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Leray–Hopf solutions to a viscoelastic fluid model with
nonsmooth stress-strain relation

Thomas Eiter, Katharina Hopf, Alexander Mielke

Abstract

We consider a fluid model including viscoelastic and viscoplastic effects. The state is given by
the fluid velocity and an internal stress tensor that is transported along the flow with the Zaremba–
Jaumann derivative. Moreover, the stress tensor obeys a nonlinear and nonsmooth dissipation law
as well as stress diffusion. We prove the existence of global-in-time weak solutions satisfying an
energy inequality under general Dirichlet conditions for the velocity field and Neumann conditions
for the stress tensor.

1 Introduction

In this article we investigate the equations of motion that describe the flow of a viscoelastoplastic fluid
with stress diffusion modeled in the following way. On a time interval (0, T ) and a bounded domain
Ω ⊂ R3, we consider the system of equations

ρDtV − div
(
η1S + 2µD(V )− PI

)
= F in Ω× (0, T ),

div V = 0 in Ω× (0, T ),
O
S + ∂P(S)− γ∆S = η2D(V ) in Ω× (0, T ).

(1.1)

Here the first two equations describe the flow of an incompressible fluid with Eulerian velocity field
V : Ω× (0, T )→ R3 and pressure field P : Ω× (0, T )→ R affected by a prescribed external force
F : Ω× (0, T )→ R3. The relevant Cauchy stress tensor T = η1S+ 2µD(V )−PI consists of the
classical term 2µD(V )− PI for Newtonian fluids and an extra stress tensor

S : Ω× (0, T )→ R3×3
δ :=

{
M ∈ R3×3

∣∣M = M>, TrM = 0
}
,

which satisfies the additional evolution equation (1.1)3 and is thus subject to a special transport en-

coded in
O
S along the velocity field V , a nonlinear dissipation law via ∂P(S), and another diffusion

process. Here ρ, η1, η2, µ and γ denote positive constants, and D(V ) := 1
2
(∇V +∇V >) denotes

the symmetric rate-of-strain tensor.

System (1.1) is complemented by boundary and initial conditions. The former are given by

V = g, n · ∇S = 0 on ∂Ω× (0, T ), (1.2)

which means that the fluid velocity at the boundary coincides with some prescribed function g : ∂Ω×
(0, T )→ R3 and that S has vanishing normal derivative. The initial conditions are

V (·, 0) = V0, S(·, 0) = S0 in Ω. (1.3)

DOI 10.20347/WIAS.PREPRINT.2829 Berlin 2021



T. Eiter, K. Hopf, A. Mielke 2

For a fluid velocity V , the material derivative is given by

DtA := ∂tA+ V · ∇A,

and as an objective derivative of a tensor S we use the Zaremba–Jaumann derivative

O
S := DtS + SW (V )−W (V )S = ∂tS + V · ∇S + SW (V )−W (V )S,

also called co-rotational derivative, where W (V ) := 1
2
(∇V − ∇V >). Note that this choice of the

objective derivative is not canonical and there are different ways to define objective derivatives for
tensors. However, the choice made here is commonly used in geodynamics (cf. [MDM02, Ger07]) and
comes along with special features that are essential for our the mathematical analysis, see below.

The mathematical study of viscoelastic fluids with different choices of the objective derivatives (in-
cluding the upper and lower convected Maxwell derivatives) started in the middle 1980s, see e.g.
[JRS85, ReR86, RHN87, CoS91, Ren00]. Because of the strong nonlinearities arising from the objec-
tive derivatives, a first global existence result was only established years later in [LiM00] based on the
Zaremba–Jaumann derivative and a linear dissipation law ∂P(S) = aS with a > 0. More recently,
the more difficult case of a Maxwell fluid with µ = 0 (and without stress diffusion, i.e. γ = 0) has also
been considered, see [CL∗19] and references therein.

For more general nonlinear situations there is a series of works involving implicitly defined stress-strain
relations of the typeG(S,D(V )) = 0, see [BG∗12] and the references in the recent survey [BMR20].
Viscoelastic fluids have a constitutive relation of rate-type, i.e. they involve suitable convective deriva-
tives of the strain tensorD(V ) or of the stress tensor, as in our equation (1.1)3. The treatment of such
nonlinearities is possible by using the recently introduced regularization of stress diffusion, i.e. γ > 0,
as first illustrated in [BM∗18] for a simplified model replacing the tensor evolution by a scalar problem.
We refer to [MP∗18] for a careful thermodynamical modeling of such viscoelastic fluids and to [BBM21],
where a large data global existence result for weak solutions was obtained for a one-parameter family
of convected tensor derivatives including the (simpler) case of the Zaremba–Jaumann rate.

Our work is in a similar spirit as the latter one, but it generalizes the conventional linear or quadratic
stress-strain relation by allowing in (1.1)3 for a general subdifferential

S 7→ ∂P(S) =

{
A ∈ L2(Ω;R3×3

δ )

∣∣∣∣ P(S̃) ≥ P(S) +

∫
Ω
A : (S̃−S) dx for all S̃ ∈ L2(Ω;R3×3

δ )

}
of a general dissipation potential P , meaning that P : L2(Ω;R3×3

δ ) → [0,∞] is convex, lower
semicontinuous and satisfies P(0) = 0. Such nonsmooth dissipation potentials are important for
viscoelastoplastic fluid models that are used in geodynamics for the defomation of rocks in lithospheric
plates, namely

P(S) =

∫
Ω

P(S(x)) dx with P(S) =

{
a
2
|S|2 for |S| ≤ σyield,
∞ for |S| > σyield,

see [MDM02, Ger07]. In the context of geodynamics, it is also crucial to allow for nontrivial boundary
data g 6= 0 in (1.2), because often the prescribed drifts of tectonic plates act as boundary data for the
specific region of interest.

Main results. In Section 4, see Theorem 4.4, we first provide a global existence result for weak
solutions for (1.1)–(1.3) under the additional assumption that the dissipation potential P belongs to
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C1,1(L2(Ω;R3×3
δ )), which means that S 7→ ∂P(S) is monotone and globally Lipschitz continuous.

For this we decompose the velocity field into V = v+w, wherew satisfies the boundary data in (1.2),
namely w = g on ∂Ω and solves a suitable linear Stokes equation. Here we rely on corresponding
results for the Navier-Stokes equations with time-dependent boundary data developed in [FGS06,
FKS11a, FKS11b].

In a final step we treat the case of a general dissipation potential P by applying the above result to
smooth Moreau envelopes Pε, see (2.1), and treat the limit ε → 0 in an even weaker formulation in
form of an evolutionary variational inequality, see Theorem 4.9.

Strategy. The basic features of the model include, of course, all the difficulties known for the three-
dimensional Navier–Stokes equations such that we cannot expect better solutions than Leray–Hopf
solutions for the velocity component V . For γ > 0, the equation (1.1)3 for the stress tensor S is a
(semilinear) parabolic equation with linear source term D(V ), but, crucially, also coupled nonlinearly

to V via the Zaremba–Jaumann derivative
O
S.

In our analysis we essentially exploit the fact that for sufficiently smooth functions V and S satisfying
n · V = 0 on ∂Ω we have the identity

d

dt

∫
Ω

1

2
|S(t, x)|2 dx =

∫
Ω

∂tS : S dx =

∫
Ω

DtS : S dx =

∫
Ω

O
S : S dx. (1.4)

Exploiting this identity and assuming for the moment that V = 0 on ∂Ω, one can show that smooth
solutions satisfy the energy-dissipation balance∫

Ω

(ρ
2
|V (t)|2 +

η1

2η2

|S(t)|2
)

dx+

∫ t

0

∫
Ω

(
2µ|D(V )|2 +

η1

η2

S : ∂P(S) +
η1γ

η2

∣∣∇S∣∣2) dx dt

=

∫
Ω

(ρ
2
|V0|2 +

β

2
|S0|2

)
dx+

∫ t

0

∫
Ω

V · F dx dt. (1.5)

For the more general case with nontrivial boundary data, we refer to (3.32). We clearly see how the
quadratic energy consisting of the kinetic energy and an elastic energy associated with S can be
changed by the external force F and is dissipated by three mechanisms: (i) a direct fluid viscosity
given by µ > 0, (ii) a stress dissipation encoded in the dissipation potential P , and (iii) the stress
diffusion associated with γ > 0.

To simplify the notation we will fix (without loss of generality) two constants and choose ρ = 1 and
η1 = η2 = η subsequently. With this choice the quadratic energy is simply given as one half of the L2

norm of (V, S).

Our construction of solutions for smooth P is based on a Galerkin approximation that is manufactured
in such a way that the suitably generalized version for g 6≡ 0 of the above energy estimate still
holds. Exploiting the standard energy estimates carefully and relying on the compactness arguments
of Aubin–Lions type for V and S allows us to pass to the weak limit even in the critical terms V · ∇S
and SW (V ). Of course, in the limit the energy-dissipation balance (1.5) will only survive as an energy-
dissipation inequality. In Corollary 4.5 we use this to provide conditions on the boundary data g and
the forcing F that guarantee that the total energy is bounded uniformly in time.

When approaching the nonsmooth dissipation potentials P via their Moreau envelopes Pε, we lose
the compactness for Sε because ∂Pε(Sε) cannot be controlled. Nevertheless, we are able to pass to
the limit in the critical terms of the form Sε∇V ε by integration by parts and relying on the boundary
conditions, see Lemma 4.11. We again obtain an energy-dissipation inequality of the type (1.5), where∫

Ω
∂P(S) : S dx is replaced by the smaller term P(S).
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2 Preliminaries

Here, we specify general notations and introduce some concepts and tools required for the subsequent
analysis.

General notations. For two vectors a, b ∈ R3 we denote their inner product by a · b = ajbj and
their tensor product by a ⊗ b with (a ⊗ b)jk = ajbk. Here and in the following we use Einstein’s
summation convention and implicitly sum over repeated indices from 1 to 3. The inner product of two
tensorsA,B ∈ R3×3 is denoted byA : B = AjkBjk. Moreover,A> and TrA denote the transpose
and the trace of A. We further set a ⊗ b : A = (a ⊗ b) : A = ajAjkbk and, if C ∈ R3×3 is a third
tensor, AB : C = (AB) : C = AjkBk`Cj`.

Usually, Ω ⊂ R3 is a bounded Lipschitz domain and T ∈ (0,∞]. Points (x, t) in the space-time
cylinder Ω × (0, T ), consist of a spatial variable x ∈ Ω and a time variable t ∈ (0, T ). For a
sufficiently regular function u, we denote its partial derivatives in time and space by ∂tu and ∂ju,
j = 1, 2, 3, respectively. The symbols ∇ and ∆ denote (spatial) gradient and Laplace operator. If
v is a vector-valued function, we let div v = ∂jvj denote its divergence and set v · ∇u = vj∂ju.
Symmetric and antisymmetric parts of∇v = (∂kvj) are given by

D(v) :=
1

2
(∇v +∇v>), W (v) :=

1

2
(∇v −∇v>),

respectively. If S is a tensor-valued function, its divergence divS is given by (divS)j = ∂kSjk. If T is
another tensor-valued function, we define∇T : ∇S = ∂`Tjk∂`Sjk and v ·∇T : S = vj(∂jTk`)Sk`.

Function spaces. Let k ∈ N0 ∪ {∞} and A ∈ {Ω,Ω}. Then the class Ck(A) consists of all
k-times continuously differentiable (real-valued) functions on A, and Ck

0(A) contains all compactly
supported functions in Ck(A). By Lq(Ω) with q ∈ [1,∞] we denote the classical Lebesgue spaces
with corresponding norm ‖·‖q, and Hk(Ω) with k ∈ N denotes the L2-based Sobolev space of order
k, equipped with the norm ‖·‖k,2. Moreover, H1

0(Ω) contains all elements of H1(Ω) with vanishing
boundary trace, and H1/2(∂Ω) denotes the class of boundary traces of functions from H1(Ω). By
H−1(Ω) and H−1/2(∂Ω) we denote the dual spaces of H1

0(Ω) and H1/2(∂Ω), respectively, where we
use the distributional duality pairing.

The norm of a Banach space X is denoted by ‖·‖X , and the same symbol is used for the norms of
X3 and X3×3. When the dimension is clear from the context, we simply write X instead of X3 or
X3×3. Moreover, X ′ denotes the dual space of X , and C1,1(X) is the set of all continuously Fréchet
differentiable functions X → R with globally Lipschitz continuous derivative.

