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I. Introduction

Let us recall the de�nitions of the Hop�eld model [Ho] and the main quantities of interest. For

a more detailed exposition of the model we refer to [BG3]. Let N be an integer and M :IN ! IN

be a strictly increasing function. We set �(N) � M(N)

N

. In the present work we will consider

only the case where lim
N"1 �(N) = 0. We denote by S

N
� f�1; 1gN and S � f�1; 1gIN the

set of spin con�gurations, �, in �nite, resp. in�nite volume. We denote by �
i
the value of � at

i. Let (
;F ; IP ) be an abstract probability space and let f��
i
[!]; i; � 2 INg, denote a family of

independent identically distributed random variables on this space. For the purposes of this paper

we will assume that IP [�
�

i
= �1] = 1

2
, but more general distributions can be considered.

We de�ne random maps m
N
[!] : S

N
! [�1; 1]M(N) whose components are given by

m
�

N
[!](�) � 1

N

NX
i=1

�
�

i
[!]�

i
; � = 1; : : : ;M(N): (1:1)

The Hamiltonian of the Hop�eld model is now de�ned as

H
N
[!](�) � �N

2

M(N)X
�=1

(m
�

N
[!](�))

2

= �N

2
km

N
[!](�)k22

(1:2)

where k � k2 denotes the `2-norm in IRM . With this Hamiltonian we de�ne in a natural way �nite

volume Gibbs measures on (S
N
;B(S

N
)) via

�
N;�

[!](�) � 2�N

Z
N;�

[!]
e��HN [!](�) (1:3)

where the parameter � > 0 denotes the inverse temperature and where the normalizing factor

Z
N;�

[!] is given by

Z
N;�

[!] � 2�N
X
�2SN

e��HN [!](�) � IE
�
e��HN [!](�) (1:4)

We furthermore introduce the measures on (IRM(N);B(IRM(N))) induced by the Gibbs measures

and the maps m
N
[!]:

Q
N;�

[!] � �
N;�

[!] �m
N
[!]�1 (1:5)

Over the last few years a very satisfactory and complete description of the measures Q
N;�

[!]

has been obtained in the case lim
N"0

M(N)
N

= 0. In particular, in [BGP1], a law of large number

type was proven for the random vectors m
N
[!], and in [BG1] the associated full large deviation

principle was obtained, without any condition on the speed of convergence of
M(N)
N

to zero. In
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such a situation it is natural to also expect a central limit theorem to hold. Such results were in

fact proven in several papers by B. Gentz [Ge1], [Ge2] and [Ge3]. However, they required strong

conditions on the speed at which
M(N)

N

tends to zero, the weakest being lim
N"0

M
2(N)
N

= 0 in

[Ge3]. In this note we show that the central limit theorem holds under the sole hypothesis that

lim
N"0

M(N)
N

= 0. Thus, in this regime all the classical theorems of probability theory are now

established.

We note that the proof of the CLT requires a far more detailed analysis of the local properties

of the measures Q
N;�

then all previous results in the same regime. The crucial ingredient is a local

convexity estimate that was given in [BG2] and the crucial new analytic tool are Brascamp-Lieb

inequalities [BL,HS,N,NS].

In order to state the results we need some more notation and de�nitions. Let m�(�) be the

largest solution of the mean �eld equation m = tanh(�m). Note that m�(�) is strictly positive for

all � > 1, lim
�"1m�(�) = 1, lim

�#1
(m�(�))2

3(��1)
= 1 and m�(�) = 0 if � � 1. Denoting by e� the �-th

unit vector of the canonical basis of IRM we set, for all (�; s) 2 f�1; 1g � f1; : : : ;M(N)g,

m(�;s) � sm�(�)e�; (1:6)

and for any � > 0 we de�ne the balls

B(�;s)
�

�
n
x 2 IRM

��kx�m(�;s)k2 � �
o

(1:7)

For any pair of indices (�; s) and any � > 0 we de�ne the conditional measures1

Q(�;s)
N;�;�

[!](A) � Q
N;�

[!](A j B(�;s)
�

); A 2 B(IRM(N)) (1:8)

Let X
N
be a random vector distributed according to Q(�;s)

N;�;�
[!] and denote by X

(�;s)

N;�;�
[!] it's expec-

tation. We want to characterize the distribution of the normalized centered variable

eX
N
�
p
N(X

N
�X

(�;s)

N;�;�
[!]) (1:9)

To do so we consider it's Laplace transform (recall that eX is M(N)-dimensional):

L(�;s)
N;�;�

[!](t) �
Z

e
p
N(t;x�X(�;s)

N;�;�[!])dQ(�;s)
N;�;�

[!](x) ; t 2 IRM(N) (1:10)

where (�; �) stands for the scalar product in IRM(N). We prove the following theorem:

1 All the results of this paper could also be formulated in terms of \tilted Gibbs measure", i.e. with a symmetry

breaking magnetic �eld added instead of the conditioning (see [BG3]) for precise de�nitions.
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Theorem 1.1: Assume lim
N"1 �(N) = 0. Assume that � 2 IR+nf1g and set

C(�) �
(

1�(m�(�))2

1��(1�(m�(�))2) if � > 1
1

1�� if � < 1
(1:11)

There exists a constant c(�) > 0 such that with probability one, for all but a �nite number of indices

N , if � satis�es

1

2
m� > � > c(�)

n
1

N
1=4 ^

p
�(N)

o
+ c0

p
�(N)

m� (1:12)

for some constant c0 > 0, then for all t with ktk2 <1 we have

lim
N"1

logL(�;s)
N;�;�

[!](t) = 1
2
C(�)ktk22 (1:13)

Corollary 1.2: Under the assumptions of Theorem 1, for all k 2 IN , the �nite dimensional

marginals of order k of the law of eX
N

under Q(�;s)
N;�;�

[!] converge weakly, as N diverges, to the

gaussian measure on (IRk;B(IRk)) with mean zero and covariance matrix C(�)1I where 1I is the

identity matrix.

