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Tensor methods for strongly convex strongly concave saddle
point problems and strongly monotone variational inequalities

Petr Ostroukhov, Rinat Kamalov, Pavel Dvurechensky, Alexander Gasnikov

Abstract

In this paper we propose three 𝑝-th order tensor methods for 𝜇-strongly-convex-strongly-
concave saddle point problems (SPP). The first method is based on the assumption of 𝑝-th order

smoothness of the objective and it achieves a convergence rate of 𝑂

(︂(︁
𝐿𝑝𝑅𝑝

𝜇

)︁ 2
𝑝+1

log 𝜇𝑅
𝜀

)︂
,

where 𝑅 is an estimate of the initial distance to the solution. Under additional assumptions
of first and second order smoothness of the objective we connect the first method with a lo-
cally superlinear converging algorithm and develop a second method with the complexity of

𝑂

(︃(︁
𝐿𝑝𝑅𝑝

𝜇

)︁ 2
𝑝+1

log
𝐿2𝑅max

{︁
1,

𝐿1
𝜇

}︁
𝜇 + log

log
𝐿3
1

2𝜇2𝜀

log
𝐿1𝐿2
𝜇2

)︃
. The third method is a modified version of

the second method, and it solves gradient norm minimization SPP with �̃�

(︂(︁
𝐿𝑝𝑅𝑝

𝜀

)︁ 2
𝑝+1

)︂
oracle

calls. Since we treat SPP as a particular case of variational inequalities, we also propose three
methods for strongly monotone variational inequalities with the same complexity as the described
above.

1 Introduction

In this work we focus on two types of saddle point problems (SPP). The first one is the classic minimax
problem:

min
𝑥∈𝒳

max
𝑦∈𝒴

𝑔(𝑥, 𝑦), (1)

where 𝑔 : 𝒳 × 𝒴 → R is a convex over 𝒳 and concave over 𝒴 , and the sets 𝒳 ,𝒴 are convex. This
is a particular case of a more general problem, called monotone variational inequality (MVI). In MVI we
have a monotone operator 𝐹 : 𝒵 → R𝑛 over a convex set 𝒵 ⊂ R𝑛 and we need to find

𝑧* ∈ 𝒵 : ∀𝑧 ∈ 𝒵, ⟨𝐹 (𝑧), 𝑧* − 𝑧⟩ ≤ 0. (2)

If we set 𝒵 = 𝒳 × 𝒴 and 𝐹 (𝑧) = (∇𝑥𝑔(𝑥, 𝑦),−∇𝑦𝑔(𝑥, 𝑦)), then MVI is equivalent to the min-max
SPP (1).

The second problem is gradient norm minimization of SPP:

min
(𝑥,𝑦)∈𝒳×𝒴

‖∇𝑔(𝑥, 𝑦)‖2. (3)

For both problems we consider unconstrained case with 𝒳 = R𝑛 and 𝒴 = R𝑚. Additionally, we
assume 𝑔(𝑥, 𝑦) is 𝜇-strongly convex in 𝑥 ∈ R𝑛 and 𝜇-strongly concave in 𝑦 ∈ R𝑚.

There is a number of papers on numerical methods for SPP (1) in convex-concave setting [13, 27, 18,
20, 28]. One of the most popular among first-order methods for this setting is the Mirror-Prox algorithm
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[18], which treats saddle-point problems via solving the corresponding MVI. According to [19], this
method achieves optimal complexity of 𝑂(1/𝜀) iterations for first-order methods applied to smooth
convex-concave SPP in large dimensions.

Additional assumption of strong convexity and strong concavity lead to better results. The algorithms
from [25, 27, 23, 8, 15] achieve iteration complexity of 𝑂(𝐿/𝜇 log(1/𝜀)). In [14] the authors proposed
an algorithm with complexity 𝑂(𝐿/

√
𝜇𝑥𝜇𝑦 log3(1/𝜀)), which matches up to a logarithmic factor the

lower bound, obtained in [29]. It worths to mention that log3(1/𝜀) factor can be improved, namely, it is
possible to achieve iteration complexity of 𝑂(𝐿/

√
𝜇𝑥𝜇𝑦 log(1/𝜀)) (see [5]).

The methods listed above use first-order oracles, and it is known from optimization that tensor methods,
which use higher-order derivatives, have faster convergence rate, yet for the price of more expensive
iteration. The idea of using derivatives of high order in optimization is not new (see [10]). The most
common type of high-order methods use second-order oracles, for example Newton method [24, 21]
and its modifications such as the cubic regularized Newton method [22]. Recently the idea of exploiting
oracles beyond the second order started to attract increased attention, especially in convex optimization
[1, 3, 6, 7, 4].

However, much less is known on high-order methods for SPP and MVIs. In [16] the authors propose
a second-order method based on their Hybrid Proximal Extragradient framework [17]. The resulting
complexity is 𝑂(1/𝜀

2
3 ). A recent work [2] shows how to modify Mirror-Prox method using oracles

beyond second order and improves complexity to reach duality gap 𝜀 to 𝑂(1/𝜀
2

𝑝+1 ) for convex-concave
problems with 𝑝-th order Lipschitz derivatives. The paper [11] proposes a cubic regularized Newton
method for solving SPP, which has global linear and local superlinear convergence rate if ∇𝑔(𝑥, 𝑦)
and ∇2𝑔(𝑥, 𝑦) are Lipschitz-continuous and 𝑔(𝑥, 𝑦) is strongly convex in 𝑥 and strongly concave in 𝑦.

In our work we make a next step and propose a Tensor method for strongly monotone variational
inequalities and, as a corollary, a Tensor method for saddle point problems with strongly-convex-
strongly-concave objective. Standing on the ideas from [2] and [11], our work can be split into three
parts.

Firstly, we apply restart technique [26] to the HighOrderMirrorProx Algorithm 1 from [2], which is possible
because of strong convexity and strong concavity of the objective. Such a modification improves the

algorithm complexity to 𝑂

(︂(︁
𝐿𝑝𝑅𝑝

𝜇

)︁ 2
𝑝+1

log 𝜇𝑅
𝜀

)︂
, where 𝑅 is an upper bound for the initial distance to

the solution ‖(𝑥1, 𝑦1) − (𝑥*, 𝑦*)‖2, and 𝐿𝑝 is the Lipschitz constant of the 𝑝-th derivative.

Secondly, using an estimate of the area of local superlinear convergence, when the algorithm reaches
this area, we switch to the Cubic-Regularized Newton Algorithm 3 from [11] to obtain local superlinear
convergence of our algorithm. The total complexity of the final Algorithm 4 becomes

𝑂

(︃(︁
𝐿𝑝𝑅𝑝

𝜇

)︁ 2
𝑝+1

log
𝐿2𝑅max{1,𝐿1

𝜇 }
𝜇

+ log
log

𝐿3
1

2𝜇2𝜀

log
𝐿1𝐿2
𝜇2

)︃
, where 𝐿1 and 𝐿2 are Lipschitz constans for first

and second order derivatives respectively. We want to emphasize, that the obtained log log(1/𝜀)
dependency on 𝜀 cannot be improved even in convex optimization [12].

Thirdly, we apply framework from [4] to the Algorithm 4 to solve the problem (3) and obtain the Algorithm

5. Its convergence rate is �̃�

(︂(︁
𝐿𝑝𝑅𝑝

𝜀

)︁ 2
𝑝+1

)︂
, where by tilde we mean additional multiplicative log factor.

Our paper is organized as follows. First of all, in Section 2 we provide necessary notations and
assumptions (Section 2.1). Then, we present the new algorithm and obtain its convergence rate in
Section 3. Firstly, in Section 3.1 we talk only about restarted algorithm from [2] and get its complexity.
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Secondly, in Section 3.2 we describe how to connect it to Algorithm 3 from [11] in its quadratic
convergence area and get the final Algorithm 4 convergence rate. Thirdly, in Section 3.3 we focus on
how to wrap Algorithm 4 in a framework from [4] and obtain its complexity. Finally, in Section 4 we
discuss our results and present some possible directions for future work.

2 Preliminaries

We use 𝑧 ∈ R𝑛 × R𝑚 to denote the pair (𝑥, 𝑦), ∇𝑝𝑔(𝑧)[ℎ1, ..., ℎ𝑝], 𝑝 ≥ 1 to denote directional
derivative of 𝑔 at 𝑧 along directions ℎ𝑖 ∈ R𝑛 × R𝑚, 𝑖 = 1, ..., 𝑝. The norm of the 𝑝-th order derivative
is defined as

‖∇𝑝𝑔(𝑧)‖2 := max
ℎ1,...,ℎ𝑝∈R𝑛×R𝑚

{|∇𝑝𝑔(𝑧)[ℎ1, ..., ℎ𝑝]| : ‖ℎ𝑖‖2 ≤ 1, 𝑖 = 1, ..., 𝑝}

or equivalently

‖∇𝑝𝑔(𝑧)‖2 := max
ℎ∈R𝑛×R𝑚

{|∇𝑝𝑔(𝑧)[ℎ]𝑝| : ‖ℎ‖2 ≤ 1}.