For an interval I ⊂ R, the class C0(I;X) consists of all continuous X-valued functions, and
Cw(I;X) consists of all weakly continuous X-valued functions. The Bochner-Lebesque spaces of
X-valued functions are denoted by Lq(I;X) for q ∈ [1,∞], and Lqloc(I;X) denotes the class of
all functions that belong to Lq(J ;X) for all compact subintervals J ⊂ I . When I = (0, T ), we
set C0(0, T ;X) = C0(I;X) and Lq(0, T ;X) = Lq(I;X). For functions A on Ω × I we use the
shorthand A(t) := A( · , t).

We further need spaces of solenoidal vector fields and of symmetric deviatoric tensor fields. The
corresponding classes of smooth functions on Ω are given by

C∞0,σ(Ω) :=
{
ϕ ∈ C∞0 (Ω)3

∣∣ divϕ = 0
}
,

C∞0,δ(Ω) :=
{
ψ ∈ C∞0 (Ω)3×3

∣∣ ψ = ψ>, Trψ = 0
}
.
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We further set
C∞0,σ(Ω×I) :=

{
Φ ∈ C∞0 (Ω×I)3

∣∣ div Φ = 0
}
,

C∞0,δ(Ω×I) :=
{

Ψ ∈ C∞0 (Ω×I)3×3
∣∣ Ψ = Ψ>, Tr Ψ = 0

}
.

We define the associated L2 spaces on Ω by

L2
σ(Ω) :=

{
v ∈ L2(Ω)3

∣∣ div v = 0, v|∂Ω · n = 0
}

= C∞0,σ(Ω)
‖·‖2

,

L2
δ(Ω) :=

{
S ∈ L2(Ω)3×3

∣∣ S = S>, TrS = 0
}

= C∞0,δ(Ω)
‖·‖2

.

Here the condition v|∂Ω · n = 0 in the definition of L2
σ(Ω) has to be understood in a weak sense; see

[Gal11, Theorem III.2.3] for example. We further introduce the corresponding Sobolev spaces

H1
0,σ(Ω) :=

{
v ∈ H1

0(Ω)3
∣∣ div v = 0

}
= C∞0,σ(Ω)

‖·‖1,2
,

H1
δ(Ω) :=

{
S ∈ H1(Ω)3×3

∣∣ S = S>, TrS = 0
}

= C∞0,δ(Ω)
‖·‖1,2

.

We can now define the solution spaces

LHT := L∞(0, T ; L2
σ(Ω)) ∩ L2(0, T ; H1(Ω)3)

for the fluid velocity and

XT := L∞(0, T ; L2
δ(Ω)) ∩ L2(0, T ; H1(Ω)3×3)

for the stress tensor. Observe that LHT is the classical Leray–Hopf class for weak solutions to the
Navier–Stokes equations, and XT is the analog for semilinear parabolic equations taking values in
deviatoric tensor fields.

Dissipation potentials. Let H be a Hilbert space with scalar product (·, ·)H. We call a function
P : H→ [0,∞] a dissipation potential if P is convex and lower semicontinuous with P(0) = 0. We
denote by ∂P the subgradient of P , i.e.

∂P(S) =
{
τ ∈ H

∣∣ (τ, S̃ − S)H + P(S) ≤ P(S̃) for all S̃ ∈ H
}

for S ∈ H. Observe that, by definition, ∂P(S) = ∅ if P(S) = +∞. If ∂P(S) = {τ} for some
τ ∈ H, we identify the set ∂P(S) with its unique element τ . In this case, we call τ the (Gâteaux)
differential of P at S.

Given a general dissipation potential P , we denote by {Pε}ε∈(0,1] the family of Moreau envelopes of
P [Mor65], that is, we let

Pε(S) = inf
S′∈H

(
1

2ε
‖S − S ′‖2

H + P(S ′)

)
, ε > 0. (2.1)

Then, Pε : H → [0,∞) is again a dissipation potential and is Fréchet differentiable with Lipschitz
continuous differential ∂Pε with Lipschitz constant 1/ε (see [BaC17, Section 12.4] for example). In
particular, if P is given by an integral in the form

P(S) =

∫
Ω

P(S(x)) dx for S ∈ H = L2(Ω),

then its Moreau envelope has the form Pε(S) =
∫

Ω
Pε(S(x)) dx.
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Moreover, since S = 0 is a minimum of Pε, the Lipschitz continuity yields

‖∂Pε(S)‖H = ‖∂Pε(S)− ∂Pε(0)‖H ≤ ε−1‖S − 0‖H = ε−1‖S‖H.

By the definition in (2.1), we have 0 ≤ Pε(S) ≤ P(S) and hence

lim sup
ε→0

∫ T

0

Pε(S(t)) dt ≤
∫ T

0

P(S(t)) dt for all S ∈ L2(0, T ; H). (2.2)

We will need the following version of the classical approximation properties of the Moreau envelope
[BaC17, Rou13].

Lemma 2.1. LetP be a dissipation potential. Then the family of Moreau envelopes {Pε} ofP satisfies
the inequality

lim inf
ε→0

∫ T

0

Pε(Sε(t)) dt ≥
∫ T

0

P(S(t)) dt (2.3)

whenever Sε ⇀ S in L2(0, T ; H).

Proof. Let δ > ε > 0. Then, by definition, Pε ≥ Pδ. Hence

lim inf
ε→0

∫ T

0

Pε(Sε(t)) dt ≥ lim inf
ε→0

∫ T

0

Pδ(Sε(t)) dt ≥
∫ T

0

Pδ(S(t)) dt. (2.4)

The second step follows from the fact that for δ > 0 the functional

Fδ : L2(0, T ; H) 3 S 7→
∫ T

0

Pδ(S(t)) dt

is convex and continuous, and thus weakly lower semicontinuous. The convexity of Fδ is inherited
from the convexity of Pδ, while continuity follows from standard theory on Nemytskii operators (see
e.g. [Rou13, Theorem 1.43]) together with the growth condition 0 ≤ Pδ(S) ≤ ‖S‖2

H/(2δ), which is
a consequence of the definition of the Moreau envelope.

To show the assertion, it now remains to prove that

lim
δ→0

∫ T

0

Pδ(S(t)) dt =

∫ T

0

P(S(t)) dt. (2.5)

By [BaC17, Proposition 12.33 (ii)], Pδ(S(t)) → P(S(t)) for a.e. t ∈ (0, T ). The nonnegativity of
Pδ and Beppo Levi’s monotone convergence imply the identity (2.5). Together with (2.4) the desired
assertion (2.3) follows.

3 Decomposition of the velocity field

To show existence of a weak solution to the system (1.1)–(1.3), we decompose the velocity and pres-
sure fields into two parts, V = v + w and P = p + q, where (w, q) is a solution to the Stokes
initial-value problem with boundary data w = g

∂tw − div
(
2µD(w)− qI

)
= F̃ in Ω× (0, T ),

divw = 0 in Ω× (0, T ),

w = g on ∂Ω× (0, T ),

w(·, 0) = w0 in Ω

(3.1)
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for some functions F̃ and w0, and v satisfies the remaining system with homogeneous boundary data
v = 0

∂tv + (v+w) · ∇(v+w)− div
(
ηS + 2µD(v)− pI

)
= f in Ω× (0, T ),

div v = 0 in Ω× (0, T ),

∂tS + (v+w) · ∇S + SW (v+w)−W (v+w)S

+ ∂P(S)− γ∆S − ηD(v+w) = 0 in Ω× (0, T ),

v = 0, n · ∇S = 0 on ∂Ω× (0, T ),

v(·, 0) = v0, S(·, 0) = S0 in Ω

(3.2)

with f = F − F̃ and v0 = V0 − w0. In this way, we have decomposed the question of existence of
solutions to (1.1)–(1.3) into two separate problems.

In this section we prescribe a class of vector fields w such that the modified system (3.2) has a solu-
tion, see Assumption 3.1. In the following section, see Lemma 4.2, we establish a class of admissible
functions g such that the Stokes problem (3.1) admits solutions w belonging to this class. The exis-
tence of solutions for the original system (1.1)–(1.3) for the case of smooth potentials P is then stated
in Theorem 4.4.

The above decomposition method is a common way to treat inhomogeneous boundary data g 6= 0,
and was successfully used to show existence of weak solutions to the classical Navier–Stokes initial-
value problem in different configurations, see [FGS06, FKS10, FKS11a, FKS11b] for example.

For showing the existence of weak solutions to the modified system (3.2) we make the following
assumptions. Let 0 < T ≤ ∞ and Ω ⊂ R3 be a bounded Lipschitz domain. LetP : L2

δ(Ω)→ [0,∞)
be a dissipation potential, which satisfies P ∈ C1,1(L2

δ(Ω)). For the data we assume

v0 ∈ L2
σ(Ω), S0 ∈ L2

δ(Ω), f = f0 + div f1,

f0 ∈ L1
loc([0, T ); L2(Ω)3), f1 ∈ L2

loc([0, T ); L2(Ω)3×3).
(3.3)

Moreover, the extension function w is assumed to have the following properties.

Assumption 3.1. The function w satisfies

w ∈ L4
loc([0, T ); L4(Ω)3), ∇w ∈ L2

loc([0, T ); L2(Ω)3×3),

and one of the following three properties:

(a) w ∈ Lsloc([0, T ); Lr(Ω)3) for some r ∈ (3,∞), s ∈ (2,∞) with 2
s

+ 3
r

= 1,

(b) w ∈ C0(0, T ; L3(Ω)3) with ‖w‖L∞(0,T ;L3(Ω)) ≤ α for α > 0 sufficiently small,

(c) w ∈ C0(0, T ; L3(Ω)3) and for all t ∈ (0, T ) we have

∀ v ∈ H1
0,σ(Ω) :

∣∣∣∫
Ω

w(t)⊗ v : ∇v dx
∣∣∣ ≤ µ

2
‖∇v‖2

2, (3.4)

∀S ∈ H1
δ(Ω) :

∣∣∣∫
Ω

w(t) · ∇S : S dx
∣∣∣ ≤ γ

2
‖S‖2

1,2, (3.5)

where µ and γ are the constants appearing in (1.1).
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Remark 3.2. Note that condition (a) cannot directly be generalized to the case r = 3, s =∞, which
is treated in (b) and (c). Moreover, the smallness of the extension w required in (b) naturally transfers
to a smallness assumption on the associated boundary data g. In contrast, although condition (c) is
a direct consequence of (b), it does not require such a condition. As we shall see at the beginning of
Section 4.1, we can find an extension w satisfying (c) without imposing a smallness assumption on g.

The aim of this section is to show existence to problem (3.2) in the following sense. Recall that in the
present situation ∂P is a well-defined (single-valued) function.

Definition 3.3. We call a couple (v, S) a weak solution to (3.2) if (v, S) ∈ LHT ′ × XT ′ for all
0 < T ′ < T , if v|∂Ω×(0,T ) = 0 and if the identities∫ T

0

∫
Ω

[
− v · ∂tΦ− (v+w)⊗ (v+w) : ∇Φ + ηS : ∇Φ + µ∇v : ∇Φ

]
dx dt

=

∫ T

0

∫
Ω

[
f0 · Φ− f1 : ∇Φ

]
dx dt+

∫
Ω

v0 · Φ(·, 0) dx,

(3.6)

∫ T

0

∫
Ω

[
− S · ∂tΨ + (v+w) · ∇S : Ψ +

(
SW (v+w)−W (v+w)S

)
: Ψ

+ ∂P(S) : Ψ + γ∇S : ∇Ψ− ηD(v+w) : Ψ
]

dx dt =

∫
Ω

S0 : Ψ(·, 0) dx

(3.7)

hold for all Φ ∈ C∞0,σ(Ω× [0, T )) and Ψ ∈ C∞0,δ(Ω× [0, T )).

Observe that (3.6) and (3.7) are obtained by multiplying (3.2)1 and (3.2)3 by the respective test func-
tions and formally integrating by parts. In particular, (3.6) is in accordance with the notion of weak
solutions for the classical Navier–Stokes problem, since we take divergence-free test functions and
omit the pressure term. Moreover, since (3.2)3 is an equation of tensors in R3×3

δ , it suffices to use
symmetric deviatoric test functions in the weak formulation of (3.2)3. Due to this choice, we can re-
place D(v+w) with∇(v+w) in (3.7), subsequently.