Remark: The same result was obtained in [Ge3] under the stronger assumption lim
N"0

M
2(N)
N

= 0.

We will see in the sequel that, due to the sharp concentration properties of the measure

Q(�;s)
N;�;�

[!], the centering X
(�;s)

N;�;�
[!] obeys the following bound:

Lemma 1.3: Under the assumption of Theorem 1.1, with probability one, for all but a �nite

number of indices N , 


X(�;s)

N;�;�
[!]�m(�;s)





2
� ~� (1:14)

where

~� � ~c0

p
�(N)

m� (1:15)

for some constant ~c0 > 0.

The remainder of this paper is organized as follows. We only present the proof of Theorem

1 in the case where � > 1, the case � < 1 being trivial 2. Moreover, in order to avoid having to

distinguish several cases and since we are mainly interested in the regime of parameters not covered

in [Ge3] , we will assume that M(N) > (logN)2. It is however not di�cult at all to treat the case

M(N) � (logN)2. In fact, wherever estimates of the form e�cM appear, they can be replaced by

e�c
p
N if so desired by trivial modi�cations. The basic structure of the proof is as follows:

2 The situation at � = 1 as well as the limits � ! 1 taken in various ways are up tp now completely

uninvestigated and promise a rather rich and complex structure.
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(i) Using the Hubbard-Stratonovich transformation, show that for � chosen as in (1.12), the

Laplace transform (1.10), L(�;s)
N;�;�

, can be expressed in terms of the Laplace transform eL(�;s)
N;�;�

of a smoothed version eQ(�;s)
N;�;�

of the measure Q(�;s)
N;�;�

.

(ii) Show that the measures eQ(�;s)
N;�;�

for all � satisfying (1.12) are equivalent.

(iii) Choose � as the lower bound in (1.12) and, using the results of [BG2], show that the corre-

sponding measures have densities of the forms e�NV (x) with V strictly convex; moreover, the

Hessian of V is uniformly close to a multiple of the identity.

(iv) The Brascamp-Lieb inequalities, together with a simple reverse [DGI], now yield asymptotically

coinciding upper and lower bounds on the Laplace transform which imply Theorem 1.1.

Assuming (ii), we present (i), (iii) and (iv) in Section 2. This represents the essential and

original part of the proof. While the results of (ii) use by now quite standard techniques and are

not very original, they require rather lengthy computations. We give them in Section 3; readers

not interested in these technicalities are advised not to read that section.

Notation and conventions: Before giving the proofs, let us �x some general conventions on

notation. From now on the parameter � in X
(�;s)

N;�;�
[!] is �xed and chosen as in (1.12). We will then

simply write

X
(�;s)

[!] � X
(�;s)

N;�;�
[!] (1:16)

and no confusion should arise from this. In general, in order not to overburden the notation, we

will suppress part of or all of the subscripts �;N; � when we feel that this cannot be confusing. We

will also often suppress the explicit dependence of several quantities on � and N : mostly we will

write m� � m�(�), M �M(N), � � �(N). Finally, let us insist that to simplify the notation, the

dependance of various random quantities on ! will be made explicit only when we want to stress

the random nature of these quantities.

Acknowledgements: We thank J.-D. Deuschel, G. Giacomin and D. Io�e for informing us of

their results in [DGI] concerning the reverse Brascamp-Lieb inequalities prior to publication.

2. Proof of Theorem 1.1

In this section we give the main part of the proof of Theorem 1.1. We recall �rst the Hubbard-

Stratonovich transformation [H,S].

Let NM

�N
be the gaussian measure on (IRM ;B(IRM )) with density

�
�N

2�

�
M=2

exp
�
� 1

2
�Nkzk22

	
with respect to Lebesgue measure in IRM . The Hubbard-Stratonovich approach consists in consid-

4



ering the convolution eQ
N;�

� Q
N;�

?NM

�N
(2:1)

instead of the measure Q
N;�

itself. The resulting measure eQ
N;�

is absolutely continuous and has

density
1

Z
N;�

exp f��
N;�

(z)g (2:2)

with respect to Lebesgue's measure in IRM . The function �
N;�

(z) can be computed explicitly and

is given by

�
N;�

(z) =
1

2
kzk22 �

1

�N

NX
i=1

ln cosh�(�
i
; z) ; z 2 IRM (2:3)

Note that under our assumptions on �, the measures eQ
N;�

and Q
N;�

have the same convergence

properties as for large enough N , the gaussian NM

�N
gets concentrated sharply on a sphere of radiusp

�=�.

In complete analogy with (1.8) to (1.10), we introduce the conditional measures

eQ(�;s)
N;�;�

(A) � Q
N;�

(A j B(�;s)
�

); A 2 B(IRM ) (2:4)

and, for Z
N
distributed according to eQ(�;s)

N;�;�
we consider the Laplace transform

eL(�;s)
N;�;�

(t) �
Z

e
p
N(t;z�Z(�;s)

)d eQ(�;s)
N;�;�

(z) ; t 2 IRM (2:5)

of the normalized centered variable eZ
N
�
p
N(Z

N
�Z

(�;s)
), where Z

(�;s)
is the expectation of Z

N
.

For later convenience, we also introduce the quantities

eL(�;s)
N;�;�

(t) � e
p
N(t;Z

(�;s)�X(�;s)
) eL(�;s)

N;�;�
(t) (2:6)

We will proof in the remainder of this section the analog of Theorem 1.1 for the function eL(�;s)
�;N;��(t)

with �� = ��(N) that tends to zero as N tends to in�nity.

The following proposition, whose proof will be given in Section 3, assures that this implies that

L(�;s)
�;N;��(t) converges to the same limit.

