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Convex optimization with inexact gradients in Hilbert space and
applications to elliptic inverse problems

Vladislav Matyukhin, Sergey Kabanikhin, Maxim Shishlenin, Nikita Novikov, Artem Vasin, Alexander
Gasnikov

Abstract

In this paper we propose the gradient descent type methods to solve convex optimization
problems in Hilbert space. We apply it to solve ill-posed Cauchy problem for Poisson equation
and make a comparative analysis with Landweber iteration and steepest descent method. The
theoretical novelty of the paper consists in the developing of new stopping rule for accelerated
gradient methods with inexact gradient (additive noise). Note that up to the moment of stopping
the method “doesn’t feel the noise”. But after this moment the noise start to accumulate and the
quality of the solution becomes worse for further iterations.

1 Introduction

In this paper we propose the gradient descent type methods to solve convex optimization problems
in Hilbert space. We apply it to solve ill-posed Cauchy problem for Poisson equation and make a
comparative analysis with Landweber iteration and steepest descent method. The theoretical novelty
of the paper consists in the developing of proper stopping rule for accelerated gradient methods with
inexact gradient.

Following to the works [1, 32, 2] we develop new approaches to solve convex optimization problems in
Hilbert space [29, 28]. The main difference from the existing approaches is that we don’t approximate
infinite-dimensional problem by the finite one (see [1, 2]). We try to solve the problem in Hilbert space
(infinite-dimensional). But we try to do it with the conception of the inexact oracle. That is we use an
approximation of the problem only when we calculate gradient (Frechet derivative) of the functional.
This generates inexactness in gradient calculations. We try to combine known results in this area and
to understand the best way to solve convex optimization problems in Hilbert space with application to
ill-posed and inverse problems [32].

It’s important to note, that in the paper we consider only gradient type procedures without 1D-line
search. So it means that very popular in practice methods, like steepest descent and conjugate gradient
[30, 25] and their nonlinear analogues [21], do not take into account. The reason is that we try to
develop an approach that justified theoretically. For all of these methods, there exist some troubles with
error accumulation [27]. In the worth case, algorithms may diverge. In this paper we describe how to
control this divergence and stop in time for gradient-type methods without 1D-line search. Fortunately,
there exist alternative procedures to 1D-line search (Armijo, Wolf, Nesterov rules [30, 31, 25]) that
perform the same function as 1D-line search. We will use the Nesterov’s rule [31, 25, 22]. It allows us
to choose an adaptive stepsize policy.

The important part of the paper is an adaptation of the modern results developed for convergence of
gradient type methods with inexact gradient for a specific class of inverse ill-posed convex problems
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in Hilbert space. We will use the conception of inexactness developed for about 7 years ago by Yu.
Nesterov, G. Glineur and O. Devolder [9] and demonstrate how to reduce an additive noise conception to
considered one. The basic algorithms are gradient descent [30, 25], fast (accelerated) gradient method
in variant of Similar Triangles Method (STM) [4] and its combinations [9, 20]. For these algorithms the
theory of gradient error accumulation is well developed [9, 25, 26, 24, 20, 23]. Basically, the theoretical
foundation of the facts we use in this paper can be found in the paper [20] and recent arXive preprint
[23].

The structure of the paper is as follows. In section 2 we described primal approaches (we solve exactly
the problem we have) based on contemporary versions of fast gradient descent methods and its
adaptive variants.

In section 3 we described dual approaches (we solve a dual problem) based on the same methods. We
try to describe all the methods with the exact estimations of their convergence. But every time we have
in mind concrete applications. Since that we include in the description of algorithms such details that
allow methods to be more practical.

Section 4 contains new result about proper stopping rule for STM when the noise in gradient is additive.
This result can be briefly formulated as follows. Having 𝛿-inexact gradient (inexactness is additive),
gradient descent and accelerated gradient descent (we consider STM) converge almost like their
noise-free analogues up to an accuracy in function ∼ 𝛿𝑅, where 𝑅 – corresponds to the size of the
solution. After that we should stop the algorithm, since an error can be further accumulated and caused
divergence of the method [27]. This result seems to be rather unexpected for accelerated algorithms,
due to pessimistic results, mentioned in section 3, about accumulation of the error in another conception
of noise.

The rest part of the paper devoted to applications of the described results to elliptic ill-posed inverse
problems. This part experimentally confirm conclusions that have been done in the previous sections.

2 Primal approaches

Assume that 𝑞 ∈ 𝐻 , where 𝐻 is a Hilbert space with scalar product denoted by ⟨ , ⟩ (𝐻 isn’t
necessarily finite). Let’s introduce convex functional 𝐽 (𝑞). In this paper we investigate the following
optimization problem

𝐽 (𝑞) → min
𝑞
. (1)

Let’s introduce starting point 𝑦0 and
𝑅 =

⃦⃦
𝑦0 − 𝑞*

⃦⃦
2
,

where 𝑞* is such a solution of (1) that gives 𝑅 the smallest value. We assume that at least one solution
exists [1].

Assume that 𝐽 (𝑞) has Lipchitz Frechet derivative

‖∇𝐽 (𝑞2) −∇𝐽 (𝑞1)‖2 ≤ 𝐿 ‖𝑞2 − 𝑞1‖2 , (2)

where ‖𝑞‖22 = ‖𝑞‖2𝐻 = ⟨𝑞, 𝑞⟩𝐻 . In (2) we also use that due to the Riesz representation theorem [3],
one may considered ∇𝐽 (𝑞) to be the element of 𝐻* = 𝐻 .

Example 1. Assume that linear operator 𝐴 : 𝐻1 → 𝐻2, 𝑏 ∈ 𝐻2. Let’s consider the following convex
optimization problem [1, 32]:

𝐽 (𝑞) =
1

2
‖𝐴𝑞 − 𝑓‖2𝐻2

→ min
𝑞
.
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Convex optimization with inexact gradients in Hilbert space 3

Note that

∇𝐽 (𝑞) = 𝐴* (𝐴𝑞 − 𝑓) .

Formula (2) is equivalent to

⟨𝐴𝑞,𝐴𝑞⟩𝐻2
= ‖𝐴𝑞‖2𝐻2

≤ 𝐿 ‖𝑞‖2𝐻1
= 𝐿 ⟨𝑞, 𝑞⟩𝐻1

,

i.e. 𝐿 = ‖𝐴‖2𝐻1→𝐻2
. �

Now following to [4, 5, 6] (most of the ideas below goes back to the pioneer’s works of B.T. Polyak, A.S.
Nemirovski, Yu.E. Nesterov) we describe optimal (up to absolute constant factor or logarithmic factor in
strongly convex case) numerical methods [7, 28, 43] (in terms of the number of ideal calculations of
∇𝐽 (𝑞) and 𝐽 (𝑞)) for solving the problem (1). The rates of convergence that obtained in theorems 1,
2 can be reached (in case of example 1) also by conjugate-gradient methods [1, 32], but we lead these
estimates under more general conditions.

Algorithm 1 Similar Triangular Method STM (𝑦0, 𝐿)

Input: 𝐴0 = 𝛼0 = 1/𝐿, 𝑘 = 0; 𝑞0 = 𝑢0 = 𝑦0 − 𝛼0∇𝐽 (𝑦0) .
1: Put

𝛼𝑘+1 =
1

2𝐿
+

√︂
1

4𝐿2
+
𝐴𝑘
𝐿
, 𝐴𝑘+1 = 𝐴𝑘 + 𝛼𝑘+1,

𝑦𝑘+1 =
𝛼𝑘+1𝑢

𝑘 + 𝐴𝑘𝑞
𝑘

𝐴𝑘+1

,

𝑢𝑘+1 = 𝑢𝑘 − 𝛼𝑘+1∇𝐽
(︀
𝑦𝑘+1

)︀
,

𝑞𝑘+1 =
𝛼𝑘+1𝑢

𝑘+1 + 𝐴𝑘𝑞
𝑘

𝐴𝑘+1

.

2: If stopping rule doesn’t satisfy, put 𝑘 := 𝑘 + 1 and go to 1.

If 𝐽 (𝑞*) = 0 (see example 1) then stopping rule has the form 𝐽
(︀
𝑞𝑘
)︀
≤ 𝜀.

Theorem 2.1. (see [4]) Assume that (2) holds true. Then for STM (𝑦0, 𝐿):

𝐽
(︀
𝑞𝑁
)︀
− 𝐽 (𝑞*) ≤

4𝐿𝑅2

𝑁2
.

Sometimes it’s hardly possible to estimate 𝐿 that are used in STM. Moreover even when we can
estimate 𝐿 we have to used the worth one (the largest one). Is it possible to change the worth case 𝐿
to the average one (among all the iterations)? The answer is YES [4] (see ASTM below).

Theorem 2.2. (see [4]) Assume that (2) holds true. Then for ASTM (𝑦0):

𝐽
(︀
𝑞𝑁
)︀
− 𝐽 (𝑞*) ≤

8𝐿𝑅2

𝑁2
.

The average number of calculations of 𝐽 (𝑞) per iteration roughly equals 4 and the average number of
calculations Frechet derivative ∇𝐽 (𝑞) per iteration roughly equals 2.
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Algorithm 2 Adaptive Similar Triangular Method ASTM (𝑦0)

Input: 𝐴0 = 𝛼0 = 1/𝐿0
0 = 1, 𝑘 = 0, 𝑗0 = 0; 𝑞0 := 𝑢0 := 𝑦0 − 𝛼0∇𝐽 (𝑦0) .

