,E2) be in S (vvv0, fff ). Then their convex combination (vvvλ ,Eλ ) = (λvvv1 +(1−
λ )vvv2,λE1 +(1−λ )E2) for λ ∈ (0,1) is again associated to an energy-variational solution. Indeed,
we find by the linearity in E and vvv and the convexity of Wν in vvv that[

Eλ − (vvvλ ,ṽvv)+
1
2
‖ṽvv‖2

L2(Ω)

]∣∣∣t
s

+
∫ t

s

[
Wν(vvvλ ,ṽvv)+

〈
Aν(ṽvv),vvvλ − ṽvv

〉
−K (ṽvv)

(
Eλ − (vvvλ ,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

)]
dτ

= λ

[
E1− (vvv1,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]∣∣∣t
s

+λ

∫ t

s

[
Wν(vvvλ ,ṽvv)+

〈
Aν(ṽvv),vvv1− ṽvv

〉
−K (ṽvv)

(
E1− (vvv1,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

)]
dτ

+(1−λ )
[
E2− (vvv2,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]∣∣∣t
s

+(1−λ )
∫ t

s

[
Wν(vvvλ ,ṽvv)+

〈
Aν(ṽvv),vvv2− ṽvv

〉
−K (ṽvv)

(
E2− (vvv2,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

)]
dτ

≤ λ

[
E1− (vvv1,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]∣∣∣t
s
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+λ

∫ t

s

[
Wν(vvv1,ṽvv)+

〈
Aν(ṽvv),vvv1− ṽvv

〉
−K (ṽvv)

(
E1− (vvv1,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

)]
dτ

+(1−λ )
[
E2− (vvv2,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]∣∣∣t
s

+(1−λ )
∫ t

s

[
Wν(vvv2,ṽvv)+

〈
Aν(ṽvv),vvv1− ṽvv

〉
−K (ṽvv)

(
E2− (vvv2,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

)]
dτ

≤ 0 .

Finally, we want to show that any sequence {vvvn,En}n∈N ⊂ S (vvv0, fff ) admits a cluster point in the
solution set S (vvv0, fff ). Note that if for a t0 ∈ [0,T ] the sequence {En(t0)} ⊂ [0,∞) diverges, the
same holds for all sequences {En(s)} with s ≤ t0 and the relative energy inequality (8) is trivially
fulfilled for all s ≤ t0 in the limit. We only have to prove something if for some t0 supn∈NEn(t0) < ∞.
Without loss of generality, we assume that t0 = 0. For any sequence {vvvn,En}n∈N ⊂S (vvv0, fff ), we
infer from (8) by choosing ṽvv = 0 and s = 0 the standard a priori estimates

En(t)+
∫ t

0
ν‖∇vvvn‖2

L2(Ω) ds≤ En(0)+
∫ t

0
〈 fff ,vvvn〉ds .

From the estimate (29), we infer the a priori bounds for {(En,vvvn)} in the space L∞(0,T )×L2(0,T ;H1
0,σ (Ω))

in the case ν > 0 and {En} in L∞(0,T ) for ν = 0. From the definition of E , we infer that En ≥
1/2‖vvvn‖2

L2(Ω)
on [0,T ]. This implies that {vvvn} is bounded in X. Moreover from the inequality (38),

we infer the boundedness of the sequence {En} in BV([0,T]). Helly’s selection principle allows to
select an everywhere in [0,T ] converging subsequence to some limit E ∈ BV([0,T]). Furthermore,

we infer vvvn ∗⇀ vvv in X. Due to the additional regularity of the time derivative (37), we even infer vvvn→vvv
in C w([0,T ];L2

σ (Ω)). Indeed, the strong convergence of En and the weak convergence of vvvn imply

lim
n→∞

[
En− (vvvn,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]∣∣∣t
s−

+ lim
n→∞

∫ t

s
〈A (ṽvv),vvvn− ṽvv〉−K (ṽvv)

[
En− (vvvn,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]
dτ

=

[
E− (vvv,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]∣∣∣t
s−

+
∫ t

s
〈A (ṽvv),vvv− ṽvv〉−K (ṽvv)

