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Derivation of effective models from
heterogenous Cosserat media via periodic unfolding

Grigor Nika

Abstract

We derive two different effective models from a heterogeneous Cosserat continuum taking into
account the Cosserat intrinsic length of the constituents. We pass to the limit using homogenization
via periodic unfolding and in doing so we provide rigorous proof to the results introduced by Forest,
Pradel, and Sab (Int. J. Solids Structures 38 (26-27): 4585-4608 ’01). Depending on how different
characteristic lengths of the domain scale with respect to the Cosserat intrinsic length, we obtain
either an effective classical Cauchy continuum or an effective Cosserat continuum. Moreover, we
provide some corrector type results for each case.

1 Introduction

In recent recent years it has been widely observed that mechanical properties of composite materials that
are used in a variety of applications depend on different characteristic lengths that are determined by the
structure itself or the characteristics of an underlying microstructure or a combination of both [Lak83],
[PL86], [Lak93], [Lak95], [ZGBG14], [RL17]. This results in corresponding macroscopic properties of the
composite that may be vastly different from the underlying material properties. Moreover, in cases where
these characteristic lengths of the problem become comparable with the characteristic length of the mi-
crostructure, classical theory of continuum mechanics loses its accuracy in describing the mechanical be-
havior of such materials. These type of phenomena described above are often referred to as size effects
and one way of accounting for size effects in composites is to model them using generalized continuum
theories. One of the earliest generalized continuum theories was that of the Cosserat brothers [CC09]
where they introduced the notion of the couple stress. Their original development of the theory was
largely underappreciated during their time only to be revisited again in the early sixties onwards [Tou62],
[MT62], [Tou64], [Min64], [Min65], [ME68], [Now72]. Cosserat continuum mechanics incorporates size ef-
fects naturally through an intrinsic length scale parameter `c which, loosely speaking, can be considered
as a measure of the absolute size of the constituents in the unit cell. Generalized continuum theories
are thought to have applications in the modeling of materials with microstructure, such as granular or
fibrous materials, or materials with a lattice structure [Min64], [Min65], [FS98], [TB96], [FPS01]. One of
the methods specifically designed for analysis of highly heterogeneous and microstructured materials is
the theory of homogenization [BLP78], [SP80], [BP89], [MV10]. In this theory, the effective material prop-
erties of periodic structures are defined on the analysis on a periodicity cell, and in turn these properties
depend on the mechanics of constituents and the geometry of the periodic structure but are indepen-
dent of the external boundary conditions and applied forces. They are normally determined in the limit
as the size of the microstructure ε → 0. Moreover, homogenization seems like a natural fit to explore
connections between generalized continuum theories and classical theory for heterogenous structures.
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Generalized continuum theories fall into two categories: Higher grade theory that introduces higher gra-
dients of the displacement field to the usual strain tensor and higher order theory that includes ad-
ditional degrees of freedom. Regarding the former there is a vast literature of deriving second grade
(and even third grade [ASd03]) models through homogenization either through two-scale asymptotic
expansions or through variational convergence methods e.g. Γ-convergence [TB96], [PS97], [ASd03],
[SAd11], [dCG17]. We point out that the authors in [dCG17] provide a historical perspective and theoret-
ical overview of higher grade continua. Regarding the latter, where one allows for additional degrees of
freedom, as in a Cosserat continuum, a series of works appeared in the late nineties addressing estima-
tion of effective properties of heterogenous Cosserat materials taking into account size effects [FS98],
[FS99], [FPS01]. In particular, the authors in [FPS01] consider periodic heterogenous Cosserat material
taking into account a hierarchy of three characteristic lengths when obtaining the homogenous equivalent
medium: the characteristic size of inhomogeneities, the Cosserat intrinsic length of the constituents, and
the typical size of the considered structure. Heuristically, using two-scale expansions, the authors derived
different homogenized models based on how the three characteristic lengths scale with respect to one
another and, moreover, validated their results using finite element calculations.

The aim of this work is to provide the mathematical underpinnings that make the work in [FPS01] math-
ematically rigorous. Specifically, we consider a periodic Cosserat body Ω with body forces and body-
couples acting on it,

−∂xjσji − fi = 0 in Ω,

−∂xjµji − εijkσjk − gi = 0 in Ω,
(1.1)

with σji the non-symmetric strain, µji the couple-stress, and εijk the Levi-Civita tensor. Moreover, the
constitutive relations are given by

σji = Cjik`γk` +Bjik`κk`, µji = Bk`jiγk` + Ljik`κk`. (1.2)

where γji := ∂xjui − εkjiϕk is the non-symmetric strain tensor, κji := ∂xjϕi is the torsion tensor or
curvature-twist tensor or curvature tensor or curvature,uuu is the displacement, andϕϕϕ is the rotation. In this
work we will assume we deal with centro-symmetric bodies and hence the fourth order tensorBijk` ≡ 0
[Now72]. Using the dimensional analysis done in [FPS01], to obtain the hierarchy of models based on the
scaling of the Cosserat intrinsic length `c with respect to the overall length of the domain L or the length
of the periodic cell `, and the periodic unfolding method we pass to the limit in each case. We obtain
two different effective models: If `c/` remains constant when `/L goes to zero we obtain an effective
Cauchy continuum where the effective moduli tensor depends on a standard set of local problems as
in classical homogenization and on a set of local problems that contain the contribution of the rotations.
If `c/L remains constant when `/L goes to zero then we obtain an effective Cosserat continuum. In
both cases we verify the results in [FPS01]. Additionally, we prove certain corrector type results using the
adjoint of the unfolding operator (the averaging operator).

The paper is organized as follows: In Section 2 we reproduce the dimensional analysis in [FPS01], pro-
vide some background, and set up the model. In Section 3 we recall the definition of the unfolding and
averaging operators and prove the main results. Section 4 is devoted to proving certain corrector type
results using the averaging operator. We need to remark that we refer to the above as corrector type
results as they involve both the displacement and the rotations unlike in classical elasticity where only
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Derivation of effective models from heterogenous Cosserat media 3

the displacement is involved. To the author’s knowledge, these corrector type results are new in their
entirety. Finaly, in Section 5 we provide some conclusions and remarks.

2 Background and set up of the problem

2.1 Cosserat intrinsic length of the constituents

Let L be the characteristic length of the domain Ω and ` the characteristic length of the periodic cell. We
define the dimensionless coordinates, displacement, and rotation as in [FPS01],

xxx∗ =
xxx

L
, uuu∗(xxx∗) =

uuu(xxx)

L
, ϕϕϕ∗(xxx∗) = ϕϕϕ(xxx). (2.1)

In Cosserat media there is another length scale parameter that is of importance, namely, the Cosserat
intrinsic length `c of the constituents [FPS01], [FS98]. The following nondimensionalization was done
in [FPS01], [FS98] and we include it here for completion of the presentation. Hence, in accordance with
[FPS01], the Cosserat intrinsic length is defined as follows,

C = L `2c , (2.2)

where L = maxzzz∈Y` |Ljikl(zzz)|, C = maxzzz∈Y` |Cjikl(zzz)|, and Y` = (−`/2, `/2]d is the periodic
cell characterizing the body Ω. Addtionally, the non-symmetric strain and curvature non-dimensionalize
respectively as,

γ∗ji = γji and κ∗ji = Lκji. (2.3)

Moreover, we define the nondimensional stress, couple-stress, and fourth order material tensors as fol-
lows,

σ∗ji = L−1σji, L∗jik`(xxx
∗) = L−1Ljik`(xxx),

µ∗ji = (LL)−1µji, C∗jik`(xxx
∗) = C−1Cjik`(xxx)

(2.4)

We remark that the fourth order tensors L∗jik`(xxx
∗) and C∗jik`(xxx

∗) are Y ∗ periodic where,

Y ∗ =
`

L
Y, Y :=

(
−1

2
,
1

2

]d
. (2.5)

Hence, the system of equations in (1.1) scales as,

−∂x∗jσ
∗
ji − f∗i = 0 in Ω,

−∂x∗jµji − εijkσ
∗
jk − g∗i = 0 in Ω,

(2.6)
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where f∗i , and g∗i are the appropriately scaled body forces and body couples (see [FPS01, Eq. (14), pg.
4589]) and with constitutive laws,

σ∗ji = C∗jik`γk`, µ∗ji =

(
`c
L

)2

L∗jik`κ
∗
k`. (2.7)

Thus, one can generate an ε periodic problem by defining the nondimensional number ε as the ratio
of `/L and let ε → 0 to obtain an effective medium. However, different cases ought to be considered
depending on how `c scales with ` and L, respectively, as ε→ 0 [FPS01]. Here we consider the cases

`c/` ∼ 1, (2.8)

`c/L ∼ 1. (2.9)

If `c/` ∼ 1 then µ∗ji =
(
`c
L

)2
L∗jik`κ

∗
k`, using the definition ε = `/L and omitting the ∗ notation,

becomes,

µεji = ε2 Ljik`

(xxx
ε

)
κεk`. (HS 1)

If `c/L ∼ 1 then µ∗ji =
(
`c
L

)2
L∗jik`κ

∗
k` becomes,

µεji = Ljik`

(xxx
ε

)
κεk`. (HS 2)

The former allows one to pass from a Cosserat continuum in the microscale to a Cauchy continuum in
the macroscale, as ε → 0, where all the relevant information are now captured in a new homogenized
tensor which can be computed explicitly with the aid of an additional set of local problems. The latter
allows one to obtain a Cosserat effective medium as ε→ 0.