1: while 𝐽 (𝑞0) > 𝐽 (𝑦0) + ⟨∇𝐽 (𝑦0) , 𝑞0 − 𝑦0⟩ +
𝐿
𝑗0
0

2
‖𝑞0 − 𝑦0‖22 do

2: 𝑗0 := 𝑗0 + 1;𝐿𝑗00 := 2𝑗0𝐿0
0; (𝐴0 :=)𝛼0 := 1

𝐿
𝑗0
0

, 𝑞0 := 𝑢0 := 𝑦0 − 𝛼0∇𝐽 (𝑦0) .

3: end while
4: Put 𝐿0

𝑘+1 = 𝐿𝑗𝑘𝑘
⧸︀

2, 𝑗𝑘+1 = 0.

𝛼𝑘+1 :=
1

2𝐿0
𝑘+1

+

√︃
1

4
(︀
𝐿0
𝑘+1

)︀2 +
𝐴𝑘
𝐿0
𝑘+1

, 𝐴𝑘+1 := 𝐴𝑘 + 𝛼𝑘+1,

𝑦𝑘+1 =
𝛼𝑘+1𝑢

𝑘 + 𝐴𝑘𝑞
𝑘

𝐴𝑘+1

,

𝑢𝑘+1 = 𝑢𝑘 − 𝛼𝑘+1∇𝐽
(︀
𝑦𝑘+1

)︀
,

𝑞𝑘+1 =
𝛼𝑘+1𝑢

𝑘+1 + 𝐴𝑘𝑞
𝑘

𝐴𝑘+1

.

5: while 𝐽
(︀
𝑦𝑘+1

)︀
+
⟨︀
∇𝐽

(︀
𝑦𝑘+1

)︀
, 𝑞𝑘+1 − 𝑦𝑘+1

⟩︀
+

𝐿
𝑗𝑘+1
𝑘+1

2

⃦⃦
𝑞𝑘+1 − 𝑦𝑘+1

⃦⃦2
2
< 𝐽

(︀
𝑞𝑘+1

)︀
do

6:

𝑗𝑘+1 := 𝑗𝑘+1 + 1;𝐿
𝑗𝑘+1

𝑘+1 = 2𝑗𝑘+1𝐿0
𝑘+1;

𝛼𝑘+1 :=
1

2𝐿
𝑗𝑘+1

𝑘+1

+

⎯⎸⎸⎷ 1

4
(︁
𝐿
𝑗𝑘+1

𝑘+1

)︁2 +
𝐴𝑘

𝐿
𝑗𝑘+1

𝑘+1

, 𝐴𝑘+1 := 𝐴𝑘 + 𝛼𝑘+1;

𝑦𝑘+1 :=
𝛼𝑘+1𝑢

𝑘 + 𝐴𝑘𝑞
𝑘

𝐴𝑘+1

, 𝑢𝑘+1 := 𝑢𝑘 − 𝛼𝑘+1∇𝐽
(︀
𝑦𝑘+1

)︀
,

𝑞𝑘+1 :=
𝛼𝑘+1𝑢

𝑘+1 + 𝐴𝑘𝑞
𝑘

𝐴𝑘+1

.

7: end while
8: If stopping rule doesn’t satisfy, put 𝑘 := 𝑘 + 1 and go to 4.
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Convex optimization with inexact gradients in Hilbert space 5

2.1 Restart technique

Assume that (2) holds true, 𝐽 (𝑞*) = 0 and [1]

⟨𝑞, 𝐽 ′′ (𝑞) 𝑞⟩ ≥ 𝜇 ⟨𝑞, 𝑞⟩ (3)

for all 𝑞, 𝑞 ∈ 𝐻 (𝜇 > 0).

For example 1 (3) can be simplified: for all 𝑞 ∈ 𝐻

⟨𝐴𝑞,𝐴𝑞⟩𝐻2
= ‖𝐴𝑞‖2𝐻2

≥ 𝜇 ‖𝑞‖2𝐻1
= 𝜇 ⟨𝑞, 𝑞⟩𝐻1

(𝜇 > 0).

In this case we may restart the method we choose each time when the value of the goal functional
becomes less than one half from starting value at this restart. Since restart criteria is verifiable in
practice this construction can be easily implemented in practice. For example, if we choose (A)STM,
then by restart construction one can obtain the method that required

𝑁 = O

(︃√︃
𝐿

𝜇
log2

(︂
𝜇𝑅2

𝜀

)︂)︃
.

calculations of ∇𝐽(𝑞) (and 𝐽(𝑞) in case of ASTM) to generate 𝑞𝑁 that guarantee

𝐽(𝑞𝑁) − 𝐽(𝑞*) = 𝐽(𝑞𝑁) ≤ 𝜀

Another approach assumes that we have verifiable stopping criteria 𝐽(𝑞𝑁𝑘
𝑘 ) − 𝐽(𝑞*) ≤ 𝜀 and doesn’t

assume that 𝐽(𝑞*) = 0. For example, since

𝐽(𝑞𝑁𝑘
𝑘 ) − 𝐽(𝑞*) ≤

1

2𝜇

⃦⃦⃦
∇𝐽(𝑞𝑁𝑘

𝑘 )
⃦⃦⃦2
2

we may have such a criteria if we know lower bound on 𝜇. Suppose now that we can estimate 𝜇 from
above: 𝜇 ≤ 𝜇0 ≪ 𝐿. Let’s consider RSTM (𝑦0, 𝐿, 𝜇0). We introduce the following restart version of
this algorithm (here STM𝑁𝑘

𝑞 (𝑦𝑘0 , 𝐿) = 𝑞𝑁𝑘 and STM𝑁𝑘
𝑢 (𝑦𝑘0 , 𝐿) = 𝑢𝑁𝑘 )

Algorithm 3 RSTM (𝑦0, 𝐿, 𝜇0)

1: 𝑘 = 0; 𝑦00 = 𝑦0;
2: repeat

𝑞𝑁𝑘
𝑘 =

1

2
STM𝑁𝑘

𝑞

(︀
𝑦0𝑘, 𝐿

)︀
+

1

2
STM𝑁𝑘

𝑢

(︀
𝑦0𝑘, 𝐿

)︀
, where 𝑁𝑘 = 2

√︀
𝐿/𝜇0;

3: until 𝐽(𝑞𝑁𝑘
𝑘 ) − 𝐽(𝑞*) ≤ 𝜀

One can show [8] that after 𝑘 = O
(︁√︀

𝜇0/𝜇 log2 (𝐿 (𝐽 (𝑦0) − 𝐽(𝑞*))/(𝜇𝜀))
)︁

restarts RSTM (𝑦0, 𝐿, 𝜇0)

will stop and the total number of calculations of ∇𝐽 (𝑞) (and 𝐽 (𝑞) in case ASTM) can be estimated as
follows

O

(︃√︃
𝐿

𝜇
log2

(︂
𝐿 (𝐽 (𝑦0) − 𝐽(𝑞*))

𝜇𝜀

)︂)︃
.

Since (3) is true and 𝐽 (𝑞*) = 0 one has

𝜇

2

⃦⃦⃦
𝑞𝑁𝑘
𝑘 − 𝑞*

⃦⃦⃦2
2
≤ 𝐽

(︁
𝑞𝑁𝑘
𝑘

)︁
− 𝐽 (𝑞*) ≤ 𝜀.
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Therefore, ⃦⃦⃦
𝑞𝑁𝑘
𝑘 − 𝑞*

⃦⃦⃦
2
≤
√︂

2𝜀

𝜇
.

Hence after (𝜀 := 𝜇𝜀2/2)

O

(︃√︃
𝐿

𝜇
log2

(︂
2𝐿𝐽 (𝑦0)

𝜇2𝜀2

)︂)︃
calculations of ∇𝐽 (𝑞) one can obtain ⃦⃦⃦

𝑞𝑁𝑘
𝑘 − 𝑞*

⃦⃦⃦
2
≤ 𝜀.

Hence after (𝜀 := 𝜇𝜀2/2)

O

(︃√︃
𝐿

𝜇
log2

(︂
2𝐿 (𝐽 (𝑦0) − 𝐽(𝑞*))

𝜇2𝜀2

)︂)︃

calculations of ∇𝐽 (𝑞) one can obtain ⃦⃦⃦
𝑞𝑁𝑘
𝑘 − 𝑞*

⃦⃦⃦
2
≤ 𝜀.

For the adaptive case in RASTM (𝑦0, 𝜇0) we have to replace 𝑁𝑘 = 2
√︀
𝐿/𝜇0 (since we don’t know 𝐿)

by 𝑁𝑘 – the smallest natural number that satisfies 𝐴𝑁𝑘
≥ 4/𝜇0 [20]. All the estimates hold true up to

constant factors.

