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Pricing high-dimensional Bermudan options with hierarchical tensor formats

Christian Bayer, Martin Eigel, Leon Sallandt, Philipp Trunschke

Abstract

An efficient compression technique based on hierarchical tensors for popular option pricing methods is
presented. It is shown that the “curse of dimensionality” can be alleviated for the computation of Bermudan
option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both
using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and com-
putationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a
description of the optimization procedures in the tensor train format. Numerical experiments illustrate the
favourable accuracy of the proposed methods. The dynamical programming method yields results compa-
rable to recent Neural Network based methods.

1 Introduction

Pricing of American or Bermudan type options, i.e., options with an early exercise feature, is one of the most
classical, but also most difficult problems of computational finance, producing a vast amount of literature. Some
examples of popular classes of methods include PDE methods (see, for instance, [AP05]), tree and stochastic
mesh methods (see, for instance, [Gla13]), and policy iteration (see, e.g., [BS18]). In this paper we consider
two other very popular methodologies, namely least squares Monte Carlo methods based on the dynamic pro-
gramming principles pioneered by [LS01] and dual martingale methods introduced by [Rog02], both of which
were, of course, widely adapted and considerably improved since then. We refer to [Lud20] for a recent overview
together with an open-source implementation.

Both least squares Monte Carlo methods and duality methods require efficient and accurate approximation of
functions from a potentially large class. Indeed, the key step of the least squares Monte Carlo method involves
the computation of a continuation value, i.e., of the conditional expectation Etrvpt ` ∆t,Xt`∆tqs of a future
value function at time t.1 (For sake of presentation, let us assume that we are using an asset price model
based on a Markov process X , which contains the asset prices S, but possibly also further components, such
as stochastic volatilities or interest rates.) This conditional expectation is then approximated within a finite di-
mensional space spanned by basis functions – often chosen to be polynomials. When the dimension d of the
underlying process X is high, we encounter a curse of dimensionality, i.e., we expect that the number of basis
functions needed to achieve a certain accuracy increases exponentially in the dimension d. This is especially
true when the basis functions are chosen by “tensorization” of one-dimensional basis functions. E.g., the dimen-
sion of the space of polynomials of (total) degree p in d variables is

`

d`p
d

˘

. Such a polynomial basis become
inefficient when d " 1, a realistic scenario for options on baskets or indices. For instance, options on SPY
(with 100 assets) are American, implying that d ě 100, depending on the choice of the model – in the sense
that continuation values also depend on volatilities not just the asset prices in stochastic volatility models, for
example. Hence, other classes of basis functions are needed.

Duality methods are typically based on parameterizations of families of candidate martingales. In the Marko-
vian case, we may restrict ourselves to martingales representable as stochastic integrals of functions φpt,Xtq

against the driving Brownian motion, and we again see a potential curse of dimensionality in terms of the di-
mension of X .

1Actual algorithms may rather involve actual future payoffs such as in [LS01]. Note that we ignore discounting at this time.
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When the underlying model is not Markovian – as, e.g., common for rough volatility models, see, e.g., [BFG16]
– the involved dimensions can increase drastically, as then both continuation values and candidate martingales
theoretically depend on the entire trajectory of the process X until time t. There are only very few rigorously
analyzed methods for such non-Markovian problems. We specifically refer to [Lel18; Lel19], both of which are
based on Wiener chaos expansions of the value process and the candidate martingale, respectively. In this
framework, conditional expectations can be computed explicitly, but the curse of dimension enters via the chaos
decomposition itself, see Section 2.2 for details.

In either case, we are faced with “natural” d-dimensional bases which quickly increase in size as d increases.
While the curse of dimension is often a real, inescapable fact of complexity theory (in the sense of a worst
case dependence over sufficiently general classes of approximation problems), real life problems often exhibit
structural properties which lead to a notion of “effective dimension” of a problem which may increase much
slower than the actual dimension d – see, for instance, [WS05] for a similar phenomenon in finance. This insight
has lead to efficient approximation strategies for high-dimensional functions of low effective dimension of some
sort in numerical analysis. In this paper, we propose to use hierarchical tensor formats, more precisely tensor
trains, to provide efficient approximations of nominally high-dimensional functions, provided that they allow for
accurate low-rank approximations.

Hierarchical tensors (HT) [BSU16; HS14] rely on the classical concept of separation of variables by means of a
generalization of the singular value decomposition (SVD) to higher-order tensors, preserving many of its well-
known properties. The hierarchical SVD (HSVD) yields a notion of multilinear rank and provides an approach to
obtain a quasi-optimal low-rank approximation by rank truncation. For fixed multilinear ranks, the representation
and operation complexities of these formats scale only linearly in the order of the tensor. Central to the HSVD
is a tree-based representation of a recursive decomposition of the tensor space into nested subspaces. For the
described algorithms, we use the common tensor train (TT) format [OT09; Ose11; Ose13], which is a “lineariza-
tion” of the HT representation with general binary trees. Similar to matrices, the set of hierarchical tensors of
fixed multilinear rank is not convex but forms a smooth manifold. Hence, appropriate optimization techniques
such as alternating and Riemannian schemes are available.

Tensor trains are a new technique in computational finance. In fact, we are only aware of one other paper in
the field using these tensor representations, namely [GKS20]. In that paper, the authors consider parametric
option pricing problems. That is, they are given a model with parameters ζ and options with parameters η. The
price of these options in the model is then a function P pθq, θ :“ pζ, ηq, of the model and option parameters,
and we can expect P to be regular. Some tasks in financial engineering require rapid option pricing, e.g., for
calibrating model parameters to market prices. Following [Gaß+18], [GKS20] propose to approximate θ ÞÑ P pθq
by Chebyshev interpolation. If θ is high-dimensional, such a interpolation may already involve a very large
number of Chebyshev polynomials, and they then proceed to “compress” the representation using tensor trains.

No discussion of computational methods for high-dimensional problems can today ignore the trend of using
machine learning techniques, in particular deep neural networks, to often great success. In the context of
American or Bermudan options, we mention the recent paper by [BCJ19], who are able to accurately price
high-dimensional Bermudan options in dimensions up to 500 using deep learning techniques based on param-
eterization of randomized stopping times, see also [BTW20]. A natural question then is if the successes of deep
learning for solving high dimensional problems (“overcoming” the curse of dimension) can also be achieved by
other, more traditional methods of numerical analysis.