Here we denote ∇𝑝𝑔(𝑧)[ℎ, ..., ℎ] as ∇𝑝𝑔(𝑧)[ℎ]𝑝. Also here and below ‖ · ‖2 is a Euclidean norm for
vectors.

Taylor approximation of some function 𝑓 at point 𝑧 up to the order of 𝑝 we denote by

Φ𝑓
𝑧,𝑝(𝑧) :=

𝑝∑︁
𝑖=0

1

𝑖!
∇𝑖𝑓(𝑧)[𝑧 − 𝑧]𝑖.

For ease of notation, the Taylor approximation of the objective 𝑔 we denote by Φ(𝑥,𝑦),𝑝(�̂�, 𝑦) ≡
Φ𝑧,𝑝(𝑧) ≡ Φ𝑔

𝑧,𝑝(𝑧).

By 𝐷 : 𝒵 × 𝒵 → R𝑛 we denote Bregman divergence induced by a function 𝑑 : 𝒵 → R, which is
continuously-differentiable and 1-strongly convex. The definition of Bregman divergence is

𝐷(𝑧1, 𝑧2) := 𝑑(𝑧1) − 𝑑(𝑧2) − ⟨∇𝑑(𝑧2), 𝑧1 − 𝑧2⟩.

In our paper we use half of squared Euclidean distance as Bregman divergence

𝐷(𝑧1, 𝑧2) =
1

2
‖𝑧1 − 𝑧2‖22. (4)

During the analysis of convergence of our approach for gradient norm minimization (3) we will need the
regularized Taylor approximation of objective 𝑔:

Ω(𝑥,𝑦),𝑝,𝐿𝑝(�̂�, 𝑦) :=

Φ(𝑥,𝑦),𝑝(�̂�, 𝑦) +
𝐿𝑝(

√
2)𝑝−1

(𝑝 + 1)!
‖�̂�− 𝑥‖𝑝+1

2 − 𝐿𝑝(
√

2)𝑝−1

(𝑝 + 1)!
‖𝑦 − 𝑦‖𝑝+1

2 .

Its min-max point we denote by

𝑇 𝑔
𝑝,𝐿𝑝

(𝑥, 𝑦) ∈ Arg min
�̃�∈R𝑛

max
𝑦∈R𝑚

{︀
Ω(𝑥,𝑦),𝑝,𝐿𝑝(�̃�, 𝑦)

}︀
.

DOI 10.20347/WIAS.PREPRINT.2820 Berlin 2021



P. Ostroukhov, R. Kamalov, P. Dvurechensky, A. Gasnikov 4

2.1 Assumptions

We assume objective 𝑔 is strongly convex, strongly concave and 𝑝-times differentiable.

Assumption 1. 𝑔(𝑥, 𝑦) is 𝜇-strongly convex in 𝑥 and 𝜇-strongly concave in 𝑦.

Recall that the definition of strong convexity and strong concavity is as follows.

Definition 1. 𝑔 : R𝑛 × R𝑚 → R is called 𝜇-strongly convex and 𝜇-strongly concave if

∀𝑥1, 𝑥2 ∈ R𝑛, 𝑦 ∈ R𝑚 ⇒ ⟨∇𝑥𝑔(𝑥1, 𝑦) −∇𝑥𝑔(𝑥2, 𝑦), 𝑥1 − 𝑥2⟩ ≥ 𝜇‖𝑥1 − 𝑥2‖22, (5)

∀𝑦1, 𝑦2 ∈ R𝑚, 𝑥 ∈ R𝑛 ⇒ ⟨−∇𝑦𝑔(𝑥, 𝑦1) + ∇𝑦𝑔(𝑥, 𝑦2), 𝑦1 − 𝑦2⟩ ≥ 𝜇‖𝑦1 − 𝑦2‖22. (6)

The problem (1) is usually solved in terms of the duality gap

𝐺𝒳×𝒴(𝑥, 𝑦) := max
𝑦′∈𝒴

𝑔(𝑥, 𝑦′) − min
𝑥′∈𝒳

𝑔(𝑥′, 𝑦). (7)

Since in our case 𝒳 = R𝑛 and 𝒴 = R𝑚, we drop the notations of these sets from index of the duality
gap and denote duality gap just as 𝐺(𝑥, 𝑦).

Before showing the connection between problem (1) and MVI (2) we need the definition of strong
monotonicity.

Definition 2. 𝐹 : 𝒵 → R𝑛 is strongly monotone if

⟨𝐹 (𝑧1) − 𝐹 (𝑧2), 𝑧1 − 𝑧2⟩ ≥ 𝜇‖𝑧1 − 𝑧2‖22. (8)

Denote 𝑧 =

(︂
𝑥
𝑦

)︂
, and operator 𝐹 : R𝑛 × R𝑚 → R𝑛 × R𝑚:

𝐹 (𝑧) = 𝐹 (𝑥, 𝑦) :=

(︂
∇𝑥𝑔(𝑥, 𝑦)
−∇𝑦𝑔(𝑥, 𝑦)

)︂
. (9)

According to these definitions, the min-max problem (1) can be tackled via solving the MVI problem (2)
with the specific operator 𝐹 given in (9). In our work we use the following assumptions.

Assumption 2. 𝐹 (𝑧) satisfies first order Lipschitz condition:

‖𝐹 (𝑧1) − 𝐹 (𝑧2)‖2 ≤ 𝐿1‖𝑧1 − 𝑧2‖2
⇔ ‖∇𝑔(𝑧1) −∇𝑔(𝑧2)‖2 ≤ 𝐿1‖𝑧1 − 𝑧2‖2. (10)

Assumption 3. 𝐹 (𝑧) satisfies second order Lipschitz condition:

‖∇𝐹 (𝑧1) −∇𝐹 (𝑧2)‖2 ≤ 𝐿2‖𝑧1 − 𝑧2‖2
⇔ ‖∇2𝑔(𝑧1) −∇2𝑔(𝑧2)‖2 ≤ 𝐿2‖𝑧1 − 𝑧2‖2. (11)

Assumption 4. 𝐹 (𝑧) satisfies 𝑝-th order Lipschitz condition (𝑝-smooth):

‖∇𝑝−1𝐹 (𝑧1) −∇𝑝−1𝐹 (𝑧2)‖2 ≤ 𝐿𝑝‖𝑧1 − 𝑧2‖2
⇔ ‖∇𝑝𝑔(𝑧1) −∇𝑝𝑔(𝑧2)‖2 ≤ 𝐿2‖𝑧1 − 𝑧2‖2. (12)

We should note, that, to be consistent with [2], we define 𝑝-th order smoothness (Lipschitzness) of 𝐹
as a property of (𝑝− 1)-th derivative of 𝐹 , and, therefore, as a property of 𝑝-th derivative of 𝑔.

DOI 10.20347/WIAS.PREPRINT.2820 Berlin 2021
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3 Main results

Firstly, in this section we propose the algorithm for finding 𝜀-approximate solution to problem (1), where
𝐹 : R𝑛 × R𝑚 → R𝑛 × R𝑚 is 𝑝-smooth and 𝜇-strongly monotone operator (assumptions 4 and 1),

which allows to achieve iteration complexity of 𝑂

(︂(︁
𝐿𝑝𝑅𝑝

𝜇

)︁ 2
𝑝+1

log 𝜇𝑅
𝜀

)︂
, where 𝑅 > ‖𝑧1− 𝑧*‖2. This

algorithm is a restarted modification of Algorithm 1.

Secondly, we develop the algorithm for tackling the same problem, where 𝐹 is first, second and 𝑝-th
order Lipschitz and 𝜇-strongly monotone operator (all assumptions 1, 2, 3, 4). It involves the idea of
exploiting previous algorithm and then switching to the Algorithm 3 in its quadratic convergence area.
Thus, we obtain the Algorithm 4, that allows to achieve iteration complexity of

𝑂

(︃(︁
𝐿𝑝𝑅𝑝

𝜇

)︁ 2
𝑝+1

log
𝐿2𝑅max{1,𝐿1

𝜇 }
𝜇

+ log
log

𝐿3
1

2𝜇2𝜀

log
𝐿1𝐿2
𝜇2

)︃
.

Thirdly, we propose the algorithm to find 𝜀-approximate solution to problem (3), where all the as-
sumptions 1, 2, 3, 4 hold. To achieve this we use the Algorithm 4, which we mentioned earliear,
inside the framework from [4]. Final complexity of such algorithm in terms of norm of the gradient is

�̃�

(︂(︁
𝐿𝑝𝑅𝑝

𝜀

)︁ 2
𝑝+1

)︂
, where by tilde we mean additional multiplicative log factor.

3.1 Restarted HighOrderMirrorProx

As mentioned earlier, in this subsection we provide restarted modification of Algorithm 1. But, initially,
we need to give some additional information from [2].