2.2 Gradient descent

In the literature one can typically meet non-accelerated simple gradient descent method GD (𝑞0 = 𝑦0, 𝐿)
[1, 32, 9]

𝑞𝑘+1 = 𝑞𝑘 − 1

𝐿
∇𝐽

(︀
𝑞𝑘
)︀

(4)

or GD (𝑦0, 𝐿), 𝑞0 = 0 {︂
𝑦𝑘+1 = 𝑦𝑘 − 1

𝐿
∇𝐽

(︀
𝑦𝑘
)︀
,

𝑞𝑘+1 = 𝑘
𝑘+1

𝑞𝑘 + 1
𝑘+1

𝑦𝑘+1.
(5)

In the case (2), (3) method (4) requires O ((𝐿/𝜇) log2 (2𝐿𝑅2/(𝜇𝜀2))) calculations of ∇𝐽 (𝑞) for⃦⃦
𝑞𝑁 − 𝑞*

⃦⃦
2
≤ 𝜀. In the case (2) method (5) requires O (𝐿𝑅2/𝜀) calculations of ∇𝐽 (𝑞) for 𝐽

(︀
𝑞𝑁
)︀
−

𝐽 (𝑞*) ≤ 𝜀. Note that for the (A)STM these quantities are smaller

O

(︃√︃
𝐿

𝜇
log2

(︂
2𝐿𝑅2

𝜇𝜀2

)︂)︃
, O

(︃√︂
𝐿𝑅2

𝜀

)︃
. (6)

In reality in (6) for ASTM (analogously for RASTM) one can insert the average 𝐿 among all the iterations.
This could be much smaller than the worth one.

One can easily propose adaptive version of GD and GD. For (5) let’s introduce AGD (𝑞0 = 𝑦0).

Let’s introduce AGD (𝑦0).
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Convex optimization with inexact gradients in Hilbert space 7

Algorithm 4 AGD (𝑞0 = 𝑦0)

Input: 𝐿0
0 = 1, 𝑘 = 0, 𝑗0 = 0; 𝑞1 = 𝑞0 − 1

𝐿0
0
∇𝐽 (𝑞0) .

1: while 𝐽 (𝑞1) > 𝐽 (𝑞0) + ⟨∇𝐽 (𝑞0) , 𝑞1 − 𝑞0⟩ +
𝐿
𝑗0
0

2
‖𝑞1 − 𝑞0‖22 do

2:

𝑗0 := 𝑗0 + 1;𝐿𝑗00 := 2𝑗0𝐿0
0;

𝑞1 = 𝑞0 − 1

𝐿𝑗00
∇𝐽

(︀
𝑞0
)︀
.

3: end while
4: Put

𝐿0
𝑘+1 = 𝐿𝑗𝑘𝑘

⧸︀
2, 𝑗𝑘+1 = 0.

𝑞𝑘+1 = 𝑞𝑘 − 1

𝐿0
𝑘+1

∇𝐽
(︀
𝑞𝑘
)︀
.

5: while 𝐽
(︀
𝑞𝑘
)︀

+
⟨︀
∇𝐽

(︀
𝑞𝑘
)︀
, 𝑞𝑘+1 − 𝑞𝑘

⟩︀
+

𝐿
𝑗𝑘+1
𝑘+1

2

⃦⃦
𝑞𝑘+1 − 𝑞𝑘

⃦⃦2
2
< 𝐽

(︀
𝑞𝑘+1

)︀
do

6:

𝑗𝑘+1 := 𝑗𝑘+1 + 1;𝐿
𝑗𝑘+1

𝑘+1 = 2𝑗𝑘+1𝐿0
𝑘+1; 𝑞

𝑘+1 := 𝑞𝑘 − 1

𝐿
𝑗𝑘+1

𝑘+1

∇𝐽
(︀
𝑞𝑘
)︀
.

7: end while
8: If stopping rule doesn’t satisfy, put 𝑘 := 𝑘 + 1 and go to 4.

Algorithm 5 AGD (𝑦0)

Input: 𝐿0
0 = 1, 𝑘 = 0, 𝑗0 = 0; 𝑞0 = 0; 𝑦1 = 𝑦0 − 1

𝐿0
0
∇𝐽 (𝑦0) .

1: while 𝐽 (𝑦1) > 𝐽 (𝑦0) + ⟨∇𝐽 (𝑦0) , 𝑦1 − 𝑦0⟩ +
𝐿
𝑗0
0

2
‖𝑦1 − 𝑦0‖22 do

2:

𝑗0 := 𝑗0 + 1;𝐿𝑗00 := 2𝑗0𝐿0
0;

𝑦1 = 𝑦0 − 1

𝐿𝑗00
∇𝐽

(︀
𝑦0
)︀
.

3: end while
4: Put

𝐿0
𝑘+1 = 𝐿𝑗𝑘𝑘

⧸︀
2, 𝑗𝑘+1 = 0.

𝑦𝑘+1 = 𝑦𝑘 − 1

𝐿0
𝑘+1

∇𝐽
(︀
𝑦𝑘
)︀
,

𝑞𝑘+1 =
𝑘

𝑘 + 1
𝑞𝑘 +

1

𝑘 + 1
𝑦𝑘+1.

5: while 𝐽
(︀
𝑦𝑘
)︀

+
⟨︀
∇𝐽

(︀
𝑦𝑘
)︀
, 𝑦𝑘+1 − 𝑦𝑘

⟩︀
+

𝐿
𝑗𝑘+1
𝑘+1

2

⃦⃦
𝑦𝑘+1 − 𝑦𝑘

⃦⃦2
2
< 𝐽

(︀
𝑦𝑘+1

)︀
do

6:

𝑗𝑘+1 := 𝑗𝑘+1 + 1;𝐿
𝑗𝑘+1

𝑘+1 = 2𝑗𝑘+1𝐿0
𝑘+1;

𝑦𝑘+1 := 𝑦𝑘 − 1

𝐿
𝑗𝑘+1

𝑘+1

∇𝐽
(︀
𝑦𝑘
)︀
, 𝑞𝑘+1 =

𝑘

𝑘 + 1
𝑞𝑘 +

1

𝑘 + 1
𝑦𝑘+1.

7: end while
8: If stopping rule doesn’t satisfy, put 𝑘 := 𝑘 + 1 and go to 4.
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The same (“one can insert the average𝐿 among all the iterations in estimations O ((𝐿/𝜇) log2 (𝐿𝑅2/𝜀)),
O (𝐿𝑅2/𝜀)” and “the average number of calculations of 𝐽 (𝑞) and ∇𝐽 (𝑞) per one iteration roughly
equals 2”) one can say about the rates of convergence for AGD (𝑞0 = 𝑦0) and AGD (𝑦0).

Note, that if we change in A(GD), AGD 𝑦𝑘+1 = 𝑦𝑘 − 1
𝐿
∇𝐽

(︀
𝑦𝑘
)︀

by 𝑦𝑘+1 = 𝑦𝑘 − 𝛼𝑘∇𝐽
(︀
𝑦𝑘
)︀
, where

𝛼𝑘 = arg min
𝛼≥0

𝐽
(︀
𝑦𝑘 − 𝛼∇𝐽

(︀
𝑦𝑘
)︀)︀

, then the rates of convergence (in general) don’t change up to a

constant factors.

2.3 Devolder–Glineur–Nesterov conception of inexact oracle (gradient)

From section 2.2 one may conclude that (A)STM is better than (A)GD. In terms of the number of
iterations (calculations of ∇𝐽 (𝑞) (𝐽 (𝑞))) this is indeed so. But the right criterion is the total number
of arithmetic operations (a.o.). Unfortunately, (A)STM is more sensitive to the error in calculation of
∇𝐽 (𝑞) (𝐽 (𝑞)) than (A)GD. Now we plane to say in more details about this issue, following to [9, 10].
First of all, let’s denote that if 𝐽 (𝑞) is convex (𝜇-strongly convex, 𝜇 ≥ 0 – see (3)) and (2) holds true
then for all 𝑞1, 𝑞2

0 ≤
(︁𝜇

2
‖𝑞2 − 𝑞1‖22 ≤

)︁
𝐽 (𝑞2) − 𝐽 (𝑞1) − ⟨∇𝐽 (𝑞1) , 𝑞2 − 𝑞1⟩ ≤

𝐿

2
‖𝑞2 − 𝑞1‖22 .

Assume that for (A)STM at each point 𝑦𝑘+1 we can observe only such approximate values of 𝐽𝛿
(︀
𝑦𝑘+1

)︀
,

∇𝐽𝛿
(︀
𝑦𝑘+1

)︀
that (in ASTM instead of while{} condition in line 5 one should use the right part of the

inequality below with 𝐽
(︀
𝑞𝑘+1

)︀
→ 𝐽𝛿

(︀
𝑞𝑘+1

)︀
, 𝛿 → 2𝛿)

0 ≤
(︁𝜇

2

⃦⃦
𝑞𝑘+1 − 𝑦𝑘+1

⃦⃦2
2
≤
)︁
𝐽
(︀
𝑞𝑘+1

)︀
− 𝐽𝛿

(︀
𝑦𝑘+1

)︀
−
⟨︀
∇𝐽𝛿

(︀
𝑦𝑘+1

)︀
, 𝑞𝑘+1 − 𝑦𝑘+1

⟩︀
≤

𝐿

2

⃦⃦
𝑞𝑘+1 − 𝑦𝑘+1

⃦⃦2
2

+ 𝛿

then (A)STM (restart version in 𝜇-strongly convex case) converges as (constants in O () is smaller
then 5)

𝐽
(︀
𝑞𝑁
)︀
− 𝐽 (𝑞*) = O

(︂
min

{︂
4𝐿𝑅2

𝑁2
, 𝐿𝑅2 exp

(︂
−𝑁

2

√︂
𝜇

2𝐿

)︂}︂)︂
+ O (𝑁𝛿) .