Main contributions

Our intention is to advocate the use of hierarchical tensor formats for high-dimensional problems in computa-
tional finance. For this, we provide an overview of the main ideas of these formats and illustrate the application
of tensor trains with two popular methods using tensorized polynomial spaces for the discretization. The consid-
ered problem sizes would be infeasible without some efficient model order reduction technique. We demonstrate
in particular that the achieved accuracy is comparable to recent Neural Network approaches.
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Pricing high-dimensional Bermudan options 3

Tensor networks have already been used to alleviate the curse of dimensionality in physics [Vid03], parametric
PDEs [BSU16; EPS17; Eig+19; Eig+20] as well as other control problems [DKK19; OSS19; Fac+20]. They may
significantly reduce the computational complexity [Hac12] and are able to represent sparse functions with a
constant overhead [BCD17]. In this paper we demonstrate the usefulness of tensor networks in computational
finance on two examples with discretizations in polynomial tensor product spaces in d dimensions with degree
p of the form

X “
ÿ

αPrpsd

XαPα (1)

with coefficient tensor X P Rpd . The first example showcases the application of the alternating least squares
algorithm [HRS12c] for the best approximation problem in the primal method of Longstaff and Schwartz [LS01]
where the discounted value is given by

vpxq “
ÿ

αPΛ

Vα

d1
ź

k“1

Bαkpxkq. (2)

In the second example we present the application of a Riemannian optimization algorithm [KSV14] to solve
the convex minimization problem in the dual method of Lelong [Lel18]. For both examples we examine the
reduction of the space and time complexity. In the numerical experiments we compare the originally published
and the new methods on standard problems. The reduced complexity allows to apply the Longstaff-Schwartz
algorithm to problems with up to 1000 assets. Problems of this size have only been reported recently with state-
of-the-art machine learning methods [BCJ19]. Moreover, in comparison to the Neural Network approach, our
method requires significantly fewer samples. Even though the application of the tensor compression to the dual
method turned out to be quite involved (in terms of the tensor optimization), the resulting algorithm produces
comparable or better results while considerably reducing the dimensionality of the underlying equation. This
renders this approach tractable for more assets and higher accuracy computations.

We conclude that tensor networks can be very beneficial technique for high-dimensional problems in financial
mathematics. They rival the performance of Neural Networks, show similar approximation and complexity prop-
erties, and exhibit richer mathematical structures that can be exploited (such as in the Riemannian optimization
described in Section 3.3).

2 Bermudan option pricing

In what follows we introduce our frameworks and notations for the Bermudan option pricing problem. Further-
more, we recall the celebrated Longstaff-Schwartz algorithm as well as Lelong’s version of Rogers’ duality
approach based on a Wiener chaos expansion.

We fix some finite time horizon T ą 0 and a filtered probability space pΩ,F , pFtq0ďtďT ,Pq, where pFtq0ďtďT
is supposed to be the natural augmented filtration of a d-dimensional Brownian motionB – the natural setting for
the Wiener chaos expansion lying at the core of our duality algorithm. On this space, we consider an adapted
Markov process pStq0ďtďT with values in Rd1 modeling a d1-dimensional underlying asset. The number of
assets d1 can be smaller than the dimension d of the Brownian motion to encompass the case of stochastic
volatility models or stochastic interest rate. To simplify notation, we consider the case that S generates the
filtration and d1 “ d.

We assume that P is an associated risk neutral measure. We consider an adapted payoff process rZ and
introduce its discounted value process

ˆ

Zt “ expp´

ż t

0
rpsq dsq rZt

˙

0ďtďT

.

We assume that the paths of Z are right continuous and that suptPr0,T s|Zt| P L2pΩ,FT ,Pq. The process rZ
can obviously take the simple form pϕpStqqtďT for some function ϕ, but it can also depend on the whole path
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of the underlying asset S up to the current time. We consider the Bermudan option paying rZtk to its holder if
exercised at time 0 “ t1 ă ¨ ¨ ¨ ă tN “ T . Standard arbitrage pricing theory defines the discounted time-t
value of the Bermudan option to be

Utn “ ess sup
τPTtn

ErZτ |Fτ s (3)

where Tt denotes the discrete set of F -stopping times with values in rt, T s.

We now recall two of the many algorithms for pricing Bermudan options available in the literature, beginning with
the classical Longstaff-Schwartz algorithm. These algorithms will be used to test the efficiency gains achievable
by hierarchical tensor formats in the context of option pricing.

2.1 Primal (Longstaff-Schwartz)

In the Longstaff-Schwartz algorithm [LS01], the dynamic programming principle corresponding to the discounted
time-t value of the Bermudan option (3), is used. It reads

Utn “ maxtZtn ,ErUtn`1 |Ftnsu (4)

with final condition UtN “ ZtN . If ErUtn`1|Ftns is known, an optimal stopping-time policy can be synthesized
explicitly by stopping if and only if Ztn ě ErUtn`1 |Ftns. Thus, the problem of finding the optimal stopping time
and also the valuation of the option can be reduced to finding ErUtn`1 |Ftns, which is exactly what the Longstaff-
Schwartz algorithm approximates. As this algorithm is pretty standard, we do not give a detailed explanation and
instead simply state the algorithm. Note that we abbreviate the notation by dropping the t in the discretization,
i.e. Stn “ Sn. We define the ITM (“in the money”) operator which is mapping a set of assets to the subset
where the current payoff is positive.

Algorithm 1: Longstaff-Schwartz
input : Number of samples M , exercise dates 0 “ t1 ă ¨ ¨ ¨ ă tN “ T , initial value s0.
output: Conditional expectations vnpxq “ ErUn`1|Sn “ xs, n ď N .
Set Sm0 “ s0 and compute trajectories: Smn for m “ 1, . . .M , n “ 1, . . . N .
Set

Y m “ Zmn (5)

for k “ n´ 1 to 1 do
Find ITM paths Sm̃ for m P ITM Ă t1, . . . ,Mu. Set

vnp¨q « arg min
vPM

1

|ITM|

ÿ

m̃PITM

|vpSm̃n q ´ Y
m̃|2. (6)

for m “ 1 to M do
if m P ITM and Zmn ą vkpS

m
n q then

Y n “ Zmn .
end

end

Set v0ps0q “
řM
m“1 Y

m.