3.1 Approximate solutions

At first, we construct a sequence of approximate solutions to (3.2). To this end, we first introduce
suitable basis functions.

Lemma 3.4. There exists a sequence (ϕk) ⊂ C∞0,σ(Ω), which is an orthonormal basis of L2
σ(Ω), such

that for all Φ ∈ C∞0,σ(Ω × [0, T )) and all ε > 0 there exist N ∈ N and γ1, . . . , γN ∈ C1
0([0, T ))

such that

max
t∈[0,T ]

∥∥ N∑
k=1

γk(t)ϕk − Φ
∥∥

C2(Ω)
+ max

t∈[0,T ]

∥∥ N∑
k=1

∂tγk(t)ϕk − ∂tΦ
∥∥

C1(Ω)
< ε. (3.8)

Proof. See [Gal00, Lemma 2.3].

Lemma 3.5. There exists a sequence (ψk) ⊂ C∞0,δ(Ω), which is an orthonormal basis of L2
δ(Ω), such

that for all Ψ ∈ C∞0,δ(Ω × [0, T )) and all ε > 0 there exist N ∈ N and γ̃1, . . . , γ̃N ∈ C1
0([0, T ))

such that

max
t∈[0,T ]

∥∥ N∑
k=1

γ̃k(t)ψk −Ψ
∥∥

C2(Ω)
+ max

t∈[0,T ]

∥∥ N∑
k=1

∂tγ̃k(t)ψk − ∂tΨ
∥∥

C1(Ω)
< ε. (3.9)
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Proof. One can follow the proof of [Gal00, Lemma 2.3].

Remark 3.6. Observe that (ϕk) is a basis of H1
0,σ(Ω), and (ψk) is a basis of H1

δ(Ω). To see this,
consider ϕ ∈ C∞0,σ(Ω) and let Φ ∈ C∞0,σ(Ω × [0, T )) such that Φ(·, 0) = ϕ. Let ε > 0 and
γ1, . . . , γN as in Lemma 3.4. Then

∥∥ N∑
k=1

γk(0)ϕk − ϕ
∥∥

C2(Ω)
≤ max

t∈[0,T ]

∥∥ N∑
k=1

γk(t)ϕk − Φ(·, t)
∥∥

C2(Ω)
< ε.

Since C∞0,σ(Ω) is dense in H1
0,σ(Ω) and Ω is bounded, this shows the claim for (ϕk). Taking ψ ∈

C∞0,δ(Ω) and Ψ ∈ C∞0,δ(Ω × [0, T )) with Ψ(·, 0) = ψ instead, we can use Lemma 3.5 to conclude
the statement for (ψk) in the same way.

With these bases at hand, we now construct a sequence of approximate solutions in the following way.
For k ∈ N we call (v, S) an approximate solution (of order k) if there exist αr, βr ∈ C1(0, Tk),
r = 1, . . . , k, such that

v(x, t) = vk(x, t) =
k∑
r=1

αr(t)ϕr(x), S(x, t) = Sk(x, t) =
k∑
r=1

βr(t)ψr(x), (3.10)

and for all ` ∈ {1, . . . , k} the pair (v, S) satisfies∫
Ω

[
∂tv · ϕ` − (v+w)⊗ (v+w) : ∇ϕ` + ηS : ∇ϕ` + µ∇v : ∇ϕ`

]
dx

=

∫
Ω

f0 · ϕ` dx−
∫

Ω

f1 : ∇ϕ` dx,

(3.11)

∫
Ω

[
∂tS · ψ` + (v+w) · ∇S : ψ` + SW (v+w) : ψ` −W (v+w)S : ψ`

+∂P(S) : ψ` + γ∇S : ∇ψ` − η∇(v+w) : ψ`
]

dx = 0

(3.12)

in (0, T ) and∫
Ω

v(0) · ϕ` dx =

∫
Ω

v0 · ϕ` dx,

∫
Ω

S(0) : ψ` dx =

∫
Ω

S0 : ψ` dx. (3.13)

The existence of approximate solutions is guaranteed by the following result.

Lemma 3.7. For all k ∈ N there exists an approximate solution (v, S) = (vk, Sk), which satisfies
the energy equalities

1

2
‖v(t)‖2

2 + µ‖∇v‖2
L2(Ω×(0,t))

=
1

2
‖v(0)‖2

2 +

∫ t

0

∫
Ω

[
f0 · v − f1 : ∇v + w ⊗ (v+w) : ∇v − ηS : ∇v

]
dx dτ,

(3.14a)

1

2
‖S(t)‖2

2 + γ‖∇S‖2
L2(Ω×(0,t)) +

∫ t

0

∫
Ω

∂P(S) : S dx dτ

=
1

2
‖S(0)‖2

2 +

∫ t

0

∫
Ω

[
− w · ∇S : S + η∇(v+w) : S

]
dx dτ

(3.14b)
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for all t ∈ (0, T ). Moreover, for 0 < T ′ < T , there exists a constant MT ′ > 0, only depending on
the data and T ′ but independent of k and P , such that

sup
t∈(0,T ′)

(
‖v(t)‖2

2 + ‖S(t)‖2
2

)
+

∫ T ′

0

(
‖v(t)‖2

1,2 + ‖S(t)‖2
1,2 + P(S)

)
dt ≤MT ′ , (3.15)

so that the sequence (vk, Sk)k∈N is bounded in LHT ′ × XT ′ .

Remark 3.8. The energy balances of the kinetic energy and of the stored elastic energy are expressed
in (3.14) in two separate equations. By summation we obtain the total energy equality

1

2
‖v(t)‖2

2 +
1

2
‖S(t)‖2

2 + µ‖∇v‖2
L2(Ω×(0,t)) + γ‖∇S‖2

L2(Ω×(0,t))

+

∫ t

0

∫
Ω

∂P(S) : S dx dτ =
1

2
‖v(0)‖2

2 +
1

2
‖S(0)‖2

2

+

∫ t

0

∫
Ω

[
f0 · v − f1 : ∇v + w ⊗ (v+w) : ∇v − w · ∇S : S + η∇w : S

]
dx dτ.

(3.16)

Proof. We reduce the equations (3.11)–(3.13) to an initial-value problem for the coefficient function
(α, β) = (α1, . . . , αk, β1, . . . , βk). For simplicity, let (·)′ = d

dt
denote the time derivative. Due to

orthogonality properties of the two bases (ϕk) and (ψk), we then obtain

α′(t) = F 1(α(t), β(t), t), β′(t) = F 2(α(t), β(t)),

α`(0) =

∫
Ω

v0 · ϕ` dx, β`(0) =

∫
Ω

S : ψ` dx (` = 1, . . . , k),
(3.17)

where F j = (F j
1 , . . . , F

j
k ), j = 1, 2, with

F 1
` (α, β, t) =

n∑
r,s=1

αrαs

∫
Ω

ϕr ⊗ ϕs : ∇ϕ` dx+
k∑
r=1

αr

∫
Ω

(
w ⊗ ϕr + ϕr ⊗ w

)
: ∇ϕ` dx

+

∫
Ω

w · ∇w · ϕ` dx− η
k∑
r=1

βr

∫
Ω

ψr : ∇ϕ` dx− µ
k∑
r=1

αr

∫
∇ϕr : ∇ϕ` dx

+

∫
Ω

f0(·, t) · ϕ` − f1(·, t) : ∇ϕ` dx,

and

F 2
` (α, β) = −

k∑
r,s=1

αrβs

∫
ϕr · ∇ψs : ψ` dx−

k∑
r=1

βr

∫
w · ∇ψs : ψ` dx

−
k∑

r,s=1

βrαs

∫
Ω

[
ψrW (ϕr)−W (ϕr)ψs

]
: ψ` dx−

∫
Ω

[
ψrW (w)−W (w)ψs

]
: ψ` dx

−
∫

Ω

∂P(
k∑
r=1

αrψr) : ψ` dx− γ
k∑
r=1

βr

∫
Ω

∇ψr : ∇ψ` dx

+ η

k∑
r=1

αr

∫
Ω

∇ϕr : ψ` dx+ η

∫
Ω

∇w : ψ` dx
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for ` = 1, . . . , k. In particular, since ∂P is Lipschitz continuous by assumption, (3.17) is an initial-
value problem with right-hand side F = (F 1, F 2) that satisfies a local Lipschitz condition. By the
Picard–Lindelöf theorem we thus obtain a unique local solution (α, β) to (3.17). Let (0, Tk) ⊂ (0, T )
denote its maximal existence interval. Then (v, S) defined by (3.10) satisfy (3.11)–(3.12) in (0, Tk)
and (3.13).

To conclude the energy equalities (3.14a) and (3.14b) for all t ∈ (0, Tk), we multiply (3.11) by α` and
(3.12) by β`, sum over ` = 1, . . . , k and integrate over the time interval (0, t). This leads to the two
equalities (3.14) by employing the identities

∫
Ω

v ⊗ (v+w) : ∇v dx =
1

2

∫
Ω

(v+w) · ∇|v|2 dx =
1

2

∫
∂Ω

(v+w) · n|v|2 dσ = 0,∫
Ω

v · ∇S : S dx =
1

2

∫
Ω

v · ∇|S|2 dx =
1

2

∫
∂Ω

v · n|S|2 dσ = 0,

which hold due to v = 0 on ∂Ω× (0, Tk).

Next we show that Tk = T . To this end, we add (3.14a) and (3.14b) to obtain (3.16) and further
estimate the right-hand side of (3.16) for t ∈ (0, Tk). The initial terms can be estimated with Bessel’s
inequality as

‖v(0)‖2
2 ≤ ‖v0‖2

2, ‖S(0)‖2
2 ≤ ‖S0‖2

2. (3.18)

For the linear terms, we employ a combination of Hölder’s and Young’s inequalities to obtain

∫ t

0

∫
Ω

f0 · v dx dτ ≤ c0(ε)‖f0‖2
L1(0,t;L2(Ω)) + ε‖v‖2

L∞(0,t;L2(Ω)), (3.19)∫ t

0

∫
Ω

f1 : ∇v dx dτ ≤ c1(ε)‖f1‖2
L2(Ω×(0,t)) + ε‖∇v‖2

L2(Ω×(0,t)), (3.20)∫ t

0

∫
Ω

∇w : S dx dτ ≤ c2(ε)‖∇w‖2
L1(0,t;L2(Ω)) + ε‖S‖2

L∞(0,t;L2(Ω)), (3.21)∫ t

0

∫
Ω

(w ⊗ w) : ∇v dx dτ ≤ c3(ε)‖w‖4
L4(Ω×(0,t)) + ε‖∇v‖2

L2(Ω×(0,t)) (3.22)

for any ε > 0. Next we address the nonlinear terms, where we need to discuss the different cases in
Assumption 3.1.

Case s <∞: We use part (a) of Assumption 3.1 with r > 3 and define p ∈ (2, 6) via 1/p =
1/2 − 1/r. With θ = 3/2 − 3/p = 3/r = 1 − 2/s ∈ (0, 1) the Gagliardo–Nirenberg inequality
gives

‖v(t)‖p ≤ c4‖v(t)‖1−θ
2 ‖∇v(t)‖θ2,

‖S(t)‖p ≤ c5‖S(t)‖1−θ
2 ‖∇S(t)‖θ2 + c6‖S(t)‖2
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for all t ∈ [0, Tk], so that Hölder’s and Young’s inequalities lead to∫ t

0

∫
Ω

w ⊗ v : ∇v dx dτ ≤
∫ t

0

‖w‖r‖v‖p‖∇v‖2 dτ ≤ c7

∫ t

0

‖w‖r‖v‖1−θ
2 ‖∇v‖1+θ

2 dτ

≤ ε‖∇v‖2
L2(Ω×(0,t)) + c8(ε)

∫ t

0

‖w‖sr‖v‖2
2 dτ,

(3.23)

∫ t

0

∫
Ω

w · ∇S : S dx dτ ≤
∫ t

0

‖w‖r‖∇S‖2‖S‖p dτ

≤ c9

∫ t

0

‖w‖r
(
‖∇S‖1+θ

2 ‖S‖1−θ
2 + ‖∇S‖2‖S‖2

)
dτ

≤ ε‖∇S‖2
L2(Ω×(0,t)) + c10(ε)

∫ t

0

(
‖w‖sr + ‖w‖2

r

)
‖S‖2

2 dτ.