Since our goal is an approximate solution to MVI, we define its 𝜀-approximate solution as

𝑧* ∈ 𝒵 : ∀𝑧 ∈ 𝒵 ⇒ ⟨𝐹 (𝑧), 𝑧* − 𝑧⟩ ≤ 𝜀. (13)

At the same time, the bounds of Algorithm 1 is of the form

∀𝑧 ∈ 𝒵 ⇒ 1

Γ𝑇

𝑇∑︁
𝑡=1

𝛾𝑡⟨𝐹 (𝑧𝑡), 𝑧𝑡 − 𝑧⟩ ≤ 𝜀, (14)

where points 𝑧𝑡 and 𝛾𝑡 > 0 are produced by the Algorithm 1, and Γ𝑇 =
∑︀𝑇

𝑡=1 𝛾𝑡. The following lemma
establishes the relation between (13) and (14).

Lemma 3.1 (Lemma 2.7 from [2]). Let 𝐹 : 𝒵 → R𝑛, be monotone, 𝑧𝑡 ∈ 𝒵, 𝑡 = 1, ..., 𝑇 , and let
𝛾𝑡 > 0. Let 𝑧𝑡 = 1

Γ𝑇

∑︀𝑇
𝑡=1 𝛾𝑡𝑧𝑡. Assume (14) holds. Then 𝑧𝑡 is an 𝜀-approximate solution to (2).

MVI problem (2), which is sometimes called "weak MVI", is closely connected to strong MVI problem,
where we need to find

𝑧* ∈ 𝒵 : ∀𝑧 ∈ 𝒵 ⇒ ⟨𝐹 (𝑧*), 𝑧* − 𝑧⟩ ≤ 0. (15)

If 𝐹 is continuous and monotone, the problems (2) and (15) are eqiuvalent.

The convergence rate of the Algorithm 1 is stated in the following lemma.

DOI 10.20347/WIAS.PREPRINT.2820 Berlin 2021
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Algorithm 1 HighOrderMirrorProx [Algorithm 1 in [2]]
1: Input 𝑧1 ∈ 𝒵, 𝑝 ≥ 1, 𝑇 > 0.
2: for t = 1 to T do
3: Determine 𝛾𝑡, 𝑧𝑡 such that:

𝑧𝑡 = arg min
𝑧∈𝒵

{𝛾𝑡⟨Φ𝐹
𝑧𝑡,𝑝(𝑧𝑡), 𝑧 − 𝑧𝑡⟩ + 𝐷(𝑧, 𝑧𝑡)},

𝑝!

32𝐿𝑝‖𝑧𝑡 − 𝑧𝑡‖𝑝−1
2

≤ 𝛾𝑡 ≤
𝑝!

16𝐿𝑝‖𝑧𝑡 − 𝑧𝑡‖𝑝−1
2

,

𝑧𝑡+1 = arg min
𝑧∈𝒵

{⟨𝛾𝑡𝐹 (𝑧𝑡), 𝑧 − 𝑧𝑡⟩ + 𝐷(𝑧, 𝑧𝑡)}.

4: end for
5: Define Γ𝑇

𝑑𝑒𝑓
=
∑︀𝑇

𝑡=1 𝛾𝑡

6: return 𝑧𝑇
𝑑𝑒𝑓
= 1

Γ𝑇

∑︀𝑇
𝑡=1 𝛾𝑡𝑧𝑡.

Algorithm 2 Restarted HighOrderMirrorProx
1: Input 𝑧1 ∈ 𝒵, 𝑝 ≥ 1, 0 < 𝜀 < 1, 𝑅 : 𝑅 ≥ ‖𝑧1 − 𝑧*‖2.
2: 𝑘 = 1
3: 𝑧1 = 𝑧1
4: for 𝑖 ∈ [𝑛], where 𝑛 =

⌈︀
log 𝜇𝑅

𝜀
+ 𝑝−1

2

⌉︀
do

5: Set 𝑅𝑖 = 𝑅
2𝑖−1

6: Set 𝑇𝑖 =

⌊︂
𝑅2

𝑖

2

(︂
64𝐿𝑝

𝑝!𝜇𝑅𝑖

)︂ 2
𝑝+1
⌋︂

7: Run Algorithm 1 with 𝑧𝑖, 𝑝, 𝑇𝑖 as input
8: 𝑧𝑖+1 = 𝑧𝑇𝑖

9: end for
10: return 𝑧𝑖

Lemma 3.2 (Lemma 4.1 from [2]). Suppose 𝐹 : 𝒵 → R𝑛 is 𝑝-th order Lipschitz and let Γ𝑇 =∑︀𝑇
𝑡=1 𝛾𝑡. Then, the iterates {𝑧𝑡}𝑡∈[𝑇 ], generated by Algorithm 1, satisfy

∀𝑧 ∈ 𝒵 ⇒ 1

Γ𝑇

𝑇∑︁
𝑡=1

⟨𝛾𝑡𝐹 (𝑧𝑡), 𝑧𝑡 − 𝑧⟩ ≤ 16𝐿𝑝

𝑝!

(︂
𝐷(𝑧, 𝑧1)

𝑇

)︂ 𝑝+1
2

. (16)

Thus, these two lemmas tell us, that if 𝑧𝑡 and 𝛾𝑡 are generated by the Algorithm 1, and the right hand
side of (16) is smaller than 𝜀, then 𝑧𝑡 = 1

Γ𝑇

∑︀𝑇
𝑡=1 𝛾𝑡𝑧𝑡 is an 𝜀-solution to regular MVI (13). Hence, it is

also a solution to a convex-concave SPP. The natural way to improve the method for convex-concave
problem in tighter strongly-convex-strongly-concave setting is to use restarts [26]. As a result, we obtain
Algorithm 2.

Theorem 3.3. Suppose 𝐹 : R𝑛 × R𝑚 → R𝑛 × R𝑚, that is defined in (9), is 𝑝-th order Lipschitz
and 𝜇-strongly monotone (Assumptions 1 and 4 hold). Denote 𝑅 such that 𝑅 ≥ ‖𝑧1 − 𝑧*‖2. Then
Algorithm 2 complexity is

𝑂

(︃(︂
𝐿𝑝𝑅

𝑝

𝜇

)︂ 2
𝑝+1

log
𝜇𝑅

𝜀

)︃
. (17)
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Tensor methods for strongly convex strongly concave SPP and strongly monotone VI 7

Proof. From (15) and (16) we get the following:

𝑇∑︁
𝑡=1

𝛾𝑡⟨𝐹 (𝑧𝑡) − 𝐹 (𝑧*); 𝑧𝑡 − 𝑧*⟩ ≤ 16𝐿𝑝

𝑝!

(︂
‖𝑧1 − 𝑧*‖22

2𝑇

)︂ 𝑝+1
2

. (18)

From this and the fact that 𝐹 (𝑥) is 𝜇-strongly monotone we have

𝜇‖𝑧𝑇 − 𝑧*‖22
(*)
≤ 𝜇

Γ𝑇

𝑇∑︁
𝑡=1

𝛾𝑡‖𝑧𝑡 − 𝑧*‖22
(8)
≤ 1

Γ𝑇

𝑇∑︁
𝑡=1

𝛾𝑡⟨𝐹 (𝑧𝑡) − 𝐹 (𝑧*); 𝑧𝑡 − 𝑧*⟩ (19)

(18)
≤ 16𝐿𝑝

𝑝!

(︂
‖𝑧1 − 𝑧*‖22

2𝑇

)︂ 𝑝+1
2

,

where (*) follows from convexity of ‖𝑧‖22.

Now we restart the method every time the distance to solution decreases at least twice. Let 𝑇𝑖 be
such that ‖𝑧𝑇𝑖

− 𝑧*‖2 ≤ ‖𝑧𝑖−𝑧*‖2
2

, where 𝑧𝑖 is the point, where we restart our algorithm. Denote
𝑅1 = 𝑅 ≥ ‖𝑧1− 𝑧*‖2, 𝑅𝑖 = 𝑅1/2𝑖−1 ≥ ‖𝑧𝑖− 𝑧*‖2. Then the number of iterations before (𝑖+ 1)-th
restart is

𝜇‖𝑧𝑇𝑖
− 𝑧*‖22

(19)
≤ 16𝐿𝑝

𝑝!

(︂
‖𝑧𝑖 − 𝑧*‖22

2𝑇𝑖

)︂ 𝑝+1
2

≤ 16𝐿𝑝

𝑝!

(︂
𝑅2

𝑖

2𝑇𝑖

)︂ 𝑝+1
2

⇔ 𝑇𝑖 ≤
𝑅2

𝑖

2

(︂
64𝐿𝑝

𝑝!𝜇𝑅𝑖

)︂ 2
𝑝+1

⇔ 𝑇𝑖 =

⌊︂
𝑅2

𝑖

2

(︂
64𝐿𝑝

𝑝!𝜇𝑅𝑖

)︂ 2
𝑝+1
⌋︂
.