Note that in this formulation of the algorithm, the set M in (6) is traditionally a linear space of polynomials.
Adding the payoff function to the ansatz space is a common trick to improve the result, see e.g. [Gla13]. In this
work we use the set of tensor trains, which we explain in Section 5.

The key computational challenge is the approximation of the conditional expectation

vpSnq “ ErUn`1|Sns “
ÿ

αPNd1
vαBαpSnq (7)
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Pricing high-dimensional Bermudan options 5

for some L2pRd1 ,BpRd1q, S˚Pq-orthogonal basis tBkukPN, where we tacitly assume the payoff having finite
second moments. Since this is an L2-orthogonal projection we can choose a finite set of multi-indices Λ Ă Nd1

and approximate ErY |Sns by minimizing

›

›

›

›

›

Y ´
ÿ

αPΛ

vαBαpSnq

›

›

›

›

›

2

«
1

m

m
ÿ

i“1

˜

Y m ´
ÿ

αPΛ

vαBαpS
m
n q

¸2

. (8)

We use the index set Λ “ rpsd
1

and mitigate the “curse of dimensionality” by representing v in the tensor train
format as defined in Section 3.

2.2 Chaos-martingale minimization

Rogers [Rog02] reformulates the problem of computing U0 as the following dual optimization problem

U0 “ inf
MPH2

0

E
„

max
n“1,...,N

pZtn ´Mtnq



where H2
0 denotes the set of square integrable martingales vanishing at zero. This approach requires us to

optimize over the space of all (square integrable) martingales. As any martingale M can be expressed as
conditional expectations t ÞÑ ErX|Fts for some square integrable random variable X , we may equivalently
solve

U0 “ inf
XPL2

0pΩ,FT ,Pq
E
„

max
n“1,...,N

pZtn ´ ErX|Ftnsq


, (9)

where L2
0pΩ,FT ,Pq is the set of square integrable FT -random variables with zero mean. This allows us to

minimize over a (seemingly) simpler space – namely the space of square integrable random variables rather
than the space of martingales – at the cost of expensive calculations of conditional expectations.

The ingenious idea of Lelong [Lel18] was to use a specific parameterization of the space of square integrable
random variables in which conditional expectations w.r.t. the filtration pFtq can be computed explicitly at virtually
no cost. Indeed, a finite-dimensional approximation of X P L2

0pΩ,FT ,Pq with the above property is given by
the truncated Wiener chaos expansion

rX “
ÿ

αPΛ

rXαHαpG1, . . . , GN q, (10)

where Λ Ď NNˆd1 is a predefined set of multi-indices,Hα is the tensorized Hermite polynomial with multi-index
α and G1, . . . , GN are d1-dimensional Gaussian increments. The tensorized Hermite polynomials are defined
by

HαpG1, . . . , GN q :“
N
ź

n“1

d1
ź

k“1

hαnkpGn,kq (11)

where hαnk are the univariate Hermite polynomials with index αnk. Defining the subset Λn :“ tα P Λ : @k ą
n, αk “ 0u it is easy to see that

Er rX|Ftns “
ÿ

αPΛn

rXαHαpG1, . . . , GN q. (12)

This means that the linear expectation operator Er ‚ |Ftns can be represented with the coefficient tensor simply
by dropping trailing terms of the chaos expansion. The expectation in (9) can thus be estimated by the sample
average

U0 “ inf
rX0“0
rXαPR

1

m

m
ÿ

i“1

«

max
n“1,...,N

˜

Z
piq
tn ´

ÿ

αPΛn

rXαHαpG
piq
1 , . . . , G

piq
N q

¸ff

, (13)
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where pZpiq, Gpiqq1ďiďm are i.i.d. samples from the distribution of pZ,Gq. It is shown in [Lel18] that this is an
infimum of a convex, continuous and piece-wise linear cost function over a convex domain and can be calculated
easily by a gradient descent descent method with an Armijo line search.

The choice of the multi-index set Λ plays an important role in the preformance and applicability of this algo-
rithm. In [Lel18] Λ is chosen such that the polynomial degree

řN
n“1

řd1

k“1 αnk is bounded by p. This bounds

the number of entries of rX that have to be stored by
`

Nd1`p
Nd1

˘

P O
´

pNd1`pqp

p!

¯

. For fixed p this can scale

unfavourably when the number of exercise dates N or the dimension of the Brownian motion (i.e. the number
of assets) d1 increases. We propose to choose Λ “ ΛNp such that

řd1

k“1 αnk ď p for αn P Λp. and to use
the tensor train format to alleviate the ensuing “curse of dimensionality”. We introduce the relevant notions and
central concepts in the following section.

3 Low-rank tensor representations

We are concerned with an efficient representation of expansions of the form
ř

αPΛ Uα
śd
j“1 Pαj in tensorized

polynomials Pα determined by some finite set Λ Ă F :“ tα P RN : |suppα| ă 8u of finitely sup-
ported multi-indices. This representation is used for the considered algorithms with tensorized expansions given
by (10) and (33). The set Λ typically is given as a tensor set Λ “

Śd
j“1 In :“ rnsd or as anisotropical set

Λ “
Śd

j“1 Ipj , where in our setting pj denotes the maximal polynomial degree in dimension j “ 1, . . . , d.

Apparently, #Λ is in Oppdq with p :“ maxtpj : j “ 1, . . . , du. To cope with this exponential complexity,
a potentially very efficient approach is the use of low-rank tensor representations as e.g. presented in [HS14;
Nou17]. Since these modern model reduction techniques are not widely known in the finance community yet, we
provide a brief review in order to elucidates some of the central principles. In the presentation, we follow [RSS17;
BSU16].

3.1 Tensor product spaces and subspace approximation

We consider finite dimensional linear spaces Ui “ Rpi and define the tensor product space

Hd :“
d
â

j“1

Uj . (14)

Fixing the canonical basis for all Uj , any tensor u P Hn can be represented by

u “

p1
ÿ

ν0“1

¨ ¨ ¨

pn
ÿ

νn“0

Upν1, . . . , νnqe
1
ν1 b ¨ ¨ ¨ b enνn , U P Rp1 b ¨ ¨ ¨ b Rpn . (15)

Hence, given this basis, any multi-index ν P F can be identified with a component in the (coefficient) tensor U,
i.e.