[
E− (vvv,ṽvv)+

1
2
‖ṽvv‖2

L2(Ω)

]
dτ

for all s < t ∈ (0,T ). The weak convergence of {vvvn} and the weakly lower semi continuity of Wν imply

liminf
n→∞

∫ t

s
Wν(vvvn|ṽvv)dτ ≥

∫ t

s
Wν(vvv|ṽvv)dτ

for all ṽvv ∈ Y∩D(K ) and for all s < t ∈ (0,T ). This implies that the limit (vvv,E) is again an energy-
variational solution according to Definition 2.7. Again the condition E ≥ E (vvv) is fulfilled, due to

E(t) = lim
n→∞

En(t)≥ liminf
n→∞

1
2
‖vvvn(t)‖2

L2(Ω) ≥
1
2
‖vvv(t)‖2

L2(Ω)

for all t ∈ [0,T ]. We note that E(0) = 1
2‖vvv0‖2

L2(Ω)
.

Step 7, Continuous dependence: In order to prove the claimed continuity of the set-valued mapping,
we need to prove two assertions. Therefore, let

fff n→ fff in Z and vvvn
0→vvv0 in L2

σ (Ω) . (40)
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We equip the domain L2
σ (Ω)×Z with the strong topology and the range X×BV([0,T]) with the

weak∗ topology.

Introducing the Kuratowski limits

Ls(vvvn
0, fff

n)→(vvv0, fff )S (vvvn
0, fff n) :=

{
(vvv,E) ∈ X×BV([0,T]);

there exists a sequence (vvvn
0, fff n)→(vvv0, fff )

and (vvvn,En)
∗
⇀ (vvv,E) such that (vvvn,En) ∈S (vvvn

0, fff n)
}
,

Li(vvvn
0, fff

n)→(vvv0, fff )S (vvvn
0, fff n) :=

{
(vvv,E) ∈ X×BV([0,T]);

for all (vvvn
0, fff n)→(vvv0, fff ) there exists (vvvn,En) ∈S (vvvn

0, fff n)

such that (vvvn,En)
∗
⇀ (vvv,E)

}
we need to prove that

Ls(vvvn
0, fff

n)→(vvv0, fff )S (vvvn
0, fff n)⊂S (vvv0, fff ) and Li(vvvn

0, fff
n)→(vvv0, fff )S (vvvn

0, fff n)⊃S (vvv0, fff ) ,

which are called upper and lower semi-continuity, respectively. A set-valued map is said to be contin-
uous if Ls(vvvn

0, fff
n)→(vvv0, fff )S (vvvn

0, fff n) = Li(vvvn
0, fff

n)→(vvv0, fff )S (vvvn
0, fff n).

Step 7.1, Upper semi-continuity: First, we show Ls(vvvn
0, fff

n)→(vvv0, fff )S (vvvn
0, fff n) ⊂ S (vvv0, fff ). From the

steps 1 to 5, we infer that to every n∈N there exists an energy-variational solution (vvvn,En) according

to Definition 2.7. By the assumption E ∈ BV([0,T]) and En ∗⇀ E in BV([0,T]), we especially infer
supn∈NEn(0) < ∞. Since (vvvn

0, fff n) is bounded in L2
σ (Ω)×Z, we infer the boundedness of the se-

quence {(vvvn,En)}n∈N in X×BV([0,T]) essentially in the same way as in Step 5. Thus, there exists

some (vvv,E) and some subsequence {(vvvnk ,Enk)} such that (vvvnk ,Enk)
∗
⇀ (vvv,E) in X×BV([0,T]).