Notation

In what follows α, β ∈ R are generic constants such that 0 < α and 0 < β.

- Throughout the article we employ the Einstein summation notation of repeated indices unless
otherwise stated.

- M 4
d (α, β,Ω) =

{
all fourth order tensors in L∞(Ω;Rd×d×d×d) acting on matrices such that for

any matrix ζ ∈ Rd×d, L(xxx) ζ : ζ ≥ α|ζ|2 and β |ζ|2 ≤ L−1(xxx) ζ : ζ for a.e. xxx ∈ Ω
}

- Any general fourth order tensor of the form T εijk`(xxx) is defined, as usual, by T εijk`(xxx) := Tijk`

(
xxx
ε

)
- In addition to the standard Sobolev space H1(Ω) := W 1,2(Ω) we define the following spaces:

H1
Γ0

(Ω) =
{
w ∈ H1(Ω) | Tr(w) = 0 on Γ0

}
H(curl; Ω) =

{
w ∈ L2(Ω;Rd) | curl(w) ∈ L2(Ω;Rd)

}
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Derivation of effective models from heterogenous Cosserat media 5

- The third order tensor εijk is the Levi-Civita symbol that is equal to 1 if (i, j, k) is an even permu-
tation of (1, 2, 3), −1 if it is an odd permuation, and zero if any index is repeated.

- We set L̃ε(xxx) to be a general place holder under the schemes (HS 1) and (HS 2) as follows,

L̃ε(xxx) := ε2 Lε(xxx) under the scheme (HS 1), (2.10)

L̃ε(xxx) := Lε(xxx) under the scheme (HS 2). (2.11)

2.2 The model

We consider an elastic composite with periodic microstructure of period ε occupying a region Ω ⊂
Rd, d = 2, 3. The region Ω that the composite occupies, is assumed to be bounded, open, and multiply
connected. Y = (−1/2, 1/2]d is the unit cube in Rd and Zd is the set of all d–dimensional vectors with
integer components.

For every positive ε, let Nε be the set of all points m ∈ Zd such that ε(m + Y ) is strictly included in
Ω and denote by |Nε| their total number. Let T be the closure of an open connected set with sufficiently
smooth boundary, compactly included in Y . We define, for every ε > 0 andm ∈ Nε, T εm := ε(m+T )
as the region containing the distribution of space charges and by Sεm = ∂T εm denote the interphase
boundary separating the region from the ambient surrounding material (see Fig. 3.1). We now define the
following subsets of Ω:

Ω1ε :=
⋃

m∈Nε

T εm , Ω2ε := Ω\Ω1ε, Ω := Ω1ε ∪ Ω2ε ∪ (∪m∈NεS
ε
m).

Moreover, we denote by ∂Ω the boundary of Ω. The exterior will be denoted by Γ0 and by Sεm, m ∈ Nε

the remaining components of ∂Ω. The vectornnn will be unit normal on Γ0 pointing in the outward direction.

The heterogeneous Cosserat continuum is characterized by the following coupled system,

−∂xjσεji − fi = 0 in Ω,

−∂xjµεji − εijkσεjk − gi = 0 in Ω,

uuuε = 000 on Γ0,

ϕϕϕε = 000 on Γ0.

(2.12)

Here σεji is the stress while µεji is the couple stress. Moreover,uuuε andϕϕϕε are the displacement and rota-
tion vector fields, respectively. The system of equations (2.12) characterizes the mechanical deformation
that the body undergoes. The equations are fully coupled and the system is closed with homogeneous
Dirichlet boundary conditions on Γ0. In addition to computing the displacement we must also compute
the rigid rotations which makes for a fully coupled system of partial differential equations.

Strain and torsion tensors. Define γεji := ∂xju
ε
i − εkjiϕεk and κεji := ∂xjϕ

ε
i . The term γεji is the

(non-symmetric) strain tensor and κεji is referred to as the torsion tensor (or curvature-twist tensor or
curvature tensor or curvature).

Constitutive relations. The stress is related to the strain though the fourth order material tensorCεjik`(xxx)
by the relation,

σεji = Cεjik`γ
ε
k`, (2.13)
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RdΩ

Γ0

Γ0

ε

ε

εY

Figure 2.1: Schematic of the heterogeneous Cosserat medium in vaccum

while the couple stress is related to the curvature through the fourth order material tensor L̃εjik`(xxx) by
the relation

µεji = L̃εjik`κ
ε
k`. (2.14)

The tensors Cεjik` and L̃εjik` are linear isotropic tensors in each phase and have the following form
[Now72],

Cεjik`(xxx) = (µε(xxx) + αε(xxx)) δjk δi` + (µε(xxx)− αε(xxx)) δj` δik + λε(xxx) δij δk`, (2.15)

L̃εjik`(xxx) = (θε(xxx) + %ε(xxx)) δjk δi` + (θε(xxx)− %ε(xxx)) δj` δik + βε(xxx) δij δk`, (2.16)

respectively. The coefficients µε(xxx) := µε
(
xxx
ε

)
, αε(xxx) := α

(
xxx
ε

)
, λε(xxx) := λ

(
xxx
ε

)
, βε(xxx) := β

(
xxx
ε

)
,

DOI 10.20347/WIAS.PREPRINT.2817 Berlin 2021



Derivation of effective models from heterogenous Cosserat media 7

θε(xxx) := θ
(
xxx
ε

)
, %ε(xxx) := %

(
xxx
ε

)
are material parameters that are piecewise constant in each phase

and periodic.

The thermodynamic stability relations immediately yield that Cεjik` = Cεk`ji and L̃εjik` = L̃εk`ji. More-
over, from the constitutive laws we have assumed above, (2.13) and (2.14), we content ourselves in the
case of “centrosymmetric medium” (see [Now72]).

2.3 Assumptions

We frame the heterogeneous Cosserat continuum model (2.12), (2.13), (2.14) under the following general
assumptions:

� Ω is a bounded, multiply connected domain such that mes(Γ0) > 0, mes(Sε` ) > 0, and Sε` ∩
Sεp = ∅ for ` 6= p.

� Γ0 and Sε` are surfaces of class C2, Sεp ∩ Sεq = ∅ for p, q ∈ Nε with p 6= q, and Γ0 ∩ Sε` = ∅
for every ` ∈ Nε.

� The functions fff and ggg are such that fff ∈ L2(Ω;Rd) and ggg ∈ H(curl,Ω).

� The fourth order material characterization tensors are such that Cεjik`(xxx) ∈ M 4
d (α, β,Ω) and

L̃εjik`(xxx) ∈ M 4
d (α, β,Ω).

Existence and uniqueness. The Cosserat brothers [CC09] developed their theory to be derived from
the principle of least action of Hamilton. Starting from total energy of the system described in (2.12),

Eε[vvv,ψψψ] =
1

2

∫
Ω
Cε γ : γ dxxx+

1

2

∫
Ω
L̃ε κ : κ dxxx−

∫
Ω
fff · vvv dxxx−

∫
Ω
ggg ·ψψψ dxxx, (2.17)

where Cε γ : γ = Cεjik` γ`k γji and L̃ε κ : κ = L̃εjik` κ`k κji.