ν “ pν1, . . . , νnq ÞÑ Upν1, . . . , νnq P R. (16)

The goal is to obtain a compressed representation of (15) in an analytically and numerically more favourable
format by exploiting an assumed low-rank structure. Hierarchical representations have appealing properties
making them attractive for the treatment of the problems at hand. For example, they contain sparse polynomials,
but are much more flexible at a price of a slightly larger overhead, see e.g. [BCD18; BD16] for a comparison
concerning parametric PDEs.

To introduce the concept of subspace approximations, which is central to the complexity properties of tensor
formats, we start with the classical Tucker format. Given a tensor U and a rank tuple r :“ prjq

d
j“1, the

approximation problem reads: find optimal subspaces Vj Ă Uj such that

min
VPVd

}U´V} with Vd :“
d
â

j“1

Vj (17)
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is minimized over V1, . . . , Vd, with dimVj “ rj . An equivalent problem is to find the corresponding basis

vectors tbjkjukj“1,...,r of Vj which can be written in the form

bjkj :“

pj
ÿ

νj“1

bjpνj , kjqe
j
νj , kj “ 1, . . . , rj ă pj . (18)

Note that this can be understood as the construction of a reduced basis. The optimal tensor V can thus be
represented by

V “

r1
ÿ

k1

¨ ¨ ¨

rd
ÿ

kd“1

cpk1, . . . , kdqb
1
k1 b ¨ ¨ ¨ b b

d
kd
P Vd. (19)

In case of orthonormal bases tbjkjukj“1,...,rj , the core tensor c P
Âd

j“1 Rpj is given entry-wise by projection,

cpk1, . . . , kdq “ pv, b
1
k1 b ¨ ¨ ¨ b b

d
kd
q. (20)

With a complexity of Oppjrjq for each basis tbjkjukj“1,...,rj and a complexity of Oprdq for the core tensor c,

the complexity of the Tucker representation (19) is Oppdr ` rdq with r :“ maxtrj : j “ 1, . . . , du and
p :“ maxtpj : j “ 1, . . . , du. As such, the Tucker representation is not sufficient to cope with exponential
representation complexity and the format exhibits other problems such as non-closedness. Nevertheless, the
ideas described above eventually lead to a very efficient format by hierarchization of the bases as described in
what follows.

3.2 Hierarchical tensor representations

The hierarchical Tucker (HT) format introduced in [HK09] is an extension of the notion of subspace approx-
imation to a hierarchical setting determined by a dimension tree as shown in Figure 3.2 where the indices
j “ 1, . . . , d correspond to the spaces Uj of the tensor space Hd. Note that by cutting any edge in the tree,
two subtrees are generated. Collecting the indices for each subtree, a tensor of order two (a matrix) arises. By
this, fundamental principles from matrix analysis, in particular the singular value decomposition (SVD), can be
transferred to the higher-order tensor setting.

To illustrate the central idea, consider the optimal Tucker-subspaces V1bV2 Ď U1bU2 “ Rp1bRp2 . For the
approximation of u P Hd, often only a subspace Vt1,2u Ă V1 b V2 with dimension dimpVt1,2uq “ rt1,2u ă
r1r2 “ dimpV1 b V2q is required. In fact, Vt1,2u is defined by a basis

Vt1,2u “ span
!

b
t1,2u
kt1,2u

: kt1,2u “ 1, . . . , rt1,2u

)

(21)

with basis vectors

b
t1,2u
kt1,2u

“

r1
ÿ

k1“1

r2
ÿ

k2“1

bt1,2upk1, k2, kt1,2uqb
1
k1 b b

2
k2 , kt1,2u “ 1, . . . , rt1,2u (22)

and coefficient tensors bt1,2u P Rr1ˆr2ˆrt1,2u where

b
tju
ktju

:“

pj
ÿ

νj“1

btjupνj , ktjuqe
j
νj , j “ 1, 2 and ktju “ 1, . . . , rj ă pj . (23)

are the basis vectors of the Tucker representation (18). This can be generalized to the tensor product space Hd

by the introduction of a partition tree (or dimension tree) D with vertices α Ă D :“ t1, . . . , du and leaves
t1u, . . . , tdu where D is called the root of the tree. Each vertex α that is not a leaf can be partitioned as
α “ α1 Y α2 with α1 X α2 “ H and α1, α2 ‰ H. Although not required, one we restrict the topology to
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C. Bayer, M. Eigel, L. Sallandt, P. Trunschke 8

a binary tree and denote by α1, α2 the children of α. Figure 3.2 is an illustration of the unbalanced tree D “
tt1u, t2u, t1, 2u, t3u, t1, 2, 3u, . . . , tdu, t1, . . . , duu where e.g. α “ t1, 2, 3u “ α1 Y α2 “ t1, 2u Y t3u.

Let α1, α2 Ă D be the two children of α P D. Then Vα Ă Vα1 b Vα2 is defined by a basis

bα` “

rα1
ÿ

i“1

rα2
ÿ

j“1

bαpi, j, `qbα1
i b bα2

j , (24)

where the tensors pi, j, `q ÞÑ bαpi, j, `q are called transfer or components tensors and bD “ bt1,...,du is
called the root tensor. To represent a tensor in this hierarchical format it suffices to store the transfer tensors bα

along with the root tensor bD. More specifically, u P Hd is obtained from pbαqαPD, via the multilinear function
τ

pbαqαPD ÞÑ u “ τptbα : α P Duq, (25)

which is defined by the recursive application of the basis representation (24). The mapping τ is a multilinear
function in its arguments bα. A graphical representation of this mapping is depicted in Figure 3.2. In this pictorial
description, the contractions of component tensors (24) are indicated as edges between vertices of a graph
and the indices of the tensor are represented by open edges. This hierarchical representation has complexity
Oppdr ` dr3q with p “ maxtp1, . . . , pdu and r “ maxtrα : α P Du.

bt1,2,3,4,5u

bt4,5u

bt5u

ν5

bt4u

ν4

bt1,2,3u

bt3u

ν3

bt1,2u

bt2u

ν2

bt1u

ν1

bt1,2,3,4,5u

bt2,3,4,5u

bt3,4,5u

bt4,5u

bt5u

ν5

bt4u

ν4

bt3u

ν3

bt2u

ν2

bt1u

ν1

Figure 1: Dimension trees D for d “ 5. Balanced HT tree (left) and linearized TT tree (right).