Proposition 2.1: Assume that � > 1. There exist �nite

positive constants c � c(�); ~c � ~c(�); �c � �c(�) such that, with a probability one, for all but a

�nite number of indices N , if � satis�es

1

2
m� > � > c(�)

�
1

N
1=4 ^

p
�
	

(2:7)

then, for all t with ktk2 <1,
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i)

L(�;s)
�;N;�

(t)
�
1� e�~cM

�
� e�

1
2�
ktk22 bL(�;s)

�;N;�
(t) � e�~cM + L(�;s)

�;N;�
(t)
�
1 + e�~cM

�
(2:8)

ii) for any �� satisfying (2.7)

eL(�;s)
�;N;��(t)

�
1� e��cM

�
� eL(�;s)

�;N;�
(t) � e��cM + eL(�;s)

�;N;��(t)
�
1 + e��cM

�
(2:9)

iii) for any �� satisfying (2.7) ����X(�;s) � Z
(�;s)

�
; t
���� � ktk2e��cM (2:10)

Remark: Note that (iii) implies that���ln eL(�;s)
�;N;�

(t)� ln bL(�;s)
�;N;�

(t)
��� � p

Nktk2e��cM (2:11)

which under our assumption M(N) � (lnN)2 tends to zero.

We now want to compute the Laplace transform eL(�;s)
�;N;��(t) for �� � ��(N) that tends to zero as

N tends to in�nity.

Proposition 2.2: Assume that � 2 IR+nf1g and set:

�(�) � 1� �(1� (�m�(�))2) : (2:12)

Let �(N) and ��(N) be decreasing functions of N that go to zero as N goes to in�nity and satisfy

��(N) � 2

q
�(N)

�(�)
: (2:13)

Then with probability one, for all but a �nite number of indices N ,

ktk2(1� 3��e�M )

2�(�(�) + 
(N))
� ln eL(�;s)

�;N;��(t) �
ktk2(1+2��e�M )
2�(�(�)�
(N))

(2:14)

where


(N) = �

�
3(
p
��+

p
�) + c

q
lnN
N

+ c0 8
m
� ��

�
(2:15)

for some strictly positive constants c and c0.

We recall a few notation and de�nitions. Let S and T be two M �M real symmetric matrices.

The matrix norm is de�ned by

kTk � sup
x:kxk2=1

j(x; Tx)j (2:16)
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We say that T is non negative, and we write T � 0, if (x; Tx) � 0 for any x 2 IRM . More generally,

we say that T � S or S � T if T � S � 0. For any function V : IRM ! IR, we will denote by

r2V (x) it's Hessian matrix at x.

Lemma 2.3: Let �(N) and �(N) be decreasing functions of N that go to zero as N goes to

in�nity. Assume that � 6= 1. Then with a probability one, for all but a �nite number of indices N ,

for all v in the set fv 2 IRM : kvk2 � �(N)g, we have:

0 < (�(�)� 
(N))1I � r2�
�;N

(m(1;1) + v) � (�(�) + 
(N))1I (2:17)

where 
(N) is de�ned in (2.15).

Proof: We will only give the proof of the upper bound. The proof of the lower bound is very

similar and can already be found in [BG2], [BG3]. A straightforward computation gives

r2�
�;N

(m(1;1) + v) = 1I� �A+
�

N

NX
i=1

�t
i
�
i
tanh2(�(m��1

i
+ (�

i
; v))) (2:18)

Our strategy will be to show that r2� can be rewritten as it's dominant contribution, �(�)1I, plus

terms that will either have small norm or be non negative. We will then make use the two following

facts: for any real symmetric matrices T and S,

i) if S � 0 then T + S � T .

ii) if T = t1I + S with kSk � s for some constants t and s, then T � (t� s)1I.

Introducing a parameter 0 < � � 1 that will be appropriately chosen later, we decompose

r2� as

r2�
�;N

(m(1;1) + v) = �(�)1I + T1 + T2 + T3 + T4 + T5 (2:19)

where

T1 ��[tanh2(�m�(1� �))� tanh2(�m�)]1I

T2 ��(1� tanh2(�m�(1� �)))(1I �A)

T3 �� tanh2(�m�(1� �))
�

N

NX
i=1

�t
i
�
i
1Ifj(�i;v)j��m�g

T4 � �

N

NX
i=1

�t
i
�
i
1Ifj(�i;v)j<�m�g[tanh

2(�(m��1
i
+ (�

i
; v))) � tanh2(�m�(1� �))]

T5 � �

N

NX
i=1

�t
i
�
i
1Ifj(�i;v)j��m�g tanh

2(�(m��1
i
+ (�

i
; v)))

(2:20)

7



It is easy to verify that T4 � 0 and T5 � 0. Thus, by i),

r2�
�;N

(m(1;1) + v) � �(�)1I + T1 + T2 + T3 (2:21)

and we are left to show that T1, T2 and T3 have small norms. Let us treat T1 �rst. Trivially,

kT1k ��j tanh2(�m�(1� �))� tanh2(�m�)j

�2�j tanh(�m�(1� �))� tanh(�m�)j � ��

1� �

(2:22)

Let A(N) � A(N) denote theM�M randommatrix with elements 1
N

P
N

i=1 �
�

i
��
i
The smallness

of kT2k comes from the well know fact (see e.g. [G]) that, for small �, the matrix A(N) is very

close to the identity. In particular, it follows from Theorem 4.1 of [BG3] that, for large enough N ,

there exists a numerical constant K such that, for all � � 0,

IP
�
kA(N) � 1Ik � 2

p
�+ �+ �

�
� K exp

 
�N (1 +

p
�)2

K

�r
�

1 +
p
�
+ 1� 1

�2
!