One can readily observe that the above energy is sequentially weakly lower semicontinuous and coersive
by [HH69, Thm. 3.1] (see also [Nec67], [HN70]) in H1

Γ0
(Ω,Rd) × H1

Γ0
(Ω,Rd) and, moreover, the

following estimates hold under (HS 1) and (HS 2), respectively:

(
‖uuuε‖2H1

0 (Ω,Rd) +
(
‖ϕϕϕε‖2L2(Ω;Rd) +ε ‖∇ϕϕϕε‖2L2(Ω;Rd×d)

))1/2

≤ c
(
‖fff‖2L2(Ω;Rd) + ‖ggg‖2L2(Ω;Rd)

)1/2
,

(2.18)

(
‖uuuε‖2H1

Γ0
(Ω;Rd) + ‖ϕϕϕε‖2H1

Γ0
(Ω;Rd)

)1/2
≤ c

(
‖fff‖2L2(Ω;Rd) + ‖ggg‖2L2(Ω;Rd)

)1/2
, (2.19)

for some generic constant c independent of ε. Additionally, it is convex in the arguments ∇uuu and ∇ϕϕϕ.
Hence, using the compact embedding of Rellich-Kondrachov we can apply the direct method to obtain
existence and uniqueness. Hence, we can characterize the solution to (2.12) as the unique minimizer of,

(uuuε,ϕϕϕε) = argmin(vvv,ψψψ)∈H1
Γ0

(Ω,Rd)×H1
Γ0

(Ω,Rd) Eε[vvv,ψψψ]. (2.20)
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By computing the first variation of Eε we obtain the Euler-Lagrange equations,

∫
Ω
σεjk

(
∂vk
∂xj
− εijkψi

)
dxxx−

∫
Ω
µεji

∂ψi
∂xj

dxxx−
∫

Ω
(fi vi + gi ψi) dxxx = 0. (2.21)

If we group terms in the Euler-Lagrange equation above we obtain the weak form of (2.12) which reads
as follows: Find (uuuε,ϕϕϕε) ∈ H1

Γ0
(Ω,Rd)×H1

Γ0
(Ω,Rd) such that,

∫
Ω
σεji

∂vi
∂xj

dxxx−
∫

Ω
fi vi dxxx = 0 for all vvv ∈ H1

Γ0
(Ω,Rd), (2.22)∫

µεji
∂ψi
∂xj

dxxx−
∫

Ω
εijkσ

ε
jk ψi dxxx−

∫
Ω
gi ψi dxxx = 0 for allψψψ ∈ H1

Γ0
(Ω,Rd). (2.23)

Using (2.22)–(2.23) we can recover the strong form of the equations in (2.12) in the sense of distributions
as usual.

3 Homogenization of the Cosserat continuum

In the next two subsections we recall the of definitions and properties of the periodic unfolding and
averaging operators [CDG02, Dam05, CDG08, CDG18] and present our main results. We will list some
of their properties, leaving the interested reader to consult [CDG02, Dam05, CDG08] for further details
regarding proofs.

3.1 The periodic unfolding and averaging operators

We define the following domain decompositions:

Ω−ε := int
(
∪`∈K−

ε
ε(`+ Y )

)
with K−ε :=

{
` ∈ Zd | ε(`+ Y ) ⊂ Ω

}
, (3.1)

Ω+
ε := int

(
∪`∈K+

ε
ε(`+ Y )

)
with K+

ε :=
{
` ∈ Zd | ε(`+ Y ) ∩ Ω 6= ∅

}
. (3.2)

Additionally, we define Λ−ε := Ω\Ω−ε . It is now evident that Ω−ε ⊂ Ω ⊂ Ω+
ε (see Fig. 3.1 (left)) and

moreover, one can show that mes(Ω+
ε \Ω−ε )→ 0 [Han11].

Let [zzz]Y = (bz1c, . . . , bzdc) denote the integer part of zzz ∈ Rd and denote by {zzz}Y the difference
zzz−[zzz]Y which belongs to Y . Regarding our multiscale problem that depends on a small length parameter
ε > 0, we can decompose any xxx ∈ Rd using the maps [·]Y : Rd 7→ Zd and {·}Y : Rd 7→ Y the
following way (see Fig. 3.1 (right)),

xxx = ε
([xxx
ε

]
Y

+
{xxx
ε

}
Y

)
. (3.3)
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ε

ε

Ω

Ω+
ε

Ω−ε

0 ∈ Rd

ε
[
x
ε

]
∈ Zd

εy ∈ εY
x ∈ Ω

Figure 3.1: Unfolding operator on a periodic grid

For any Lebesgue measurable function ϕ on Ω we define the periodic unfolding operator by,

Tε(ϕ)(xxx,yyy) =

{
ϕ
(
ε
[
xxx
ε

]
Y

+ εyyy
)

for a.e. (xxx,yyy) ∈ Ω−ε × Y
0 for a.e. (xxx,yyy) ∈ Λ−ε × Y.

(3.4)

Proposition 3.1. For any p ∈ [1,+∞) the unfolding operator Tε : Lp(Ω) 7→ Lp(Ω × Y ) is linear,
continuous, and has the following properties:

i. Tε(ϕψ) = Tε(ϕ) Tε(ψ) for every pair of Lebesgue measurable functions ϕ, ψ on Ω

ii. For every ϕ ∈ L1(Ω) we have,

1

|Y |

∫
Ω×Y

Tε(ϕ)(xxx,yyy) dxxx dyyy =

∫
Ω−

ε

ϕ(xxx) dxxx =

∫
Ωε

ϕ(xxx) dxxx−
∫

Λ−
ε

ϕ(xxx) dxxx (3.5)

iii. ‖Tε(ϕ)‖Lp(Ω×Y ) ≤ |Y |1/p ‖ϕ‖Lp(Ω) for every ϕ ∈ Lp(Ω)

iv. Tε(ϕ)→ ϕ strongly in Lp(Ω× Y ) for ϕ ∈ Lp(Ω) as ε→ 0

v. If {ϕε}ε is a sequence inLp(Ω) such thatϕε → ϕ strongly inLp(Ω), then Tε(ϕε)→ ϕ strongly
in Lp(Ω× Y )

vi. If ϕ ∈ Lp(Y ) is Y-periodic and ϕε(xxx) = ϕ
(
xxx
ε

)
then Tε(ϕε) → ϕ strongly in Lp(Ω × Y ) as

ε→ 0

vii. If φε ⇀ φ inH1(Ω) then there exists an non-relabelled subsequence and a φ̂ ∈ L2(Ω;H1
per(Y ))

such that

a. Tε(φε) ⇀ φ in L2(Ω;H1(Y ))

b. Tε(∇φε) ⇀ ∇xφ+∇yφ̂ in L2(Ω× Y )

DOI 10.20347/WIAS.PREPRINT.2817 Berlin 2021
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viii. Let {φε}ε ∈ H1(Ω) and assume that {φε}ε is a bounded sequence in L2(Ω) satisfying
ε ‖∇φε‖L2(Ω;Rd) ≤ c (c is a constant independent of ε) then there exists an non-relabelled

subsequence and a φ̂ ∈ L2(Ω;H1
per(Y )) such that

a. Tε(φε) ⇀ φ̂ in L2(Ω;H1(Y ))

b. ε Tε(∇φε) ⇀ ∇yφ̂ in L2(Ω× Y )

In a similar fashion we define the averaging operator Uε : Lp(Ω × Y ) → Lp(Ω) for p ∈ [1,+∞),
which acts as a pseudo-inverse of the unfolding operator, by:

Uε(Φ)(xxx) =

{∫
Y Φ

(
ε
[
xxx
ε

]
+ εzzz,

{
xxx
ε

})
dzzz for a.e. xxx ∈ Ω−ε

0 for a.e. xxx ∈ Λ−ε .
(3.6)

Proposition 3.2. For any p ∈ [1,+∞) the averaging operator Uε : Lp(Ω × Y ) 7→ Lp(Ω) has the
following properties:

i. If {wε}ε ∈ Lp(Ω×Y ) is a bounded sequence such that wε ⇀ w in Lp(Ω×Y ) as ε→ 0 then

Uε(wε) ⇀

∫
Y
w(·, yyy) dyyy in Lp(Ω). (3.7)

Ifw is independent of yyy then the convergence above is strong (see [CDG08, Cor. 2.26, pg. 1599]).

ii. If {wε}ε is a sequence in Lp(Ω) then the following are equivalent:

a. Tε(wε)→ ŵ in Lp(Ω× Y )

b. wε IΩ−
ε
− Uε(ŵ)→ 0 in Lp(Ω)

iii. If {wε}ε is a sequence in Lp(Ω) then the following are equivalent:

a. Tε(wε)→ ŵ in Lp(Ω× Y ) and
∫

Λε
|wε|p dxxx→ 0

b. wε − Uε(ŵ)→ 0 in Lp(Ω)