(3.24)

Estimating the right-hand side of (3.16) with (3.18)–(3.24) and choosing ε > 0 sufficiently small, we
obtain

‖v‖2
L∞(0,t;L2(Ω)) + ‖S(t)‖2

L∞(0,t;L2(Ω)) + ‖∇v‖2
L2(Ω×(0,t)) + ‖∇S‖2

L2(Ω×(0,t))

+

∫ t

0

∫
Ω

∂P(S) : S dx dt ≤ c11

(
‖v0‖2

2 + ‖S0‖2
2 + ‖f0‖2

L1(0,t;L2(Ω)) + ‖f1‖2
L2(Ω×(0,t))

+ ‖∇w‖2
L1(0,t;L2(Ω)) + ‖w‖4

L4(Ω×(0,t)) +

∫ t

0

(
‖w‖sr + ‖w‖2

r

)(
‖v‖2

2 + ‖S‖2
2

)
dτ

)
.

We can now add the squared norm of v and S in L2(Ω × (0, t)) to both sides of the inequality. An
application of Gronwall’s inequality then leads to

‖v‖2
L∞(0,t;L2(Ω)) + ‖S‖2

L∞(0,t;L2(Ω)) + ‖v‖2
L2(0,t;H1(Ω)) + ‖S‖2

L2(0,t;H1(Ω))

+

∫ t

0

P(S) dt ≤ c12

(
‖v0‖2

2 + ‖S0‖2
2 + ‖f0‖2

L1(0,t;L2(Ω)) + ‖f1‖2
L2(Ω×(0,t))

+ ‖∇w‖2
L1(0,t;L2(Ω)) + ‖w‖4

L4(Ω×(0,t))

)
exp

(
c13

∫ t

0

(
‖w‖sr + ‖w‖2

r

)
dτ

) (3.25)

in the case s <∞.

Case s =∞: We can apply (3.4) and (3.5) to obtain∫ t

0

∫
Ω

w ⊗ v : ∇v dx dτ ≤ µ

2
‖∇v‖2

L2(Ω×(0,t)), (3.26)∫ t

0

∫
Ω

w · ∇S : S dx dτ ≤ γ

2

(
‖S‖2

L2(Ω×(0,t)) + ‖∇S‖2
L2(Ω×(0,t))

)
. (3.27)

Using (3.26) and (3.27) instead of (3.23) and (3.24), the argument from above leads to

‖v‖2
L∞(0,t;L2(Ω)) + ‖S‖2

L∞(0,t;L2(Ω)) + ‖v‖2
L2(0,t;H1(Ω)) + ‖S‖2

L2(0,t;H1(Ω))

+

∫ t

0

P(S) dt ≤ c14

(
‖v0‖2

2 + ‖S0‖2
2 + ‖f0‖2

L1(0,t;L2(Ω)) + ‖f1‖2
L2(Ω×(0,t))

+ ‖∇w‖2
L1(0,t;L2(Ω)) + ‖w‖4

L4(Ω×(0,t))

)
ec15t

(3.28)

in the case s =∞.
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Now consider general s ∈ (2,∞] again. For any T ′ ∈ (0, Tk), the right-hand side of (3.25) and
(3.28) can be bounded uniformly in t ∈ (0, T ′) by a constant MT ′ > 0 that only depends on the data
and T ′. In particular, MT ′ is independent of k ∈ N and P , and we conclude (3.15) in both cases. By
Parseval’s identity, this shows

k∑
r=1

|αr(t)|2 + |βr(t)|2 = ‖v(t)‖2
2 + ‖S(t)‖2

2 ≤MT ′

for all t ∈ (0, T ′). Hence the solution (α, β) does not blow-up at t = T ′, and we conclude Tk = T
together with (3.15).

Lemma 3.9. For any 0 < T ′ < T , the sequence (∂tvk, ∂tSk)k∈N is bounded in

L1
(
0, T ′;

(
H1

0,σ(Ω)
)′)× L8/7

(
0, T ′;

(
H1(Ω)3×3

)′)
with

‖∂tvk‖L1(0,T ′;(H1
0,σ(Ω))′) ≤M ′

T ′ ,

‖∂tSk‖L8/7(0,T ′;(H1(Ω))′) ≤MT ′,P ,

where M ′
T ′ is independent of P , but MT ′,P depends on P .

Proof. Let k ∈ N and ` ∈ {1, . . . , k}. For v = vk we have the interpolation inequality

‖v(t)‖4 ≤ c0‖v(t)‖1/4
2 ‖∇v(t)‖3/4

2 ,

so that from (3.11) we deduce the estimate∫
Ω

∂tv · ϕ` dx

≤ c1

(
‖v+w‖2

4‖∇ϕ`‖2 + ‖S‖2‖∇ϕ`‖2 + ‖∇v‖2‖∇ϕ`‖2 + ‖f0‖2‖ϕ`‖2 + ‖f1‖2‖∇ϕ`‖2

)
≤ c2

(
‖v‖1/2

2 ‖∇v‖
3/2
2 + ‖w‖2

4 + ‖S‖2 + ‖∇v‖2 + ‖f0‖2 + ‖f1‖2

)
‖ϕ`‖1,2

in (0, T ). Now let ϕ ∈ H1
0,σ(Ω)3. Then ϕ =

∑∞
`=0 a`ϕ` in H1(Ω) for some sequence (a`) ⊂ R.

Since (ϕ`) is orthogonal in L2
σ(Ω), in a similar way we obtain

∫
Ω

∂tv · ϕ dx =

∫
Ω

∂tv ·
k∑
`=1

α`ϕ` dx

≤ c3

(
‖v‖1/2

2 ‖∇v‖
3/2
2 + ‖w‖2

4 + ‖S‖2 + ‖∇v‖2 + ‖f0‖2 + ‖f1‖2

)∥∥ k∑
`=1

α`ϕ`
∥∥

1,2

≤ c4

(
‖v‖1/2

2 ‖∇v‖
3/2
2 + ‖w‖2

4 + ‖S‖2 + ‖∇v‖2 + ‖f0‖2 + ‖f1‖2

)
‖ϕ‖1,2.

Hence we have ∂tv(t) ∈
(
H1

0,σ(Ω)
)′

for a.a. t ∈ (0, T ). Moreover, with Hölder’s inequality and (3.15)
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we conclude∫ T ′

0

‖∂tv‖(H1
0,σ(Ω))′ dt

≤ c5

∫ T ′

0

(
‖v‖1/2

2 ‖∇v‖
3/2
2 + ‖w‖2

4 + ‖S‖2 + ‖∇v‖2 + ‖f0‖2 + ‖f1‖2

)
dt

≤ c6(T ′)

(
sup

t∈(0,T ′)

‖v(t)‖1/2
2

(∫ T ′

0

‖∇v‖2
2 dt

)3/4

+ sup
t∈(0,T ′)

‖S(t)‖2

+

(∫ T ′

0

(
‖w‖4

4 + ‖∇v‖2
2 + ‖f1‖2

2

)
dt

)1/2

+

∫ T ′

0

‖f0‖2 dt

)
≤ c7(T ′)

(
M

5/4
T ′ +MT ′ + ‖w‖2

L4(Ω×(0,T ′)) +M
1/2
T ′

+ ‖f1‖L2(Ω×(0,T ′)) + ‖f0‖L1(0,T ′;L2(Ω))

)
.

In the same way as above, additionally employing the interpolation inequality

‖S(t)‖4 ≤ c8‖S(t)‖1/4
2 ‖S(t)‖3/4

1,2 ,

we can use the basis (ψ`) to show that ∂tS(t) ∈
(
H1(Ω)

)′
for a.a. t ∈ (0, T ) and

‖∂tS‖(H1(Ω))′

≤ c9

(
‖v+w‖4‖∇S‖2 + ‖S‖4‖∇(v+w)‖2 + ‖∂P(S)‖2 + ‖∇S‖2 + ‖∇(v+w)‖2

)
≤ c10

(
‖v‖1/4

2 ‖v‖
3/4
2 ‖∇S‖2 + ‖w‖4‖∇S‖2 + ‖S‖1/4

2 ‖S‖
3/4
1,2 ‖∇(v+w)‖2

+ ‖S‖2 + ‖∇S‖2 + ‖∇(v+w)‖2

)
,

where we used that ∂P is Lipschitz continuous and ∂P(S) = 0. This implies∫ T ′

0

‖∂tS‖8/7

(H1(Ω))′ dt

≤ c11

∫ T ′

0

(
‖v‖2/7

2 ‖v‖
6/7
2 ‖∇S‖

8/7
2 + ‖w‖8/7

4 ‖∇S‖
8/7
2 + ‖S‖2/7

2 ‖S‖
6/7
1,2 ‖∇(v+w)‖8/7

2

+ ‖S‖8/7
2 + ‖∇S‖8/7

2 + ‖∇(v+w)‖8/7
2

)
dt

≤ c12 sup
t∈(0,T ′)

‖v(t)‖2/7
2

(∫ T ′

0

‖v‖2
2 dt

)3/7(∫ T ′

0

‖∇S‖2
2 dt

)4/7

+ c13(T ′)

(∫ T

0

‖w‖4
4 dt

)2/7(∫ T ′

0

‖∇S‖2
2 dt

)4/7

+ c14 sup
t∈(0,T ′)

‖S(t)‖2/7
2

(∫ T ′

0

‖S‖2
1,2 dt

)3/7(∫ T ′

0

(‖∇v‖2
2 + ‖∇w‖2

2) dt

)4/7

+ c15(T ′) sup
t∈(0,T ′)

‖S(t)‖2/7
2 + c16(T ′)

(∫ T ′

0

(
‖∇S‖2

2 + ‖∇v‖2
2 + ‖∇w‖2

2

)
dt

)4/7

≤ c17(T ′)
(
M

8/7
T ′ +M

4/7
T ′ (‖∇w‖8/7

L2(Ω×(0,T ′)) + ‖w‖8/7

L4(Ω×(0,T ′)))

+M
1/7
T ′ +M

4/7
T ′ + ‖∇w‖8/7

L2(Ω×(0,T ′))

)
,

which completes the proof.

DOI 10.20347/WIAS.PREPRINT.2829 Berlin 2021
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3.2 Existence of weak solutions to the modified system

Based on the previous preparations we establish the existence of weak solutions to (3.2).

Theorem 3.10. Let v0, S0 and f be as in (3.3), letP ∈ C1,1(L2
δ(Ω)) be a dissipation potential, and let

w be as in Assumption 3.1. Then there exists a weak solution (v, S) to (3.2) in the sense of Definition
3.3. Additionally, this solution is weakly continuous in L2(Ω), that is,

∀ t ∈ [0, T ) :
(
v(s), S(s)

)
⇀
(
v(t), S(t)

)
in L2(Ω) as s→ t, (3.29)

with
(
v(0), S(0)

)
=
(
v0, S0

)
, and it satisfies the energy inequalities

1

2
‖v(t)‖2

2 + µ‖∇v‖2
L2(Ω×(0,t))

≤ 1

2
‖v0‖2

2 +

∫ t

0

∫
Ω

[
f0 · v − f1 : ∇v + w ⊗ (v+w) : ∇v − ηS : ∇v

]
dx dτ,

(3.30)

1

2
‖S(t)‖2

2 + γ‖∇S‖2
L2(Ω×(0,t)) +

∫ t

0

∫
Ω

∂P(S) : S dx dτ

≤ 1

2
‖S0‖2

2 +

∫ t

0

∫
Ω

[
− w · ∇S : S + η∇(v+w) : S

]
dx dτ

(3.31)

for all t ∈ [0, T ). In particular, we conclude the total energy inequality

1

2

(
‖v(t)‖2

L2(Ω) + ‖S(t)‖2
L2(Ω)

)
+ µ‖∇v‖2

L2(0,t;L2(Ω)) + γ‖∇S‖2
L2(0,t;L2(Ω))

+

∫ t

0

∫
Ω

∂P(S) : S dx dτ ≤ 1

2

(
‖v0‖2

L2(Ω) + ‖S0‖2
L2(Ω)

)
+

∫ t

0

∫
Ω

[
f0 · v − f1 : ∇v + w ⊗ (v+w) : ∇v − w · ∇S : S + η∇w : S

]
dx dτ

(3.32)

for all t ∈ [0, T ).