Assume that for (A)GD at each point 𝑦𝑘 we can observe only such approximate values of 𝐽𝛿
(︀
𝑦𝑘
)︀
,

∇𝐽𝛿
(︀
𝑦𝑘
)︀

that (in AGD instead of while{} condition in line 5 one should use the right part of the
inequality below with 𝐽

(︀
𝑦𝑘+1

)︀
→ 𝐽𝛿

(︀
𝑦𝑘+1

)︀
, 𝛿 → 2𝛿)

0 ≤
(︁𝜇

2

⃦⃦
𝑦𝑘+1 − 𝑦𝑘

⃦⃦2
2
≤
)︁
𝐽
(︀
𝑦𝑘+1

)︀
− 𝐽𝛿

(︀
𝑦𝑘
)︀
−
⟨︀
∇𝐽𝛿

(︀
𝑦𝑘
)︀
, 𝑦𝑘+1 − 𝑦𝑘

⟩︀
≤

𝐿

2

⃦⃦
𝑦𝑘+1 − 𝑦𝑘

⃦⃦2
2

+ 𝛿

then (A)GD converges as (constants in O () is smaller then 5)

𝐽
(︀
𝑞𝑁
)︀
− 𝐽 (𝑞*) = O

(︂
min

{︂
𝐿𝑅2

𝑁
,𝐿𝑅2 exp

(︁
−𝑁 𝜇

2𝐿

)︁}︂)︂
+ O (𝛿) .

Typically in applications (to inverse problems [32]) we have to calculate conjugate operator 𝐴* for
calculation of ∇𝐽 (𝑞) = 𝐴* (𝐴𝑞 − 𝑏). These lead us rather often to the initial-boundary value problem
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for the linear system of partial differential equations. In the most of the cases we can solve this
system only numerically by choosing properly small size of the grid 𝜏 . So we have 𝛿 = O (𝜏 𝑝),
where 𝑝 = 1, 2, ... corresponds to the order of the approximation (Chapter 4, [9]).1 But the cost
of calculation approximate values, say, 𝐽𝛿

(︀
𝑦𝑘
)︀
, ∇𝐽𝛿

(︀
𝑦𝑘
)︀

also depends on 𝜏 like O (𝜏−𝑟), where
𝑟 = 1, 2, ... corresponds to the dimension of the problem (we restrict ourselves here by simple
explicit-type scheme). The main problem here is that we can obtain only very rough estimations of the
constants in the last two expressions O (). Since that one can propose the following practice-aimed
version of the mentioned above algorithms. For the desired accuracy 𝜀 we chose 𝛿 ∼ 𝜀 for (A)GD
and 𝛿 ∼ 𝜀

√︀
max {𝜇𝑅2, 𝜀}(A)STM (restart version) and after that 𝜏 ≃ 𝐶𝐺𝐷𝜀

1/𝑝 for (A)GD and

𝜏 ≃ 𝐶𝑆𝑇𝑀 ·
(︁
𝜀
√︀

max {𝜇𝑅2, 𝜀}
)︁1/𝑝

(A)STM (restart version). The constant factors 𝐶𝐺𝐷, 𝐶𝑆𝑇𝑀 are

unknown. Since that it is proper to use restart on this constants. Start with 𝐶𝐺𝐷 = 1 and after

𝑁 ≃ 4 min

{︂
𝐿𝑅2

𝜀
,
𝐿

𝜇
ln

(︂
𝐿𝑅2

𝜀

)︂}︂
iterations verify 𝐽𝛿

(︀
𝑞𝑁
)︀
≤ 𝜀 or 𝐽

(︀
𝑞𝑁
)︀
≤ 𝜀 if we can calculate 𝐽 (𝑞) exactly (𝐽 (𝑞*) = 0). If

𝐽𝛿
(︀
𝑞𝑁
)︀
≤ 𝜀 put 𝐶𝐺𝐷 := 𝐶𝐺𝐷/3. Analogously for 𝐶𝑆𝑇𝑀 with

𝑁 ≃ 4 min

{︃√︂
𝐿𝑅2

𝜀
,

√︃
𝐿

𝜇
ln

(︂
𝐿𝑅2

𝜀

)︂}︃
.

For adaptive methods we can use here 𝐿 = max
𝑘=0,..,𝑁

𝐿𝑗𝑘𝑘 .

Note, that total number of a.o. for (A)GD can be estimated as follows

O

(︂
1

𝜀𝑟/𝑝
min

{︂
𝐿𝑅2

𝜀
,
𝐿

𝜇
ln

(︂
𝐿𝑅2

𝜀

)︂}︂)︂
and for (A)STM (restart version) as follows

O

⎛⎜⎝ 1(︁
𝜀
√︀

max {𝜇𝑅2, 𝜀}
)︁𝑟/𝑝 min

{︃√︂
𝐿𝑅2

𝜀
,

√︃
𝐿

𝜇
ln

(︂
𝐿𝑅2

𝜀

)︂}︃⎞⎟⎠ .

It is hardly possible to say what is better from these estimations. As we’ve already mentioned – we
don’t know even the right order of the constant in O (). But, roughly, we may expect that (A)GD works
better for 𝑟 > 𝑝 and (A)STM works better for 𝑟 < 𝑝.

Note that in example 1 inexactness in some applications can also arise due to 𝑓 [32, 11]. The mentioned
above theory can be used also in this case.

Numerical experiments (fulfilled by Anastasia Pereberina) show that the described above approaches
sometimes work very bad in practice due to the large values of 𝐿. But in these cases we can use
another approach that typically allows us to win at least one or two order in the rate of convergence
(these trick was proposed to us by A. Birjukov and A. Chernov). The idea is very simple: start with
fixed 𝐿 (say, 𝐿 = 1) and run (non adaptive) algorithm. Then put 𝐿 := 2𝐿 and run algorithm with this

1This is a hypothesis. The alternative hypothesis is that 𝑂(𝜏𝑝) is an additive noise in the gradient (see section 4).
This hypothesis seems to be more realistic. In this case the error doesn’t accumulated up to a stopping time. So, due to
the results of section 4 in any situation accelerated algorithms dominate non-accelerated ones, that was experimentally
observed, see section 6.
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parameter (initial/starting point is the same for all the starts). Repeat these restarts 𝐿 := 2𝐿 until we
begin to observe stabilization (algorithm with 𝐿 and 𝐿 := 2𝐿 converges in terms of functional values
to the same limit). One can show that the total number of required calculations, that should be growth
due to the fact that we don’t know real 𝐿, growth at most for 8 times [12]. But typically we can win much
more (than we lose due to restarts) because the methods starts to converges with the value of 𝐿 that is
much smaller than the real one.

2.4 Concluding remarks and examples

If instead of (1) we consider regularized problem

𝐽𝜇 (𝑞) = 𝐽 (𝑞) +
𝜇

2
‖𝑞‖22 → min

𝑞
(7)

with arbitrary positive 𝜇 ≤ 𝜀/(2𝑅2) and can find such 𝑞𝑁 that

𝐽𝜇
(︀
𝑞𝑁
)︀
− min

𝑞
𝐽𝜇 (𝑞) ≤ 𝜀/2,

then

𝐽
(︀
𝑞𝑁
)︀
− min

𝑞
𝐽 (𝑞) ≤ 𝜀.

But the problem (7) is 𝜇-strongly convex.

Note that estimation for GD and AGD O (𝐿𝑅2/𝜀) can be obtained (up to a logarithmic factor) from
O ((𝐿/𝜇) ln (2𝐿𝑅2/(𝜇𝜀2))) under 𝜇 ≃ 𝜀/(2𝑅2) (see above), analogously for STM and ASTM

O
(︁√︀

𝐿𝑅2/𝜀
)︁

can be obtained (up to a logarithmic factor) from O
(︁√︀

𝐿/𝜇 ln (2𝐿𝑅2/(𝜇𝜀2))
)︁

.

All the results mentioned above can be generalized for the convex optimization problem in reflexive
Banach space with Lipchitz continuous functional

𝐽 (𝑞) → min
𝑞∈𝑄

.

Not that the set 𝑄 is assumed to be of simple structure that allows to “project” on it efficiently. The
proper generalization can be found in [4, 5] (see also [9] for (A)GD and (A)GD – these methods can be
applied also to non convex problems, see [13, 14]).