3.2 Main results

3.2.1 Homogenization under the HS 1 scheme

Theorem 3.1. If (uuuε,ϕϕϕε) is the solution set to (2.12) then, under the HS 1 scheme, there exist uuu0 ∈
H1(Ω;Rd), uuu1 ∈ L2(Ω;H1

per(Y ;Rd)),ϕϕϕ0 ∈ L2(Ω;H1
per(Y ;Rd)) such that

Tε(uuuε) ⇀uuu0 in L2(Ω;H1(Y ;Rd)) (3.8)

Tε(∇uuuε) ⇀ ∇xuuu0 +∇yuuu1 in L2(Ω× Y ;Rd×d) (3.9)

Tε(ϕϕϕε) ⇀ϕϕϕ0 in L2(Ω;H1(Y ;Rd)) (3.10)
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and (uuu0,ϕϕϕ0,uuu1) is the unique solution set of

∫
Ω×Y

Cjik`(yyy)
(
∂x`u

0
k + ∂x`u

1
k − ενk`ϕ0

ν −
1

2
ενijgν

)
(∂xiVj + ∂yiW j) dyyy dxxx

− 1

2

∫
Ω×Y

ενij gν (∂xiVj + ∂yiW j) dyyydxxx+

∫
Ω
fi Vi dxxx = 0,

(3.11)

for all VVV ∈ H1
0 (Ω;Rd) andWWW ∈ L2(Ω;H1(Y ;Rd)). If in addition uuu1 andϕϕϕ0 have the following form,

u1
i (xxx,yyy) = ζk`i (yyy) ∂x`u

0
k(xxx) + ci(xxx) (3.12)

ϕ0
ν(xxx,yyy) = ξk`ν (yyy) ∂x`u

0
k(xxx) (3.13)

and we selectWWW ≡ 000 then equation (3.25) takes the following more familiar form:∫
Ω
σeff
ij ∂xjVi dxxx =

1

2

∫
Ω
ενij gν ∂xiVj dxxx+

∫
Ω
fi Vi dxxx, (3.14)

where σeff
ij :=

(
Ceff
ijpq ∂xqu

0
p − 1

2ενij gν

)
is the Cauchy stress in classical elasticity with symmetry

σeff
ij = σeff

ji and

Ceff
jipq =

∫
Y
Cjik`(yyy)

(
δkp δq` + ∂y`ζ

pq
k − ενk`ξ

pq
ν

)
dyyy. (3.15)

Furthermore, ζζζk` and ξξξk` are the local solutions satisfying the following variational problems,

∫
Y
Cjik`

(
1

2
δkp δq` + ∂y`ζ

pq
k

)
∂yivj dyyy = 0 for all vvv ∈ H1

per(Y ;Rd), (3.16)

∫
Y
Cjik`

(
1

2
δkp δq` + ενk` ξ

pq
ν

)
∂yivj dyyy = 0 for all vvv ∈ H1

per(Y ;Rd). (3.17)

Proof. The weak form (2.21) of the Cosserat continuum reads: Find (uuuε,ϕϕϕε) ∈ H1
Γ0

(Ω0;Rd) ×
H1

Γ0
(Ω;Rd) such that,

∫
Ω
Cjik`

(xxx
ε

)
(∂x`u

ε
k − ενk`ϕεν) (∂xjvi − ενijψν) dxxx

−
∫

Ω
ε2 Ljik`

(xxx
ε

)
∂x`ϕ

ε
k ∂xiψj dxxx−

∫
Ω

(fi vi + gi ψi) dxxx = 0.

(3.18)

Unfold the above expression using Proposition 3.1 properties i., ii., and iv) and obtain,
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∫
Ω×Y

Cjik`(yyy) (Tε(∂x`u
ε
k)− ενk`Tε(ϕεν))

(
Tε
(
∂xjvi

)
− ενijTε(ψν)

)
dyyy dxxx

−
∫

Ω×Y
ε2 Ljik`(yyy) Tε (∂x`ϕ

ε
k) Tε (∂xiψj) dyyy dxxx

−
∫

Ω×Y
(Tε(fi) Tε(vi) + Tε(gi)Tε(ψi)) dyyy dxxx = 0.

(3.19)

Set vvv := VVV (xxx) andψψψ := ΨΨΨ(xxx) for any test functions VVV ∈ C∞0 (Ω;Rd) and ΨΨΨ ∈ C∞0 (Ω;Rd) in (3.19)
and using (2.18) and Proposition 3.1 vii. and viii. we obtain, as ε tends to 0,

∫
Ω×Y

Cjik`(yyy) (∂x`u
0
k + ∂y`u

1
k − ενk` ϕ0

ν(xxx,yyy)) (∂xjVi−ενij Ψν) dyyy dxxx

−
∫

Ω
(fi Vi + gi Ψi) dxxx = 0

(3.20)

Select now test functions of the form vvv = vvvε := εU(xxx)WWW
(
xxx
ε

)
where U ∈ C∞0 (Ω) and WWW ∈

H1
per(Y ;Rd). It is cleat thatvvvε → 000 inL2(Ω;Rd). Moreover, we have ∂xjv

ε
i (xxx) = ε∂xjU(xxx)Wi(xxx/ε)+

U(xxx)∂yjWi(xxx/ε) which implies Tε(∂xjv
ε
i )→ ∂yjW i(xxx,yyy) inL2(Ω×Y ) as ε→ 0 whereW i(xxx,yyy) :=

U(xxx)Wi(yyy). Likewise, we select as test function for the rotations ψψψ = ψψψε := εΦ(xxx)ΞΞΞ
(
xxx
ε

)
where

Φ ∈ C∞0 (Ω) and ΞΞΞ ∈ H1
per(Y ;Rd) with ψψψε → 000 in L2(Ω;Rd) and Tε(∂xjψ

ε
i ) → ∂yjΞi(xxx,yyy) in

L2(Ω × Y ) as ε → 0 where Ξi(xxx,yyy) := Ψ(xxx) Ξi(yyy). Hence, unfolding (3.19) with the above test
functions we obtain,

∫
Ω×Y

Cjik`(yyy) (Tε(∂x`u
ε
k)− ενk`Tε(ϕεν))

(
Tε
(
∂xjv

ε
i

)
− ενijTε(ψεν)

)
dyyy dxxx

−
∫

Ω×Y
ε2 Ljik`(yyy) Tε (∂x`ϕ

ε
k) Tε

(
∂xiψ

ε
j

)
dyyy dxxx

−
∫

Ω×Y
(Tε(fi) Tε(vεi ) + Tε(gi)Tε(ψεi )) dyyy dxxx = 0.

(3.21)

Letting ε tend to zero in (3.21) we obtain,

∫
Ω×Y

Cjik`(yyy) (∂x`u
0
k + ∂y`u

1
k − ενk` ϕ0

ν(xxx,yyy))U(xxx) ∂yj Wi(yyy) dyyy dxxx = 0. (3.22)

DefiningWWW (xxx,yyy) := U(xxx)WWW (yyy) and adding (3.20) and (3.22) we obtain,

∫
Ω×Y

{
Cjik`(yyy) (∂x`u

0
k + ∂y`u

1
k − ενk` ϕ0

ν(xxx,yyy))
}(
∂xjVi + ∂yjW i − ενijΨν

)
dyyy dxxx

−
∫

Ω

{
fi Vi + gi Ψi)

}
dyyy dxxx = 0.

(3.23)
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By the density of C∞0 (Ω) ⊗ H1
per(Y ;Rd) in L2(Ω;H1

per(Y ;Rd)) the result holds for all WWW (xxx,yyy) ∈
L2(Ω;H1

per(Y ;Rd)).