Next we need to obtain the number of restarts, required to achieve the desired accuracy. Since 𝑇𝑛 ≥ 1,
then 2𝑇𝑛 ≥ 𝑇𝑛 + 1 ⇔ 1

2𝑇𝑛
≤ 1

𝑇𝑛+1
. And from the definition of 𝑇𝑛

2𝑇𝑛 ≥ 𝑇𝑛 + 1 ≥ 𝑅2
𝑛

2

(︂
64𝐿𝑝

𝑝!𝜇𝑅𝑛

)︂ 2
𝑝+1

⇔ 1

2𝑇𝑛

≤ 2(︁
64𝐿𝑝𝑅

𝑝
𝑛

𝑝!𝜇

)︁ 2
𝑝+1

So, from this fact and (16) we get

1

Γ𝑇𝑛

𝑇𝑛∑︁
𝑡=1

𝛾𝑡⟨𝐹 (𝑧𝑡) − 𝐹 (𝑧*); 𝑧𝑡 − 𝑧*⟩ ≤ 16𝐿𝑝

𝑝!

(︂
‖𝑧𝑛 − 𝑧*‖22

2𝑇𝑛

)︂ 𝑝+1
2

≤ 16𝐿𝑝𝑅
𝑝+1
𝑛

𝑝!

⎛⎜⎝ 2(︁
64𝐿𝑝𝑅

𝑝
𝑛

𝑝!𝜇

)︁ 2
𝑝+1

⎞⎟⎠
𝑝+1
2

=
2

𝑝−3
2 𝜇𝑅

2𝑛−1
≤ 𝜀.

⇔ 𝑛 ≥ log
𝜇𝑅

𝜀
+

𝑝− 1

2
⇔ 𝑛 =

⌈︂
log

𝜇𝑅

𝜀
+

𝑝− 1

2

⌉︂
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Algorithm 3 CRN-SPP [Algorithm 1 in [11]]
1: Input 𝑧0, 𝜀, 𝛾 > 0, 𝜌, 𝛼 ∈ (0, 1), 𝑔 satisfies Assumptions 1, 2 and 3.
2: while 𝑚(𝑧𝑘) > 𝜀 do
3: 𝛾𝑘 = 𝛾
4: while True do
5: Solve the subproblem (�̃�𝑘+1, 𝑦𝑘+1) = arg min𝑥 max𝑦 𝑔𝑘(𝑥, 𝑦; 𝛾𝑘)
6: if 𝛾𝑘(‖�̃�𝑘+1 − 𝑥𝑘‖ + ‖𝑦𝑘+1 − 𝑦𝑘‖) > 𝜇 then
7: 𝛾𝑘 = 𝜌𝛾𝑘
8: else
9: break

10: end if
11: end while
12: 𝑑𝑘 = (�̃�𝑘+1 − 𝑥𝑘; 𝑦𝑘+1 − 𝑦𝑘)
13: if 𝑚(𝑧𝑘 + 𝛼𝑑𝑘) < 𝑚(𝑧𝑘 + 𝑑𝑘) then
14: 𝑧𝑘+1 = 𝑧𝑘 + 𝛼𝑑𝑘
15: else if 𝑚(𝑧𝑘 + 𝛼𝑑𝑘) ≥ 𝑚(𝑧𝑘 + 𝑑𝑘) then
16: 𝑧𝑘+1 = 𝑧𝑘 + 𝑑𝑘
17: end if
18: 𝑘 = 𝑘 + 1
19: end while
20: return 𝑧𝑘

Finally, the total number of iterations is

𝑁 =
𝑛∑︁

𝑖=1

𝑇𝑖 =
𝑛∑︁

𝑖=1

⌊︃
1

2

(︂
64𝐿𝑝𝑅

𝑝
𝑖

𝑝!𝜇

)︂ 2
𝑝+1

⌋︃
=

1

2

(︂
64𝐿𝑝

𝑝!𝜇

)︂ 2
𝑝+1

𝑛∑︁
𝑖=1

𝑅
2𝑝
𝑝+1

𝑖

≤
(︂

64𝐿𝑝

𝑝!𝜇

)︂ 2
𝑝+1

𝑅
2𝑝
𝑝+1𝑛 =

(︂
64𝐿𝑝𝑅

𝑝

𝑝!𝜇

)︂ 2
𝑝+1
⌈︂

log
𝜇𝑅

𝜀
+

𝑝− 1

2

⌉︂
= 𝑂

(︃(︂
𝐿𝑝𝑅

𝑝

𝜇

)︂ 2
𝑝+1

log
𝜇𝑅

𝜀

)︃
.

This completes the proof.

3.2 Local quadratic convergence

Just like in previous subsection, becides introducing the Algorithm 3 and its convergence rate we need
to provide some prerequisite information from [11].

Because of strong convexity and strong concavity of 𝑔(𝑥, 𝑦) a unique solution 𝑧* to a SPP (1) exists,
and 𝐹 (𝑧*) = 0. Thus, we can use the following merit function from [11] during analysis of Algorithm 3
complexity.

𝑚(𝑧) :=
1

2
‖𝐹 (𝑧)‖22 =

1

2
(‖∇𝑥𝑔(𝑥, 𝑦)‖22 + ‖∇𝑦𝑔(𝑥, 𝑦)‖22). (20)
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Algorithm 3 solves additional saddle point subproblem on each step, that we denote as

min
𝑥∈R𝑛

max
𝑦∈R𝑚

𝑔𝑘(𝑥, 𝑦, 𝛾𝑘) :=

𝑔(𝑧𝑘) + ⟨∇𝑔(𝑧𝑘), 𝑧 − 𝑧𝑘⟩ +
1

2
∇2𝑔(𝑧𝑘)[𝑧 − 𝑧𝑘]2 +

𝛾𝑘
3
‖𝑥− 𝑥𝑘‖32 −

𝛾𝑘
3
‖𝑦 − 𝑦𝑘‖32,

where 𝛾𝑘 is some constant.

This proposition provides the relation between the merit function 𝑚(𝑧) and the duality gap under
assumptions 1 and 2.

Proposition 3.4 (Proposition 2.5 from [11]). Let assumptions 1 and 2 hold. For problem (1) and any
point 𝑧 = (𝑥, 𝑦) the duality gap (7) and the merit function (20) satisfy the following inequalities

𝜇

𝐿2
1

𝑚(𝑧) ≤ 𝐺(𝑥, 𝑦) ≤ 𝐿1

𝜇2
𝑚(𝑧). (21)

The next theorem proves local quadratic convergence of the Algorithm 3, and it is based on Theorem
3.6 from [11].

Theorem 3.5 (Theorem 3.6 from [11]). Suppose 𝐹 : 𝒵 → R𝑛 is 𝜇-strongly monotone, first and
second order Lipschitz operator (assumptions 1, 2 and 3 hold). Let {𝑧𝑘} be generated by Algorithm 3

with 𝛾 = 𝐿2𝜇2

2𝐿2 , 𝜉 = max
{︁

1, 𝐿1

𝜇

}︁
and

𝑧0 : ‖𝑧0 − 𝑧*‖2 ≤
𝜇

𝐿2𝜉
. (22)

Then

∀𝑘 ≥ 0 ‖𝑧𝑘+1 − 𝑧*‖2 ≤
𝐿2𝜉

𝜇
‖𝑧𝑘 − 𝑧*‖22, (23)

Proof. Here we provide only the modified part of its proof. The rest of it can be found in [11].

If 𝑧𝑘+1 = 𝑧𝑘+1 = 𝑧𝑘 + 𝑑𝑘, then

‖𝑧𝑘+1 − 𝑧*‖2 = ‖𝑧𝑘+1 − 𝑧*‖2 ≤
𝐿2

𝜇
‖𝑧𝑘 − 𝑧*‖22 ≤

𝐿2𝜉

𝜇
‖𝑧𝑘 − 𝑧*‖22.

Else if 𝑧𝑘+1 = 𝑧𝑘+1 = 𝑧𝑘 + 𝛼𝑑𝑘, then

‖𝑧𝑘+1 − 𝑧*‖2 = ‖𝑧𝑘+1 − 𝑧*‖2 ≤
𝐿1𝐿2

𝜇2
‖𝑧𝑘 − 𝑧*‖22 ≤

𝐿2𝜉

𝜇
‖𝑧𝑘 − 𝑧*‖22.

Hence, we get (23).

Now we need to find the area, where (23) works:

∃𝑐 : ∀𝑘 ≥ 0 : ‖𝑧𝑘 − 𝑧*‖2 ≤ 𝑐 ⇒ ‖𝑧𝑘+1 − 𝑧*‖2 ≤
𝐿2𝜉

𝜇
‖𝑧𝑘 − 𝑧*‖22

⇔ ‖𝑧𝑘+1 − 𝑧*‖2 ≤
𝐿2𝜉

𝜇
‖𝑧𝑘 − 𝑧*‖2 ≤

𝐿2𝜉𝑐
2

𝜇
= 𝑐

⇔ 𝑐 =
𝜇

𝐿2𝜉
.