For every ψ ∈ C 1
c((0,T )) with ψ ≥ 0, we observe that

liminf
n→∞

∫ T

0
ψ

(
1
2
‖vvvnk‖2

L2(Ω)−Enk

)
d t ≥

∫ T

0
ψ

(
1
2
‖vvv‖2

L2(Ω)−E
)

d t

from the strong convergence of {Enk} in L1(0,T ) and the weakly lower semi-continuity of the L2-
norm. Similar, we observe for every fixed φ ∈ C 1

c((0,T )) with φ ≥ 0, and ṽvv ∈ Y that

− limsup
n→∞

∫ T

0
φ
′ [Enk− (vvvnk ,ṽvv)]d t + liminf

n→∞

[∫ T

0
φK (ṽvv)

[
1
2
‖vvvnk‖2

L2(Ω)−Enk

]
d t

∫ T

0
φ [ν (∇vvvnk ,∇vvvnk−∇ṽvv)+(vvvnk⊗vvvnk ;∇ṽvv)+(∂tṽvv,vvvnk)−〈 fff nk ,vvvnk− ṽvv〉]d t

]

≥−
∫ T

0
φ
′ [E− (vvv,ṽvv)]d t +

∫ T

0
φK (ṽvv)

[
1
2
‖vvv‖2

L2(Ω)−E
]

d t

+
∫ T

0
φ [ν (∇vvv,∇vvv−∇ṽvv)+(vvv⊗vvv;∇ṽvv)+(∂tṽvv,vvv)−〈 fff ,vvv− ṽvv〉]d t .

Note that the only difference in this limit in comparison to the proof of Step 6 is that fff nk converges
strongly now, which together with the weak convergence of {vvvnk} implies the convergence of their
product. This implies that the limit (vvv,E) is an energy-variational solution again and therewith (vvv,E)∈
S (vvv0, fff ).
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Step 7.2, Lower semi-continuity: Secondly, we show that Li(vvvn
0, fff

n)→(vvv0, fff )S (vvvn
0, fff n) ⊃ S (vvv0, fff ).

Therefore, we have to construct a recovery sequence. For a given (vvvn
0, fff n)→(vvv0, fff ), we construct

v̄vvn ∈ L2(0,T ;H1
0,σ (Ω))∩H1(0,T ;(H1

0,σ (Ω))∗)∩C ([0,T ];L2
σ (Ω)) as the solution to the Stokes

problem

∂tv̄vvn−ν∆v̄vvn +∇p̄n = fff n− fff in Ω× (0,T ) (41)

∇·v̄vvn = 0 in Ω× (0,T )
v̄vvn = 0 on ∂Ω× (0,T )

v̄vvn(0) = vvvn
0−vvv0 in Ω .

Note that this linear PDE problem can be solved by Lions theorem (see [28, Thm. 11.3]) on linear
parabolic problems in the usual weak sense in the space indicated above. Since Lions theorem also
guarantees the continuous dependence, we infer that

v̄vvn→0 in X∩C ([0,T ];L2
σ (Ω)) . (42)

Note that in the case ν = 0, the problem (41) is solved by the choice v̄vvn(t) = vvvn
0−vvv0 +

∫ t
0 P( fff n−

fff )ds, where P denotes the Leray-projection onto solenoidal functions in L2(Ω). Now, we may choose
vvvn = vvv+ v̄vvn. By construction it holds that

vvvn(0) = vvvn
0 and vvvn→vvv in X∩C w([0,T ];L2

σ (Ω)) .

In order to infer a condition on En, we consider the relative energy inequality for vvvn,

[En− (vvvn,ṽvv)]
∣∣∣t
s
+
∫ t

s
K (ṽvv)

[
1
2
‖vvvn‖2

L2(Ω)−En
]

dτ

+
∫ t

s
[ν (∇vvvn,∇vvvn−∇ṽvv)+(vvvn⊗vvvn;∇ṽvv)+(∂tṽvv,vvvn)−〈 fff n,vvvn− ṽvv〉]dτ

= [E− (vvv,ṽvv)]
∣∣∣t
s
+
∫ t

s
K (ṽvv)

[
1
2
‖vvv‖2

L2(Ω)−E
]

dτ

+
∫ t

s
ν (∇vvv,∇vvv−∇ṽvv)+(vvv⊗vvv;∇ṽvv)+(∂tṽvv,vvv)−〈 fff ,vvv− ṽvv〉dτ

+

[
1
2
‖v̄vvn‖2

L2(Ω)− (v̄vvn,ṽvv)
]∣∣∣t

s
+
∫ t

s
ν (∇v̄vvn,∇v̄vvn−∇ṽvv)+(∂tṽvv,v̄vvn)−〈 fff n− fff ,v̄vvn− ṽvv〉dτ

+

[
Ēn− 1

2
‖v̄vvn‖2

L2(Ω)