The above equation is not immediately in a form that we recognize. However, using the properties of the
Levi-Civita tensor, we can re-write gi = 1

2εipq εjpq gj . Grouping the terms in (3.23) by test function we
obtain,

∫
Ω×Y

{
Cjik`(yyy)(∂x`u

0
k + ∂y`u

1
k − ενk` ϕ0

ν(xxx,yyy)) +
1

2
εsijgs

}(
∂xjVi + ∂yjW i

)
dyyy dxxx

−
∫

Ω×Y

{
Cjik`(yyy) (∂x`u

0
k + ∂y`u

1
k − ενk` ϕ0

ν(xxx,yyy)) +
1

2
εsij gs

}
ενij Ψν) dyyy dxxx

−
∫

Ω

{
fi Vi +

1

2
εsij gs ∂xjVi

}
dyyy dxxx = 0. (3.24)

From here we can obtain two sets of equations. By considering, first, that (VVV ,WWW,ΨΨΨ) = (VVV ,WWW,000) we
have,∫

Ω×Y

{
Cjik`(yyy) (∂x`u

0
k + ∂y`u

1
k − ενk` ϕ0

ν(xxx,yyy)) +
1

2
εsij gs

}
(∂xjVi + ∂yjW i) dyyy dxxx

−
∫

Ω

{
fi Vi +

1

2
εsij gs (∂xjVi + ∂yjW i)

}
dyyy dxxx = 0.

(3.25)

By considering (VVV ,WWW,ΨΨΨ) = (000,000,ΨΨΨ) we have,

−
∫

Ω×Y

{
Cjik`(yyy) (∂x`u

0
k + ∂y`u

1
k − ενk` ϕ0

ν(xxx,yyy)) +
1

2
εsij gs

}
ενij Ψν dyyy dxxx = 0. (3.26)

If in (3.25) we select VVV ≡ 000 we can see that both uuu1 and ϕϕϕ0 depend on ∇xuuu0 linearly. In some
sense, this could be interpreted that the macroscopic displacement has contributions from microscopic
displacements and rotations, independently. Hence, the form of uuu1 andϕϕϕ0 look as follows,

u1
i (xxx,yyy) = ζk`i (yyy) ∂x`u

0
k(xxx) + ci(xxx) (3.27)

ϕ0
ν(xxx,yyy) = ξk`ν (yyy) ∂x`u

0
k(xxx) (3.28)

where the correctors ζζζk` and ξξξk` are the local solutions satisfying the following variational problems,

ζζζpq ∈ H1
per(Y ;Rd),

∫
Y
ζζζpq dyyy = 0,∫

Y
Cjik`

(
1

2
δkp δq` + ∂y`ζ

pq
k

)
∂yivj dyyy = 0 for all vvv ∈ H1

per(Y ;Rd),
(3.29)
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ξξξpq ∈ H1
per(Y ;Rd),

∫
Y
ξξξpq dyyy = 0,∫

Y
Cjik`

(
1

2
δkp δq` + ενk` ξ

pq
ν

)
∂yivj dyyy = 0 for all vvv ∈ H1

per(Y ;Rd).
(3.30)

Existence and uniqueness for (3.29) follows from classical theory of variational inequalities [Lio69]. While
for problem (3.30) one can show existence (up to an additive constant) as in [GR11, Thm. 3.4, pg. 45].

Remark 3.1. Equation (3.30) is a new local problem that does not appear in the classical homogenization
approach. Its appearance is solely a contribution of the non-symmetric part of the strain tensor and upon
closer examination, the local problem is one that involves rotations (or curls) which implies that certain
curvature-twist effects are present in the microscale. Moreover, these curvature-twist effects manifest
themselves macroscopically as part of the effective material tensor of a linear elastic material and not
independently.

Returning to (3.25) and substitutingWWW = 000, uuu1 andϕϕϕ0 from (3.27) and (3.28) respectively, we obtain,∫
Ω
σeff
ij ∂xjVi dxxx =

1

2

∫
Ω
ενij gν ∂xiVj dxxx+

∫
Ω
fi Vi dxxx, (3.31)

where

σeff
ij :=

(
Ceff
jipq ∂xqu

0
p −

1

2
ενij gν

)
, (3.32)

and

Ceff
jipq =

∫
Y
Cjik`(yyy)

(
δkp δq` + ∂y`ζ

pq
k − ενk`ξ

pq
ν

)
dyyy. (3.33)

Using equation (3.26) we see that σeff
ij = σeff

ji exactly like the Cauchy stress in classical linear elasticity.
These are precisely the homogenized equations obtained by [FPS01] using two-scale expansions under
their scheme HS1.

Proposition 3.3. If we use the notation γεji := ∂xju
ε
i − εkjiϕεk, γ0

ji := ∂xju
0
i , and γ1

ji := ∂yju
1
i −

εkjiϕ
0
k then under the assumptions of Theorem 3.1 we have the following convergence results,

lim
ε→0

∫
Ω
Cε(xxx) γε : γε dxxx =

∫
Ω×Y

C(yyy) (γ0 + γ1) : (γ0 + γ1) dyyy dxxx (3.34)

lim
ε→0

∫
Ω\Ω−

ε

Cε(xxx) γε : γε dxxx = 0. (3.35)

Proof. Using the weak lower semicontinuity of the integrals, the fact that tensors Cε and L̃ε belong in
M4
d(α, β,Ω), and properties of the limit infimum we obtain,

∫
Ω×Y

C(yyy) (γ0 + γ1) : (γ0 + γ1) dyyydxxx ≤ lim inf
ε→0

∫
Ω×Y

Tε(Cε) Tε(γε) : Tε(γε) dyyydxxx
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≤ lim inf
ε→0

∫
Ω×Y

Tε(Cε) Tε(γε) : Tε(γε) dyyydxxx+ lim inf
ε→0

∫
Ω×Y

Tε(L̃ε) Tε(κε) : Tε(κε) dyyydxxx

≤ lim inf
ε→0

{∫
Ω×Y

Tε(Cε) Tε(γε) : Tε(γε) dyyydxxx+

∫
Ω×Y

Tε(L̃ε) Tε(κε) : Tε(κε) dyyydxxx
}

≤ lim inf
ε→0

{∫
Ω
Cε γε : γε dxxx+

∫
Ω
L̃ε κε : κε dxxx

}
= lim inf

ε→0

∫
Ω×Y

(fff · uuuε + ggg ·ϕϕϕε) dyyydxxx

=

∫
Ω×Y

(
fff · uuu0 + ggg ·ϕϕϕ0

)
dyyydxxx

=

∫
Ω×Y

C(yyy) (γ0 + γ1) : (γ0 + γ1) dyyydxxx, (3.36)

which is precisely (3.34). We remark that the last equality came from equation (3.23). Moreover, (3.34)
implies (3.35).

Remark 3.2. Immediately one can observe from Proposition 3.3 that the following result holds,

lim
ε→0

∫
Ω×Y

Tε(Cε) Tε(γε) : Tε(γε) dyyydxxx =

∫
Ω×Y

C(yyy) (γ0 + γ1) : (γ0 + γ1) dyyydxxx (3.37)

Corollary 3.1. The Cosserat strain γε converges strongly in L2(Ω× Y ;Rd×d),

lim
ε→0

Tε(γε)→ γ0 + γ1 in L2(Ω× Y ;Rd×d) (3.38)

Proof. By expanding the square of the expression below we have,∫
Ω×Y

C(yyy)(Tε(γε)− γ0 − γ1) : (Tε(γε)− γ0 − γ1) dyyydxxx

=

∫
Ω×Y

C(yyy)Tε(γε) : Tε(γε) dyyydxxx−
∫

Ω×Y
C(yyy)Tε(γε) : (γ0 − γ1) dyyydxxx

−
∫

Ω×Y
C(yyy)(γ0 − γ1) : Tε(γε) dyyydxxx+

∫
Ω×Y

C(yyy)(γ0 − γ1) : (γ0 − γ1) dyyydxxx.

(3.39)

The first term converges from (3.37) while the rest of the terms converge by (3.9) and properties of the
unfolding operator. Hence, all the terms on the right hand side above sum to zero in the limit and the
result follows.