Proof. Let (vk, Sk)k∈N be the sequence of approximate solutions in (0, T ) from Lemma 3.7. We take
an increasing sequence (Tj) ⊂ (0, T ) that converges to T ∈ (0,∞]. Due to the uniform bounds
from (3.15) and Lemma 3.9 for T ′ = Tj , combined with a classical diagonalization argument, we
obtain the existence of a subsequence, which we also denote by (vk, Sk), and a pair (v, S) with
(v, S) ∈ LHT ′ × XT ′ for each T ′ ∈ (0, T ) such that

vk ⇀ v in L2(0, T ′; H1(Ω)3),

Sk ⇀ S in L2(0, T ′; H1(Ω)3×3),

vk
∗
⇀ v in L∞(0, T ′; L2

σ(Ω)),

Sk
∗
⇀ S in L∞(0, T ′; L2

δ(Ω)),

∂tvk ⇀ ∂tv in L1(0, T ′;
(
H1

0,σ(Ω)
)′

),

∂tSk ⇀ ∂tS in L8/7(0, T ′;
(
H1(Ω)3×3

)′
)

as k →∞. The Aubin–Lions lemma further implies the strong convergence

vk → v in L2(0, T ′; L2(Ω)3),

Sk → S in L2(0, T ′; L2(Ω)3×3)
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T. Eiter, K. Hopf, A. Mielke 16

as k →∞. Let us show that (v, S) is a weak solution to (3.2), that is, that (3.6) and (3.7) are satisfied.
To this end, let χ ∈ C∞0 ([0, T )) and let T ′ ∈ (0, T ) such that suppχ ⊂ [0, T ′). Fix ` ∈ N. Multiply
(3.11) and (3.12) by χ(t), integrate over (0, T ) and pass to the limit k → ∞ exploiting the above
convergence properties. For example, in view of (3.13), for k ≥ ` we have∫ T

0

∫
Ω

∂tvk · ϕ`χ dx dt = −
∫ T

0

∫
Ω

vk · ϕ`∂tχ dx dt−
∫

Ω

v0 · ϕ`χ(0) dx

→ −
∫ T

0

∫
Ω

v · ϕ`∂tχ dx dt−
∫

Ω

v0 · ϕ`χ(0) dx.

Employing the strong convergence of (vk) in L2(Ω× (0, T ′)), we further conclude∫ T

0

∫
Ω

vk ⊗ vk : ∇ϕ`χ dx dt→
∫ T

0

∫
Ω

v ⊗ v : ∇ϕ`χ dx dt.

Similarly, we can derive∫ T

0

∫
Ω

∂P(Sk) : ψ`χ dx dt→
∫ T

0

∫
Ω

∂P(S) : ψ`χ dx dt

from the Lipschitz continuity of ∂P and the strong convergence of (Sk) in L2(Ω × (0, T ′)). Con-
vergence of the remaining terms can be shown in a similar fashion, and we conclude (3.6) and
(3.7) for all Φ and Ψ of the form Φ(x, t) = ϕ`(x)χ(t) and Ψ(x, t) = ψ`(x)χ(t) with ` ∈ N.
Finally, an approximation argument based on Lemma 3.4 and Lemma 3.5 allows us to pass to general
Φ ∈ C∞0,σ(Ω × [0, T )) and Ψ ∈ C∞0,δ(Ω × [0, T )), respectively. Consequently, (v, S) is a weak
solution to (3.2).

Now let us show the energy inequalities (3.30) and (3.31). Similarly to [Gal00, Proof of Theorem 3.1],
one can show that (vk(t), Sk(t)) ⇀ (v(t), S(t)) in L2(Ω) as k → ∞ for all t ∈ (0, T ) after
possibly modifying the solution (v, S) on a set of measure zero in (0, T ). This property and the weak
convergence in L2(0, T ′; H1(Ω)) imply

1

2
‖v(t)‖2

2 + µ‖∇v‖2
L2(Ω×(0,t)) ≤ lim inf

k→∞

(1

2
‖vk(t)‖2

2 + µ‖∇vk‖2
L2(Ω×(0,t))

)
, (3.33)

1

2
‖S(t)‖2

2 + γ‖∇S‖2
L2(Ω×(0,t)) ≤ lim inf

k→∞

(1

2
‖Sk(t)‖2

2 + γ‖∇Sk‖2
L2(Ω×(0,t))

)
. (3.34)

Moreover, the strong convergence Sk → S in L2(Ω × (0, T ′)) and the Lipschitz continuity of ∂P
lead to

lim
k→∞

∫ t

0

∫
Ω

∂P(Sk) : Sk dx dt =

∫ t

0

∫
Ω

∂P(S) : S dx dt. (3.35)

By construction we further have ‖v(0)‖2 ≤ ‖v0‖2 and ‖S(0)‖2 ≤ ‖S0‖2 due to Bessel’s inequality,
and we can directly conclude

lim
k→∞

∫ t

0

∫
Ω

[
f0 · vk − f1 : ∇vk

]
dx dt =

∫ t

0

∫
Ω

[
f0 · v − f1 : ∇v

]
dx dt, (3.36)

lim
k→∞

∫ t

0

∫
Ω

w ⊗ w : ∇vk dx dt =

∫ t

0

∫
Ω

w ⊗ w : ∇v dx dt, (3.37)

lim
k→∞

∫ t

0

∫
Ω

η∇w : Sk dx dt =

∫ t

0

∫
Ω

η∇w : S dx dt (3.38)
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Leray–Hopf solutions to a viscoelastic fluid model with nonsmooth stress-strain relation 17

since f, w⊗w,∇w ∈ L2(Ω×(0, T ′)). Moreover, the strong convergence of (Sk) in L2(Ω×(0, T ′))
and the weak convergence of (∇vk) in L2(Ω× (0, T ′)) imply

lim
k→∞

∫ t

0

∫
Ω

Sk : ∇vk dx dt =

∫ t

0

∫
Ω

S : ∇v dx dt. (3.39)

For the remaining terms, assume for the moment thatw ∈ C∞0 (Ω×(0, T )). Then (w⊗vk) converges
to w ⊗ v strongly in L2(Ω× (0, T )). Hence we obtain

lim
k→∞

∫ t

0

∫
Ω

w ⊗ vk : ∇vk dx dt =

∫ t

0

∫
Ω

w ⊗ v : ∇v dx dt. (3.40)

For general w ∈ Ls(0, T ; Lr(Ω)) we obtain (3.40) by approximating w by elements from C∞0 (Ω ×
(0, T )) and exploiting that LHT ↪→ Lq(0, T ; Lp(Ω)) with 1/p = 1/2− 1/r, 1/q = 1/2− 1/s, so
that 2/q + 3/p = 3/2. Observe that here we use w ∈ C0(0, T ; L3(Ω)) if s = ∞. An analogous
argument shows

lim
k→∞

∫ t

0

∫
Ω

w · ∇Sk : Sk dx dt =

∫ t

0

∫
Ω

w · ∇S : S dx dt. (3.41)

Finally, we combine (3.33)–(3.41) with the energy equalities (3.14a) and (3.14b) to conclude the energy
inequalities (3.30) and (3.31). Moreover, in the same way as for the the classical Navier–Stokes initial-
value problem (see [Gal00, Lemma 2.2] for example), the weak solution can be redefined on a set
of measure zero such that it is weakly continuous in the sense of (3.29). This finishes the proof of
Theorem 3.10.

Remark 3.11. From the proof of Theorem 3.10 we directly obtain

‖v‖2
L∞(0,T ′;L2(Ω)) + ‖S‖2

L∞(0,T ′;L2(Ω))

+‖v‖2
L2(0,T ′;H1(Ω)) + ‖S‖2

L2(0,T ′;H1(Ω)) +

∫ T ′

0

P(S) dt ≤MT ′ ,

‖∂tv‖L1(0,T ′;(H1
0,σ(Ω))′) ≤M ′

T ′ ,

‖∂tS‖L8/7(0,T ′;(H1(Ω))′) ≤MT ′,P ,

for each 0 < T ′ < T , where MT ′ , M ′
T ′ and MT ′,P are given in Lemma 3.7 and Lemma 3.9.

4 Existence for inhomogeneous boundary data

In this section we show the existence of a solution to problem (1.1)–(1.3) in a suitable sense. Through-
out this section, we let 0 < T ≤ ∞ and suppose that Ω ⊂ R3 is a bounded domain with C1,1-
boundary. We further let P : L2

δ(Ω)→ [0,∞] be a dissipation potential as discussed in Section 2. It
will be smooth in Section 4.1 and generally nonsmooth in Section 4.2.

For the data we assume that

V0 ∈ L2
σ(Ω), S0 ∈ L2

δ(Ω), F = F0 + divF1,

F0 ∈ L1
loc([0, T ); L2(Ω)3), F1 ∈ L2

loc([0, T ); L2(Ω)3×3).
(4.1)

The regularity of g will be specified below.
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We will first consider the case of a sufficiently smooth potential P such that ∂P is single-valued. Then
equation (1.1)3 is a proper differential equation and we can use the notion of weak solutions as in
the previous section. Subsequently, we treat the case of a general dissipation potential P , where ∂P
may be multi-valued and (1.1)3 has to be understood as a differential inclusion. Then the notion of
weak solutions is no longer available, and we define a generalized solution by means of a variational
inequality.

4.1 Weak solutions for smooth potentials

Here we consider the original system (1.1)–(1.3) in the case of a sufficiently smooth potential. More
precisely, as in Section 3 we assume that P is a dissipation potential with

P ∈ C1,1(L2
δ(Ω)).

We consider weak solutions to (1.1)–(1.3) in the following sense.

Definition 4.1. We call a couple (V, S) a weak solution to (1.1)–(1.3) if

V ∈ L∞(0, T ′; L2(Ω)3) ∩ L2(0, T ′; H1(Ω)3),

S ∈ L∞(0, T ′; L2
δ(Ω)) ∩ L2(0, T ′; H1(Ω)3×3),

for all 0 < T ′ < T , if div V = 0 and V |∂Ω×(0,T ) = g, and if the identities∫ T

0

∫
Ω

[
− V · ∂tΦ− V ⊗ V : ∇Φ + ηS : ∇Φ + µ∇V : ∇Φ

]
dx dt

=

∫ T

0

∫
Ω

F0 · Φ dx dt−
∫ T

0

∫
Ω

F1 : ∇Φ dx dt+

∫
Ω

V0 · Φ(·, 0) dx,

(4.2)

∫ T

0

∫
Ω

[
− S : ∂tΨ + V · ∇S : Ψ + SW (V ) : Ψ−W (V )S : Ψ

+ ∂P(S) : Ψ + γ∇S : ∇Ψ− η∇V : Ψ
]

dx dt =

∫
Ω

S0 : Ψ(·, 0) dx

(4.3)

hold for all Φ ∈ C∞0,σ(Ω× [0, T )) and Ψ ∈ C∞0,δ(Ω× [0, T )).

As explained above, we can obtain a weak solution to the problem (1.1)–(1.3) with inhomogeneous
Dirichlet boundary values as the sum of a solution to the Stokes initial-value problem (3.1) and a
solution to the perturbed problem (3.2) with homogeneous boundary conditions. Since we have shown
existence of a weak solution to (3.2) in Theorem 3.10, it remains to address the existence of solutions
w to the Stokes initial-value problem (3.1). Observe that in the present situation the forcing term F̃ and
the initial value w0 in (3.1) are not prescribed by the original problem, whence we have some freedom
in their choice. For example, we can simply consider data F̃ = w0 = 0 and use existing theory for
the Stokes initial-value problem with inhomogeneous Dirichlet data (see [Gru01, FGH02, Ray07] for
example) to obtain a suitable extension w satisfying Assumption 3.1 in case (a). Proceeding like this
for the cases (b) and (c) would require smallness of g. In the following we focus on case (c), which
is more general than (b), and show that smallness of g is not necessary if we exploit the freedom we
have in the choice of F̃ and w0. For this purpose, we use the following lemma.
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Lemma 4.2. Let Ω be a bounded domain with connected C1,1-boundary, T ∈ (0,∞] and

g ∈ L∞(0, T ; H1/2(∂Ω)3), ∂tg ∈ L∞(0, T ; H−1/2(∂Ω)3) (4.4a)

with ∫
∂Ω

g(t) · n = 0 for a.a. t ∈ (0, T ). (4.4b)

Then, for each α > 0 there exists a function

wα ∈ L∞(0, T ; H1(Ω)3), ∂twα ∈ L∞(0, T ; H−1(Ω)3) (4.5)

with wα = g on ∂Ω× (0, T ) and divwα = 0 in Ω× (0, T ) such that

∀ v1, v2 ∈ H1
0(Ω) :

∣∣∣∫
Ω

wα(t)⊗ v1 : ∇v2 dx
∣∣∣ ≤ α‖∇v1‖2‖∇v2‖2

and
‖wα(t)‖H1(Ω) ≤ C1‖g(t)‖H1/2(∂Ω) for a.a. t ∈ (0, T ),

‖∂twα‖L∞(0,T ;H1(Ω)) ≤ C1‖∂tg‖L∞(0,T ;H−1/2(∂Ω))

(4.6)

for some constant C1 = C1(Ω, α) > 0.