(2:23)

In particular, choosing � � c
p
lnN=N for some constant c > 0 su�ciently large, (2.23) reduces to

IP
�
kA(N)� 1Ik � 2

p
�+ �+ c

p
lnN=N

�
� 1

N2

Finally we are left to estimate kT3k. But this was already done in [BG2] (see equations (4.77)-

(4.79) together with Proposition 4.8). We rephrase this result hereafter in the particular (simpler

but weaker) form we need: for all � � 0,

IP

"
sup
v2B�

k
NX
i=1

�t
i
�
i
1Ifj(�i;v)j��m�gk � 2�(�; �m�=�)

#
� 4

N2
(2:24)

where

�(�; a=�) � C

�
e
�(1�2

p
�)2 a2

4�2 + �(j ln�j+ 2) + 2 lnN
N

�
(2:25)

for some constant C <1 (C � 25). Therefore, collecting (2.22), (2.23), (2.24) and the de�nitions

of T2 and T3 we have, with a probability larger than 1� 5
N

2 ,

kT1k+ kT2k+ kT3k �
��

1� �
+ �(2

p
�+ �+ c

p
lnN=N) + 2��(�; �m�=�) (2:26)

where we made used of the trivial bounds 0 � tanh2 x � 1. It only remains to choose the parameter

� . Setting � � p
�, we get that, for large enough N ,

kT1k+kT2k+kT3k � �

�
2
p
�+

�
2
p
�+ �+ c

q
lnN
N

�
+ 25

�
8
m
� �+ �(j ln�j+ 2) + 2 lnN

N

��
(2:27)
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where the r.h.s. is easily seen to be bounded by 
(N) if � and � are small. The lower bound in

(2.17) then follows from (2.27) and (2.21) by ii) and an application of the Borel-Cantelli Lemma.

This concludes the proof of Lemma 2.3 }

The following slight generalization of the Brascamp-Lieb inequalities will be our crucial tool

to exploit Lemma 2.3.

Lemma 2.4: Assume that the positive numbers `; � and � satisfy the relations

� > K

q
�(N)
`�� (2:28)

where

K
`� �

`+ �
� 2 + lnK (2:29)

Let V : IRM ! IR be a non-negative function such that for all x 2 B
�

0 < (`� �)1I � r2V (x) � (`+ �)1I (2:30)

Denote by IE
V

the expectation with respect to the probability measure on (B
�
;B(B

�
))

e�NV (x)1Ifx2B�gR
B�

e�NV (x)dMx
dMx (2:31)

Then, for any t 2 IRM ,

ktk22
`+ �

� er � IE
V

�p
N(t; x� IE

V
(x))

�2 � ktk22
`� �

1 + er (2:32)

and
ktk22

2(`+ �)
1� er � ln IE

V
e
p
N(t;x�IEV (x)) � ktk22

2(`� �)
+ er (2:33)

where

er � 2�e�M

`� �
ktk22 (2:34)

Proof: Let us �rst consider (2.32). Note that the upper bound would simply obtain from an

application of the Brascamp-Lieb inequalities [BL] if it were not that the measure (2.31) has support

in a ball of �nite radius. Because of this we will have to be a little more careful and take into account

\boundary e�ects" which, as we shall see, do nothing but create asymptotically negligible small

terms. Similarly, the lower bound will essentially result from a \reverse" Brascamp-Lieb inequality

recently obtained by [DGI]. Our proof is based on a representation which was originally introduced

by Hel�er and Sj�ostrand [HS]. It was recently used by Naddaf [N] and Naddaf and Spencer [NS] who

noticed in particular that this representation provides a very simple way of proving the Brascamp-

Lieb inequalities.
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We proceed exactly as in [HS]: given a temperate function f :IRM ! IR and a constant b, we

consider the di�erential equation

f = Lu+ b (2:35)

where the operator L is de�ned as

L � �(rV ) � r+� = eNVre�NVr

Then observe that integrating by parts,

b = IE
V
f �

Z
B�

r �
 
(ru(x)) e�NV (x)R

B�
e�NV (x)dMx

!
dMx (2:36)

Assume that u is a solution of (2.35). Integrating by parts again, the correlation IE
V
[fg] of two

temperate functions f and g with (to simplify) IE
V
f = IE

V
g = 0 can be expressed as

IE
V
[fg] = IE

V
(rg;ru) +

Z
B�

r �
 
g(ru(x)) e�NV (x)R

B�
e�NV (x)dMx

!
dMx (2:37)

while

rf = (L+r2V )ru (2:38)

But L is positive and, by assumption, so is r2V (x) for all x in B
�
. Therefore L+r2V is invertible

and (2.37) together with (3.53) entails

IE
V
[fg] =

1

N
IE

V
(rg; [L+r2V (x)]�1rf) +

Z
B�

r �
 
g(ru(x)) e�NV (x)R

B�
e�NV (x)dMx

!
dMx

� [1] + [2]

(2:39)

We are now ready to prove (2.32). Set f(x) = g(x) =
p
N(t; x� IE

V
(x)). Then

[1] � 1

N
IE

V
(rf(x); [L+r2V (x)]�1rf(x)) = IE

V
(t; [L+r2V (x)]�1t) (2:40)

Upper and lower bounds on the latter quantity are easily established. From the positivity of L and

the assumption that r2V (x) � (`� �)1I uniformly in the ball B
�
, it immediately follows that

IE
V
(t; [L+r2V (x)]�1t) � ktk22

(`� �)
(2:41)

On the other hand, as noted in [DGI], the Legendre-Fenchel transform of the quadratic form

1
2
(t; [L+r2V (x)]�1t) being well de�ned we can write:

IE
V
(t; [L+r2V (x)]�1t) =2IE

V

(
sup

t
�2IRM

(t�; t)� 1
2
(t�; [L+r2V (x)]t�)

)
�2 sup

t
�2IRM

IE
V

�
(t�; t)� 1

2
(t�; [L+r2V (x)]t�)

�
=2 sup

t
�2IRM

IE
V

�
(t�; t)� 1

2
(t�;r2V (x)t�)

�
�2 sup

t
�2IRM

�
(t�; t)� 1

2
(`+ �)kt�k22

	
=

ktk22
(`+ �)

(2:42)
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where we used in the fourth line that Lt� = 0 and in the �fth line that, by assumption, r2V (x) �
(`+ �)1I uniformly in the ball B

�
.