Example 2. (convex optimal control problems) Let’s consider the following optimal control problem
(𝑞 ≡ 𝑢 ( · ))

𝐽 (𝑢 ( · )) =

𝑇∫︁
0

𝑓 0 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡+ Φ (𝑥 (𝑇 )) → min
𝑢( · )∈𝑈, 𝑢( · )⊆𝐿𝑚

2 [0,𝑇 ]
,

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) , 𝑥 (0) = 𝑥0, (𝐷𝐸)

where 𝑈 is a convex set in R𝑚 (𝑈 ≡ 𝑄), all the functions are smooth enough (Chapter 8, [1]),
𝑓 (𝑡, 𝑥, 𝑢) is a linear functional of (𝑥, 𝑢) with coefficients depend only on 𝑡 and functional 𝑓 0 (𝑡, 𝑥, 𝑢)
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is convex on (𝑥, 𝑢). In this case 𝐽 (𝑢 ( · )) is convex functional [15]. Due to § 5, Chapter 8 [1]2

∇𝐽 (𝑢 ( · )) =
𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜓)

𝜕𝑢

⃒⃒⃒⃒
𝑥=𝑥(𝑡,𝑢), 𝑢=𝑢(𝑡), 𝜓=𝜓(𝑡,𝑢)

=

𝐻𝑢 (𝑡, 𝑥 (𝑡, 𝑢 (𝑡)) , 𝑢 (𝑡) , 𝜓 (𝑡, 𝑢 (𝑡))) ,

where 𝐻 = 𝑓 0 + ⟨𝜓, 𝑓⟩, 𝑥 (𝑡, 𝑢) is the solution of (DE) and 𝜓 (𝑡, 𝑢) is the solution of the conjugate
system

𝑑𝜓

𝑑𝑡
= −𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜓)

𝜕𝑥
, 𝜓 (𝑇 ) = ∇Φ (𝑥 (𝑇, 𝑢)) . (𝐶𝐷𝐸)

Unfortunately, one can’t calculate precisely gradient since one should solve two system of ordinary
differential equations (DE), (CDE). But one can solve these two systems by introducing the same lattice
(it is significant [2]) in 𝑡, with the size of each element 𝜏 : 𝑡𝑘+1 − 𝑡𝑘 ≡ 𝜏 , for both of the systems (DE),
(CDE)

𝑥
(︀
𝑡𝑘+1

)︀
− 𝑥

(︀
𝑡𝑘
)︀

𝜏
= 𝑓

(︀
𝑡𝑘, 𝑥

(︀
𝑡𝑘
)︀
, 𝑢
(︀
𝑡𝑘
)︀)︀
, 𝑥

(︀
𝑡0
)︀

= 𝑥 (0) = 𝑥0,

𝜓(𝑡𝑘) − 𝜓(𝑡𝑘+1)

𝜏
=
𝜕𝐻

𝜕𝑥
(𝑡𝑘+1, 𝑥(𝑡𝑘+1), 𝑢(𝑡𝑘+1), 𝜓(𝑡𝑘+1)),

𝜓(𝑇 ) = ∇Φ(𝑥(𝑡𝑇/ℎ)).

Here we use the standard Euler’s scheme [16] with the quality of approximation 𝛿 ≃ 𝜏𝑒𝑐𝑇 (i.e. 𝛿 ∼ 𝜏)
and the complexity of one iteration is ∼ 𝜏−1 (in terms of remark 3 𝑟 = 1 and 𝑝 = 1). So using ASTM
with proper choice of 𝜏 ∼ 𝜀3/2 one can find 𝜀-solution with the total complexity ∼ 𝜀−2. The same result
(about the total complexity ∼ 𝜀−2) is true for AGD. But proper modification of the last method works
also with non convex problems (find local extreme).

Note, that if 𝑓 0 (𝑡, 𝑥, 𝑢) is also linear functional of (𝑥, 𝑢) with coefficients depend only on 𝑡 then

𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜓)

𝜕𝑥
≡ ℎ0 (𝑡) + ℎ1 (𝑡)𝜓.

Since that instead of Euler’s scheme one can use Runge–Kutta’s schemes of order 𝑝 ≥ 2 [16]. The
complexity of one iteration is still ∼ 𝜏−1 (𝑟 = 1), therefore (see section 2.3) we may expect that ASTM
will work better than AGD. �

3 Dual approaches

Now we concentrate on example 1. The described below approaches goes back to the Yu.E. Nesterov
and A.S. Nemirovski (see historical notes in [17, 18]).

Assume that we have to solve the following convex optimization problem

𝑔(𝑞) → min
𝐴𝑞=𝑓

, (8)

2This means that for all small enough ℎ ( · ) ∈ 𝐿𝑚
2 [0, 𝑇 ] the following holds true

𝐽 (𝑢 ( · ) + ℎ ( · ))− 𝐽 (𝑢 ( · )) = ⟨∇𝐽 (𝑢 ( · )) , ℎ ( · )⟩𝐿𝑚
2 [0,𝑇 ] +O

(︁
‖ℎ ( · )‖2𝐿𝑚

2 [0,𝑇 ]

)︁
=

=
𝑇∫︀
0

𝐻𝑢 (𝑡, 𝑥 (𝑡, 𝑢 (𝑡)) , 𝑢 (𝑡) , 𝜓 (𝑡, 𝑢 (𝑡)))ℎ (𝑡) 𝑑𝑡+O

(︃
𝑇∫︀
0

ℎ (𝑡)
2
𝑑𝑡

)︃
.
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where 𝑔(𝑞) is 1-strongly convex in 𝐻1. We build the dual problem

𝜑 (𝜆) = max
𝑞

{⟨𝜆, 𝑓 − 𝐴𝑞⟩ − 𝑔 (𝑞)} = ⟨𝜆, 𝑓 − 𝐴𝑞 (𝜆)⟩ − 𝑔 (𝑞 (𝜆)) → min
𝜆
. (9)

Note, that ∇𝜑 (𝜆) = 𝑓 − 𝐴𝑞 (𝜆).

Let (A)STM with 𝑦0 = 0 for the problem (9) generates points
{︀
𝑦𝑘
}︀𝑁
𝑘=0

,
{︀
𝑢𝑘
}︀𝑁
𝑘=0

and
{︀
𝜆𝑘
}︀𝑁
𝑘=0

(in

(A)STM we denote the last ones by
{︀
𝑞𝑘
}︀𝑁
𝑘=0

). Put

𝑞𝑁 =
𝑁∑︁
𝑘=0

𝛼𝑘
𝐴𝑁

𝑞(𝑦𝑘).

Let 𝑞* be the solution of (8) (this solution is unique due to strong convexity of 𝑔 (𝑞)). Then

𝑔(𝑞𝑁) − 𝑔(𝑞*) ≤ 𝜑(𝜆𝑁) + 𝑔(𝑞𝑁).

The next theorem [17, 18] allows us to calculate the solution of (8) with prescribed precision.

Theorem 3.1. Assume that we want to solve the problem (8) by passing to the dual problem (9),
according to the formulas mentioned above. Let’s use (A)STM to solve (9) with the following stopping
rule

𝜑
(︀
𝜆𝑁
)︀

+ 𝑔
(︀
𝑞𝑁
)︀
≤ 𝜀,

⃦⃦
𝐴𝑞𝑁 − 𝑓

⃦⃦
𝐻2

≤ 𝜀.

Then (A)STM stops by making no more than

6 · max

⎧⎪⎨⎪⎩
√︃
𝐿

⌣

𝑅
2

𝜀
,

√︃
𝐿

⌣

𝑅

𝜀

⎫⎪⎬⎪⎭ (10)

iterations, where 𝐿 = ‖𝐴*‖2𝐻2→𝐻1
= ‖𝐴‖2𝐻1→𝐻2

,
⌣

𝑅 = ‖𝜆*‖𝐻2
, 𝜆* – solution of the problem (9) (if

the solution is not unique than we can choose such a solution 𝜆* that minimize
⌣

𝑅).

For ASTM the average number of calculations of 𝜑 (𝜆) per iteration roughly equals 4 and the average
number of calculations Frechet derivative ∇𝜑 (𝜆) = 𝑓 − 𝐴𝑞 (𝜆) per iteration roughly equals 2.

Example 3. (see [17, 19]) Let us consider the following optimization problem

1

2
‖𝑞‖2𝐻1

→ min
𝐴𝑞=𝑓

.

One can built the dual one

min
𝐴𝑞=𝑓

1

2
‖𝑞‖2𝐻1

= min
𝑞

max
𝜆

{︂
1

2
‖𝑞‖2𝐻1

+ ⟨𝑓 − 𝐴𝑞, 𝜆⟩
}︂

=

= max
𝜆

min
𝑞

{︂
1

2
‖𝑞‖2𝐻1

+ ⟨𝑓 − 𝐴𝑞, 𝜆⟩
}︂

= max
𝜆

{︂
⟨𝑓, 𝜆⟩ − 1

2
‖𝐴*𝜆‖2𝐻1

}︂
. (11)
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We assume that 𝐴𝑞 = 𝑓 is compatible, hence for the Fredgolm’s theorem it’s not possible that there
exists such a 𝜆: 𝐴*𝜆 = 0 and ⟨𝑏, 𝜆⟩ > 0.3 Hence the dual problem is solvable (but the solution isn’t
necessarily unique). Let’s denote 𝜆* to be the solution of the dual problem

𝜑 (𝜆) =
1

2
‖𝐴*𝜆‖2𝐻1

− ⟨𝑓, 𝜆⟩ → min
𝜆

with minimal 𝐻2-norm. Let’s introduce (from the optimality condition in (11) for 𝑞): 𝑞 (𝜆) = 𝐴*𝜆. Using
(A)STM for the dual problem one can find (Theorem 3)

⃦⃦
𝐴𝑞𝑁 − 𝑓

⃦⃦
𝐻1

= O

(︃
𝐿

⌣

𝑅

𝑁2

)︃
, (12)

where 𝐿 = ‖𝐴*‖2𝐻2→𝐻1
= ‖𝐴‖2𝐻1→𝐻2

(as in example 1),
⌣

𝑅 = ‖𝜆*‖𝐻2
.