Proof. In [FKS11a, Proposition 5.4] the statement was shown with α = 1/4. An adaption of the proof
for arbitrary α > 0 is straightforward.

In order to ensure (3.5), it is sufficient to assume smallness of g · n in a suitable norm.

Lemma 4.3. In the situation of Lemma 4.2 it holds

∀S ∈ H1(Ω)3×3 :
∣∣∣∫

Ω

wα(t) · ∇S : S dx
∣∣∣ ≤ C2‖g · n‖L∞(0,T ;L2(∂Ω))‖S‖2

1,2

for some constant C2 = C2(Ω) > 0.

Proof. We have∫
Ω

wα(t) · ∇S : S dx =
1

2

∫
Ω

wα(t) · ∇|S|2 dx =
1

2

∫
∂Ω

g(t) · n|S|2 dσ.

Now Hölder’s inequality and Sobolev embeddings imply∣∣∣∫
Ω

wα(t) · ∇S : S dx
∣∣∣ ≤ c0‖g(t) · n‖2‖S‖2

L4(∂Ω) ≤ c1‖g(t) · n‖2‖S‖2
H1/2(∂Ω).

The statement now follows from a standard trace inequality.

Note that, from a physical point of view, only the case g · n = 0 seems relevant in combination with
the Neumann boundary condition n · ∇S = 0. Lemma 4.3 implies that condition (3.5) is satisfied
automatically in this case. Combining this observation with Theorem 3.10 and Lemma 4.2, we now
show existence of a weak solution to the original problem (1.1)–(1.3).
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Theorem 4.4. Let V0, S0 and F be as in (4.1), let P ∈ C1,1(L2
δ(Ω)) be a dissipation potential, and

let g satisfy (4.4a) and g ·n = 0. Then there exists a weak solution (V, S) = (v+w, S) to (1.1)–(1.3)
in the sense of Definition 4.1. Here

w ∈ L∞(0, T ; H1(Ω)3), ∂tw ∈ L∞(0, T ; H−1(Ω)3)

and F and V0 decompose as F = f + F̃ = f + div F̃1 and V0 = v0 + w0 such that (v, S) is the
weak solution to (3.2) from Theorem 3.10, and

‖w‖L∞(0,T ;H1(Ω)) + ‖∂tw‖L∞(0,T ;H−1(Ω)) + ‖F̃1‖L∞(0,T ;L2(Ω)) + ‖w0‖L2(Ω)

≤ C3

(
‖g‖L∞(0,T ;H1/2(∂Ω)) + ‖∂tg‖L∞(0,T ;H−1/2(∂Ω))

)
.

(4.7)

Additionally, this solution is weakly continuous in L2(Ω), that is,

∀ t ∈ [0, T ) :
(
V (s), S(s)

)
⇀
(
V (t), S(t)

)
in L2(Ω) as s→ t (4.8)

with
(
V (0), S(0)

)
=
(
V0, S0

)
. Moreover, for all t ∈ (0, T ) we have

1

2
‖S(t)‖2

2 + γ‖∇S‖2
L2(Ω×(0,t)) +

∫ t

0

∫
Ω

∂P(S) : S dx dτ

≤ 1

2
‖S0‖2

2 +

∫ t

0

∫
Ω

η∇V : S dx dτ.

(4.9)

For all 0 < T ′ < T there exists a constant MT ′ > 0, which is independent of P , such that

‖V ‖L∞(0,T ′;L2(Ω)) + ‖V ‖L2(0,T ′;H1(Ω)) + ‖∂tV ‖L1(0,T ′;(H1
0,σ(Ω))′)

+ ‖S‖L∞(0,T ′;L2(Ω)) + ‖S‖L2(0,T ′;H1(Ω)) +

∫ T ′

0

P(S) dt ≤MT ′ .
(4.10)

Proof. Let w = wα from Lemma 4.2 with α = µ/2. Then the Aubin–Lions lemma implies w ∈
C0(0, T ; L2(Ω)), and in virtue of g·n = 0 and Lemma 4.3, we see that Assumption 3.1 (c) is satisfied.
From Hölder’s inequality and Sobolev embeddings we further conclude the remaining properties of
Assumption 3.1. Since w ∈ C0(0, T ; L2(Ω)), we can define w0 := w(·, 0) ∈ L2(Ω). Moreover,
we set F̃ := ∂tw − µ∆w. Since every element of H−1(Ω)n can be represented as the divergence
of a tensor field from L2(Ω)n×n (see [Soh01, Lemma 1.6.1] for example), we obtain F̃ = div F̃1

for some F̃1 ∈ L∞(0, T ; L2(Ω)n×n). We further conclude (4.7) from (4.6). Now we set f0 := F0,
f1 := F1− F̃1, v0 := V0−w0, and let (v, S) be the weak solution to (3.2) from Theorem 3.10. Since
for all Φ ∈ C∞0 (Ω× [0, T ))3 we have∫ T

0

∫
Ω

[
− w · ∂tΦ + µ∇w : ∇Φ

]
dx dt = −

∫ T

0

∫
Ω

F̃1 : ∇Φ dx dt+

∫
Ω

w0 · Φ(·, 0) dx,

the pair (V, S) := (v+w, S) is a weak solution to (1.1)–(1.3) in the sense of Definition 4.1. Finally,
(4.8) follows from (3.29) and w ∈ C0(0, T ; L2(Ω)).

Similarly to the proof of Lemma 4.3, we derive∫
Ω

wδ(t) · ∇S : S dx =
1

2

∫
∂Ω

g(t) · n|S|2 dσ = 0
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since g · n = 0. With this identity, (4.9) directly follows from (3.31). Moreover, we have

‖w‖L∞(0,T ′;L2(Ω)) + ‖w‖L2(0,T ′;H1(Ω)) + ‖∂tw‖L1(0,T ′;(H1
0,σ(Ω))′)

≤ c0(T ′)
(
‖w‖L∞(0,T ′;H1(Ω)) + ‖∂tw‖L∞(0,T ′;H−1(Ω))

)
≤ c1(T ′)

(
‖g‖L∞(0,T ;H1/2(∂Ω)) + ‖∂tg‖L∞(0,T ;H−1/2(∂Ω))

)
.

In view of Remark 3.11, this shows (4.10).

The estimates (4.9) and (4.10) will be needed for passing from smooth Moreau envelopes Pε to
nonsmooth potentials P .

In the proof of Theorem 4.4 we chose w in such a way that the nonlinear terms in the total energy
inequality (3.32) can be estimated as in (3.4) and (3.5). This enables us to obtain global solutions
(V, S) such that the sum of kinetic energy and stored elastic energy∫

Ω

1

2
|V (x, t)|2 dx+

∫
Ω

1

2
|S(x, t)|2 dx

remains bounded as t→∞.

Corollary 4.5. In the situation of Theorem 4.4 there exists a constant C4 independent of the data and
T ∈ (0,∞] such that

‖V ‖2
L∞(0,T ′;L2(Ω)) + ‖∇V ‖2

L2(Ω×(0,T ′)) + ‖S‖2
L∞(0,T ′;L2(Ω)) + ‖∇S‖2

L2(Ω×(0,T ′))

+

∫ T ′

0

P(S) dt ≤ C4

(
‖V0‖2

L2(Ω) + ‖S0‖2
L2(Ω) + ‖F0‖2

L1(0,T ′;L2(Ω)) + ‖F1‖2
L2(0,T ′;L2(Ω))

+ ‖g‖2
L∞(0,T ′;H1/2(∂Ω)) + ‖∂tg‖2

L∞(0,T ′;H−1/2(∂Ω)) + ‖g‖2
L1(0,T ′;H1/2(∂Ω))

+ ‖g‖4
L∞(0,T ′;H1/2(∂Ω)) + ‖g‖4

L1(0,T ′;H1/2(∂Ω))

)
.

for all 0 < T ′ < T . In particular, if T =∞ and

F0 ∈ L1(0,∞; L2(Ω)), F1 ∈ L2(0,∞; L2(Ω)),

g ∈ L∞(0,∞; H1/2(∂Ω)) ∩ L1(0,∞; H1/2(∂Ω)), ∂tg ∈ L∞(0,∞; H−1/2(∂Ω)),

then (V, S) ∈ LHT × XT for T =∞, so that the energy remains bounded as t→∞.

Proof. The pair (v, S) satisfies the energy inequality (3.32), and w is constructed in such a way
that Assumption 3.1 (c) is satisfied. Therefore, we can proceed as in the proof of Theorem 3.10 to
derive estimates (3.19)–(3.22), (3.26), (3.27) in the present situation. Combining these with the energy
inequality (3.32), in virtue of the identities f0 = F0 and f1 = F1 − F̃1, we conclude

‖v‖2
L∞(0,T ′;L2(Ω)) + ‖∇v‖2

L2(Ω×(0,T ′)) + ‖S‖2
L∞(0,T ′;L2(Ω)) + ‖∇S‖2

L2(Ω×(0,T ′))

+

∫ T ′

0

P(S) dt ≤ c0

(
‖v0‖2

2 + ‖S0‖2
2 + ‖F0‖2

L1(0,T ′;L2(Ω)) + ‖F1‖2
L2(Ω×(0,T ′))

+ ‖F̃1‖2
L2(Ω×(0,T ′)) + ‖g‖2

L1(0,T ′;H1/2(∂Ω)) + ‖g‖4
L4(0,T ′;H1/2(∂Ω))

)
by using Sobolev embeddings. Applying an interpolation argument to the last term and using (4.7), we
can further estimate the right-hand side by

c1

(
‖v0‖2

2 + ‖S0‖2
2 + ‖F0‖2

L1(0,T ′;L2(Ω)) + ‖F1‖2
L2(Ω×(0,T ′))

+ ‖g‖2
L∞(0,T ′;H1/2(∂Ω)) + ‖∂tg‖2

L∞(0,T ′;H−1/2(∂Ω)) + ‖g‖2
L1(0,T ′;H1/2(∂Ω))

+ ‖g‖4
L1(0,T ′;H1/2(∂Ω)) + ‖g‖4

L∞(0,T ′;H1/2(∂Ω))

)
.

Since V = v + w, a combination of the resulting estimate with (4.7) completes the proof.
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4.2 Generalized solutions for nonsmooth potentials

In this subsection, we extend the previous existence result to the case of a nonsmooth convex potential
P possibly featuring an indicator function. More precisely, we will assume that P : L2

δ(Ω) → [0,∞]
is a dissipation potential, that is, P is convex and lower semicontinuous with P(0) = 0. Now it is
explicitly allowed that P is nonsmooth and takes the value +∞. An admissible choice of P is

P(S) = ιK(S) + a
2
‖S‖2

L2
δ(Ω) with a > 0 (4.11)

and a nonempty, convex and closed subset K ⊆ L2
δ(Ω). Here, ιK denotes the indicator function

(from convex analysis) associated with K , that is

ιK(S) =

{
0, if S ∈ K,
+∞, if S 6∈ K.

(4.12)

With regard to geodynamics applications that include plasticity, we have in mind

K = {S ′ ∈ L2
δ(Ω) : |S ′| ≤ σyield a.e. in Ω}, (4.13)

which is the elastic domain that is determined by a given yield stress σyield > 0, cf. [MDM02, Ger07].
Clearly, this set enjoys the required properties.