To conclude the proof of (2.32) we are left to estimate the the second term, [2], in the right

hand side of (2.37). Notice that the di�erence between Hel�er and Sj�ostrand formulation of the

covariance and (2.37) lies in the presence of this term only. Inserting our choice of f in [2] we get,

by and application of the Schwartz inequality together with the Gauss-Green-Ostrogradskii-Stokes

formula on exterior derivatives [A],

[2] � 2ktk22�
`� �

R
S�
e�NV (x)dM�1(x)R
B�

e�NV (x)dMx
(2:43)

where S
�
denotes the sphere in IRM of radius � and centered at zero. Remembering the assumption

(2.28) on � and making use once again of the upper and lower bound (2.30) on r2V (x), classical

gaussian type estimates yield:R
S�
e�NV (x)dM�1(x)R
B�

e�NV (x)dMx
� exp

n
�M

h
`��
`+�

K � 1� lnK
io

� e�M (2:44)

To prove (2.33) let us set f(x) �
p
N(t; x) and V

s
(x) � V (x) + s

f(x)
N

for s 2 [0; 1]. Then note

that on one hand,

ln IE
V
e(f�IEV f) =

Z 1

0

ds

Z
s

0

ds0IE
Vs0 (f � IE

Vs0 f)
2 (2:45)

while on the other, r2V
s
(x) = r2V (x). Therefore applying (2.32) to the summand in the r.h.s. of

(2.45) immediately yields (2.33). Thus Lemma 2.4 is proven.}

Proof of Proposition 2.2: Proposition 2.2 this is an immediate consequence of Lemma 2.3

and Lemma 2.4 since the condition (1.12) on � always allows us to chose � � ��(N) with ��(N) a

decreasing function of N that goes to zero as N diverges. This concludes the proof of Proposition

2.2. }

Assuming Proposition 2.1, this concludes the proof of Theorem 1.1., since the di�erence be-

tween the logarithms of all Laplace transforms for di�erent � goes to zero by (ii), the di�erence

arising from the di�erent centering between eL and bL goes to zero by (iii), and the original Laplace

transforms L are related to bL by (i). }}

3. Proof of Proposition 2.1

We conclude the proof of Theorem 1.1 by proving Proposition 2.1. It is largely based on results

from [BG2] which we collect in Theorem 3.1 and Lemma 3.2 below. For any � > 0 and x 2 IRM

11



we de�ne the ball B
�
(x) �

�
y 2 IRM

��kx� yk2 � �
	
, and we denote by Bc

�
(x) it's complement in

IRM . We recall from (1.7) that B
(�;s)
� � B

�
(m(�;s)) where the points m(�;s) are de�ned in (1.6)

and we denote by R
�
the complement of the union of these balls:

R
�
�

0@ [
�2f1;:::;M(N)g;s2f�1;1g

B(�;s)
�

1Ac

(3:1)

Note that the balls in the previous union are disjoint provided that � < m�=
p
2.

Theorem 3.1: ([BG2], Theorem 1).There exists 

a
> 0 and �nite positive constants c0 � 1=2,

c1 > 0, such that for all � > 1, for
p
� < 


a
(m�)2, if � � c0

p
�

m
� then, with probability one, for all

but a �nite number of indices N , for all z 2 R
�
,

�
�;N

(z)� �
�;N

(m(1;1)) � c1(m
�)2 inf

�2f1;:::;M(N)g;s2f�1;1g
kz � sm�(�)e�k22 (3:2)

With the notation of Theorem 3.1 we have:

Lemma 3.2: For all � > 1 and
p
� < 


a
(m�)2, if c0

p
�

m
� < � < m�=

p
2 then, with probability

one, for all but a �nite number of indices N , for all � 2 f1; : : : ;M(N)g, s 2 f�1; 1g,

i) eQ
�;N

�
B(�;s)
�

�
� e�

1
2
�M (3:3)

ii) there exists a constant c2 > 0 such that

eQ
�;N

(R
�
)eQ

�;N

�
B

(�;s)
�

� � e�c2�M (3:4)

iii) for all b > 0 such that �+ b <
p
2m�,

1 �
eQ
�;N

�
B

(�;s)
�+b

�
eQ
�;N

�
B

(�;s)
�

� � 1 + e�c2�M (3:5)

where c2 is the constant appearing in (3.4).

Proof: (3.3) and (3.4) were proved in [BG2]. As it will be useful to us later on, let us mention

that in the course of the proof of (3.3), we established in particular that:

eQ
�;N

�
B

(�;s)
�

�
Z
�;N

e��N��;N (m(1;1))
=

�
�N

2�

�
M=2 Z

dMze��Nf��;N (z)���;N (m(1;1))g1I�
z2B(�;s)

�

	
�e�c3�M

(3:6)
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for some constant c3 > 0. The lower bound of (3.5) is immediate while it's upper bound is a direct

consequence of (3.4). To obtain it we write B
(�;s)
�+b = B

(�;s)
� [B(�;s)

�+b nB(�;s)
� . But if �+ b < m�=

p
2

then B
(�;s)
�+b n B(�;s)

� � R
�
so that

eQ
�;N

�
B

(�;s)
�+b

�
eQ
�;N

�
B

(�;s)
�

� � 1 +
eQ
�;N

(R
�
)eQ

�;N

�
B

(�;s)
�

� � 1 + e�c2�M (3:7)