]∣∣∣t
s
+
∫ t

s
K (ṽvv)

[
(vvv,v̄vvn)+

1
2
‖v̄vvn‖2

L2(Ω)− Ēn
]

dτ

+
∫ t

s
2ν (∇vvv,∇v̄vvn)+(2v̄vvn⊗vvv+ v̄vvn⊗ v̄vvn;∇ṽvv)−〈 fff n− fff ,vvv〉−〈 fff ,v̄vvn〉dτ . (43)

Since (vvv,E) ∈S (vvv0, fff ), the first two lines on the right-hand side of the previous inequality are non-
positive, and for v̄vvn as a weak solution to (41), the third line on the right-hand side is zero. Thus it
remains to choose Ēn in such a way that the right-hand side is non-positive. Therefore, we consider
the estimate

(2v̄vvn⊗vvv+ v̄vvn⊗ v̄vvn;∇ṽvv)≥−K (ṽvv)
(
‖vvv‖L2(Ω)‖v̄vvn‖L2(Ω)+

1
2
‖v̄vvn‖2

L2(Ω)

)
,

in order to infer the conditions

Ēn(t)≥ 2‖v̄vvn(t)‖L2(Ω)‖vvv(t)‖L2(Ω) for all t ∈ [0,T ] (44a)
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and[
Ēn− 1

2
‖v̄vvn‖2

L2(Ω)

]∣∣∣t
s
+
∫ t

s
2ν (∇vvv,∇v̄vvn)−〈 fff v− fff ,vvv〉−〈 fff ,v̄vvn〉dτ ≤ 0 for all s < t ∈ [0,T ] .

(44b)

One possible choice to define Ēn would be to set

Ēn(0) := max
t∈[0,T ]

[
2‖v̄vvn‖C ([0,T ];L2(Ω))‖vvv‖L∞(0,T ;L2(Ω))−

1
2
‖v̄vvn(t)‖2

L2(Ω)

+
∫ t

0
2ν (∇vvv,∇v̄vvn)−〈 fff v− fff ,vvv〉−〈 fff ,v̄vvn〉ds+

1
2
‖v̄vvn

0‖2
L2(Ω)

] (45)

and define

Ēn(t) = Ēn(0)− 1
2
‖v̄vvn

0‖2
L2(Ω)+

∫ t

0
2ν (∇vvv,∇v̄vvn)−〈 fff v− fff ,vvv〉−〈 fff ,v̄vvn〉ds+

1
2
‖v̄vvn(t)‖2

L2(Ω) .

By this choice the conditions (44) are fulfilled and additionally the convergences (42) and (40) as well
as the boundedness of vvv in X allow to deduce that

Ēn→0 everywhere on [0,T ] ,

which implies the assertion.

Remark 3.1. The continuous dependence result is presented in a set-theoretic sense via convergence
in the Kuratowski sense. These convergences are introduced in [19, Sec. 29]. The connection of
Kuratowski convergence of the epigraphs of a sequence of convex functions to Gamma convergence
of the associated functions is considered in [10, Thm. 4.16]. The continuity of the set-valued map is
consistent with the usual single-valued definition (see [2, Sec. 1.4]).

3.3 Selection criteria and minimization

First, we consider a different way of formulating the continuity of the solution set.

Proposition 3.1. Assume that there exists a sequence {(vvvn
0, fff n)} ⊂ L2

σ (Ω)×Z and an element
(vvv0, fff ) ∈ L2

σ (Ω)×Z such that

‖vvvn
0−vvv0‖L2(Ω)+‖ fff n− fff‖Z→0 as n→∞ .

Then it holds that there exists a sequence {En
0}n∈N and C > 0 such that En≥ E (vvvn

0) can be bounded
such that En

0 −E (vvvn
0)≤C‖vvvn

0−vvv0‖L2(Ω)

S0(vvvn
0,E

n
0 , fff ) M∗−→S0(vvv0,E (vvv0), fff ) ,

where the constant C only depends on vvv0 and the right-hand side fff .