First, we have to formulate an appropriate notion of solution. The following definition adapts the
weak solution concept in [Rou13, Chapter 10] involving an evolutionary variational inequality. Roughly
speaking, (and assuming sufficient smoothness for the moment) we test (4.3) with Ψ(t) = S̃(t)−S(t)
which allows us to use the estimate

∫
Ω
∂P(S(t)) : (S̃(t)−S(t)) dx ≤ P(S̃) − P(S) leading to

a variational inequality that avoids the multi-valued function ∂P(S). The nonlinear term involving the
Zaremba–Jaumann derivative can be modified via the identity (1.4) to obtain∫

Ω

O
S : (S̃−S) dx =

∫
Ω

(
∂tS : (S̃−S) +

(O
S−∂tS) : S̃

)
dx

=

∫
Ω

(
∂tS̃ : (S̃−S) +

(O
S−∂tS) : S̃

)
dx− d

dt

∫
Ω

1

2
|S̃−S|2 dx,

(4.14)

where
O
S − ∂tS = V · ∇S + SW −WS. Observe that due to the lack of control of the set ∂P(S)

an Aubin–Lions type compactness result at the level of S will no longer be available. At the same

time, owing to the nonlinearities in
O
S, a priori estimates implying higher (time) regularity would re-

quire a regularization significantly stronger than the linear Laplacian, which we prefer to avoid. In our
concept of generalized solutions we therefore drop the boundary term at the final time arising from
time integration of (4.14). We can still recover a weak formulation for generalized solutions that are
sufficiently regular, provided the dissipation potential enjoys some (mild) approximation property. For
details concerning the compatibility of the notions of weak solutions versus generalized solutions, we
refer to Lemma 4.10 below. Furthermore, our evolutionary variational inequality encodes the natural
energy dissipation inequality for S (see Prop. 4.8).

Due to the nonlinear terms in the Zaremba–Jaumann derivative, in the rigorous formulation of the
variational inequality we can only admit test functions enjoying some extra integrability as compared
to the typical functional setting for parabolic problems (as used for instance in [Rou13]). Here, we will
consider test functions in the space

ZT ′ := H1(0, T ′; L2
δ(Ω)) ∩ L2(0, T ′; H1(Ω)) ∩ L5(0, T ′; L5(Ω)). (4.15)
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Definition 4.6 (Generalized solution). Let T ∈ (0,∞] and assume, as before, that V0, S0 and F are
as in (4.1). Let P be a (general) dissipation potential, and let g satisfy (4.4a) with g · n = 0. We call
a couple (V, S) a generalized solution of system (1.1) in Ω × (0, T ) with boundary conditions (1.2)
and initial data (1.3) if for all T ′ ∈ (0, T ) the following holds: (V, S) ∈ LHT ′×XT ′ satisfies the weak
form (4.2) of the Navier–Stokes equations for the velocity field, V |∂Ω×(0,T ) = g, and for all S̃ ∈ ZT ′∫ T ′

0

∫
Ω

∂tS̃ : (S̃ − S) + γ∇S : ∇(S̃ − S) dxdt+

∫ T ′

0

(
P(S̃)− P(S)

)
dt

+

∫ T ′

0

∫
Ω

V · ∇S : S̃ + (SW (V )−W (V )S) : S̃ − ηD(V ) : (S̃ − S) dxdt

≥ −1
2
‖S̃(0)− S0‖2

2.

(4.16)

It is easy to see that the terms in (4.16) are well-defined. For the integrals involving the nonlinear
terms of the Zaremba–Jaumann rate, this follows from the Sobolev embedding H1(Ω) ↪→ L6(Ω), the
interpolation

L∞(0, T ′; L2(Ω)) ∩ L2(0, T ′; L6(Ω)) ↪→ L
10
3 (0, T ′; L

10
3 (Ω)), (4.17)

and the generalized Hölder inequality with inverse exponents 3
10

+ 1
2

+ 1
5

= 1.

Remark 4.7. In the formulation (4.16) it is crucial that in the integral involving the convective part, only
the term V ·∇S : S̃ occurs, and not V ·∇S : (S̃−S), since under the natural regularity hypotheses
of S in Def. 4.6, integrability of the term V · ∇S : S is not ensured.

It is worth noting that, despite the absence of the boundary term at time T ′ in ineq. (4.16), generalized
solutions in the sense of Def. 4.6 obey the natural energy dissipation inequality for S.

Proposition 4.8 (Energy inequality). Any generalized solution (V, S) in the sense of Definition 4.6
satisfies the partial energy dissipation inequality

1

2
‖S(T ′)‖2

2 + γ‖∇S‖2
L2(Ω×(0,T ′)) +

∫ T ′

0

P(S) dτ ≤ 1

2
‖S0‖2

2 +

∫ T ′

0

∫
Ω

ηD(V ) : S dx dτ (4.18)

for almost all T ′ ∈ (0, T ).

Proof. First observe that choosing S̃ ≡ 0 in (4.16) shows that
∫ T ′

0
P(S) dτ <∞. Let us further note

that since S ∈ L∞(0, T ′; L2(Ω)), almost every T ′ ∈ (0, T ) is a left Lebesgue point of t 7→ S(t) ∈
L2(Ω).

Extend now S by zero for t < 0 and consider for κ > 0

Sκ(t) = κ−1

∫ t

t−κ
S(τ) dτ.

Further let η ∈ C∞(R; [0, 1]) be nondecreasing, η(t) = 0 for t ≤ −1 and η(t) = 1 for t ≥ 0, and

define ηδ(t) := η
(T ′)
δ (t) := η((t− T ′)/δ). We then choose in (4.16) the test function S̃ := S̃κ,δ :=

ηδSκ ∈ ZT ′ , where δ ∈ (0, δ∗] and κ ∈ (0, κ∗] are chosen sufficiently small and, in particular, such
that S̃κ,δ(0) = 0.

Since P is convex with P(0) = 0 and 0 ≤ ηδ ≤ 1, we can estimate using Jensen’s inequality∫ T ′

0

P(S̃κ,δ) dτ ≤ κ−1

∫ T ′

T ′−δ
ηδ(t)

∫ t

t−κ
P(S(τ)) dτ dt ≤ κ−1

∫ T ′

0

P(S) dτ · δ,
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where we also used the nonnegativity of P . Since
∫ T ′

0
P(S) dτ < ∞, the last line implies that

limδ→0

∫ T ′
0
P(S̃κ,δ) dτ = 0 for any κ ∈ (0, κ∗].

Let us next turn to the integral involving the time derivative. Using the fact that ηδ(T ′) = 1, we find∫ T ′

0

∫
Ω

∂tS̃ : (S̃ − S) dx dt =
1

2
‖Sκ(T ′)‖2

2 −
∫ T ′

0

η′δ(t)

∫
Ω

Sκ : S dx dt

−
∫ T ′

T ′−δ
ηδ(t)

∫
Ω

∂tSκ : S dx dt.

Since S ∈ L∞(0, T ′; L2(Ω)), we easily see that the term in the last line vanishes as δ → 0.
Furthermore, we have the following convergence results, valid for almost all T ′ ∈ (0, T ) :

lim
δ→0

∫ T ′

0

η′δ(t)

∫
Ω

Sκ : S dx dt =

∫
Ω

Sκ(T
′) : S(T ′) dx,

lim
κ→0

∫
Ω

Sκ(T
′) : S(T ′) dx = ‖S(T ′)‖2

2,

lim
κ→0

1

2
‖Sκ(T ′)‖2

2 =
1

2
‖S(T ′)‖2

2.

Thus, for almost all T ′ we obtain

lim
κ→0

lim
δ→0

∫ T ′

0

∫
Ω

∂tS̃κ,δ : (S̃κ,δ − S) dx dt = −1

2
‖S(T ′)‖2

2.

All remaining integrals in (4.16) involving S̃ converge to zero as δ → 0, as long as κ is positive. Thus,
sending first δ → 0 in (4.16) (with S̃ = S̃κ,δ), and taking subsequently the limit κ → 0, we arrive
at (4.18).

The main purpose of this subsection is to establish the following existence result.

Theorem 4.9 (Existence of generalized solutions to (1.1)–(1.3)). Let T ∈ (0,∞], let Ω be a bounded
domain in R3 with C1,1-boundary, and let P be a dissipation potential on L2

δ(Ω). Let V0, S0 and F
as in (4.1), and let g satisfy (4.4a) and g · n = 0. Then there exists a generalized solution (V, S)
of the system (1.1) in Ω × (0, T ) with boundary conditions (1.2) and initial data (1.3) in the sense of
Definition 4.6.

Moreover, this solution satisfies the following energy-dissipation inequality, where v = V−w with w
from Theorem 4.4. For a.a. t ∈ (0, T ) we have∫

Ω

1

2
|v(t)|2 +

1

2
|S(t)|2 dx+

∫ t

0

∫
Ω

[
µ|∇v|2 + γ|∇S|2

]
dx dτ +

∫ t

0

P(S) dτ

≤
∫

Ω

1

2
|V0−w(0)|2 +

1

2
|S0|2 dx (4.19)

+

∫ t

0

∫
Ω

[
F0 · v − (F1−F̃1) : ∇v + w ⊗ (v+w) : ∇v + ηD(w) : S

]
dx dτ.

where F̃ = div F̃1 denotes the auxiliary forcing in the Stokes problem for w (cf. (3.1)).

DOI 10.20347/WIAS.PREPRINT.2829 Berlin 2021



Leray–Hopf solutions to a viscoelastic fluid model with nonsmooth stress-strain relation 25

Before turning to the proof of Theorem 4.9, we show that the weak solution from Theorem 4.4 obtained
in the case of a smooth potential satisfies a variational inequality and hence is a generalized solution in
the sense of Definition 4.6. Moreover, we provide sufficient regularity conditions for (V, S) that allow
us to conclude that generalized solutions are already weak solutions in the sense of Definition 4.1.
For this purpose, we need an approximation property for the induced potential P acting on Bochner
functions

P(S̃) :=

∫ T ′

0

P(S̃(t)) dt, S̃ ∈ L2(0, T ′; L2
δ(Ω)). (4.20)

The approximation condition states:

∀ S̃ ∈ L2(0, T ′; L2
δ(Ω)) ∃ (S̃n)n∈N ⊂ ZT ′ :

S̃n ⇀ S̃ in L2(0, T ′; L2(Ω)) and P(S̃n)→P(S̃).
(4.21)

This property is certainly satisfied for the plasticity potential P defined in (4.11)–(4.13).

Lemma 4.10 (Weak versus generalized solutions).
(A) Assume that P ∈ C1,1(L2

δ(Ω)). If (V, S) is a weak solution in the sense of Definition 4.1 that
additionally satisfies the partial energy dissipation inequality (4.9), then it is also a generalized solution
in the sense of Definition 4.6.

(B) If (V, S) is a generalized solution in the sense of Definition 4.6 with the additional regularity

S ∈ H1(0, T ′; L2(Ω)) ∩ L2(0, T ′; H2(Ω)) ∩ L∞(0, T ′; L∞(Ω)) (4.22)

for all T ′ < T , and if P satisfies the approximation property (4.21), then it is also a weak solution in
the sense of Definition 4.1, where (4.3) is replaced by∫ T

0

∫
Ω

[
−S : ∂tΨ + V · ∇S : Ψ +

(
SW (V )−W (V )S

)
: Ψ

+ β : Ψ + γ∇S : ∇Ψ− ηD(V ) : Ψ
]

dx dt =

∫
Ω

S0 : Ψ(0) dx

(4.23)

for all Ψ ∈ C∞0,δ(Ω× [0, T )), where β ∈ L2(0, T ; L2
δ(Ω)) with β(t) ∈ ∂P(S(t)) for a.a. t ∈ (0, T ).

Proof. Part (A): Let (V, S) be a weak solution. We have to show that the evolutionary variational
inequality (4.16) holds. Using a standard approximation argument and recalling the weak continuity
S ∈ Cw([0, T ); L2

δ(Ω)), one can show that the weak equation (4.3) for S on (0, T ) implies for all
T ′ ∈ (0, T ) and all S̃ ∈ C∞0,δ(Ω× [0, T ′]) the identity∫ T ′

0

∫
Ω

[
−S : ∂tS̃ + V · ∇S : S̃ + (SW (V )−W (V )S) : S̃

+ ∂P(S) : S̃ + γ∇S : ∇S̃ − ηD(V ) : S̃
]

dx dt

=

∫
Ω

S0 : S̃(0) dx−
∫

Ω

S(T ′) : S̃(T ′) dx.

Subtracting inequality (4.9) we find, upon rearranging terms,∫ T ′

0

∫
Ω

[−S : ∂tS̃ + ∂P(S) : (S̃−S) + γ∇S : ∇(S̃−S) + V · ∇S : S̃

+ (SW (V )−W (V )S) : S̃ − ηD(V ) : (S̃−S) ] dx dt

≥ −1
2
‖S0‖2

2 +

∫
Ω

S0 : S̃(0) dx+ 1
2
‖S(T ′)‖2

2 −
∫

Ω

S(T ′) : S̃(T ′) dx.