Thus, we get (22).
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Algorithm 4 Restarted HighOrderMirrorProx with local quadratic convergence
1: Input 𝑧1 ∈ 𝒵, 𝑝 ≥ 1, 0 < 𝜀 < 1, 𝑅 : 𝑅 ≥ ‖𝑧1 − 𝑧*‖2, 𝜌 ∈ (0, 1), 𝛼 ∈ (0, 1).
2: 𝑧1 = 𝑧1
3: for 𝑖 ∈ [𝑛], where 𝑛 =

⌈︁
log 𝐿2𝑅𝜉

𝜇
+ 1
⌉︁

do

4: Set 𝑅𝑖 = 𝑅
2𝑖−1

5: Set 𝑇𝑖 =

⌊︂
𝑅2

𝑖

2

(︂
64𝐿𝑝

𝑝!𝜇𝑅𝑖

)︂ 2
𝑝+1
⌋︂

6: Run Algorithm 1 with 𝑧𝑖, 𝑝, 𝑇𝑖 as input
7: 𝑧𝑖+1 = 𝑧𝑇𝑖

8: end for
9: Run Algorithm 3 with 𝑧𝑖+1, 𝜀 = 𝜇2𝜀

𝐿
, 𝛾 = 𝐿2𝜇2

2𝐿2
1

, 𝜌, 𝛼, 𝑔 as input
10: return 𝑧𝑘

Our idea is to use Algorithm 2 until it reaches the area (22) and then switch to Algorithm 3. Algorithm 4
provides the pseudocode of this idea. From Proposition 3.4, our Theorem 3.3 and Theorem 3.5, we
obtain the complexity of Algorithm 4.

Theorem 3.6. Suppose 𝐹 : R𝑛×R𝑚 → R𝑛×R𝑚, that is defined in (9), is 𝜇-strongly monotone, first,
second and 𝑝-th order Lipschitz operator (all assumptions 1, 2, 3, 4 hold). Denote 𝑅 : 𝑅 ≥ ‖𝑧1 − 𝑧*‖2
and 𝜉 = max

{︁
1, 𝐿1

𝜇

}︁
. Then the complexity of Algorithm 4 is

𝑂

⎛⎝(︂𝐿𝑝𝑅
𝑝

𝜇

)︂ 2
𝑝+1

log
𝐿2𝜉𝑅

𝜇
+ log

log
𝐿3
1

2𝜇2𝜀

log 𝐿1𝐿2

𝜇2

⎞⎠ . (24)

Proof. First of all, we need to find the number of restarts 𝑛 of Algorithm 2 to reach the area of local
quadratic convergence of Algorithm 3 from (22): ‖𝑧𝑛 − 𝑧*‖2 ≤ 𝜇

𝐿2𝜉
. We can choose such 𝑛, that

‖𝑧𝑛 − 𝑧*‖2 ≤ 𝑅𝑛 ≤ 𝜇

𝐿2𝜉
.

Therefore, the number of restarts is

𝑅

2𝑛−1
≤ 𝜇

𝐿2𝜉
⇔ 𝑛 =

⌈︂
log

𝐿2𝑅𝜉

𝜇
+ 1

⌉︂
.

Next we switch to Algorithm 3 and we need to obtain its number of iterations until convergence. Denote
by 𝜀′ the accuracy of solution in terms of the merit function (20). Owing to first order Lipschitzness of
𝐹 (𝑧) and the fact that 𝐹 (𝑧*) = 0, we can get

𝜀′ = 𝑚(𝑧𝑘) =
1

2
‖𝐹 (𝑧𝑘)‖22 =

1

2
‖𝐹 (𝑧𝑘) − 𝐹 (𝑧*)‖22 ≤

𝐿2
1

2
‖𝑧𝑘 − 𝑧*‖22. (25)

Now we establish a connection between the solution in terms of merit function 𝑚(𝑧) and the duality
gap 𝐺(𝑥, 𝑦). From (25) and (21) we get the following:

𝜀 = 𝐺(𝑥, 𝑦) = max
𝑦′∈R𝑛

𝑓(𝑥, 𝑦′) − min
𝑥′∈R𝑛

𝑓(𝑥′, 𝑦) ≤ 𝐿1

𝜇2
𝑚(𝑧𝑘) =

𝐿1

𝜇2
𝜀′

⇔ 𝜇2𝜀

𝐿1

≤ 𝜀′. (26)
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Then, from (23), (22), (25) and (26) we can obtain the needed number of iterations 𝑘

𝜇2𝜀

𝐿1

(25),(26)
≤ 𝐿2

1

2
‖𝑧𝑘 − 𝑧*‖22

(23)
≤ 𝐿2

1

2

(︂
𝐿1𝐿2

𝜇2
‖𝑧𝑘−1 − 𝑧*‖22

)︂2

≤ 𝐿2
1

2

(︂
𝐿1𝐿2

𝜇2

(︂
𝐿1𝐿2

𝜇2
‖𝑧𝑘−2 − 𝑧*‖22

)︂2)︂2

≤ ...

≤ 𝐿2
1

2

(︂
𝐿1𝐿2

𝜇2

)︂2𝑘−1−2

‖𝑧1 − 𝑧*‖2𝑘2
(22)
≤ 𝐿2

1

2

(︂
𝐿1𝐿2

𝜇2

)︂2𝑘−1−2(︂
𝜇2

𝐿1𝐿2

)︂2𝑘

⇔ 2𝜇2𝜀

𝐿3
1

≤
(︂

𝜇2

𝐿1𝐿2

)︂2𝑘−1+2

⇔ log
2𝜇2𝜀

𝐿3
1

≤ (2𝑘−1 + 2) log
𝜇2

𝐿1𝐿2

Since log(𝜇2/𝐿1𝐿2) < 0,

log
2𝜇2𝜀

𝐿3
1

≤ 2𝑘−1 log
𝜇2

𝐿1𝐿2

⇔ 𝑘 =

⌈︃
log

log
𝐿3
1

2𝜇2𝜀

log 𝐿1𝐿2

𝜇2

⌉︃
+ 1.

Finally, the total number of iterations of Algorithm 4 is

𝑁 =
𝑛∑︁

𝑖=1

𝑇𝑖 + 𝑘

≤ 1

2

(︂
64𝐿𝑝𝑅

𝑝

𝑝!𝜇

)︂ 2
𝑝+1
⌈︂

log
𝐿2𝜉𝑅

𝜇
+ 1

⌉︂
+

⎡⎢⎢⎢log
log

𝐿3
1

2𝜇2𝜀

log 𝐿1𝐿2

𝜇2

⎤⎥⎥⎥+ 1

= 𝑂

⎛⎝(︂𝐿𝑝𝑅
𝑝

𝜇

)︂ 2
𝑝+1

log
𝐿2𝜉𝑅

𝜇
+ log

log
𝐿3
1

2𝜇2𝜀

log 𝐿1𝐿2

𝜇2

⎞⎠

3.3 Gradient norm minimization

In this subsection we apply the framework from [4] to Algorithm 4, introduce Algorithm 5 for problem (3)
and analyze its complexity in terms of the norm of the gradient ‖∇𝑔(𝑥, 𝑦)‖2.

Firstly, we need to introduce some technical lemmas.

Lemma 3.7. If 𝑔(𝑥, 𝑦) is 𝑝-Lipchitz (12), then its partial 𝑝-th order derivatives are also Lipschitz.

∀�̂�, 𝑥 ∈ R𝑛, 𝑦, 𝑦 ∈ R𝑚 ⇒ ‖∇𝑝
𝑥𝑖𝑦𝑝−𝑖𝑔(�̂�, 𝑦) −∇𝑝

𝑥𝑖𝑦𝑝−𝑖𝑔(𝑥, 𝑦)‖2 ≤ 𝐿𝑝‖𝑧 − 𝑧‖2. (27)

Proof. Here we provide proof only for ∇𝑝
𝑥...𝑥. For other partial derivatives the proof is analogous.

From definition of ‖ · ‖2
‖∇𝑝

𝑥...𝑥𝑔(�̂�, 𝑦) −∇𝑝
𝑥...𝑥𝑔(𝑥, 𝑦)‖2 = max

‖𝑠‖2≤1
|(∇𝑝

𝑥...𝑥𝑔(�̂�, 𝑦) −∇𝑝
𝑥...𝑥𝑔(𝑥, 𝑦))[𝑠]𝑝|

= max
‖𝑠‖2≤1

⃒⃒⃒⃒
⃒(∇𝑝𝑔(�̂�, 𝑦) −∇𝑝𝑔(𝑥, 𝑦))

[︂(︂
𝑠
0

)︂]︂𝑝 ⃒⃒⃒⃒⃒
≤ max

‖ℎ‖2≤1
|(∇𝑝𝑔(�̂�, 𝑦) −∇𝑝𝑔(𝑥, 𝑦))[ℎ]𝑝|

= ‖∇𝑝𝑔(�̂�, 𝑦) −∇𝑝𝑔(𝑥, 𝑦)‖2 ≤ 𝐿𝑝‖𝑧 − 𝑧‖2.
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Lemma 3.8. Let ∇𝑝
𝑥...𝑥𝑔(𝑥, 𝑦) be Lipschitz (27). Then

∀𝑛 ∈ [𝑝] ⇒ ‖∇𝑝−𝑛
𝑥...𝑥𝑔(𝑧) −∇𝑝−𝑛

𝑥...𝑥Φ(𝑥,𝑦),𝑝(𝑧)‖2 ≤
𝐿𝑝(

√
2)𝑛

(𝑛 + 1)!
‖𝑧 − 𝑧‖𝑛+1

2 . (28)

Proof. We prove this by induction.