Remark 3.2 (Mosco convergence). By the superscript M∗, we denote the un-usual Mosco conver-
gence of sets, i.e.,
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i) for each (vvv,E) ∈St0(vvv0,E (vvv0), fff ) there exists {(vvvn,En)} ⊂ X×BV([0,T]) such that

(vvvn,En)∈St0(vvvn
0,E

n
0 , fff ) with (vvvn,En)

∗
⇀ (v,E) in X×BV([0,T]) such that (vvvn,En)→(vvv,E)

in L∞(0,T ;L2
σ (Ω))×L∞(0,T ),

ii) for each sequence {(vvvn,En)} ⊂ X×BV([0,T]) with (vvvn,En) ∈St0(vvvn
0,E

n
0 , fff ) and

(vvvn,En)
∗
⇀ (vvv,E) in X×BV([0,T]), it holds (vvv,E) ∈St0(vvv0,E (vvv0), fff ).

It is similar to the Mosco-convergence of sets, but the weak convergence is replaced by the weak∗

convergence and the strong convergence of the recovery sequence in a weaker space in our setting.

Proof. In order to define the recovery sequence, we follow the same argument as in Step 7.2 of the
proof of Theorem 2.14 on page 23. There the value En

0 is given in (45).

The second property of the Mosco∗ convergence follows in the same way as in Step 7.1 of the proof
of Theorem 2.14 on page 22. Note that {En} is such that EN

0 →E (vvv0) as n→∞.

Proof of Proposition 2.15. Step 1: Existence . First, we observe that the set of energy-variational so-
lutions is convex and weakly∗-closed and the functional (vvv,E) 7→

∫ T
0 J(t,vvv,E)d t is known to be

strictly convex and weakly-lower semi-continuous with respect to the topology in L∞(0,T ;L2
σ (Ω))×

L∞(0,T ) for any p∈ [1,∞), which is coarser than the topology of X×BV([0,T]). This allows to infer
that the minimization problem (15) has a unique solution, which we call (vvv,E).

Step 2: Continuous dependence. The same argument provides the existence of a unique solution
(vvvn,En) to the minimization problem

min
(vvv,E)∈St0(vvvn

0,E
n
0 , fff

n)

∫ T

0
J(t,vvv,E)d t

for every n ∈N. Now we observe that due to the compactness of the solution set of energy-variational
solutions in the weak∗ topology and the property ii) of Proposition 3.1, there exists a not relabeled sub-
sequence and an element (uuu,F) ∈S0(vvv0,E (vvv0), fff ) such that (vvvn,En)

∗
⇀ (uuu,F). From the weakly-

lower semi-continuity of J, we find

liminf
n→∞

∫ t

0
J(t,vvvn,En)d t ≥

∫ T

0
J(t,uuu,F)d t ≥

∫ T

0
J(t,vvv,E)d t ,

where the last inequality follows from the fact that (vvv,E) is the solution to the problem (15). From
the point i) of Proposition 3.1, we find that there exists a sequence (uuun,Fn) such that (uuun,Fn) ∈
S0(vvvn

0,E
n
0 , fff n) with (uuun,Fn)→(vvv,E) in X×BV([0,T]). The continuity of the functional J and the

inequality
∫ T

0 J(t,uuun,Fn)d t ≥
∫ T

0 J(t,vvvn,En)d t, we may conclude that

∫ T

0
J(t,vvv,E)d t = lim

n→∞

∫ T

0
J(t,uuun,Fn)d t ≥ liminf

n→∞

∫ T

0
J(t,vvvn,En)d t

≥
∫ T

0
J(t,uuu,F)d t ≥

∫ T

0
J(t,vvv,E)d t .

This implies that
∫ T

0 J(t,vvv,E)d t =
∫ T

0 J(t,uuu,F)d t and due to the strict convexity of J, we infer

(uuu,F) = (vvv,E) such that also (vvvn,En)
∗
⇀ (vvv,E).
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Step 3: Semiflow property. Let (vvv,E) = argminS0(vvv0,E (vvv0), fff )
∫ T