DOI 10.20347/WIAS.PREPRINT.2829 Berlin 2021



T. Eiter, K. Hopf, A. Mielke 26

By the density of C∞0,δ(Ω × [0, T ′]) in ZT ′ , the last inequality continues to hold for all S̃ ∈ ZT ′ . The

assertion is now obtained by adding
∫ T ′

0

∫
Ω
∂tS̃ : S̃ dxdt = 1

2
‖S̃(T ′)‖2

2 − 1
2
‖S̃(0)‖2

2, and using the

fact that 1
2
‖S̃(T ′) − S(T ′)‖2

2 ≥ 0 as well as the inequality P(S̃(t)) − P(S(t)) ≥
∫

Ω
∂P(S(t)) :

(S̃(t)−S(t)) dx.

Part (B): For a generalized solution (V, S) with the smoothness as in (4.22) we have

β := −
O
S + γ∆S + ηD(V ) ∈ L2([0, T ′]; L2

δ(Ω)). (4.24)

We further note that, as a consequence of (4.16), P(S) =
∫ T ′

0
P(S) dt <∞.

Using the Zaremba–Jaumann identity (1.4) and the definition of β we find∫ T ′

0

∫
Ω

(
V · ∇S : S̃ +

(
SW (V )−W (V )S

)
: S̃ dx dt =

∫ T ′

0

∫
Ω

(O
S−∂tS) : S̃ dx dt

=

∫ T ′

0

∫
Ω

(O
S−∂tS) : (S̃−S) dx dt =

∫ T ′

0

∫
Ω

(
−∂tS − β + γ∆S + ηD(V )

)
: (S̃−S) dx dt.

Inserting this identity into (4.16), we are left with the variational inequality∫ T ′

0

∫
Ω

(
(∂tS̃−∂tS) : (S̃−S)− β : (S̃−S)

)
dx dt+ P(S̃)−P(S) ≥ −1

2
‖S̃(0)− S0‖2

2

(4.25)

for all S̃ ∈ ZT ′ , where we recall the definition of P in (4.20). Given R̃ ∈ ZT ′ with R̃(0) = 0 =
R̃(T ′), we choose in (4.25) the test function S̃ = S + R̃, which by (4.22) lies in ZT ′ and moreover
satisfies S̃(0) = S0, to infer

P(S+R̃)−P(S) ≥
∫ T ′

0

∫
Ω

β : R̃ dx dt (4.26)

for all such R̃.

We assert that by means of an approximation argument, ineq. (4.26) can be extended to general
R̃ ∈ ZT ′ , not necessarily vanishing at the boundary of (0, T ′). To see this, we pick a sequence
{θj} ⊂ C∞0 ((0, T ′)) with 0 ≤ θj ≤ θj+1 ≤ 1 for all j ∈ N and such that limj→∞ θj(t) = 1 for all
t ∈ (0, T ′). We then infer from ineq. (4.26) for general R̃ ∈ ZT ′∫ T ′

0

(
P(S+θjR̃)− P(S)

)
dt ≥

∫ T ′

0

θj(t)

∫
Ω

β : R̃ dx dt. (4.27)

Since P is convex, we have for every θ = θj(t) ∈ [0, 1]

P(S+θR̃)− P(S) = P
(
θ(S+R̃) + (1− θ)S

)
− P(S) ≤ θP(S+R̃)− θP(S).

Inserting this inequality into (4.27) gives∫ T ′

0

θj(t)P(S+R̃) dt−
∫ T ′

0

θj(t)P(S) dt ≥
∫ T ′

0

θj(t)

∫
Ω

β : R̃ dx dt.

Invoking the monotone convergence theorem for the first term in the last line and using dominated
convergence for the remaining two time integrals, we can take the limit j → ∞ in the last inequality
and arrive at (4.26) for general R̃ ∈ ZT ′ .
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Thanks to the approximation property (4.21) of P , we can further extend (4.26) to general R ∈
L2(0, T ′; L2

δ(Ω)). Indeed, letting S̃ := S + R ∈ L2(0, T ′; L2
δ(Ω)), property (4.21) provides us with

a sequence (S̃n) ⊂ ZT ′ such that S̃n ⇀ S + R in L2(0, T ′; L2
δ(Ω)) and P(S̃n) → P(S + R).

Hence, inserting R̃ = R̃n := S̃n − S in (4.26) and passing to the limit n→∞ we obtain

P(S+R) ≥P(S) +

∫ T ′

0

∫
Ω

β : R dx dt for all R ∈ L2(0, T ′; L2
δ(Ω)).

But this is exactly the definition of β ∈ ∂P(S), and the special definition of P in terms of P
(cf. (4.20)) implies β(t) ∈ ∂P(S(t)) a.e. on (0, T ′).

The definition of β in (4.24) implies the desired weak equation (4.23).

The following auxiliary result presents the crucial idea for passing to the limit ε → 0 in the nonlin-
ear terms arising from the Zaremba–Jaumann derivative. In the case of nonsmooth potentials we do
not have compactness of (Sε) in L2(Ω×(0, T ′)), thus we need to show that weak convergence is
sufficient.

Lemma 4.11. Let Vε = (V ε
i ) and Sε = (Sεjk) satisfy the conditions

Vε → V in L2(Ω×(0, T ′)), Vε ⇀ V and Sε ⇀ S in L2(0, T ′; H1(Ω)),

and let Vε|∂Ω = g ∈ L2(0, T ′; L2(∂Ω)) be fixed. Further assume that ‖Sε‖L
10
3 (Ω×(0,T ′))

≤ C .

Then, for all i, j, k, l ∈ {1, 2, 3} we have

lim
ε→0

∫ T ′

0

∫
Ω

Sεij∂kV
ε
l ψ dx dt =

∫ T ′

0

∫
Ω

Sij∂kVl ψ dx dt for all ψ ∈ L5(Ω×(0, T ′)). (4.28)

Proof. We first show that (4.28) holds for ψ ∈ C1(Ω× [0, T ′]). In this case, integration by parts with
respect to the spatial variable gives∫ T ′

0

∫
Ω

Sεij∂kV
ε
l ψ dx dt =

∫ T ′

0

∫
∂Ω

Sεijglnk ψ dσ dt−
∫ T ′

0

∫
Ω

∂k
(
Sεij ψ

)
V ε
l dx dt,

where we have already exploited the boundary conditions Vε = g on ∂Ω.

Due to continuity of the trace operator from H1(Ω) to L2(∂Ω), we have Sε ⇀ S in L2(0, T ′; L2(∂Ω))
and can pass to the limit in the first term on the right-hand side. For the last term we use the
weak convergence of Sε to S in L2(0, T ′; H1(Ω)) as well as the strong convergence of Vε to V
in L2(Ω×(0, T ′)). Undoing the spatial integration by parts, we obtain the desired result for ψ ∈
C1(Ω× [0, T ′]).

The validity of (4.28) for general ψ ∈ L5(Ω×(0, T ′)) is now a consequence of the density of C1(Ω×
[0, T ′]) in L5(Ω×(0, T ′)) and the fact that, by Hölder’s inequality (with 3

10
+ 1

2
= 4

5
), the sequence

{Sεij∂kV ε
l }ε is ε-uniformly bounded in L

5
4 (Ω×(0, T ′)).

We are now in the position to complete the proof of Theorem 4.9 and show existence of generalized
solutions to (1.1).
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Proof of Theorem 4.9. For ε ∈ (0, 1] consider the Moreau envelopePε forP as introduced in Section
2, and denote by (Vε, Sε) the weak solution constructed in Theorem 4.4 with P replaced by Pε. By
estimate (4.10), we have the ε-uniform bound

‖Vε‖L∞(0,T ′;L2(Ω)) + ‖Vε‖L2(0,T ′;H1(Ω)) + ‖∂tVε‖L1(0,T ′;(H1
0,σ(Ω))′)

+ ‖Sε‖L∞(0,T ′;L2(Ω)) + ‖Sε‖L2(0,T ′;H1(Ω)) +

∫ T ′

0

∫
Ω

Pε(Sε) dx dt ≤MT ′

(4.29)

for all T ′ < T . Hence, there exists a sequence ε→ 0 (not relabeled) and a pair (V, S) such that for
all T ′ < T one has (V, S) ∈ LHT ′ × XT ′ and

Vε ⇀ V in L2(0, T ′; H1(Ω))3,

Sε ⇀ S in L2(0, T ′; H1(Ω))3×3,

Vε
∗
⇀ V in L∞(0, T ′; L2

σ(Ω)),

Sε
∗
⇀ S in L∞(0, T ′; L2

δ(Ω)),

∂tVε ⇀ ∂tV in L1(0, T ′;
(
H1

0,σ(Ω)3
)′

),

Vε → V in L2(0, T ′; L2(Ω))3,

where, as in the proof of Theorem 3.10, the strong convergence of (Vε) is obtained from an Aubin–
Lions compactness result.

The passage to the limit ε → 0 in the weak form (4.2) of the equation for the velocity field Vε fol-
lows from standard arguments based on the above convergence properties. As a result, the limiting
vector field V satisfies eq. (4.2). Moreover, the fact that Vε|∂Ω×(0,T ) = g combined with the above
convergence properties easily yields V |∂Ω×(0,T ) = g. Thus, it remains to show that S satisfies in-

equality (4.16) for all S̃ ∈ ZT ′ .
By Lemma 4.10 (A), Sε satisfies the variational inequality∫ T ′

0

∫
Ω

∂tS̃ : (S̃ − Sε) + γ∇Sε : ∇(S̃ − Sε) dxdt+

∫ T ′

0

Pε(S̃)− Pε(Sε) dt

+

∫ T ′

0

∫
Ω

Vε · ∇Sε : S̃ + (SεW (Vε)−W (Vε)Sε) : S̃ − ηD(Vε) : (S̃ − Sε) dxdt

≥ −1
2
‖S̃(0)− S0‖2

2.

(4.30)

We will deduce ineq. (4.16) by estimating the lim supε→0 of the left-hand side.

First, the weak convergence Sε ⇀ S in L2(0, T ′; H1(Ω))3×3 implies that∫ T ′

0

∫
Ω

∂tS̃ : (S̃ − S) + γ∇S : ∇(S̃ − S) dx dt

≥ lim sup
ε→0

∫ T ′

0

∫
Ω

∂tS̃ : (S̃ − Sε) + γ∇Sε : ∇(S̃ − Sε) dx dt,

where we used weak upper semicontinuity of the concave quadratic term.

For the second term on the left-hand side of (4.30), we use the bound

lim sup
ε→0

∫ T ′

0

(
Pε(S̃)− Pε(Sε)

)
dt ≤

∫ T ′

0

(
P(S̃)− P(S)

)
dt
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which is consequence of Lemma 2.1 and inequality (2.2).

Further note that Vε → V in L2(0, T ′; H1(Ω)) and Sε ⇀ S in L2(0, T ′; L2(Ω)) imply

lim
ε→0

∫ T ′

0

∫
Ω

Vε · ∇Sε : S̃ dxdt =

∫ T ′

0

∫
Ω

V · ∇S : S̃ dx dt.

The term (SεW (Vε)−W (Vε)Sε) : S̃ + ηD(Vε) : Sε consists of a finite linear combination of terms
handled in Lemma 4.11. This lemma can be applied thanks to the convergence properties of (Vε, Sε)

and the interpolation (4.17) ensuring the boundedness of (Sε) in L
10
3 (Ω×(0, T ′)). Hence we can

pass to the limit with all remaining parts in the left-hand side.

The above observations allow us to estimate the lim supε→0 of the left-hand side of (4.30) above
by the left-hand side of inequality (4.16). Hence (V, S) is a generalized solution to (1.1)–(1.3) in the
sense of Definition 4.6.

It remains to establish the energy-dissipation inequality (4.19). But this is a simple consequence of
the previously established energy-dissipation inequalities. In particular, we note that the boundary
extension w constructed for Theorem 4.4 depends only on g and, hence, is independent of the reg-
ularization parameter ε. Thus, we can use the energy-dissipation inequality (3.32) for vε = Vε − w
and Sε. With the given weak and strong convergences, we can pass to the limit ε → 0 and obtain
the corresponding inequality for the limits v = V−w and S. Adding the energy-dissipation inequality
(4.18) from Proposition 4.8 and recalling the fact that F0 = f0 and F1 = f1 + F̃1, we arrive at the
desired result (4.19).
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