The base of induction 𝑛 = 1 follows from the definition of Taylor approximation. Denote 𝑓(𝑧) =
∇𝑝−1

𝑥...𝑥𝑔(𝑧).

‖∇𝑝−1
𝑥...𝑥𝑔(𝑧) −∇𝑝−1

𝑥...𝑥Φ(𝑥,𝑦),𝑝(𝑧)‖2
= ‖∇𝑝−1

𝑥...𝑥𝑔(𝑧) −∇𝑝−1
𝑥...𝑥𝑔(𝑧) −∇𝑝

𝑥...𝑥𝑥𝑔(𝑧)[�̂�− 𝑥] −∇𝑝
𝑥...𝑥𝑦𝑔(𝑧)[𝑦 − 𝑦]‖2

= ‖𝑓(𝑧) − 𝑓(𝑧) −∇𝑓(𝑧)[𝑧 − 𝑧]‖2

= ‖
∫︁ 1

0

⟨∇𝑓(𝑧 + 𝜏(𝑧 − 𝑧)) −∇𝑓(𝑧); 𝑧 − 𝑧⟩𝑑𝜏‖2

≤
∫︁ 1

0

⃦⃦⃦⃦ (︂
∇𝑝

𝑥...𝑥𝑥𝑔(𝑧 + 𝜏(𝑧 − 𝑧))
∇𝑝

𝑥...𝑥𝑦𝑔(𝑧 + 𝜏(𝑧 − 𝑧))

)︂
−
(︂
∇𝑝

𝑥...𝑥𝑥𝑔(𝑧)
∇𝑝

𝑥...𝑥𝑦𝑔(𝑧))

)︂ ⃦⃦⃦⃦
2

‖𝑧 − 𝑧‖2𝑑𝜏

=

∫︁ 1

0

√︁
‖∇𝑝

𝑥...𝑥𝑥𝑔(𝑧 + 𝜏(𝑧 − 𝑧)) −∇𝑝
𝑥...𝑥𝑥𝑔(𝑧)‖22 + ‖∇𝑝

𝑥...𝑥𝑦𝑔(𝑧 + 𝜏(𝑧 − 𝑧)) −∇𝑝
𝑥...𝑥𝑦𝑔(𝑧)‖22·

·‖𝑧 − 𝑧‖2𝑑𝜏
(27)
≤

√
2𝐿𝑝‖𝑧 − 𝑧‖22

∫︁ 1

0

𝜏𝑑𝜏 =
𝐿𝑝

√
2

2
‖𝑧 − 𝑧‖22.

Now assume it holds for 𝑛 = 𝑝− 1:

‖∇𝑥𝑔(𝑧) −∇𝑥Φ(𝑥,𝑦),𝑝(𝑧)‖2

=

⃦⃦⃦⃦
∇𝑥𝑔(𝑧) −∇𝑥𝑔(𝑧) − (∇2

𝑥𝑥𝑔(𝑧)[�̂�− 𝑥] −∇2
𝑥𝑦𝑔(𝑧)[𝑦 − 𝑦]) − ...−

−∇𝑥

(︂
1

𝑝!
∇𝑝𝑔(𝑧)[𝑧 − 𝑧]𝑝

)︂⃦⃦⃦⃦
2

≤ 𝐿𝑝(
√

2)𝑝−1

𝑝!
‖𝑧 − 𝑧‖𝑝2. (29)
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And consider 𝑛 = 𝑝

|𝑔(𝑧) − Φ(𝑥,𝑦),𝑝(𝑧)|

= |𝑔(𝑧) − 𝑔(𝑧) −∇𝑥𝑔(𝑧)[�̂�− 𝑥] −∇𝑦𝑔(𝑧)[𝑦 − 𝑦] − ...− 1

𝑝!
∇𝑝𝑔(𝑧)[𝑧 − 𝑧]𝑝|

≤
∫︁ 1

0

⃦⃦⃦⃦ (︂
∇𝑥𝑔(𝑧 + 𝜏(𝑧 − 𝑧))
∇𝑦𝑔(𝑧 + 𝜏(𝑧 − 𝑧))

)︂
−
(︂
∇𝑥𝑔(𝑧)
∇𝑦𝑔(𝑧)

)︂
−

−𝜏

(︂
∇2

𝑥𝑥𝑔(𝑧)[�̂�− 𝑥] + ∇2
𝑥𝑦𝑔(𝑧)[𝑦 − 𝑦]

∇2
𝑦𝑥𝑔(𝑧)[�̂�− 𝑥] + ∇2

𝑦𝑦𝑔(𝑧)[𝑦 − 𝑦]

)︂
− ...−

−𝜏 𝑝−1

𝑝!

(︂
∇𝑥(∇𝑝𝑔(𝑧)[𝑧 − 𝑧]𝑝)
∇𝑦(∇𝑝𝑔(𝑧)[𝑧 − 𝑧]𝑝)

)︂ ⃦⃦⃦⃦
2

‖𝑧 − 𝑧‖2𝑑𝜏

=

∫︁ 1

0

(︁
‖∇𝑥𝑔(𝑧 + 𝜏(𝑧 − 𝑧)) −∇𝑥𝑔(𝑧)−

−𝜏(∇2
𝑥𝑥𝑔(𝑧)[�̂�− 𝑥] + ∇2

𝑥𝑦𝑔(𝑧)[𝑦 − 𝑦]) − ...−

−𝜏 𝑝−1

𝑝!
∇𝑥(∇𝑝𝑔(𝑧)[𝑧 − 𝑧]𝑝)‖22+

+‖∇𝑦𝑔(𝑧 + 𝜏(𝑧 − 𝑧)) −∇𝑦𝑔(𝑧)−
−𝜏(∇2

𝑦𝑥𝑔(𝑧)[�̂�− 𝑥] + ∇2
𝑦𝑦𝑔(𝑧)[𝑦 − 𝑦]) − ...−

−𝜏 𝑝−1

𝑝!
∇𝑦(∇𝑝𝑔(𝑧)[𝑧 − 𝑧]𝑝)‖22

)︁1/2
‖𝑧 − 𝑧‖2𝑑𝜏.

If we denote 𝑧 = 𝑧 + 𝜏(𝑧 − 𝑧) in (29), each of two factors under the square root is indeed what we
had for 𝑛 = 𝑝− 1. Finally,

‖∇𝑥𝑔(𝑧) −∇𝑥Φ(𝑥,𝑦),𝑝(𝑧)‖2 ≤
√

2
𝐿𝑝(

√
2)𝑝−1

𝑝!
‖𝑧 − 𝑧‖𝑝+1

2

∫︁ 1

0

𝜏 𝑝𝑑𝜏

=
𝐿𝑝(

√
2)𝑝

(𝑝 + 1)!
‖𝑧 − 𝑧‖𝑝+1

2 .

For any other partial derivative in (28) the result is the same and can be obtained in a similar way.

The next lemma is a modified version of Lemma 5.2 from [9] for SPP.

Lemma 3.9 (Lemma 5.2 from [9]). Let (�̃�, 𝑦) = 𝑇 𝑔
𝑝,𝑀 (𝑥, 𝑦) , 𝑝 ≥ 2, where 𝑀 ≥

√
2𝑝𝐿𝑝 >

1√
2
𝑝𝐿𝑝

and assumption 4 hold. Then

‖∇𝑔(�̃�, 𝑦)‖
𝑝+1
𝑝

2

𝑀
3𝑝+1
2𝑝

2
2𝑝2+𝑝+1

2𝑝 𝑝(𝑝 + 1)!
≤ 𝑔(𝑥, 𝑦) − 𝑔(�̃�, 𝑦). (30)

Proof.

‖∇𝑔(�̃�, 𝑦)‖22 = ‖∇𝑥𝑔(�̃�, 𝑦)‖22 + ‖∇𝑦𝑔(�̃�, 𝑦)‖22.
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Firstly, consider ∇𝑥:

‖∇𝑥𝑔(�̃�, 𝑦)‖22 = ‖∇𝑥𝑔(�̃�, 𝑦) −∇𝑥Φ(𝑥,𝑦),𝑝(�̃�, 𝑦) + ∇𝑥Φ(𝑥,𝑦),𝑝(�̃�, 𝑦)−
−∇𝑥Ω(𝑥,𝑦),𝑝,𝑀(�̃�, 𝑦) + ∇𝑥Ω(𝑥,𝑦),𝑝,𝑀(�̃�, 𝑦)‖22

≤
(︁
‖∇𝑥𝑔(�̃�, 𝑦) −∇𝑥Φ(𝑥,𝑦),𝑝(�̃�, 𝑦)‖2+

+‖∇𝑥Φ(𝑥,𝑦),𝑝(�̃�, 𝑦) −∇𝑥Ω(𝑥,𝑦),𝑝,𝑀(�̃�, 𝑦)‖ + ‖∇𝑥Ω(𝑥,𝑦),𝑝,𝑀(�̃�, 𝑦)‖2
)︁2

≤

(︃
2

𝑝−1
2 𝐿𝑝

𝑝!
‖𝑧 − 𝑧‖𝑝2 +

2
𝑝−1
2 𝑀

𝑝!
‖�̃�− 𝑥‖𝑝2

)︃2

≤ 2𝑝𝑀2‖𝑧 − 𝑧‖2𝑝2 .