0 J(t,vvv,E)d t be the minimizer of the

minimization problem. Let (vvv1,E1) = argminSt0(vvv(t0),E(t0), fff )
∫ T

t0 J(t,vvv,E)d t be the minimizer of the
shifted minimization problem. Then it holds for the concatenation{

(vvv2(t),E2(t)) = (vvv(t),E(t)) for t ∈ (0, t0)
(vvv2(t),E2(t)) = (vvv1(t),E1(t)) for t ∈ (t0,T )

that∫ T

t0
J(t,vvv,E)d t =

∫ T

0
J(t,vvv,E)d t−

∫ t0

0
J(t,vvv,E)d t

≤
∫ T

0
J(t,vvv2,E2)d t−

∫ t0

0
J(t,vvv,E)d t

=
∫ t0

0
J(t,vvv,E)d t +

∫ T

t0
J(t,vvv1,E1)d t−

∫ t0

0
J(t,vvv,E)d t ≤

∫ T

t0
J(t,vvv1,E1)d t ,

is an minimizer again. This implies for the restriction

(vvv|Tt0,E|
T
t0) = argminSt0(vvv(t0),E(t0), fff )

∫ T

t0
J(t,vvv,E)d t = (vvv1,E1) . (46)

On the other hand, let (vvv1,E1) = argminS0(vvv0,E (vvv0), fff )
∫ T

0 J(t,vvv,E)d t be the minimizer of the global

problem and (vvv2,E2) = argminSt0(vvv(t0),E(t0), fff )
∫ T

t0 J(t,vvv,E)d t the minimizer of the local problem
then the concatenation {

(vvv(t),E(t)) = (vvv1(t),E1(t)) for t ∈ (0, t0)
(vvv(t),E(t)) = (vvv2(t),E2(t)) for t ∈ (t0,T )

is a minimal energy-variational solution again, (vvv,E) ∈ argminS0(vvv0,E (vvv0), fff )
∫ T

0 J(t,vvv,E)d t. Indeed,
it holds ∫ T

0
J(vvv,E)d t =

∫ t0

0
J(vvv1,E1)d t +

∫ T

t0
J(vvv2,E2)d t

≤
∫ t0

0
J(vvv1,E1)d t +

∫ T

t0
J(vvv1,E1)d t =

∫ T

0
J(vvv1,E1)d t

since (vvv1,E1) is also an energy-variational solution on (t0,T ) and thus in the admissible set of the
minimization problem.

Proof of Proposition 2.16. For convenience, the proof is divided into several steps.

Step 1: Local minimization problem. First we consider the optimization problem of minimizing the
auxiliary variable E point-wise over the set of energy-variational solutions to a given initial-value vvv0
and right-hand side fff . This can be expressed as

(vvv,E) = argmin(uuu,F)∈S0(vvv0,E (vvv0), fff )E(t0) . (47)

We note that point-evaluations are not continuous with respect to the topology of BV([0,T])-functions.
But since in our considered setting jumps can only occur in a jump point s0 such that E(s0) =
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E(s0+)≤ E(s0−) the point-evaluations are at least lower-semi continuous. Since the set of energy-
variational solutions is convex and closed and the cost-functional is lower semi-continuous, bounded
from below, and coercive, there exists a minimum for this problem.

Step 2: Restarting. We observe that for a t0 ∈ (0,T ) with E(t0) > E (vvv(t0)), we may restart the
process in t0 for any energy-variational solution (vvv,E) ∈ X×BV([0,T]). If we call (v̄vv, Ē) an energy-
variational solution on (t0,T ) starting from the initial value vvv(t0) then it holds

R(v̄vv(t)|ṽvv(t))+ Ē(t)−E (v̄vv(t))−
∫ t

s
K (ṽvv) [R(v̄vv|ṽvv)+ Ē−E (v̄vv)]dτ

+
∫ t

s
Wν(v̄vv,ṽvv)+ 〈Aν(ṽvv),v̄vv− ṽvv〉dτ ≤R(v̄vv(s)|ṽvv(s))+ Ē(s−)−E (v̄vv(s))

for a.e. t, s ∈ (t0,T ). The concatenation (vvv2,ξ 2) defined by{
(vvv2(t),E2(t)) = (vvv(t),E(t)) for t ∈ (0, t0)
(vvv2(t),E2(t)) = (v̄vv(t), Ē(t)) for t ∈ (t0,T )

(48)

is then again an energy-variational solution on (0,T ), due to vvv2 ∈ C w([0,T ];L2
σ (Ω)) and

lim
t↘t0

E2(t)≤ 1
2
‖vvv(t0)‖2

L2(Ω) < E(t0) .