}

A main tool to compare the measures eQ
�;N

and Q
�;N

will be to use the strong concentration

properties of NM

�N
. This is the content of the next

Lemma 3.3: For all � > 0 set a � � +
q

M

�N

. Then, for all � > a,

NM

�N
(B

��a(y � x))� e�
1
2
�N�

2 � 1Ifx2B�(y)g � NM

�N
(B

�+a(y � x)) + 2e�
1
2
�N�

2

(3:8)

Before proving Lemma 3.3 let us show how it enables to relate the measures of balls:

Lemma 3.4: For all � > 0 set a � � +
q

M

�N

. Then, for all � > a,

eQ
�;N

�
B
��a(m(�;s))

�
� e�

1
2
�N�

2 � Q
�;N

�
B
�
(m(�;s))

�
� eQ

�;N

�
B
�+a(m

(�;s))
�
+2e�

1
2
�N�

2

(3:9)

Proof: By de�nition of eQ we have:

eQ
�;N

�
B(�;s)
�

�
=

Z
NM

�N

�
B
�
(m(�;s) � x)

�
dQ

�;N
(x) (3:10)

Lemma 3.4 is an immediate consequence of the above identity and the estimates (3.8) of Lemma

3.3.}

Proof of Lemma 3.3: The basic ingredient of the proof is the following gaussian isoperimetric

type inequality:

Lemma 3.5: for all � > 0 set a � � +
q

M

�N

. Then,

NM

�N
(Bc

a
(0)) � e�

1
2
�N�

2

(3:11)

Proof: It is a simple consequence of the following well-known \gaussian" concentration inequality

(see e.g. [LT]): denoting by IEN the expectation with respect to NM

�N
we have, for all � > 0:

NM

�N
(fkzk2 > IEN kzk2 + �g) � e��N

�2

2 (3:12)
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As direct computation yields IEN kzk22 = M

�N

we have, by the Schwartz inequality, IEN kzk2 �
q

M

�N

,

which together with (3.12) entails (3.11).}

Now to prove the lower bound in (3.8) let us consider the quantity NM

�N
(B

��a(y � x)) and

rewrite it as

NM

�N
(B

��a(y � x)) = I
��a + J

��a (3:13)

where

I
��a �

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk221Ifz+x2B��a(y)g1Ifz2Ba(0)g

J
��a �

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk221Ifz+x2B��a(y)g1Ifz2Bc

a(0)g

(3:14)

Then note that on the one hand,

J
��a �

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk221Ifz2Bc

a(0)g � e�
1
2
�N�

2

(3:15)

where the last inequality is nothing but Lemma 2.3. On the other hand, using that

1Ifz+x2B��a(y)g1Ifz2Ba(0)g � 1Ifx2B�(y)g1Ifz2Ba(0)g,

I
��a �

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk221Ifx2B�(y)g1Ifz2Ba(0)g � 1Ifx2B�(y)g (3:16)

and inserting (3.15) and (3.16) in (3.13) gives the lower bound of (3.8). To prove the upper bound,

we consider the quantity NM

�N
(B

�+a(y � x)) and rewrite it as

NM

�N
(B

�+a(y � x)) = I
�+a + J

�+a (3:17)

Trivially, J
�+a � 0 while, using that 1Ifz+x2B�+a(y)g1Ifz2Ba(0)g � 1Ifx2B�(y)g1Ifz2Ba(0)g,

I
�+a �

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk221Ifx2B�(y)g1Ifx2B�(y)g1Ifz2Ba(0)g

� 1Ifx2B�(y)g

"
1� 2

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk221Ifz2Bc

a(0)g

#
� 1Ifx2B�(y)g

h
1� 2e�

1
2
�N�

2
i

(3:18)

where the last inequality again follows from Lemma 2.3. (3.18) together with (3.17) gives the bound

of (3.8). This concludes the proof of Lemma 3.5.}

We are now ready to prove Proposition 3.1.

Proof of proposition 3.1, part i): Assume that � and a are chosen in such a way that both

satisfy the assumptions of Lemma 3.3 and Lemma 3.4. We will �rst prove an upper bound on bL(�;s)
�
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in terms of L(�;s)
� . Remembering the de�nition (2.5) of bL(�;s)

� we have:

eQ
�;N

�
B(�;s)
�

� bL(�;s)
�;N;�

(t)

=
1

Z
�;N

�
�N

2�

�
M=2 Z

dMze��N��;N (z)+
p
N(t;z�X(�;s)

)1I�
z2B(�;s)

�

	
=

1

Z
�;N

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk22+

p
N(t;z�X(�;s)

)IE
�
e�N(mN (�);z)1I�

z2B(�;s)
�

	
=
e�

p
N(t;X

(�;s)
)

Z
�;N

IE
�
e
1
2
�NkmN (�)+ t

�
p
N
k22
�
�N

2�

�
M=2 Z

dMze
� 1

2
�Nkz�(mN(�)+ t

�
p
N
)k221I�

z2B(�;s)
�

	
=
e�

p
N(t;X

(�;s)
)

Z
�;N

IE
�
e
1
2
�NkmN (�)+ t

�
p
N
k22NM

�N

�
B
�
(m(�;s) � (m

N
(�) + t

�

p
N

))
�

(3:19)

Therefore using the lower bound of (3.8),

bL(�;s)
�;N;�

(t) � T1 + T2 (3:20)

where

T1 �
e�

1
2
�N�

2+ 1
2�
ktk22eQ

�;N

�
B

(�;s)
�

�
Z
�;N

IE
�
e
1
2
�NkmN (�)k22+

p
N(t;mN (�)�X(�;s)

)

T2 �
e

1
2�
ktk22eQ

�;N

�
B

(�;s)
�

�
Z
�;N

IE
�
e
1
2
�NkmN (�)k22+

p
N(t;mN (�)�X(�;s)

)1I�
mN (�)+t=

p
N2B(�;s)

�+a

	 (3:21)