Tensor trains Tensor trains are a subset of the general hierarchical tensors described above. They were
introduced to the numerical mathematics community in [OT09; OT10] but have been known to physicists for
a long time as matrix product states (MPS). The linear structure is depicted in Figure 3.2 (right), which cor-
responds to taking V1,...,j`1 Ă Vt1,...,ju b Vtj`1u. In the example, we consider the unbalanced tree D “

tt1u, t2u, t1, 2u, t3u, t1, 2, 3u, . . . , tdu, t1, . . . , duu. Applying the recursive construction, any tensor u P

Hd can be written as

pν1, . . . , νdq ÞÑ Upν1, . . . , νdq

“

r0
ÿ

k0

¨ ¨ ¨

rd
ÿ

kd

U1pk0, ν1, k1qU
2pk1, ν2, k2q ¨ ¨ ¨U

dpkd´1, νd, kdq, (26)

where

U1pν1, k1q :“
r1
ÿ

`“1

bt1upν1, `qb
Dpk1, `q,

Ujpkj´1, νj , kjq :“

rj
ÿ

`“1

btjupνj , `qb
tj,...,dupkj´1, kj , `q, j “ 2, . . . , d´ 1

Udpkd´1, νdq :“ btdupνd, kd´1q.
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Pricing high-dimensional Bermudan options 9

This can be reformulated as matrix products

Upν1, . . . , νdq “
d
ź

j“1

bjpνjq “ τpb1, . . . ,bdqpνq, (27)

with component matrices bjpνjq P Rrj´1ˆrj given by

pbjpνjqqkj´1,kj
“ bjpki´j , νj , kjq, 1 ă j ă d, (28)

and
pb1pν1qq

ᵀ
k1
“ b1pν1, k1q, pbdpνdqqkd “ bdpkd, νdq. (29)

It has to be pointed out that the representation (27) is not unique since in general there exist bα ‰ cα such
that τ ptbα : α P Duq “ τ ptcα : α P Duq. This can also be seen easily in (27) when introducing arbitrary
orthogonal matrices and their respective inverses in between the component tensors.

An illustration of the tensor train structure (26) is depicted in Figure 2 (right), which is equivalent to the tree
structure shown on the left-hand side.

bt1,2,3,4,5u

bt2,3,4,5u

bt3,4,5u

bt4,5u

bt5u

ν5

bt4u

ν4

bt3u

ν3

bt2u

ν2

bt1u

ν1

U1

U2

U3

U4

U5

ν5ν4ν3ν2ν1

Figure 2: An order 5 tensor in tensor train representation and its linear representation using component tensors
as in (26).

It turns out that every tensor has a TT-representation with minimal rank, which means that the TT-rank is well-
defined. Moreover, an efficient algorithm for computing a minimal TT-representation is given by the TT Singular
Value Decomposition (TT-SVD) [HRS12b]. Additionally, the set of tensor trains with fixed TT-rank r denoted by
Tr Ď Hd forms a smooth manifold. If all lower ranks are included, an algebraic variety denoted by Tďr is
formed [Kut17].

3.3 Tensor Trains as differentiable manifolds

The multilinear structure of the tensor product enables efficient optimization within the manifold structure. En-
dowed with the Euclidean metric induced by the Frobenius scalar product, the set Tr becomes an embedded
Riemannian manifold [HRS11; UV20; Wol19]. This allows the formulation of different line search algorithms
utilizing the Riemannian gradient. For a function J : Hn Ñ R the Riemannian gradient at X P Tr can be
computed by projecting the Euclidean gradient onto the tangent space TX atX (see e.g. [Ste16; AMS08]), i.e.

PTX∇JpXq, (30)

where PT
ĂX

is the projector onto the tangent space of Tr at the point rX . Just as the negative Euclidean gradient,
the negative Riemannian gradient can be used as a descent direction for minimizing V m

p,N . In theory, the strategy
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is to move in that direction along a geodesic until a local minimum is reached. Starting from rX , the function that
moves in the direction Z P T

rX
along a geodesic for a distance of }Z} is called the exponential map exp

rX
pZq.

Unfortunately, there is no analytic expression for the exponential map available for Tr. Instead, one usually
resorts to a so-called retraction R

rX
pZq which is an approximation of the exponential map, see [AMS08] for

details. In the tensor train format, an example of a retraction is defined by the TT-SVD via

R
rX
pZq “ TT-SVDp rX ` Zq (31)

as shown by [Ste16]. Using these techniques, a steepest descent update with step size β on the manifold Tr is
given by

rXk`1 “ R
rXk
p´βPT

ĂXk
∇V m

p,N p
rXkqq. (32)

Convergence of Riemannian optimization algorithms is typically only considered for smooth functions. When this
can be assumend, the convergence can be sped up by using higher-order algorithms such as the conjugated
gradient method. This additionally requires a method of “moving” tangent vectors Zk´1 P T

rXk´1
from the tan-

gent space at point rXk´1 to the tangent space T
rXk

at point rXk. Again, the optimal differential geometric tool,
the parallel transport, is computationally infeasible on the tensor train manifold. However, the vector transport
introduced by [AMS08] defines a class of approximations, which can be used to accomplish this task. In the
tensor train format, such a vector transport is given by the projection PT

ĂXk
Zk´1.

4 A version of the Longstaff-Schwartz algorithm based on the Tensor Train
format

We now combine the tensor train format introduced in Section 3.2 with the Longstaff-Schwartz algorithm for
computing Bermudan option prices as detailed in Algorithm 1. To make the approximation problem (8) concrete
a set of basis functions tBαuαPΛ has to be chosen. We prefer to work on a compact sub-domain of the reals,
which we choose such that the probability of assets lying outside the domain is minimal. As a heuristic method
for determining the truncation, we set

a “ min
m,n,k

pSmn qk and b “ max
m,n,k

pSmn qk

and choose the H2pa, bq-orthogonal basis functions tB1, . . . , Bpu spanning the space of polynomials of de-
gree p. We then represent the approximation of the discounted value of the option v : Rd1 Ñ R by

vpxq “
ÿ

αPΛ

Vα

d1
ź

k“1

Bαkpxkq, (33)

where we approximate the coefficient tensor V P pRpqbd1 in the TT format. As is common practice in Longstaff-
Schwartz type algorithms we augment this basis by the payoff function ϕ. With the definition

B : RÑ Rp, Bpxq “ rB1pxq, . . . , Bppxqs,

i.e. B stacks the one-dimensional basis functions into a vector such that they can be contracted with the com-
ponent tensors, the resulting approximation v : Rd1 Ñ R is graphically represented by

U1 U2 U3 Ud1

Bpx1q Bpx2q Bpx3q Bpxd1q

vpxq “ ` cϕϕpxq .
r1 r2

p p p p
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Note that on the r.h.s. of this equation every open-index of Ui and Bpxiq for 1 ď i ď d1 is contracted, which
indeed results in a scalar value vpxq.