Step 3: Properties of point-wise minimizer. This implies that for a minimizer of the minimization prob-
lem (47), it holds that E(t0) = E (vvv(t0)). Otherwise, with the restarting procedure from above, a
contradiction to (vvv,E) being a minimum of (47) can be deduced. Assume now that there are two
energy-variational solutions (vvv1,E1) and (vvv2,E2) minimizing (47) such that vvv1(t0) 6= vvv2(t0). Due
to the convexity of the admissible set and the convexity of the cost functional of (47), we infer that
for any λ ∈ (0,1) that also (vvvλ ,Eλ ) with vvvλ = λvvv1 +(1− λ )vvv2 and Eλ = λE1 +(1− λ )E2 is
also a minimizer of (47). From the previous restarting procedure, we infer that E1(t0) = E (vvv1(t0)) =
E (vvv2(t0)) = E2(t0). But for the convex combination, we infer E (vvvλ (t0)) < Eλ (t0) due to the strict
convexity of E . But again from the restarting procedure, we infer that this is not a minimizer from (47)
since, we may restart again from vvvλ (t0) with E(t0) = E (vvvλ (t0)), which has a smaller energy. Thus
the minimum in t0 is unique. Note that only the value in t0 is unique but not necessarily the minimizing
energy-variational solution.

Step 4: Successive minimization. We consider the sequence of time steps, {t1, . . . , tN} ⊂ [0,T ].
Starting from t j−1 = t1, we may consider the minimization problem

(v̄vv j, Ē j) = argmin(uuu,F)∈S0(vvv(t j−1),E (vvv(t j−1)), fff (·+t j−1))
Ē(t j− t j−1) .

Which is solvable such that Ē j(t j− t j−1) = E (v̄vv j(t j− t j−1)) according to the previous steps. We
choose one of theses minimizing solutions and construct{

(vvv j(t),E j(t)) = (vvv j−1(t),E j−1(t)) for t ∈ (0, t j−1)

(vvv j(t),E j(t)) = (v̄vv j(t + t j−1), Ē j(t + t j−1)) for t ∈ [t j−1,T ) .

After N steps, the solution fulfills EN(t j) = E (vvv(t j)) for all j ∈ {1, . . . ,N}.
From the weak continuity of vvv ∈ C w([0,T ];L2

σ (Ω)), we infer that for every t0 ∈ [0,T ) it holds

lim
t↘t0

vvv(t)⇀ vvv(t0) .
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Due to the regularity of the auxiliary variable E ∈ BV([0,T]), we know limt↘t0 E(t) = E(t0). Taking
this together with E(t)≥ E (vvv(t)) for all t ∈ [0,T ], we infer like for the initial value in Remark 2.6 that

E(t j) = lim
t↘t j

E(t)≥ liminf
t↘t j

E (vvv(t))≥ E (vvv(t j)) = E(t j) .

This implies that limt↘t j E (vvv(t)) = E (vvv(t j)) such that limt↘t j vvv(t)→vvv(t j) in L2
σ (Ω) for all j ∈

{1, . . . ,N}.

Proof of Proposition 2.18. Assume that there exists a solution in the sense of Definition 2.17. In case
there is a point t0 such that E(t0) > E (vvv(t0)), we may construct an energy-variational solution by
restarting in t0 as in Step 2 of the previous proof. The existence of such an energy-variational solution
with smaller auxiliary variable E in t0 contradicts the Definition of minimal energy-variational solutions
according to Definition 2.17. From Proposition 2.12 it follows that vvv is a weak solution.
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