3.2.2 Homogenization under the HS 2 scheme

Theorem 3.2. If (uuuε,ϕϕϕε) is the solution set to (2.12) then, under the HS 2 scheme, there exist uuu0 ∈
H1(Ω;Rd), uuu1 ∈ L2(Ω;H1

per(Y ;Rd)),ϕϕϕ0 ∈ H1(Ω;Rd),ϕϕϕ1 ∈ L2(Ω;H1
per(Y ;Rd)) such that,

Tε(uuuε) ⇀uuu0 in L2(Ω;H1(Y ;Rd)) (3.40)
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Tε(∇uuuε) ⇀ ∇xuuu0 +∇yuuu1 in L2(Ω× Y ;Rd×d) (3.41)

Tε(ϕϕϕε) ⇀ϕϕϕ0 in L2(Ω;H1(Y ;Rd)) (3.42)

Tε(∇ϕϕϕε) ⇀ ∇xϕϕϕ0 +∇yϕϕϕ1 in L2(Ω× Y ;Rd×d) (3.43)

and (uuu0,uuu1,ϕϕϕ0,ϕϕϕ1) is the unique solution set of

∫
Ω×Y

Cjik`(yyy)
(
∂x`u

0
k + ∂x`u

1
k − ενk`ϕ0

ν

)
(∂xiVj + ∂yiW j − ενijΨν) dyyy dxxx

−
∫

Ω×Y
Ljik`(yyy) (∂x`ϕ

0
k + ∂y`ϕ

1
k) (∂xiΨj + ∂yiΞj) dyyy dxxx

−
∫

Ω
fi Vi + gi Ψi dxxx = 0,

(3.44)

for all VVV ∈ H1
0 (Ω;Rd) andWWW ∈ L2(Ω;H1(Y ;Rd)). If in addition uuu1 andϕϕϕ1 have the following form,

u1
i (xxx,yyy) = ζpqi (yyy) (∂xpu

0
q(xxx)− ενpqϕ0

ν(xxx)) + κi(xxx) (3.45)

ϕ1
ν(xxx,yyy) = ξpqν (yyy) ∂xpϕ

0
q(xxx) + κi(xxx) (3.46)

and we selectWWW ≡ 000 and ΞΞΞ ≡ 000 then equation (3.44) takes the following form:

∫
Ω
Ceff
jipq

(
∂xpu

0
q − ενpqϕ0

ν

)
(∂xiVj − ενijΨν) dxxx−

∫
Ω
Leff
jipq ∂xpϕ

0
q ∂xiΨj dxxx

−
∫

Ω
(fi Vi + gi Ψi) dxxx = 0,

(3.47)

where

Ceff
jipq =

∫
Y
Cjik`(yyy) (δkp δ`q + ∂y`ζ

pq
k ) dyyy, (3.48)

Leff
jipq =

∫
Y
Ljik`(yyy) (δkp δ`q + ∂y`ξ

pq
k ) dyyy, (3.49)

with ζζζpq and ξξξpq being the local solutions on the unit cell satisfying the second order elliptic problems,

ζζζpq ∈ H1
per(Y ;Rd),

∫
Y
ζζζpq dyyy = 0,∫

Y
Cjik`(yyy)

(
δkp δq` + ∂y`ζ

pq
k

)
∂yiwj dyyy = 0 for allwww ∈ H1

per(Y ;Rd),
(3.50)
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ξξξpq ∈ H1
per(Y ;Rd),

∫
Y
ξξξpq dyyy = 0,∫

Y
Ljik`(yyy)

(
δkp δq` + ∂y`ξ

pq
k

)
∂yivj dyyy = 0 for all vvv ∈ H1

per(Y ;Rd),
(3.51)

Proof. Once again, we start with the weak form (2.21) of the Cosserat continuum (in this scheme the
tensor Lε scales with 1 instead of ε2): Find (uuuε,ϕϕϕε) ∈ H1

Γ(Ω0;Rd)×H1
Γ0

(Ω;Rd) such that,

∫
Ω
Cjik`

(xxx
ε

)
(∂x`u

ε
k − ενk`ϕεν) (∂xjvi − ενijψν) dxxx

−
∫

Ω
Ljik`

(xxx
ε

)
∂x`ϕ

ε
k ∂xiψj dxxx−

∫
Ω

(fi vi + gi ψi) dxxx = 0.

(3.52)

Unfold the above expression using Proposition 3.1 properties i., ii., and iv) and obtain,

∫
Ω×Y

Cjik`(yyy) (Tε(∂x`u
ε
k)− ενk`Tε(ϕεν))

(
Tε
(
∂xjvi

)
− ενijTε(ψν)

)
dyyy dxxx

−
∫

Ω×Y
ε2 Ljik`(yyy) Tε (∂x`ϕ

ε
k) Tε (∂xiψj) dyyy dxxx

−
∫

Ω×Y
(Tε(fi) Tε(vi) + Tε(gi)Tε(ψi)) dyyy dxxx = 0.

(3.53)

Select the same test functions as before. Namely, set vvv := VVV (xxx) and ψψψ := ΨΨΨ(xxx) for any test functions
VVV ∈ C∞0 (Ω;Rd) and ΨΨΨ ∈ C∞0 (Ω;Rd) in (3.53) and using (2.19) and Proposition 3.1 vii. we obtain,
as ε tends to 0,

∫
Ω×Y

Cjik`(yyy)
(
∂x`u

0
k + ∂x`u

1
k−ενk`ϕ0

ν

)
(∂xiVj − ενijΨν) dyyy dxxx

−
∫

Ω×Y
Ljik`(yyy) (∂x`ϕ

0
k + ∂y`ϕ

1
k) ∂xiΨj dyyy dxxx

−
∫

Ω
(fi Vi + gi Ψi) dxxx = 0,

(3.54)

Select now the test functions from beforevvv = vvvε := εU(xxx)WWW
(
xxx
ε

)
andψψψ = ψψψε := εΦ(xxx)ΞΞΞ

(
xxx
ε

)
. Re-

call that vvvε → 0, ψψψε → 000 in L2(Ω;Rd) and Tε(∂xjψ
ε
i ) → ∂yjΞi(xxx,yyy), Tε(∂xjv

ε
i ) → ∂yjW i(xxx,yyy)

in L2(Ω× Y ).

With the above test functions we obtain,

∫
Ω×Y

Cjik`(yyy)
(
∂x`u

0
k + ∂x`u

1
k−ενk`ϕ0

ν

)
∂yiW j dyyy dxxx

−
∫

Ω×Y
Ljik`(yyy) (∂x`ϕ

0
k + ∂y`ϕ

1
k) ∂yiΞj dyyy dxxx = 0,

(3.55)
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Adding (3.54) and (3.55) we obtain,

∫
Ω×Y

Cjik`(yyy)
(
∂x`u

0
k+∂x`u

1
k − ενk`ϕ0

ν

)
(∂xjVi + ∂yiW j − ενijΨν) dyyy dxxx

−
∫

Ω×Y
Ljik`(yyy) (∂x`ϕ

0
k + ∂y`ϕ

1
k) (∂xjΨi + ∂yiΞj) dyyy dxxx

−
∫

Ω
(fi Vi + gi Ψi) dxxx = 0.

(3.56)

Using the density of C∞0 (Ω;Rd) in H1
Γ0

(Ω;Rd) and C∞0 (Ω)⊗H1
per(Y ;Rd) in L2(Ω;H1

per(Y ;Rd))
the result holds true for all VVV ∈ H1

Γ0
(Ω;Rd) and allWWW ∈ L2(Ω;H1

per(Y ;Rd)).

Taking (VVV ,WWW,ΨΨΨ,ΞΞΞ) = (VVV ,WWW,000,000) we obtain,

∫
Ω×Y

Cjik`(yyy)
(
∂x`u

0
k + ∂x`u

1
k − ενk`ϕ0

ν

)
(∂xjVi + ∂yiW j) dyyy dxxx−

∫
Ω
fi Vi dxxx = 0. (3.57)

Taking (VVV ,WWW,ΨΨΨ,ΞΞΞ) = (000,000,ΨΨΨ,ΞΞΞ) we obtain,

−
∫

Ω×Y
Cjik`(yyy)

(
∂x`u

0
k+∂x`u

1
k − ενk`ϕ0

ν

)
ενijΨν dyyy dxxx

−
∫

Ω×Y
Ljik`(yyy) (∂x`ϕ

0
k + ∂y`ϕ

1
k) (∂xjΨi + ∂yiΞj) dyyy dxxx

−
∫

Ω
gi Ψi dxxx = 0.

(3.58)

Moreover, if we select VVV ≡ 000 in (3.57) we obtain that uuu1 has the following form,

u1
i (xxx,yyy) = ζpqi (yyy) (∂xpu

0
q(xxx)− ενpqϕ0

ν(xxx)) + κi(xxx). (3.59)

While, if we set ΨΨΨ ≡ 000 in (3.58) we obtainϕϕϕ1 the following form,

ϕ1
ν(xxx,yyy) = ξpqν (yyy) ∂xpϕ

0
q(xxx) + κi(xxx), (3.60)

where ζζζpq and ξξξpq satisfy (3.50) and (3.51), respectively and κi(xxx) is some generic constant function
in yyy. We remark that existence and uniqueness for ζζζpq and ξξξpq follow from the theory of variational
inequalities.