To solve the resulting minimization problem (8) we use a rank adaptive version of the alternating least-squares
(ALS) algorithm [HRS12a], the stable alternating least-squares algorithm (SALSA) [GK19]. Using this algorithm
relieves us from having to guess an appropriate rank of the solution beforehand. As a termination condition we
check whether the error on the samples or on a validation set decreases sufficiently during one iteration. In our
implementation this validation set is chosen to have 20% of the size of the training set.

We now describe how we modify ALS (or SALSA) to handle the additional term cϕϕpxq. The classical ALS
algorithm optimizes the component tensors tU1, . . . , Ud1u in an alternating fashion. For each k “ 1, . . . , d1 all
component tensors tUjuj‰k are fixed and only Uk is optimized. This procedure is then repeated alternatingly
until a convergence criterion is met.

We modify this scheme by optimizing cϕ as well as Uk for each k. Since the mapping pUk, cϕq ÞÑ v is linear,
the resulting problem is a classical linear least squares problem

pUk, cϕq “ arg min
w,c

1

m

m
ÿ

i“1

|Y m ´Amk pw, cq|
2.

To exemplify this, for k “ 2 the operator Amk is diagrammatically represented by

U1 w U3 Ud1

BpSm1 q BpSm2 q BpSm3 q BpSmd1 q

Amk pw, cϕq “
r1 r2

p p p p
` cϕϕpS

mq .

After reshaping the pair pw, cq P Rr1ˆpˆr2 ˆR into a vector of size r1pr2 ` 1, the operator can be written as
A P Rmˆpr1p2r2`1q and the problem becomes

X “ arg min
x

1

m
}Y ´Ax}22,

where Y “ rY 1, . . . , Y ms .

Complexity analysis

Using a tensor train representation instead of the full tensor allows us to reduce the space complexity from
Oppd1q to Opd1pr2q with r “ maxtr1, . . . , rd1´1u. For moderate r this leads to a dramatic reduction in
memory usage which we observe in our experiments. Figure 3 shows that the rank-adaptive algorithm computes
solutions with r ă 6 and we numerically verify that for d1 ą 100 a rank of r “ 1 is sufficient for obtaining values
within the reference interval from the literature. This allows us to compute the price of max-call options with up
to 1000 assets.

Since ALS is an iterative method its time complexity can only be provided per iteration and amounts to

OpNm|Λp|2r4q (34)

floating point operations per iteration. As with every iterative algorithm the number of iterations needed depends
on the specific problem. In our numerical tests we generally needed less than 10 iterations.

5 Dual martingale minimization with tensor trains

To use the tensor train format in the dual formulation, we define the set P0̂ “ t
rX : rX0 “ 0u and rewrite (13)

as
U0 “ inf

rXPTrXP0̂

V m
p,N p

rXq, (35)
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where Tr denotes the set of TT tensors of rank r and V m
p,N is the cost function that is minimized in (13).

Performing this optimization directly on the parameters of the tensor train is ill-posed since its parametrization
is not unique. A common way to solve this is to use the manifold structure of Tr and employ a Riemannian
optimization algorithm. For this (35) has to be rephrased as an unconstrained smooth optimization problem.

Define the projector pP0̂
rXqα “ p1´ δα0q rXα and remove the constraint rX P P0 by rewriting (35) as

U0 “ inf
rXPTr

V m
p,N pP0̂

rXq. (36)

SinceP0̂ is a linear operator, the modified cost function V m
p,N ˝P0̂ retains the convexity, continuity and piece-wise

linearity of V m
p,N . We then mollify the V m

p,N by replacing the maximum with the smooth approximation

α-max
n“1,...,N

xn “

řN
n“1 xne

αxn

řN
n“1 e

αxn
. (37)

The resulting cost function reads

Vp,N p rXq “ V m,α
p,N p

rXq “
1

m

m
ÿ

i“1

«

α-max
n“1,...,N

˜

Z
piq
tn ´

ÿ

αPΛn

rXαHα1pG
piq
1 q ¨ ¨ ¨HαnpG

piq
n q

¸ff

. (38)

The respective optimization problem
U0 “ inf

rXPTr
V m,α
p,N pP0̂

rXq (39)

can be solved by Riemannian algorithms. We use a conjugated gradient method with the FR-PR+ update rule
as defined in [NW06].

We also have to address the choice of the initial value for the optimization. Since the set Tr is not convex, a
diligent choice is important in order to reach the global minimum. We obtain such a value for polynomial degree
p by using the optimal value rXpp´1q for the polynomial degree p´ 1. This recursion stops at p “ 0 where we
know the optimal value to be rXp0q “ 0.

In our implementation we used a constant rank of 4 and chose α “ 50 which, empirically, held the smoothing
induced error below 10´3. As a termination condition we check if the error does not sufficiently decrease over
a period of 10 iterations. Of all iterates obtained during the optimization we choose the one that has the lowest
value on a validation set. In our implementation this validation set is chosen to have one ninth of the size of the
training set.

Complexity analysis

In the dual method we observe the same dramatic reduction in space complexity as in the primal algorithm. The
space complexity of OppNd1q for the full tensor is reduced to OpNd1pr2q for a tensor in the tensor train format
with a rank uniformly bounded by r. This allows us to use the dual algorithm to compute the price of a basket
put option with N “ 31 exercise dates in Table 1.

Since gradient descent is again an iterative algorithm the time complexity can only be computed per iteration.
Assuming that rX is a tensor train tensor with rank r, the contraction

ÿ

αPΛ

rXαHα1pG
piq
1 q ¨ ¨ ¨HαnpG

piq
n q (40)

can be computed with Opn|Λp|r2`pN´nqr2q floating point operations. This means that both V m,α
p,N p

rXq and

its gradient can be computed with OpmN2|Λp|r2q floating point operations. Compare this to the OpmpNd1q
floating point operations required for the full tensor and to the

`

Nd1`p
Nd1

˘

operations for the sparse tensor. At least
from a theoretical point of view, evaluation and optimization are faster in the tensor train format, namely
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� exponentially faster when compared to the full tensor ansatz and

� when p ą 2 up to a polynomial factor for the sparse ansatz.