If one will try to solve the primal problem in example (1)

1

2
‖𝐴𝑞 − 𝑓‖2𝐻2

→ min
𝑞

by (A)STM, one can obtain the following estimate

⃦⃦
𝐴𝑞𝑁 − 𝑓

⃦⃦
𝐻2

= O

(︃√
𝐿𝑅

𝑁

)︃
, (13)

where 𝐿 = ‖𝐴‖2𝐻1→𝐻2
, 𝑅 = ‖𝑞*‖𝐻1

. Estimate (13) seems worse than (12). But estimate (13) cannot

be improving up to a constant factor [7]. There is no contradiction here, since in general
⌣

𝑅 can be
big enough, i.e. this parameter is uncontrollable. But in real applications we can hope that this (dual)
approach lead us to a faster convergence rate (12). �

Indeed, all the mentioned above methods (expect (A)GD) are primal-dual ones [17, 18, 19] (if we use
their non strongly convex variants). That is for these methods analogues of theorem 3 holds true with
proper modification of (10) for (A)GD

3 · max

⎧⎨⎩𝐿
⌣

𝑅2

𝜀
,
𝐿

⌣

𝑅

𝜀

⎫⎬⎭ .

This means that we can apply the results of section 2 for this approach (with the same sensitivity results
as in section 2.3). Moreover we can also generalize the problem formulation (8) for more general class
of the problems [17, 19] (compare this with section 2.4)

𝑔 (𝑞) → min
𝐴𝑞=𝑓, 𝑞∈𝑄

, (14)

where 𝑞 belongs to reflexive Banach space (with norm ‖ ‖) and 𝑔 (𝑞) is 1-strongly convex in norm ‖ ‖.
The dual problem has the form

3Indeed, if there exists such 𝑞 that 𝐴𝑞 = 𝑓 then for all 𝜆: ⟨𝐴𝑞, 𝜆⟩ = ⟨𝑓, 𝜆⟩. Hence, ⟨𝑞, 𝐴*𝜆⟩ = ⟨𝑓, 𝜆⟩. Assume that
there exists such a 𝜆, that 𝐴*𝜆 = 0 and ⟨𝑓, 𝜆⟩ > 0. If it is so we observe a contradiction:

0 = ⟨𝑞, 𝐴*𝜆⟩ = ⟨𝑓, 𝜆⟩ > 0.
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𝜑 (𝜆) = max
𝑞∈𝑄

{⟨𝜆, 𝑓 − 𝐴𝑞⟩ − 𝑔 (𝑞)} = ⟨𝜆, 𝑓 − 𝐴𝑞 (𝜆)⟩ − 𝑔 (𝑞 (𝜆)) → min
𝜆
. (9)

Let’s consider another approach to solve problem (14) [12, 17]. This approaches based on the sec-
tion 2.4. We regularize the dual problem (9) (we use 𝑞𝑁 = 𝑞

(︀
𝜆𝑁
)︀

for the solution of (14))

𝜑𝜇 (𝜆) = 𝜑 (𝜆) +
𝜇

2
‖𝜆‖2𝐻2

→ min
𝜆
,

where 𝜇 ≃ 𝜀

2
⌣
𝑅2

. Since we don’t know
⌣

𝑅 (and therefore 𝜇) we may use restart technique on 𝜇 (see

remark 1 and 3 and restarts for 𝐶𝐺𝐷). Let 𝑞* be the solution of (14). Since (𝑞 (𝜆) is determine by (9))

𝑔 (𝑞 (𝜆)) + ⟨𝜆,𝐴𝑞 (𝜆) − 𝑓⟩ ≤ 𝑔 (𝑞*)

we have
𝑔 (𝑞 (𝜆)) − 𝑔 (𝑞*) ≤ ‖𝜆‖𝐻2

‖𝐴𝑞 (𝜆) − 𝑓‖𝐻2
.

The next theorem [12, 17] allows us to calculate the solution of (14) with prescribed precision.

Theorem 3.2. Assume that we want to solve the problem (14) by passing to the dual problem (9),
according to the formulas mentioned above. Let’s use (A)STM to solve (9) with the following stopping
rule ⃦⃦

𝜆𝑁
⃦⃦
𝐻2

⃦⃦
𝐴𝑞
(︀
𝜆𝑁
)︀
− 𝑓

⃦⃦
𝐻2

≤ 𝜀,
⃦⃦
𝐴𝑞
(︀
𝜆𝑁
)︀
− 𝑓

⃦⃦
𝐻2

≤ 𝜀.

Then (A)STM stops by making no more than

𝑁 ≃ 2

⎯⎸⎸⎷𝐿 ·
(︁
𝜀+ 2

⌣

𝑅𝜀
)︁

𝜀2
ln

⎛⎜⎝8𝐿 max
𝑞1,𝑞2∈𝑄

|𝑔 (𝑞2) − 𝑔 (𝑞1)| ·
(︁
𝜀+ 2

⌣

𝑅𝜀
)︁

𝜀 · 𝜀2

⎞⎟⎠
iterations.

For ASTM the average number of calculations of 𝜑𝜇 (𝜆) per iteration roughly equals 4 and the average
number of calculations Frechet derivative ∇𝜑𝜇 (𝜆) = 𝑓 −𝐴𝑞 (𝜆) + 𝜇𝜆 per iteration roughly equals 2.

Note that one can spread most of the result of section 2 for this approach too.

Now let’s describe the main motivating example for this paper.

Example 4 (inverse problem for elliptic initial-boundary value problem). Let 𝑢 be the solution of
the following problem (P)

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0, 𝑥, 𝑦 ∈ (0, 1) ,

𝑢𝑥 (0, 𝑦) = 0, 𝑦 ∈ (0, 1) ,

𝑢 (1, 𝑦) = 𝑞 (𝑦) , 𝑦 ∈ (0, 1) ,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) = 0, 𝑥 ∈ (0, 1) .

And corresponding dual problem (D)

𝜓𝑥𝑥 + 𝜓𝑦𝑦 = 0, 𝑥, 𝑦 ∈ (0, 1) ,

𝜓𝑥 (0, 𝑦) = 𝜆 (𝑦) , 𝑦 ∈ (0, 1) ,
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𝜓 (1, 𝑦) = 0, 𝑦 ∈ (0, 1) ,

𝜓 (𝑥, 0) = 𝜓 (𝑥, 1) = 0, 𝑥 ∈ (0, 1) .

Let’s introduce operator
𝐴 : 𝑞(𝑦) := 𝑢(1, 𝑦) ↦→ 𝑢(0, 𝑦).

Here 𝑢(𝑥, 𝑦) is a solution of problem (P). It was shown in [32] that

𝐴 : 𝐿2(0, 1) → 𝐿2(0, 1).

Conjugate operator

𝐴* : 𝜆(𝑦) := 𝜓𝑥(0, 𝑦) ↦→ 𝜓𝑥(1, 𝑦), 𝐴* : 𝐿2(0, 1) → 𝐿2(0, 1).

Here 𝜓(𝑥, 𝑦) is the solution of problem (D) [32]. To obtain these formulas one may use the general
approach, described, for example, in § 7, Chapter 8 [1] (see also Chapter 4 [2]).

Let us formulate inverse problem [32]: find the function 𝑞 by known additional information

𝑢 (0, 𝑦) = 𝑓 (𝑦) .

Inverse problem is reduced to the optimization problem of the following cost functional

𝐽 (𝑞) = ‖𝐴𝑞 − 𝑓‖𝐿2(0,1)
→ min

𝑞
,

‖𝑞‖2𝐻 → min
𝐴𝑞=𝑓

// 𝜑 (𝜆) = ‖𝐴*𝜆‖2𝐻 − ⟨𝑓, 𝜆⟩ → min
𝜆
.

It is obvious that ∇𝐽 (𝑞) = 𝐴* (𝐴𝑞 − 𝑓) and ∇𝐽 (𝑞) can be found by following formula:

∇𝐽 (𝑞) (𝑦) = 𝜓𝑥 (1, 𝑦) .

Here 𝜓(𝑥, 𝑦) is the solution of (D) with 𝜆 (𝑦) = 2(𝑢(0, 𝑦) − 𝑓(𝑦)).

For example 3 one can obtain that ∇𝜑 (𝜆) = 2(𝑓 − 𝐴 (𝐴*𝜆)), ∇𝜑 (𝜆) ∈ 𝐿2(0, 1) and

∇𝜑 (𝜆) (𝑦) = 2 (𝑓 (𝑦) − 𝑢 (0, 𝑦)) .

Note, that for this example 𝐿 = 1 [32], see (2) for definition of 𝐿. �

4 Stopping rule for STM

Let us consider 𝑆𝑇𝑀(𝑦0, 𝐿) in the following conception of inexact oracle [27]: for all 𝑞1, 𝑞2 ∈ 𝐻

‖∇𝐽(𝑞1) − ∇̃𝐽(𝑞2)‖2 6 𝛿.

Using inequality (2), convexity of 𝐽 and Fenchel inequality we can get, that: for all 𝑞1, 𝑞2 ∈ 𝐻

𝐽(𝑞1) 6 𝐽(𝑞2) + ⟨𝐽(𝑞2), 𝑞1 − 𝑞2⟩ +
2𝐿

2
‖𝑞1 − 𝑞2‖22 +

𝛿2

2𝐿
,

𝐽(𝑞2) + ⟨∇̃𝐽(𝑞2), 𝑞1 − 𝑞2⟩ − 𝛿‖𝑞1 − 𝑞2‖2 6 𝐽(𝑞1).
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If we introduce:

𝜓𝑘(𝑞) =
1

2
‖𝑞 − 𝑦0‖22 +

𝑘∑︁
𝑗=0

(︁
𝐽(𝑦𝑗) + ⟨∇̃𝐽(𝑦𝑗), 𝑞 − 𝑦𝑗⟩

)︁
.