Rewriting, (3.56) and substituting inWWW ≡ 000, ΞΞΞ ≡ 000, uuu1, andϕϕϕ1 from (3.57) and (3.58), respectively and
factoring out common terms we obtain,

∫
Ω
Ceff
jipq

(
∂xpu

0
q − ενpqϕ0

ν

)
(∂xiVj − ενijΨν) dxxx−

∫
Ω
Leff
jipq ∂xpϕ

0
q ∂xiΨj dxxx

−
∫

Ω
(fi Vi + gi Ψi) dxxx = 0,

(3.61)
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where

Ceff
jipq =

∫
Y
Cjik`(yyy) (δkp δ`q + ∂y`ζ

pq
k ) dyyy, (3.62)

Leff
jipq =

∫
Y
Ljik`(yyy) (δkp δ`q + ∂y`ξ

pq
k ) dyyy. (3.63)

Remark 3.3. Under the HS 2 scheme we obtain an effective Cosserat continuum in (3.61). As a result
we have two sets of effective coefficients in (3.62) and (3.63). One that relates the non-symmetric strain
tensor to the stress and one that relates the curvature-twist tensor to the couple stress. Unlike in the first
homogenization scheme, HS 1, the curvature-twist effects manifest themselves as a separate equation.

Proposition 3.4. If we use the notation γεji := ∂xju
ε
i − εkjiϕ

ε
k, γ0

ji := ∂xju
0
i − εkjiϕ

0
k, γ1

ji :=

∂yju
1
i − εkjiϕ1

k, κ0 := ∂xjϕ
0
i , and κ1 := ∂yjϕ

1
i then under the assumptions of Theorem 3.2 we have

the following convergence results,

lim
ε→0

∫
Ω

(
Cε(xxx) γε : γε + L̃ε(xxx)κε : κε

)
dxxx

=

∫
Ω×Y

(
C(yyy) (γ0 + γ1) : (γ0 + γ1) + L(yyy) (κ0 + κ1) : (κ0 + κ1)

)
dyyy dxxx

(3.64)

lim
ε→0

∫
Ω\Ω−

ε

(
Cε(xxx) γε : γε + L̃ε(xxx)κε : κε

)
dxxx = 0. (3.65)

Proof. As before, using the weak lower semicontinuity of the integrals, the fact that tensors Cε and L̃ε

belong in M4
d(α, β,Ω), and properties of the limit infimum we obtain,

∫
Ω×Y

C(yyy) (γ0 + γ1) : (γ0 + γ1) dyyydxxx+

∫
Ω×Y

L(yyy) (κ0 + κ1) : (κ0 + κ1) dyyydxxx

≤ lim inf
ε→0

∫
Ω×Y

Tε(Cε) Tε(γε) : Tε(γε) dyyydxxx+ lim inf
ε→0

∫
Ω×Y

Tε(L̃ε) Tε(κε) : Tε(κε) dyyydxxx

≤ lim inf
ε→0

{∫
Ω×Y

Tε(Cε) Tε(γε) : Tε(γε) dyyydxxx+

∫
Ω×Y

Tε(L̃ε) Tε(κε) : Tε(κε) dyyydxxx
}

≤ lim inf
ε→0

{∫
Ω
Cε γε : γε dxxx+

∫
Ω
L̃ε κε : κε dxxx

}
= lim inf

ε→0

∫
Ω×Y

(fff · uuuε + ggg ·ϕϕϕε) dyyydxxx

=

∫
Ω×Y

(
fff · uuu0 + ggg ·ϕϕϕ0

)
dyyydxxx

=

∫
Ω×Y

C(yyy) (γ0 + γ1) : (γ0 + γ1) dyyydxxx+

∫
Ω×Y

L(yyy) (κ0 + κ1) : (κ0 + κ1) dyyydxxx, (3.66)
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which is precisely (3.64). We remark that the last equality came from equation (3.56). Moreover, (3.64)
implies (3.65).

Remark 3.4. Immediately one can observe from Proposition 3.4 that the following result holds,

lim
ε→0

∫
Ω×Y

(
Tε(Cε) Tε(γε) : Tε(γε) + Tε(L̃ε) Tε(κε) : Tε(κε)

)
dyyydxxx

=

∫
Ω×Y

C(yyy) (γ0 + γ1) : (γ0 + γ1) dyyydxxx+

∫
Ω×Y

L(yyy) (κ0 + κ1) : (κ0 + κ1) dyyydxxx

(3.67)

Corollary 3.2. The following convergence results hold for the Cosserat strain and curvature-twist tensors,

lim
ε→0

Tε(γε)→ γ0 + γ1 in L2(Ω× Y ;Rd×d) (3.68)

lim
ε→0

Tε(κε)→ κ0 + κ1 in L2(Ω× Y ;Rd×d) (3.69)

Proof. By expanding the square of the expressions below we have,

∫
Ω×Y

C(yyy)(Tε(γε)− γ0 − γ1) : (Tε(γε)− γ0 − γ1) dyyydxxx

+

∫
Ω×Y

L(yyy)(Tε(κε)− κ0 − κ1) : (Tε(κε)− κ0 − κ1) dyyydxxx

=

∫
Ω×Y

C(yyy)Tε(γε) : Tε(γε) dyyydxxx−
∫

Ω×Y
C(yyy)Tε(γε) : (γ0 − γ1) dyyydxxx

−
∫

Ω×Y
C(yyy)(γ0 − γ1) : Tε(γε) dyyydxxx+

∫
Ω×Y

C(yyy)(γ0 − γ1) : (γ0 − γ1) dyyydxxx

+

∫
Ω×Y

L(yyy)Tε(κε) : Tε(κε) dyyydxxx−
∫

Ω×Y
L(yyy)Tε(κε) : (κ0 − κ1) dyyydxxx

−
∫

Ω×Y
L(yyy)(κ0 − κ1) : Tε(κε) dyyydxxx+

∫
Ω×Y

L(yyy)(κ0 − κ1) : (κ0 − κ1) dyyydxxx

(3.70)

Combining terms, using (3.37) and (3.40)–(3.43) we obtain that the right hand side is zero and the results
follows.

4 Some results regarding correctors

In this section, we provide some results that can be interpreted as “corrector” type results for a Cosserat
continuum under each homogenization scheme. Classical correctors in the theory of homogenization
for linear elasticity, transform the weak converge of the displacement uuuε ⇀ uuu0 to strong convergence
by subtracting a term involving the gradient of uuu0 and the local solutions on the unit cell. Given that
kinematics of a Cosserat continuum are more convoluted, it is not immediately clear what the form of a
corrector should be.

The correctors are obtained using the averaging operator in (3.6) as is done in [CDG08]. Hence, we do
not require any additional regularity assumptions of the local solutions (3.29), (3.30), (3.50), (3.51) as is
done in standard homogenization problems (see e.g. [OV07]).
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4.1 Correctors under HS 1 scheme

Theorem 4.1. Under the assumptions of Theorem 3.1 we have the following strong convergence,

γε − γ0 − Uε(γ
1)→ 0 in L2(Ω,Rd×d) (4.1)

Proof. Using (3.34), (3.35), (3.38), and Proposition 3.2 iii. we have,

γε − Uε(γ
0)− Uε(γ

1)→ 0 in L2(Ω;Rd×d). (4.2)

Since γ0 is independent of yyy we can use Proposition 3.2 i to obtain,

Uε(γ
0)→ γ0 in L2(Ω;Rd×d). (4.3)

Hence, the results follows.

4.2 Correctors under HS 2 scheme

Theorem 4.2. Under the assumptions of Theorem 3.2 we have the following strong convergence results,

γε − γ0 − Uε(γ
1)→ 0 in L2(Ω,Rd×d) (4.4)

κε − κ0 − Uε(κ
1)→ 0 in L2(Ω,Rd×d) (4.5)

Proof. Using (3.64), (3.65), (3.68), (3.69) and Proposition 3.2 iii. we have,

γε − Uε(γ
0)− Uε(γ

1)→ 0 in L2(Ω;Rd×d). (4.6)

κε − Uε(κ
0)− Uε(κ

1)→ 0 in L2(Ω;Rd×d). (4.7)

Since both γ0 and κ0 are independent of yyy we can use Proposition 3.2 i to obtain,

Uε(γ
0)→ γ0 in L2(Ω;Rd×d), (4.8)

and

Uε(κ
0)→ κ0 in L2(Ω;Rd×d). (4.9)

Thus, completing the proof.
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5 Conclusions

We derived effective models for a heterogeneous Cosserat continuum taking into account the Cosserat
intrinsic length of the constituents by the method of homogenization and periodic unfolding. In doing so,
we provide rigorous proof to the results obtain in [FPS01] by two-scale expansion.