To bound T1 we will �rst make use of (1.14) from Lemma 1.3 to write that kX(�;s)k2 � ~�+m� and

thus

T1 �
e�

1
2
�N�

2+ 1
2�
ktk22eQ

�;N

�
B

(�;s)
�

�
Z
�;N

e
p
Nktk2(~�+m�)IE

�
e
1
2
�NkmN (�)k22+

p
N(t;mN (�)) (3:22)

On the other hand, it is immediate to see that for N large enough, on a subset of 
 of probability

going to one exponentially fast, km
N
(�)k2 � 2 (c.f. e.g. [BG2]). Therefore, on that subset,

T1 �
e�

1
2
�N�

2+ 1
2�
ktk22eQ

�;N

�
B

(�;s)
�

� e
p
Nktk2(~�+m�+2)

�e� 1
2
�N�

2+ 1
2�
ktk22+(~�+m�+2)

p
Nktk2+ 1

2
�M

�e� 1
2
�N�

2+4
p
Nktk2+ 1

2
�M

(3:23)

where the second inequality follows from (3.3) and where we used in the third one that ~� # 0

as N " 1 while m� � 1 and ktk2 is �nite. Let us now turn to the term T2. Just note thatn
� j m

N
(�) + t=

p
N 2 B

(�;s)
�+a

o
�
n
� j m

N
(�) 2 B

(�;s)

�+a+ktk2=
p
N

o
so that we immediately have

T2 � e
1
2�
ktk22L(�;s)

�;N;�
(t)
Q
�;N

�
B

(�;s)

�+a+ktk2=
p
N

�
eQ
�;N

�
B

(�;s)
�

� (3:24)
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and all we need to do is to show that the last ratio is close to one. Treating it's numerator with

the help of the upper bound of lemma 3.5 we have, if �+ 2a+ ktk2=
p
N < m�=

p
2,

Q
�;N

�
B

(�;s)

�+a+ktk2=
p
N

�
eQ
�;N

�
B

(�;s)
�

� �
eQ
�;N

�
B

(�;s)

�+2a+ktk2=
p
N

�
eQ
�;N

�
B

(�;s)
�

� +
2e�

1
2
�N�

2

eQ
�;N

�
B

(�;s)
�

�
� 1 + e�c2�M + 2e�

1
2
�N�

2+ 1
2
�M

(3:25)

where we have used the upper bound from Lemma 3.3, iii), to bound the �rst term in the right

hand side of the �rst line and the estimate (3.3) from Lemma 3.3, i), to bound the second term.

Finally inserting (3.24) in (3.25) yields

T2 � e
1
2�
ktk22L(�;s)

�;N;�
(t)
�
1 + e�c2�M + 2e�

1
2
�N�

2+ 1
2
�M

�
(3:26)

and (3.23), (3.26) together with (3.20) give

e�
1
2�
ktk22 bL(�;s)

�;N;�
(t) � e�

1
2
�N�

2+4
p
Nktk2+ 1

2
�M + L(�;s)

�;N;�
(t)
�
1 + e�c2�M + 2e�

1
2
�N�

2+ 1
2
�M

�
(3:27)

From this we see that � must be chosen in such a way that the �rst term in (3.27) vanishes while

at the same time the last factor goes to one as N goes to in�nity. Clearly the only constraint lies

in making the �rst term small. Distinguishing the two cases M <
p
N and M > N we set

�2 =

(
(� + 8ktk2 + 2c4)

1

�

p
N

if M <
p
N

(� + 8ktk2 + 2c4)
M

�N

if M �
p
N

(3:28)

for some constant c4 > 0. With this choice we have,

e�
1
2
�N�

2+4
p
Nktk2+ 1

2
�M � e�c4f

p
N^Mg � e�c4M (3:29)

and,

e�c2�M + 2e�
1
2
�N�

2+ 1
2
�M � 3e�c5M (3:30)

for some new constant c5 > 0. Collecting (3.27), (3.28) and (3.30) �nally yields,

e�
1
2�
ktk22 bL(�;s)

�;N;�
(t) � e�c4M + L(�;s)

�;N;�
(t)
�
1 + e�c5M

�
(3:31)

The proof of the corresponding upper bound on bL in terms of L follows the same pattern.

Starting from (3.19) and using this time the upper bound of (3.8) we get

bL(�;s)
�;N;�

(t) � T 01 + T 02 (3:32)
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where T 01 = 2T1 � 0 and T 02 is de�ned exactly as T2 but with the characteristic function of the

event
n
m
N
(�) + t=

p
N 2 B

(�;s)
�+a

o
replaced by that of the event

n
m
N
(�) + t=

p
N 2 B

(�;s)
��a

o
. Thus,

assuming that �� (2a+ ktk2=
p
N) > 0

T 02 � e
1
2�
ktk22L(�;s)

�;N;�
(t)
Q
�;N

�
B

(�;s)

��a�ktk2=
p
N

�
eQ
�;N

�
B

(�;s)
�

� (3:33)

and proceeding as in (3.25), substituting the upper bounds by the appropriate lower ones,

Q
�;N

�
B

(�;s)

��a�ktk2=
p
N

�
eQ
�;N

�
B

(�;s)
�

� �
eQ
�;N

�
B

(�;s)

��2a�ktk2=
p
N

�
eQ
�;N

�
B

(�;s)
�

� � e�
1
2
�N�

2

eQ
�;N

�
B

(�;s)
�

�
� 1� e�

1
2
�N�

2+ 1
2
�M

� 1� e�c4M

(3:34)

where the last line follows from the choice of � made in (3.28). Therefore, inserting (3.34) in (3.33),

T 02 � e
1
2�
ktk22L(�;s)

�;N;�
(t)
�
1� e�c4M

�
(3:35)

From this and the fact that T 01 � 0, (3.32) yields

e�
1
2�
ktk22 bL(�;s)

�;N;�
(t) � L(�;s)

�;N;�
(t)
�
1� e�c4M

�
(3:36)