These statements obviously depend on the rank r which is bounded by at most 4 in our experiments, meaning
that the represented objects are in fact low-rank.

6 Numerical experiments

In this part, we present results obtained from the algorithms described above. Implementations in Python can
be found at https://github.com/ptrunschke/tensor_option_pricing. For each exper-
iment, we report low-biased estimators v0pSt0q and V m,α

p,N p
rXq based on re-simulated trajectories, see [Gla13].

More precisely, we generate independent trajectories of the underlying price process S and apply the stopping
strategy implied by the already computed approximate value functions vk, giving as a low-biased approxima-
tion to the true option price. Conversely, approximately optimal martingale parameterizations computed by the
dual algorithm are used to compute a high-biased estimator, once again based on new trajectories, not used to
produce the parameterization in the first place.

In the following we denote by n the number of possible exercise dates, including 0, by p the polynomial degree
used in the approximation of the conditional probabilities and in the Wiener–Itô chaos expansion and by m the
number of samples used. We further denote by mresim the number of samples used for the resimulation. VLS

is the price computed by the resimulation of the Longstaff–Schwartz method and Vdual is the price computed
by the dual method. The corresponding reference values are denoted by V ref

LS and V ref
dual respectively, and were

obtained in the literature – see specific references for the individual examples.

6.1 Options in the Black–Scholes model

The d-dimensional Black Scholes model for j P t1, . . . , du reads

dSjt “ Sjt prt ´ δtqdt` σ
jLjdBtq, (41)

where B is a Brownian motion with values in Rd, σ “ pσ1, . . . , σdq is the vector of volatilities assumed to be
deterministic and positive at all times, and Lj is the j-th row of the matrix L defined as a square root of the
correlation matrix chosen to be of the form

Γ “

¨

˚

˚

˚

˚

˝

1 ρ ¨ ¨ ¨ ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ ¨ ¨ ¨ ρ 1

˛

‹

‹

‹

‹

‚

, (42)

where ρ P p´1{pd´ 1q, 1s to ensure that Γ is positive definite. The initial condition for the SDE is given by the
spot price S0.

We will test the algorithms for different payoff functions φ, dimensions d and strike prices K .

6.2 A basket put option on correlated assets

We first consider the case of a put basket option on correlated assets. The payoff of this option writes as

φpStq “
´

K ´
řd
j“1 ωjS

j
t

¯

`
where ω “ pω1, . . . , ωdq is a vector of real valued weights. We report in

Table 1 and Table 2 our values compared to the reference prices for two different sample sizes m “ 20000
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and m “ 105. Blank cells in the tables indicate that reference values are not reported in the reference papers.
The results of our experiments are reported in Table 1.

It can be seen that the values obtained by our version of Lelong’s method are not as close to the reference price
as are the values obtained by [Lel18]. From a theoretical perspective a lower value should always be possible
given a sufficient rank. We thus attribute this to the lack of a rank adaption strategy in the dual problem and
highlight this as an interesting direction for further research. It can moreover be seen that for N “ 31 the
values of Vdual increase with p. Because the manifold for p “ 2 is a submanifold of p “ 3 one would expect
that this is impossible. Note however that the table shows resimulated prices only. Therefore we interpret this
observation to indicate that a larger value of m is needed in this case. This is confirmed in Table 2.

For the Longstaff-Schwartz variant we use m “ 105 and observe values close to the reference value. Further-
more, in the case N “ 31 and Sj0 “ 100, we observe that the result for p “ 2 dominate the p “ 3 case,
indicating sub-optimal results. However, as seen in Table 2 we obtain better results for polynomial degree p “ 8.
Note that we have capped the TT-rank at 4 for the computation with p “ 8. By doing that, the computational
time only increased by a factor of 3 when compared to the run time for the case p “ 3, being 40 seconds and
15 seconds respectively.

We also report that during the optimization within the Longstaff-Schwartz algorithm the TT-rank of the value
function did not exceed 5 for any test-case, which means that a low-rank structure of the sought expectation val-
ues within the polynomial ansatz space is noticeable. This low-rank structure is a necessity for high-dimensional
computation and will be analyzed in greater detail in the next example. In this example the number of samples
used for training has a larger effect not only on the variances but also on the values.

p N Sj0 Vdual Stddev V ref
dual VLS Stddev V ref

2 4 100 2.34 0.003 2.29 2.15 0.009 2.17
3 4 100 2.33 0.003 2.25 2.16 0.009 2.17
2 7 100 2.64 0.002 2.62 2.39 0.008 2.43
3 7 100 2.64 0.002 2.52 2.40 0.008 2.43
2 31 100 3.08 0.002 2.49 0.01
3 31 100 3.12 0.002 2.36 0.01

2 4 110 0.67 0.002 0.57 0.53 0.006 0.55
3 4 110 0.67 0.002 0.55 0.53 0.006 0.55
2 7 110 0.78 0.002 0.64 0.57 0.007 0.61
3 7 110 0.77 0.002 0.64 0.57 0.007 0.61
2 31 110 3.94 0.002 0.61 0.008
3 31 110 3.95 0.002 0.61 0.008

Table 1: Prices for the put basket option with parameters d “ 5, T “ 3, r “ 0.05, δj “ 0, σj “ 0.2, ρ “ 0,
K “ 100, ωj “

1
d , m “ 20000, mresim “ 106. Values for V ref

dual and V ref are taken from [Lel18]. Number of
samples for Longstaff-Schwartz: mLS “ 105. Empty spaces denote unavailable reference values.

p Sj0 Vdual Stddev
2 100 2.88 0.001
3 100 2.88 0.001

2 110 0.80 0.001
3 110 0.80 0.001

p Sj0 VLS Stddev
8 100 2.56 0.01

Table 2: Prices for the put basket option with parameters d “ 5,N “ 31, T “ 3, r “ 0.05, δj “ 0, σj “ 0.2,
ρ “ 0, K “ 100, ωj “

1
d , m “ 105, mresim “ 106. Empty spaces denote unavailable reference values
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6.3 Bermudan max-call options

In this section we consider max-call options and in particular the scalability of the tensor train approach for
the Longstaff-Schwartz algorithm for higher dimensions. The reference values for this problem were taken
from [AB04; BCJ19]. The payoff function of a max-call option takes the form