For ∇𝑦 in a similar way we get the same result

‖∇𝑥𝑔(�̃�, 𝑦)‖22 ≤ 2𝑝𝑀2‖𝑧 − 𝑧‖2𝑝2 .

Summing these two results, we obtain

‖∇𝑔(�̃�, 𝑦)‖22 ≤ 2𝑝+1𝑀
(︀
‖�̃�− 𝑥‖22 + ‖𝑦 − 𝑦‖22

)︀𝑝
. (31)

Secondly, consider point (�̃�, 𝑦). From (28) it is obvious that

|𝑔(�̃�, 𝑦) − Φ(𝑥,𝑦),𝑝(�̃�, 𝑦)| ≤ 𝐿𝑝(
√

2)𝑝

(𝑝 + 1)!
‖(�̃�, 𝑦) − (𝑥, 𝑦)‖𝑝+1

2 =
𝐿𝑝(

√
2)𝑝

(𝑝 + 1)!
‖�̃�− 𝑥‖𝑝+1

2 .

From this fact we get

𝑔(�̃�, 𝑦) ≤ Φ(𝑥,𝑦),𝑝(�̃�, 𝑦) +
𝐿𝑝(

√
2)𝑝

(𝑝 + 1)!
‖�̃�− 𝑥‖𝑝+1

2

= Φ(𝑥,𝑦),𝑝(�̃�, 𝑦) +
𝐿𝑝(

√
2)𝑝−1

(𝑝 + 1)!
‖�̃�− 𝑥‖𝑝+1

2 −

−

(︃
𝑀(

√
2)𝑝−1

(𝑝 + 1)!
‖�̃�− 𝑥‖𝑝+1

2 − 𝐿𝑝(
√

2)𝑝

(𝑝 + 1)!
‖�̃�− 𝑥‖𝑝+1

2

)︃

= Ω(𝑥,𝑦),𝑝,𝑀(�̃�, 𝑦) − (𝑀 − 𝐿𝑝

√
2)

(
√

2)𝑝−1‖�̃�− 𝑥‖𝑝+1
2

(𝑝 + 1)!

≤ Ω(𝑥,𝑦),𝑝,𝑀(�̃�, 𝑦) − (𝑀 − 𝐿𝑝

√
2)

(
√

2)𝑝−1‖�̃�− 𝑥‖𝑝+1
2

(𝑝 + 1)!
.

Since 𝑀 ≥
√

2𝑝𝐿𝑝 ⇔ −𝐿𝑝

√
2 ≥ −𝑀

𝑝
. we have

Ω(𝑥,𝑦),𝑝,𝑀(�̃�, 𝑦) − 𝑔(�̃�, 𝑦) ≥ 𝑀(𝑝− 1)(
√

2)𝑝−1‖�̃�− 𝑥‖𝑝+1
2

𝑝(𝑝 + 1)!
≥ 𝑀‖�̃�− 𝑥‖𝑝+1

2

𝑝(𝑝 + 1)!
. (32)

Now consider the point (𝑥, 𝑦). In a similar way we can get the following result:

𝑔(𝑥, 𝑦) − Ω(𝑥,𝑦),𝑝,𝑀(�̃�, 𝑦) ≥ 𝑀‖𝑦 − 𝑦‖𝑝+1
2

𝑝(𝑝 + 1)!
. (33)
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From the sum of (32) and (33) we obtain

𝑔(𝑥, 𝑦) − 𝑔(�̃�, 𝑦) ≥ 𝑀

𝑝(𝑝 + 1)!

(︁
‖�̃�− 𝑥‖𝑝+1

2 + ‖𝑦 − 𝑦‖𝑝+1
2

)︁
. (34)

Finally, we need to connect (31) and (34). From Hölder’s inequality we can get(︃
𝑛∑︁

𝑖=1

𝑥𝑝
𝑖

)︃ 1
𝑝

≤ 𝑛
𝑞−𝑝
𝑞𝑝

(︃
𝑛∑︁

𝑖=1

𝑥𝑞
𝑖

)︃ 1
𝑞

,

where 𝑞, 𝑝 ∈ N, 𝑞 > 𝑝 ≥ 1. Now, from (31) it follows that(︂
‖∇𝑔(�̃�, 𝑦)‖22

2𝑝+1𝑀

)︂ 1
2𝑝

≤
(︀
‖�̃�− 𝑥‖22 + ‖𝑦 − 𝑦‖22

)︀ 1
2 .

And, from (34) we can get(︂
𝑝(𝑝 + 1)!(𝑔(𝑥, 𝑦) − 𝑔(�̃�, 𝑦))

𝑀

)︂ 1
𝑝+1

≥
(︀
‖�̃�− 𝑥‖𝑝+1

2 + ‖𝑦 − 𝑦‖𝑝+1
2

)︀ 1
𝑝+1 .

Since 𝑝 ≥ 2, we obtain the final result

‖∇𝑔(�̃�, 𝑦)‖
𝑝+1
𝑝

2

𝑀
3𝑝+1
2𝑝

2
2𝑝2+𝑝+1

2𝑝 𝑝(𝑝 + 1)!
≤ 𝑔(𝑥, 𝑦) − 𝑔(�̃�, 𝑦).

Now we have all the needed information to estimate the final convergence rate of the Algorithm 5 for
gradient norm minimization.

Theorem 3.10. Assume the function 𝑔(𝑥, 𝑦) : R𝑛 × R𝑚 → R is convex by 𝑥 and concave by 𝑦, 𝑝
times differentiable on R𝑛 with 𝐿𝑝-Lipschitz 𝑝-th derivative. Let 𝑧 be generated by Algorithm 5. Then

‖∇𝑔(𝑧)‖2 ≤ 𝜀,

and the total complexity of Algorithm 5 is

𝑂

(︃(︂
𝐿𝑝𝑅

𝑝

𝜀

)︂ 2
𝑝+1

log
𝐿2𝑅

2𝜉

𝜀

)︃
,

where 𝜉 = max
{︀

1, 4𝑅𝐿1

𝜀

}︀
.

Proof. Denote 𝑧*𝜇 = (𝑥*
𝜇, 𝑦

*
𝜇) the saddle point of 𝑔𝜇(𝑧). First of all, since 𝑔𝜇(𝑥, 𝑦) is strongly-convex-

strongly-concave function, we can apply restart technique to it every time the distance to its saddle point
‖𝑧 − 𝑧*𝜇‖2 reduces twice. To check this, we consider upper estimate of the distance to the solution of
regular function 𝑅 : 𝑅 ≥ ‖𝑧*−𝑧‖2 and show, that on each 𝑖-th restart ‖𝑧*𝜇−𝑧𝑖‖2 ≤ ‖𝑧*−𝑧𝑖‖2 ≤ 𝑅𝑖.
We prove this by induction.

𝑔(𝑥*
𝜇, 𝑦1) +

𝜇

2
‖𝑥*

𝜇 − 𝑥1‖22 = 𝑔𝜇(𝑥*
𝜇, 𝑦1) ≤ 𝑔𝜇(𝑥*, 𝑦1) = 𝑔(𝑥*, 𝑦1) +

𝜇

2
‖𝑥* − 𝑥1‖22

≤ 𝑔(𝑥*
𝜇, 𝑦1) +

𝜇

2
‖𝑥* − 𝑥1‖22
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Algorithm 5 Restarted HighOrderMirrorProx with local quadratic convergence for gradient norm
minimization

1: Input 𝑧1 ∈ 𝒵, 𝑝 ≥ 1, 0 < 𝜀 < 1, 𝑅 : 𝑅 ≥ ‖𝑧1 − 𝑧*‖2, 𝜌 ∈ (0, 1), 𝛼 ∈ (0, 1).
2: Define:

𝑧1 = 𝑧1, 𝑀 =
√

2𝑝𝐿𝑝, 𝜇 =
𝜀

4𝑅
, 𝜉 = max

{︂
1,

4𝑅𝐿1

𝜀

}︂
,

𝜀′ =
𝑀

3𝑝+1
2𝑝 𝜀

𝑝+1
𝑝

2
2𝑝2+3𝑝+3

2𝑝 𝑝(𝑝 + 1)!
,

𝑔𝜇(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) +
𝜇

2

(︀
‖𝑥− 𝑥1‖22 − ‖𝑦 − 𝑦1‖22

)︀
.

3: for 𝑖 ∈ [𝑛], where 𝑛 =
⌈︁
log 𝐿2𝑅𝜉

𝜇
+ 1
⌉︁

do

4: Set 𝑅𝑖 = 𝑅
2𝑖−1

5: Set 𝑇𝑖 =

⌈︃(︂
64𝐿𝑝𝑅

𝑝−1
𝑖

𝑝!𝜇

)︂ 2
𝑝+1

⌉︃
6: Run Algorithm 1 for 𝑔𝜇 with 𝑧𝑖, 𝑝, 𝑇𝑖 as input
7: 𝑧𝑖+1 = 𝑧𝑇𝑖

8: end for
9: Run Algorithm 3 with 𝑧𝑖+1, 𝜀′, 𝛾 = 𝐿2𝜇2

2𝐿2
1

, 𝜌, 𝛼, 𝑔𝜇 as input

10: Find 𝑧 = 𝑇
𝑔𝜇
𝑝, 𝑀(𝑧𝑘)

11: Output 𝑧.