If thus � satis�es the various constraints appearing in the course of the proof, then (3.31) and

(3.36) are the desired upper and lower bounds of (2.7). We are left to show that our choice of �

allows us to choose such a �. More precisely, this will be the case if we can choose � such that

� + 2a + ktk2=
p
N < m�=

p
2, and � � (2a + ktk2=

p
N) > c0

p
�

m
� . Inserting our choice of � in the

de�nition of a we have8><>:
a < [(� + 8ktk2 + 2c4) + 1]

1
2

1p
�

1
N

1=4 if M <
p
N

a = [(� + 8ktk2 + 2c4) + 1]
1
2

1p
�

q
M

N

if M �
p
N

(3:37)

Since ktk2 is �nite, ktk2=
p
N � a for large enough N in both cases so that our conditions are

ful�lled for � taken as in (2.7). This concludes the proof of part i) of Proposition 3.1. }

Proof of proposition 3.1, part ii): Let � and �� satisfy the assumptions of the proposition and

take � as in (3.39). Remembering the de�nition (2.5) of eL(�;s)
� (see also the �rst equality in (3.19))

we have eL(�;s)
�;N;�

(t) = eT1 + eT2 (3:38)
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where

eT1 � eQ�;N

�
B

(�;s)
��

�
eQ
�;N

�
B

(�;s)
�

� eL(�;s)
�;N;��(t)

eT2 � 1eQ
�;N

�
B

(�;s)
�

�
Z
�;N

�
�N

2�

�
M=2 Z

dMze��N��;N (z)+
p
N(t;z�X(�;s)

)1I�
z2B(�;s)

� nB(�;s)
��

	 (3:39)

With our choice of � and � and since �� > c0
p
�

m
� , Lemma 3.3, iii), applies and yields

1 �
eQ
�;N

�
B

(�;s)
��

�
eQ
�;N

�
B

(�;s)
�

� � 1

1 + e�c2�M
� 1� e�c2�M (3:40)

Thus eL(�;s)
�;N;��(t) � eT1 � eL(�;s)

�;N;��(t)
�
1� e�c2�M

�
(3:41)

It now remains to prove an upper bound for eT2. Making use of Theorem 3.2 we have:

eT2 � e��N��;N (m(1;1))eQ
�;N

�
B

(�;s)
�

�
Z
�;N

�
�
�N

2�

�
M=2 Z

dMze��Nc1(m
�)2kz�m(�;s)k22+

p
N(t;z�X(�;s)

)1I�
z2B(�;s)

� nB(�;s)
��

	
�e�c�Me

p
N(t;m(�;s)�X(�;s)

)

�
�N

2�

�
M=2 Z

dMue��Nc1(m
�)2kuk22+

p
N(t;u)1Ifkuk2���g

(3:42)

where we used (3.6) to bound the ratio appearing in the �rst line, and performed the change of

variable u = z �m(�;s). Now by (1.14) (t;m(�;s) �X
(�;s)

) � ktk2 ~�. Therefore, classical gaussian
tails estimates yield

eT2 �e�c3�Me
p
Nktk2 ~�

�
�N

2�

�
M=2 Z

dMue��Nc1(m
�)2kuk22+

p
N(t;u)1Ifkuk2���g

�e�c3�Me
p
Nktk2 ~�e

ktk2
2

�c1(m
�)2

�
�N

2�

�
M=2 Z

dMue��Nc1(m
�)2kuk221In

kuk2���� ktk2
�
p
Nc1(m

�)2

o
�e�c3�Me

p
Nktk2 ~�e

ktk2
2

�c1(m
�)2 e

�
�Nc1(m
�)2
�
��� ktk2

�
p
Nc1(m

�)2

�2 �
1

c1(m�)2(1 � 
)

�
M=2

(3:43)

for any 0 < 
 < 1. As N ~�2 = ~c20M and since �� > ~�, we easily see that, for N and c(�) large enough,

0 � eT2 � e�c6M (3:44)

for some constant c6 > 0. Combining (3.44), (3.41) and (3.38) proves part ii) of Proposition 3.1.
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Proof of Proposition 2.1, part (iii): : We proceed as in the proof of part (i). Note that

eQ
�;N

�
B(�;s)
�

��
Z
(�;s)

; t
�

=
1

Z
�;N

�
�N

2�

�
M=2 Z

dMze��N��;N (z)(z; t)1I�
z2B(�;s)

�

	
=

1

Z
�;N

�
�N

2�

�
M=2 Z

dMze��N��;N (z)(m
N
(�); t)1I�

z2B(�;s)
�

	
=

1

Z
�;N

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk22IE

�
e�N(mN (�);z)(z �m

N
(�) +m

N
(�); t)1I�

z2B(�;s)
�

	
=

1

Z
�;N

�
�N

2�

�
M=2 Z

dMze�
1
2
�Nkzk22IE

�
e�N(mN (�);z)(m

N
(�); t)1I�

z2B(�;s)
�

	
+

1

Z
�;N

�
�N

2�

�
M=2 Z

dMze��N��;N (z)

 
z � 1

N

NX
i=1

�
i
tanh(�(�

i
; z)); t

!
1I�

z2B(�;s)
�

	
� (I) + (II)

(3:45)

Term (I) is dealt with exactly as was done in the estimations for the Laplace transforms. We do

not repeat the details. (II) is a boundary term: Namely,

(II) =
1

�NZ
�;N

�
�N

2�

�
M=2 Z

B

(�;s)
�

dMzr �
�
te��N��;N (z)

�
(3:46)

and so just as in the estimate of the term [2] from (2.39), we get that

j(II)j � ktk2
�N

exp

�
�M

�
2
�(�) � 
(N)

�(�) + 
(N)
� 1� ln 2

��
� ktk2

�N
e�M (3:47)

Putting this together concludes the proof of the Proposition and hence Theorem 1.1.}
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