ˆ

max
1ďiďd

ωiS
i ´K

˙

`

. (43)

In Table 3 we report results for the dual algorithm. In contrast to the case of the put basket option, we see that
we are close to the values computed by the original method [Lel18] and in some cases improve the previously
reported results. This indicates the viability of this approach. A rank-adaptive algorithm could probably further
improve the efficiency of our method in high dimensions.

p d m Sj0 Vdual Stddev V ref
dual V ref

2 2 20000 90 8.85 0.004 10.05 8.15
3 2 20000 90 8.83 0.004 8.6 8.15
2 5 20000 90 21.68 0.014 21.2 16.77
3 5 40000 90 21.40 0.015 20.13 16.77

2 2 20000 100 14.68 0.004 16.3 14.01
3 2 20000 100 14.65 0.004 15 14.01
2 5 20000 100 32.37 0.017 31.8 26.34
3 5 40000 100 31.95 0.017 29 26.34

Table 3: Prices for the call option on the maximum of d assets with parameters N “ 10, T “ 3, r “ 0.05,
δj “ 0.1, σj “ 0.2, ρ “ 0, K “ 100, mresim “ 106. Values for V ref

dual and V ref are taken from [Lel18].

In Table 4 we consider the Longstaff-Schwartz algorithm in moderate to extreme dimensions. We increase the
number of samples to 106 and test every polynomial degree up to p “ 7. We observe that we rarely see
any significant improvement when using polynomial degree larger than 4 or 5. However, throughout the table
polynomial degree p “ 6 appears to obtain the overall best results, with small improvements over the other
polynomial degrees. Moreover, we see that while we are not exactly as high as the reference value for low
dimensions, i.e. d ď 20, the results for higher dimension are accurate. A possible explanation for this is that the
value function might have simpler structure in high dimension.

Finally, in Table 5 we use a trick, where after sampling all the paths, we sort the assets at every time point by
decreasing magnitude, see, e.g., [AB04, p. 1230]. We observe, that , the unsorted algorithm performs better than
the sorted, while both stay closely under the reference interval. We observe, that while the unsorted algorithm is
already performing well, sorting the assets yields an increase in performance in every dimension. Moreover, for
the sorted case, polynomial degree of 3 appears to be sufficient to obtain optimal results. Finally, we observe
some numerical instabilities for our implementation of the sorted algorithm when the dimension is d “ 750 or
d “ 1000 and the polynomial degree is larger than 3. We assume that by using a better polynomial basis these
instabilities can be resolved. However, as polynomial degree 3 was sufficient in the lower-dimensional case we
did not further investigate this instability. We state that within these experiments the standard deviation of the
resimulations was never larger than 0.1.

It is worth noting, that the results in very high dimensions were obtained by calculating only 106 trajectories
while the reference values were computed using more than 24 ˆ 106 paths using state-of-the-art machine
learning techniques, see [BCJ19]. This underlines the potential of tensor train approaches for optimal stopping,
especially in high dimensions.

In Figure 3 we analyze the average and the maximal rank of the value function and observe a decrease of the
ranks in higher dimensions. We state that from d “ 100 a separate test run where we fix the ranks to 1 yield
comparable results, implying that a rank 1 solution can yield close to optimal results. This means, that the value
function indeed has a simple structure in high dimension.
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d p Vref

1 2 3 4 5 6 7

2 13.66 13.79 13.81 13.76 13.80 13.83 13.78 13.902
3 18.34 18.30 18.39 18.48 18.50 18.55 18.53 18.69
5 25.66 25.58 25.70 25.97 25.75 25.84 25.93 r26.115, 26.164s
10 37.77 37.65 38.01 38.12 38.25 38.27 38.14 r38.300, 38.367s
20 51.10 51.34 51.49 51.64 51.62 51.63 51.62 r51.549, 51.803s
30 59.11 59.30 59.50 59.63 59.62 59.63 59.63 r59.476, 59.872s
50 69.22 69.23 69.70 69.56 69.57 69.51 69.57 r69.560, 69.945s
100 83.14 83.18 83.29 83.33 83.37 83.39 83.16 r83.357, 83.862s
200 97.21 97.07 97.31 97.43 97.41 97.46 97.21 r97.381, 97.889s
500 116.13 116.07 116.17 116.31 116.31 116.36 116.14 r116.210, 116.685s
750 124.56 124.56 124.61 124.72 124.73 124.78 124.59
1000 130.65 130.63 130.66 130.78 130.83 130.84 130.67

Table 4: n “ 9, T “ 3, r “ 0.05, δ “ 0.1, σ “ 0.2, ρ “ 0, Sj0 “ 100, K “ 100, ωj “ 1, m “ 106,
mresim “ 106 not using reordering
From: [AB04; BCJ19]

d p Vref

1 2 3 4 5 6 7

2 13.67 13.76 13.82 11.63 13.84 13.84 13.85 13.902
3 18.39 18.51 18.60 18.61 18.61 18.62 18.62 18.69
5 25.83 26.01 26.06 26.07 26.07 26.07 26.07 r26.115, 26.164s
10 38.08 38.24 38.29 38.31 38.31 38.30 38.30 r38.300, 38.367s
20 51.48 51.66 51.71 51.71 51.71 51.71 51.71 r51.549, 51.803s
30 59.50 59.68 59.71 59.71 59.72 59.72 59.72 r59.476, 59.872s
50 69.58 69.78 69.80 69.81 69.81 69.81 69.81 r69.560, 69.945s
100 83.45 83.65 83.67 83.67 83.67 83.66 83.66 r83.357, 83.862s
200 97.56 97.69 97.70 97.70 97.70 97.69 97.69 r97.381, 97.889s
500 116.45 116.56 116.56 116.56 116.56 116.50 116.52 r116.210, 116.685s
750 124.91 124.98 124.99 124.98 nan nan nan
1000 130.96 131.06 131.05 nan nan nan nan

Table 5: n “ 9, T “ 3, r “ 0.05, δ “ 0.1, σ “ 0.2, ρ “ 0, Sj0 “ 100, K “ 100, ωj “ 1, m “ 106,
mresim “ 106 using reordering
From: [AB04; BCJ19]
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Figure 3: average ranks(blue) and maximal(black) rank for different dimension. The black lines indicate the
maximal rank. We use the results with highest values for every dimension and every bar.
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