Depending on how the Cosserat intrinsic length scales with respect to the characteristic length of the
domain or the chatacteristic length of the periodic cell, we are led to two different effective models. The
first effective model is of a classical Cauchy continuum where all the information regarding displacements
and rotations at the unit cell are contained in the fourth order stiffness tensor characterizing the material
and can be computed by the help of two local problems one of which is related to the curvature-twist. The
second effective model is of an Cosserat continuum with two fourth order effective tensors relating the
non-symmetric strain to the non-symmetric stress and the curvature-twist to the couple stress, proving
new constitutive laws for Cosserat media.

Additionally, we provide some corrector type results using the averaging operator for each of the effective
models. By and large the results should hold true in the case where one of the materials is a void by
adjusting the unfolding and averaging operators, respectively, as in [CDD+12].

Acknowledgement

The author gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689) in project AA2-10.

References

[ASd03] J.J. Aliberti, P. Seppecher, and F. dell’Isola. Truss modular beams with deformation energy
depending on higher displacement gradients. Math. Mech. Solids, 8(1):51–73, 2003.

[BLP78] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures.
AMS Chelsea Publishing, Providence, RI, 1978.

[BP89] N. Bakhvalov and G. Panasenko. Homogenisation: averaging processes in periodic media:
mathematical problems in the mechanics of composite materials. Kluwer Academic Publish-
ers, 1989.

[CC09] E. Cosserat and F. Cosserat. Théorie des Corps Déformables. Librairie Scientifique A.
Hermann et Fils, 6, Rue de la Sorbonne, 1909.

[CDD+12] D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. The periodic unfolding
method in domains with holes. SIAM L. Math. Anal., 44(2):718–760, 2012.

[CDG02] D. Cioranescu, A. Damlamian, and G. Griso. Éclatement périodique et homogénéisation. C.
R. Acad. Sci. Paris, Sér. I Math., 335:99–104, 2002.

[CDG08] D. Cioranescu, A. Damlamian, and G. Griso. The periodic unfolding method in homogeniza-
tion. SIAM J. Math. Anal., 40(4):1585–1620, 2008.

DOI 10.20347/WIAS.PREPRINT.2817 Berlin 2021



Derivation of effective models from heterogenous Cosserat media 23

[CDG18] D. Cioranescu, A. Damlamian, and G. Griso. The Periodic Unfolding Method. Theory and Ap-
plications to Partial Differential Problems. Series in Contemporary Mathematics 3. Springer,
1st edition, 2018.

[Dam05] A. Damlamian. An elementary introduction to periodic unfolding. Gakuto Int. Series, Math.
Sci. Appl., 24:1651–1684, 2005.

[dCG17] F. dell’Isola, A.D. Corte, and I. Giorgio. Higher-gradient continua: The legacy of Piola, Mindlin,
Sedov and Toupin and some future research perspectives. Math. Mech. Solids, 22(4):852–
872, 2017.

[FPS01] S. Forest, F. Pradel, and K. Sab. Asymptotic analysis of heterogeneous Cosserat media. Int.
J. Solids Structures, 38(26-27):4585–4608, 2001.

[FS98] S. Forest and K. Sab. Cosserat overall modeling of heterogeneous material. Mech. Res.
Commun., 25(4):449–454, 1998.

[FS99] S. Forest and K. Sab. Estimating the overall properties of heterogeneous Cosserat materials.
Modelling Simul. Mater. Sci. Eng., 7(5):829–840, 1999.

[GR11] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations: Theory and
algorithms. Springer Publishing Company, Incorporated, 1st edition, 2011.

[Han11] H. Hanke. Homogenization in gradient plasticity. Math. Models Meth. Appl. Sci., 21:1651–
1684, 2011.

[HH69] I. Hlavacek and M. Hlavacek. On the existence and uniqueness of solution and some vari-
ational principles in linear theories of elasticity with couple-stresses. Aplikace Matematiky,
14:387–409, 1969.

[HN70] I. Hlavácel and J. Necas. On inequalities of Korn’s type. i. boundary-value problems for elliptic
systems of partial differential equations. Arch. Rational Mech. Anal., 36:305–311, 1970.

[Lak83] R.S. Lakes. Size effects and micromechanics of porous solids. J. Mat. Scien., 18:2572–2581,
1983.

[Lak93] R.S. Lakes. Strongly cosserat elastic lattice and foam materials for enhanced toughness.
Cell. Polym., 12:17–30, 1993.

[Lak95] R.S. Lakes. On the torsional properties of single osteons. J. Biomech., 28:1409–1410, 1995.

[Lio69] J.-L.. Lions. Quelques méthodes de résolutions des problèmes aux limites non linéaires.
Gauthier-Villars, 1969.

[ME68] R.D. Mindlin and N.N. Eshel. On first strain-gradient theories in linear elasticity. Int. J. Solids
Structures, 4(1):109–124, 1968.

[Min64] R.D. Mindlin. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal., 16:51–78, 1964.

[Min65] R.D. Mindlin. On the equations of elastic materials with micro-structure. Int. J. Solids Struc-
tures, 1(1):73–78, 1965.

DOI 10.20347/WIAS.PREPRINT.2817 Berlin 2021



G. Nika 24

[MT62] R.D. Mindlin and H.F. Tiersten. Effects of couple-stresses in linear elasticity. Arch. Rat. Mech.
Anal., 11:415–448, 1962.

[MV10] C. C. Mei and B. Vernescu. Homogenization Methods for Multiscale Mechanics. World Sci-
entific, 2010.

[Nec67] J. Necas. Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, 1st edition,
1967.

[Now72] W. Nowacki. The Theorry of Micropolar Elasticity. Springer, 1972.

[OV07] D. Onofrei and B. Vernescu. Error estimates for periodic homogenization with non-smooth
coefficients. Asym. Anal., 54:103–123, 2007.

[PL86] H.C. Park and R.S. Lakes. Cosserat micromechanics of human bone: strain redistribution by
a hydration-sensitive constituent. J. Biomech., 19:385–397, 1986.

[PS97] C. Pideri and P. Seppecher. A second grade material resulting from the homogenization of a
heterogeneous linear elastic medium. Cont. Mechanics & Thermodyn., 9(5):241–257, 1997.

[RL17] Z. Rueger and R.S. Lakes. On the torsional properties of single osteons. Z. Angew. Math.
Mech., 68(54):1–9, 2017.

[SAd11] P. Seppecher, J.J. Aliberti, and F. dell’Isola. Linear elastic trusses leading to continua with
exotic mechanical interactions. J. Phys.: Conf. Ser., 319:012018, 2011.

[SP80] E. Sanchez-Palencia. Non-homogeneous media and vibration theory. Lecture Notes in
Physics, Springer-Verlag Berlin Heidelberg, 1980.

[TB96] N. Triantafyllidis and S. Bardenhagen. The influence of scale size on the stability of periodic
solids and the role of associated higher order gradient continuum models. J. Mech. Phys.
Solids, 44(11):1891–1928, 1996.

[Tou62] R. Toupin. Elastic materials with couple-stresses. Arch. Rat. Mech. Anal., 11(1):385–414,
1962.

[Tou64] R. Toupin. Theory of elasticity with couple-stress. Arch. Rat. Mech. Anal., 17:85–112, 1964.

[ZGBG14] Th. Zisis, P.A. Gourgiotis, K.P. Baxevanakis, and H.G. Georgiadis. Some basic contact prob-
lems in couple stress elasticity. Int. J. Solids Structures, 51(11-12):2084–2095, 2014.

DOI 10.20347/WIAS.PREPRINT.2817 Berlin 2021


	Introduction
	Background and set up of the problem
	Cosserat intrinsic length of the constituents
	The model
	Assumptions

	Homogenization of the Cosserat continuum
	The periodic unfolding and averaging operators
	Main results
	Homogenization under the HS 1 scheme
	Homogenization under the HS 2 scheme


	Some results regarding correctors
	Correctors under HS 1 scheme
	Correctors under HS 2 scheme

	Conclusions