⇔ ‖𝑥*
𝜇 − 𝑥1‖2 ≤ ‖𝑥* − 𝑥1‖2.

𝑔(𝑥1, 𝑦
*
𝜇) − 𝜇

2
‖𝑦*𝜇 − 𝑦1‖2 = 𝑔𝜇(𝑥1, 𝑦

*
𝜇) ≥ 𝑔𝜇(𝑥1, 𝑦

*) = 𝑔(𝑥1, 𝑦
*) − 𝜇

2
‖𝑦* − 𝑦1‖22

≥ 𝑔(𝑥1, 𝑦
*
𝜇) − 𝜇

2
‖𝑦* − 𝑦1‖22

⇔ ‖𝑦*𝜇 − 𝑦1‖2 ≤ ‖𝑦* − 𝑦1‖2.

This gives us
‖𝑧*𝜇 − 𝑧1‖2 ≤ ‖𝑧* − 𝑧1‖2 ≤ 𝑅.

Now suppose, that ‖𝑧*𝜇 − 𝑧𝑖‖2 ≤ ‖𝑧* − 𝑧𝑖‖2 ≤ 𝑅𝑖 = 𝑅/2𝑖−1. Consider 𝑖 + 1. From the proof of
Theorem 3.3 and our choice of 𝑇𝑖 in Algorithm 5, we know, that

𝜇‖𝑧𝑖+1 − 𝑧*𝜇‖22 = 𝜇‖𝑧𝑇𝑖
− 𝑧*𝜇‖22 ≤

16𝐿𝑝

𝑝!

(︂
𝑅2

𝑖

2𝑇𝑖

)︂ 𝑝+1
2

≤ 𝜇𝑅2
𝑖+1

⇔ ‖𝑧𝑖+1 − 𝑧*𝜇‖2 ≤ 𝑅𝑖+1.

Then, we need to find the number of restarts 𝑛 of Algorithm 2 to reach the area of local quadratic
convergence of Algorithm 3: ‖𝑧𝑛 − 𝑧*‖2 ≤ 𝜇

𝐿2𝜉
. We can choose such 𝑛, that

‖𝑧𝑛 − 𝑧*‖2 ≤ 𝑅𝑛 ≤ 𝜇

𝐿2𝜉
,
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where 𝜉 = max
{︁

1, 𝐿1

𝜇

}︁
= max

{︀
1, 4𝑅𝐿1

𝜀

}︀
. Therefore, the number of restarts is

𝑅

2𝑛−1
≤ 𝜇

𝐿2𝜉
⇔ 𝑛 =

⌈︂
log

𝐿2𝑅𝜉

𝜇
+ 1

⌉︂
.

Next, we need to show, that Algorithm 5 converges in terms of ‖∇𝑔𝜇(𝑧)‖2. Let 𝑧 = (�̃�, 𝑦) be the
output of Algorithm 5. From the definition of 𝑔𝜇 we get

‖∇𝑔(�̃�, 𝑦)‖22 = ‖∇𝑥𝑔𝜇(�̃�, 𝑦) − 𝜇(�̃�− 𝑥1)‖22 + ‖∇𝑦𝑔𝜇(�̃�, 𝑦) + 𝜇(𝑦 − 𝑦1)‖22
≤ (‖∇𝑥𝑔𝜇(�̃�, 𝑦)‖2 + 𝜇‖�̃�− 𝑥‖2)2 + (‖∇𝑦𝑔𝜇(�̃�, 𝑦)‖2 + 𝜇‖𝑦 − 𝑦‖2)2

≤ 2
(︀
‖∇𝑥𝑔𝜇(�̃�, 𝑦)‖22 + ‖∇𝑦𝑔𝜇(�̃�, 𝑦)‖22

)︀
+ 2𝜇2

(︀
‖�̃�− 𝑥‖22 + ‖𝑦 − 𝑦‖22

)︀
= 2‖∇𝑔𝜇(�̃�, 𝑦)‖22 + 2𝜇2‖𝑧 − 𝑧1‖22

⇔ ‖∇𝑔(�̃�, 𝑦)‖2 ≤
√︁

2‖∇𝑔𝜇(�̃�, 𝑦)‖22 + 2𝜇2‖𝑧 − 𝑧1‖22.

Firstly, we estimate ‖∇𝑔𝜇(�̃�, 𝑦)‖2. From (30) we know, that

‖∇𝑔𝜇(�̃�, 𝑦)‖
𝑝+1
𝑝

2

𝑀
3𝑝+1
2𝑝

2
2𝑝2+𝑝+1

2𝑝 𝑝(𝑝 + 1)!

(30)
≤ 𝑔𝜇(𝑥, 𝑦) − 𝑔𝜇(�̃�, 𝑦)

≤ max
𝑦∈R𝑚

𝑔𝜇(𝑥, 𝑦) − min
�̃�∈R𝑛

𝑔𝜇(�̃�, 𝑦) = 𝐺𝜇(𝑥, 𝑦) ≤ 𝜀′.

⇔ ‖∇𝑔𝜇(�̃�, 𝑦)‖2 ≤

⎛⎝2
2𝑝2+𝑝+1

2𝑝 𝑝(𝑝 + 1)!𝜀′

𝑀
3𝑝+1
2𝑝

⎞⎠
𝑝

𝑝+1

=
𝜀

2
. (35)

Secondly, we estimate 𝜇‖𝑧 − 𝑧1‖2. By definition of 𝑅 we know, that

‖𝑧* − 𝑧1‖2 ≤ 𝑅.

And since 𝑧 is closer to solution then 𝑧1, we have

‖𝑧 − 𝑧*‖2 ≤ ‖𝑧* − 𝑧1‖2 ≤ 𝑅.

From these facts and triangle inequality we get

𝜇‖𝑧 − 𝑧1‖2 ≤ 𝜇 (‖𝑧 − 𝑧*‖2 + ‖𝑧* − 𝑧1‖2) ≤ 2𝑅𝜇 =
𝜀

2
. (36)

Thus, from (35) and (36) we obtain

‖∇𝑔𝜇(�̃�, 𝑦)‖2 ≤
√︀

2𝜀2/4 + 2𝜀2/4 = 𝜀.

Finally, we need to estimate complexity of the Algorithm 5.

𝑁 =
𝑛∑︁

𝑖=1

𝑇𝑖 + 𝑘 ≤
(︂

64𝐿𝑝

𝑝!𝜇

)︂ 2
𝑝+1

𝑛∑︁
𝑖=1

𝑅
2(𝑝−1)
𝑝+1

𝑖 + 𝑛 + 𝑘

≤
(︂

64𝐿𝑝𝑅
𝑝−1

𝑝!𝜇

)︂ 2
𝑝+1

· 𝑛 + 𝑛 + 𝑘

= 𝑂

(︃(︂
𝐿𝑝𝑅

𝑝

𝜀

)︂ 2
𝑝+1

log
𝐿2𝑅

2𝜉

𝜀

)︃
,
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where 𝜉 = max
{︀

1, 4𝑅𝐿1

𝜀

}︀
. Here 𝑘 is the number of iterations of Algorithm 3 inside Algorithm 5. We

dropped it due to its log log dependence on 𝜀.

4 Discussion

In this work we propose three methods for 𝑝-th order tensor methods for strongly-convex-strongly-
concave SPP. Two of these methods tackle classical minimax SPP (1) and MVI (2) problems, and the
third method aims at gradient norm minimization of SPP (3).

The methods for minimax problem are based on the ideas, developed in the works [2] and [11]. In [2] the
authors use 𝑝-th order oracle to construct an algorithm for MVI problems with monotone operator. As a
corollary, this algorithm allows to solve SPP with convex-concave objective. Because of strong convexity
and strong concavity of our problem, we can apply a restart technique to the method from [2] and get
better algorithm complexity. To further improve local convergence rate we switch to the algorithm from
[11] in the area of its quadratic convergence. This way we get rid of the multiplicative logarithmic factor
and get additive log log factor in the final complexity estimate and get locally quadratic convergence.

The method for gradient norm minimization relies on the works [9] and [4]. From [9] we take the result,
that connects norm of the gradient of the objective with objective residual, and slightly modify it for SPP.
This step allows us to use the framework from [4] and use our optimal algorithm for minimax SPP for
gradient norm minimization.

In spite of all the improvements, we should remind about many additional assumptions about the
problem, which reduces number of real problems, that can suit to it.

One of possible directions for further research are the more general Hölder conditios instead of Lipschitz
conditions and uniformly convex case. Additionally, the author in [2] provided implementation details of
the Algorithm 1 only for 𝑝 = 2. Therefore, the questions about its realizaition for 𝑝 > 2 are still opened.
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