It can be shown, that in general degenerate situation (not strongly convex case) the following estimates
hold true [44, 23]:4

𝐴𝑘𝐽(𝑞𝑘) 6 𝜓𝑘(𝑢𝑘) +
𝛿2

2𝐿

𝑘∑︁
𝑗=0

𝐴𝑗 + 𝛿

𝑘∑︁
𝑗=1

𝛼𝑗‖𝑦𝑗 − 𝑢𝑗−1‖22,

𝐽(𝑞𝑁) − 𝐽(𝑞*) 6
4𝐿𝑅2

𝑁2
+ 3𝑅̃𝛿 +𝑁

𝛿2

2𝐿
,

𝑅̃ = max
𝑘6𝑁

{‖𝑞* − 𝑦𝑘‖2, ‖𝑞* − 𝑢𝑘‖2, ‖𝑞* − 𝑞𝑘‖2}.

(15)

Note, that if we know, that ‖𝑢𝑘−𝑞*‖2 6 𝑅 we can easily show that ‖𝑦𝑘−𝑞*‖2 6 𝑅 and ‖𝑞𝑘−𝑞*‖2 6
𝑅:

‖𝑦𝑘 − 𝑞*‖2 6
𝐴𝑘−1

𝐴𝑘
‖𝑞𝑘−1 − 𝑞*‖2 +

𝛼𝑘
𝐴𝑘

‖𝑢𝑘−1 − 𝑞*‖2 6 𝑅.

Similarly for the sequence 𝑞𝑘. Therefore, we show how, using the stopping criterion, to obtain this
inequality for the sequence 𝑢𝑘. If we know the value of 𝐽(𝑞*) and such bound𝑅* > 0, that ‖𝑞*‖2 6 𝑅*.
Then by choosing 𝑦0 = 0 (obviously, that in this case 𝑅 ≤ 𝑅*), we can formulate a computable
stopping criterion: for all 𝜁 > 0:

𝐽(𝑞𝑘) − 𝐽(𝑞*) 6 𝑘
𝛿2

2𝐿
+ 3𝑅*𝛿 + 𝜁.

Then, using the convexity of the function 𝜓𝑘 we get:

𝐴𝑘𝐽(𝑞𝑘) +
1

2
‖𝑢𝑘 − 𝑞*‖22 6

1

2
‖𝑢𝑘 − 𝑞*‖2 + 𝜓𝑘(𝑢

𝑘) +
𝛿2

2𝐿

𝑘∑︁
𝑗=0

𝐴𝑗+

+ 𝛿

𝑘∑︁
𝑗=1

𝛼𝑗‖𝑞𝑗 − 𝑢𝑗−1‖2 6 𝜓𝑘(𝑞*) + 𝛿

𝑘∑︁
𝑗=1

𝛼𝑗‖𝑞𝑗 − 𝑢𝑗−1‖2 6
𝛿2

2𝐿

𝑘∑︁
𝑗=0

𝐴𝑗+

+
1

2
𝑅2 + 𝐴𝑘𝐽(𝑞*) + 𝛿

𝑘∑︁
𝑗=1

𝛼𝑗‖𝑞𝑗 − 𝑢𝑗−1‖2 + 𝛿
𝑘∑︁
𝑗=0

𝛼𝑗‖𝑢𝑘 − 𝑞*‖2 6

6
1

2
𝑅2 + 𝐴𝑘3𝛿𝑅* +

𝛿2

2𝐿

𝑘∑︁
𝑗=0

𝐴𝑗 + 𝐴𝑘𝐽(𝑞*) ⇒

⇒ 1

2
(𝑅2 − ‖𝑢𝑘 − 𝑞*‖2) > 𝐴𝑘

(︃(︀
𝐽(𝑞𝑘) − 𝐽(𝑞*)

)︀
−

(︃
𝑘
𝛿2

2𝐿
+ 3𝑅*𝛿 + 𝜁

)︃)︃
> 0.

4Recall that 𝑅 =
⃦⃦
𝑞* − 𝑦0

⃦⃦
2
.
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Also this criterion is achievable:

𝐽(𝑞𝑁) − 𝐽(𝑞*) 6
4𝐿𝑅2

𝑁2
+ 3𝑅*𝛿 +𝑁

𝛿2

2𝐿
,

4𝐿𝑅2

𝑁2
6 𝜁,

𝑁 > 2

√︃
𝐿𝑅2

𝜁
,

𝑁 = 𝑂

(︃√︃
𝐿𝑅2

𝜁

)︃
.

That is 𝑁 iterations is enough to reach the stopping criterion. Finally we get the following theorem:

Theorem 4.1. Assume that we solve problem (1) and we know value 𝐽(𝑞*) and the bound 𝑅* > 0 for
‖𝑞*‖2. Using STM(0, L) with stopping rule:

𝐽(𝑞𝑘) − 𝐽(𝑞*) 6
𝛿2

2𝐿
𝑘 + 3𝑅*𝛿 + 𝜁.

We get estimation:
𝑅̃ 6 𝑅,

𝑅̃ = max
𝑘6𝑁

{‖𝑞* − 𝑦𝑘‖2, ‖𝑞* − 𝑢𝑘‖2, ‖𝑞* − 𝑞𝑘‖2}.

And it is guaranteed, that the criteria will reached in:

𝑁 = 𝑂

(︃√︃
𝐿𝑅2

𝜁

)︃
.

Using this theorem we can get, that solving problem:

𝐽(𝑞𝑁) − 𝐽(𝑞*) 6 𝜀. (16)

We can choose 𝜁 ∼ 𝜀 and 𝛿 ∼ 𝜀
𝑅*

and number of iterations will be estimated as

𝑁 = 𝑂

(︃√︂
𝐿𝑅2

𝜀

)︃
. (17)

Similar results can be formulated for all other methods from section 2 including adaptive ones, since
(15) holds true for this generality too [23]. As an example, we remark that for GD (16) takes place with
the same requirement for 𝛿 ∼ 𝜀

𝑅*
, but with a worse bound on

𝑁 = 𝑂

(︂
𝐿𝑅2

𝜀

)︂
. (18)

From this we may expect that with the same level of noise in the gradient 𝛿 non accelerated algorithms
(STM) reach the same quality 𝐽(𝑞𝑁) − 𝐽(𝑞*) ≃ 𝛿𝑅 as non-accelerated ones (GD), but they do it
faster (compare (17) and (18)). Therefore we may expect that with proper stopping rule STM must
outperform GD for degenerate (non strongly convex) problems. That was confirmed in the numerical
experiments described in section 6.
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5 Application to the continuation problem for Laplace equation

Let us consider the following continuation problem for an elliptic equation:

𝑢𝑥𝑥 + 𝐿(𝑦)𝑢 = 0, (𝑥, 𝑦) ∈ Ω, (19)

𝑢(0, 𝑦) = 𝑓(𝑦), 𝑦 ∈ 𝒟, (20)

𝑢𝑥(0, 𝑦) = 0, 𝑦 ∈ 𝒟, (21)

𝑢(𝑥, 𝑦) = 0, 𝑥 ∈ (0, ℎ), 𝑦 ∈ 𝜕𝒟 (22)

with the matching conditions
𝑓(𝑦) = 0, 𝑦 ∈ 𝜕𝒟. (23)

Here
Ω = (0, ℎ) ×𝒟,𝒟 ∈ R𝑛

is the bounded domain with a Lipschitz boundary 𝜕𝒟,

𝐿(𝑦)𝑢 =
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑦𝑖

(︂
𝑎𝑖𝑗(𝑦)

𝜕𝑢

𝜕𝑦𝑗

)︂
− 𝑐(𝑦)𝑢, (24)

𝑀4

𝑛∑︁
𝑗=1

𝜈2𝑗 ≤
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗(𝑦)𝜈𝑖𝜈𝑗,

∀𝜈𝑖 ∈ R, 𝑎𝑖𝑗 = 𝑎𝑗𝑖, 𝑖, 𝑗 = 1, . . . , 𝑛,

0 ≤ 𝑐(𝑦) ≤𝑀5,

𝑎𝑖𝑗 ∈ 𝐶1(𝒟), 𝑐 ∈ 𝐶(𝒟).

Let us consider the ill-posed continuation problem (19)–(23) as the inverse problem of the following
direct problem:

𝑢𝑥𝑥 + 𝐿(𝑦)𝑢 = 0, (𝑥, 𝑦) ∈ Ω, (25)

𝑢𝑥(0, 𝑦) = 0, 𝑦 ∈ 𝒟, (26)

𝑢(ℎ, 𝑦) = 𝑞(𝑦), 𝑦 ∈ 𝒟, (27)

𝑢(𝑥, 𝑦) = 0, 𝑥 ∈ (0, ℎ), 𝑦 ∈ 𝜕𝒟 (28)

with the matching conditions:
𝑞(𝑦) = 0, 𝑦 ∈ 𝜕𝒟. (29)

In the direct problem (25)–(29) one has to find 𝑢(𝑥, 𝑦) in the domain Ω for the function 𝑞(𝑦) set for a
part of the boundary 𝑥 = ℎ of the domain Ω.

The inverse problem is to determine 𝑞(𝑦) from conditions of (25)–(29) and known additional information

𝑢(0, 𝑦) = 𝑓(𝑦), 𝑦 ∈ 𝜕𝒟. (30)

To familiarize yourself with some the results based on the theory of direct and inverse problems address
to [32].
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Let us apply a gradient method to solve the continuation problem for elliptic equation. For that purpose
consider the adjoint problem:

𝜓𝑥𝑥 + 𝐿(𝑦)𝜓 = 0, (𝑥, 𝑦) ∈ Ω, (31)

𝜓𝑥(0, 𝑦) = 𝜇(𝑦), 𝑦 ∈ 𝒟, (32)

𝜓(ℎ, 𝑦) = 0, 𝑦 ∈ 𝒟, (33)

𝜓|𝜕𝒟 = 0, 𝑥 ∈ (0, ℎ). (34)

The problem consists in finding the function 𝜓(𝑥, 𝑦) using given 𝜇(𝑦).

We introduce an operator
𝐴 : 𝑞(𝑦) → 𝑢(0, 𝑦),

where 𝑢(𝑥, 𝑦) is the solution of the direct problem (25)–(29).

Therefore, the adjoint operator 𝐴* is expressed as

𝐴* : 𝜇(𝑦) → 𝜓𝑥(ℎ, 𝑦),

where 𝜓(𝑥, 𝑦) is a solution of the adjoint problem (31)–(34).

It follows from [32, 11] that operators 𝐴 and 𝐴* map 𝐿2(𝒟) to 𝐿2(𝒟) and that the solution is unique
and conditional stability estimation holds true of the continuation problem (19)–(23). Therefore, the
inverse problem (25)–(30) can be written in the operator form

𝐴𝑞 = 𝑓. (35)

To find the solution (35) we apply gradient method. It should be noted that the gradient of functional 𝐽 ′𝑞
is calculated based on the formula: (︀

𝐽 ′𝑞
)︀
(𝑦) = 𝜓𝑥(ℎ, 𝑦), (36)

where 𝜓(𝑥, 𝑦) is a solution of the adjoint problem (31)–(34), in which

𝜇(𝑦) = 2
[︀
𝑢(0, 𝑦) − 𝑓(𝑦)

]︀
.

Theorem 5.1. Let the problem 𝐴𝑞 = 𝑓 have the exact solution 𝑞𝑇 ∈ 𝐿2(𝒟). Let ‖𝑓 − 𝑓 𝛿‖ ≤ 𝛿 and
{𝑞𝑛𝛿 } be an Landweber iteration sequence to solve the inverse problem (25)–(30) with the additional
information 𝑢𝑛𝛿 (0, 𝑦) = 𝑓𝛿(𝑦) Then, to solve the corresponding direct problem (25)–(29) the following
estimation should be carried out [11]:∫︁

𝒟

(𝑢𝛿𝑛(𝑥, 𝑦) − 𝑢𝑇 (𝑥, 𝑦))2 d𝑦 ≤𝑀13

(︁
𝛽(𝑛)𝛿 + 𝑛

𝑥−ℎ
ℎ

)︁
, 𝑥 ∈ (0, ℎ). (37)

Here 𝑢𝑇 ∈ 𝐿2(Ω) is the exact solution and

𝛽(𝑛) =
(1 + 2𝛼‖𝐴‖2)𝑛−1 − 1

‖𝐴‖
.

Analogous results have been obtained for steepest descent and conjugate gradients methods [32, 11].

The estimation (37) shows that the sequence {𝑢𝛿𝑛} is regularizing one where 𝑛 is the regularization
parameter. Actually, due to the fact that the fist member is going monotonously to infinity, while the
second in the same way to zero, at 𝑛 → ∞, the stopping criterion for the corresponding number of
iterations 𝑛* can be selected based on the following rule. Having differentiated the right part (37) with
respect to 𝑛, one finds the root 𝑛𝑟 of the following equation:

𝛿
ln(1 + 2𝛼‖𝐴‖2)

‖𝐴‖
(1 + 2𝛼‖𝐴‖2)𝑛−1 +

𝑥− ℎ

ℎ
𝑛

𝑥−2ℎ
ℎ = 0 (38)

and can select the stopping number 𝑛𝑠 to be a natural number closest to the equation root (38).
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6 Numerical results

Figure 1: Test1 - True solution

We consider the following continuation problem in the domain Ω = {(𝑥, 𝑦, 𝑧) ∈ [0, 1]2 × [0, 𝐻]}:

∆𝑢(𝑥, 𝑦, 𝑧) ≡ 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = ℎ(𝑥, 𝑦, 𝑧), (𝑥, 𝑦, 𝑧) ∈ Ω

𝑢|𝑥=0 = 𝑢|𝑥=1 = 𝑢|𝑦=0 = 𝑢|𝑦=1 = 0,

𝑢𝑧|𝑧=0 = 0, 𝑢|𝑧=𝐻 = 𝑞(𝑥, 𝑦)

The problem is to determine the unknown function 𝑞(𝑥, 𝑦) by using the additional information of the
function 𝑢(𝑥, 𝑦, 𝑧) on the boundary 𝑧 = 0:

𝑢|𝑧=0 = 𝑓(𝑥, 𝑦).

We solve the problem formulated by using different versions of STM and GD methods. The structure of
the gradient of the functional was mentioned in the previous chapter and has the form (36). We choose
the test solution as follows:

𝑞(𝑥, 𝑦) =

{︃
𝑒𝑙1(𝑥)+𝑙2(𝑦), (𝑥, 𝑦) ∈ [0.1, 0.9] × [0.3, 0.7]

0, if else

Here 𝑙1(𝑥) = 1 + 0.16
(𝑥−0.5)2−0.16

, 𝑙2(𝑦) = 1 + 0.04
(𝑦−0.5)2−0.04

. The structure of this function is presented

on the figure 1. We solve the direct problem, using 𝑞(𝑥, 𝑦) as given function, to calculate true data
𝑓(𝑥, 𝑦).
For the first series of tests we use the following parameters: 𝐻 = 0.5, 𝑁𝑖𝑡𝑒𝑟 = 1000. We consider the
similar triangles method, simple gradient descent method and steepest descent method. We used initial
approximation 𝑞(𝑥, 𝑦) = 0 for all methods. Due to the fact, that it is hard to get the accurate estimation
for the norm of the operator, we couldn’t get the precise values for the parameters 𝐿, 𝛼 of the STM
and GD methods correspondingly during the numerical solution. Thus, we choose the parameters of
STM and GD methods by trials and errors. However, in case of the homogeneous right hand side
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GD (𝛼 = 1.0) GD (𝛼 = 10.0)

STM (𝐿 = 1.0) STM (𝐿 = 0.1)

Figure 2: Test 1 - solution of continuation problem by GD and STM methods

and boundary conditions we use analytic expression for the descent parameters of steepest descent
method: 𝛼𝑛 = |𝐽 ′(𝑞𝑛)|2

2|𝐴(𝐽 ′(𝑞𝑛))|2 . The results of computations are presented on figures 2 – 4.
The similar triangles method provides the most efficient results of the considered methods. The steepest
descent methods converges faster on the first iterations, but eventually the STM method provides better
results in terms of both the residual and errors. The accuracy of the methods is acceptable (if suitable
parameters of the methods were chosen). In order to illustrate the influence of the parameter 𝐿 on the
problem, we considered two different values of the parameter of STM method during this experiment.
For the second series of tests we added some non-homogeneous boundary conditions, and the right
hand side of the following form:

ℎ(𝑥, 𝑦, 𝑧) = (1 − 𝑧)𝑐𝑜𝑠(𝜋𝑥)𝑐𝑜𝑠(𝜋𝑦)

We increased the depth to 𝐻 = 1.0. The structure of the function 𝑞(𝑥, 𝑦) remains the same. However,
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Figure 3: Test 1 - The residual functional
(logarithmic scale)

Figure 4: Test 1 - The errors of the GD,
SGD, STM methods

the increased depth significantly decreases the influence of data, that we have during the experiments
with synthetic data, that we balance by increasing the number of iterations to 𝑁𝑖𝑡𝑒𝑟 = 16000. The
behavior of the functional is presented on the figures 5, 6. This allows us to provide the solution, almost
identical to exact one. During the last series of test we considered the medium number of iterations
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Figure 5: Test 3 (increased number of
iterations) - The residual functional (loga-
rithmic scale)

N_Iter

R
e

la
ti
v
e

e
rr

o
r

0 5000 10000 15000

0.2

0.4

0.6

0.8

1

Steepest descent

STM Method

Figure 6: Test 3 (increased number of
iterations) - The errors of the methods

𝑁𝑖𝑡𝑒𝑟 = 6000 and the depth 𝐻 = 1.25 to study the variation of STM method with restarts. The
computational results are presented on figures 7 – 9. We notice, that similar triangles method provides
significantly better results, compared to simple gradient descent. The usage of restart technique allows
to obtain better results in terms of residual, but the effects of restarts are much less significant in
terms of errors. The cause of this difference is the ill-posedness of the problem, which becomes more
noticeable with the increase of depth.
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GD (𝛼 = 100) STM (no restarts)

STM (restart every 2000 iterations) STM (restart every 2800 iterations)

Figure 7: Test 2 (increased depth) - solution of continuation problem by GD and STM methods.
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