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Unified signature cumulants and generalized Magnus expansions

Peter K. Friz, Paul Hager, Nikolas Tapia

ABSTRACT. The signature of a path can be described as its full non-commutative exponential. Following T. Lyons we regard its
expectation, the expected signature, as path space analogue of the classical moment generating function. The logarithm thereof,
taken in the tensor algebra, defines the signature cumulant. We establish a universal functional relation in a general semimartingale
context. Our work exhibits the importance of Magnus expansions in the algorithmic problem of computing expected signature
cumulants, and further offers a far-reaching generalization of recent results on characteristic exponents dubbed diamond and
cumulant expansions; with motivation ranging from financial mathematics to statistical physics. From an affine process perspective,
the functional relation may be interpreted as infinite-dimensional, non-commutative (“Hausdorff”) variation of Riccati’s equation.
Many examples are given.

1. INTRODUCTION AND MAIN RESULTS

Write T B T ((Òd )) = Πk ≥0 (Òd )⊗k for the tensor series over Òd , equipped with concatenation product, elements of
which are written indifferently as

x = (x(0) , x(1) , x(2) , . . . ) ≡ x(0) + x(1) + x(2) + · · · .

The affine subspace T0 (resp. T1) with scalar component x(0) = 0 (resp. = 1) has a natural Lie algebra (resp. formal Lie
group) structure.

Let further S = S(Òd ), resp. Sc = Sc (Òd ), denote the class of càdlàg, resp. continuous, d -dimensional semimartin-
gales on some filtered probability space (Ω, (Ft )t ≥0,Ð). The formal sum of iterated Stratonovich-integrals, the signature
of X ∈ Sc

Sig(X )s,t = 1 + Xs,t +
∫ t

s
Xs,u ◦dXu +

∫ t

s

(∫ u1

s
Xs,u2 ◦dXu2

)
◦dXu1 + · · ·

for 0 ≤ s ≤ t defines a random element in T1 and, as a process, a formal T1-valued semimartingale. By regarding the
d -dimensional semimartingale X as T0-valued semimartingale (X ↔ X = (0,X , 0, . . . )), we see that the signature of X
satisfies the Stratonovich stochastic differential equation

dS = S ◦dX. (1)

The solution is a.k.a. the Lie group valued stochastic exponential (or development) of X ∈ S(T0), with classical references
[ 23 ,  42 ]; the càdlàg case [ 15 ] is consistent with the geometric or Marcus [ 3 ,  19 ,  33 ,  40 ,  41 ] interpretation of ( 1 ) 

1
 with jump

behavior St = e∆Xt St−. From a stochastic differential geometry point of view, one aims for an intrinsic understanding of ( 1 )
valid for arbitrary Lie groups. For instance, if X takes values in any sub Lie algebra L ⊂ T0, then S takes values in the group
G = expL. In case of a d -dimensional semimartingale X , the minimal choice is Lie((Òd )), see e.g. [ 48 ], the resulting
log-Lie structure of iterated integrals (both in the smooth and Stratonovich semimartingale case) is well-known. The extrinsic
linear ambient space T ⊃ expL will be important to us. Indeed, writing St = Sig(X)0,t for the (unique, global) T1-valued
solution of ( 1 ) driven by T0-valued X, started at S0 = 1, we define, whenever Sig(X)0,T is (componentwise) integrable, the
expected signature and signature cumulants (SigCum)

µµµ (T ) B Å(Sig(X)0,T ) ∈ T1, κκκ (T ) B logµµµ (T ) ∈ T0.

Already when X is deterministic, and sufficiently regular to make ( 1 ) meaningful, this leads to an interesting (ordinary
differential) equation for κκκ with accompanying (Magnus) expansion, well understood as effective computational tool [ 4 ,  26 ].
The importance of the stochastic case X = X(ω), with expectation and logarithm thereof, was developed by Lyons and
coworkers; see [ 36 ] and references therein, with a variety of applications, ranging from machine learning to numerical
algorithms on Wiener space known as cubature, see e.g. [ 38 ]. In case of d = 1 and X = (0,X , 0, . . . ) with a single
scalar semimartingale X , this is nothing but the sequence of moments and cumulants of the real valued random variable
XT − X0. When d > 1, expected signature / cumulants provides an effective way to describe the process X on [0,T ],
see [ 10 ,  35 ,  36 ]. The question arises how to compute. If ones takes X as d -dimensional Brownian motion, the signature
cumulant κκκ (T ) equals (T /2)Id , where Id is the identity 2-tensor over Òd . This is known as Fawcett’s formula, [ 18 ,  38 ].
Loosely speaking, and postponing precise definitions, our main result is a vast generalization of Fawcett’s formula.

1Diamond notation for Marcus SDEs, dS = S �dX, cf. [ 3 ], will not be used here to avoid notational clash with [ 2 ,  17 ].
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P. K. Friz, P. Hager, N. Tapia 2

Theorem 1.1 (FunctEqu S-SigCum). For sufficiently integrable X ∈ S(T0), the (time-t ) conditional signature cumulants
κκκ t (T ) ≡ κκκ t B logÅt (Sig(X)t ,T ), is the unique solution of the functional equation

κκκ t (T ) = Åt
{ ∫
(t ,T ]

H (adκκκu−) (dXu ) +
1

2

∫ T

t
H (adκκκu−) (d〈Xc〉u )

+ 1
2

∫ T

t
H (adκκκu−) ◦ Q (adκκκu−) (dÈκκκ, κκκÉcu ) +

∫ T

t
H (adκκκu−) ◦ (Id � G (adκκκu−)) (dÈX, κκκÉcu )

+
∑
t<u≤T

(
H (adκκκu−)

(
exp(∆Xu ) exp(κκκu ) exp(−κκκu−) − 1 − ∆Xu

)
− ∆κκκu

)}
,

(2)

where all integrals are understood in Itô- and Riemann–Stieltjes sense respectively. 

2
 The functions H ,G ,Q are defined in

( 19 ) below, cf. also Section  2 for further notation.

As displayed in Figures 1 and 2, this theorem has an avalanche of consequences on which we now comment.

�  Equation (2) allows to compute κκκ (n) = π (n) (κκκ) ∈ (Òd )⊗n as function of κκκ (1) , . . . , κκκ (n−1) . (This remark applies
mutatis mutandis to all special cases seen as vertices in Figure 1.) The resulting expansions, displayed in  Figure 2 ,
are of computational interest.

� The most classical consequence of ( 2 ) appears when X is a deterministic continuous semimartingale, i.e. X ∈
FV c (T0), which also covers the absolutely continuous case with, ¤X ∈ L1loc (T0). In this case all bracket terms and
the final jump-sum disappear. What remains is a classical differential equation due to [ 24 ], here in backward form

− dκκκ t (T ) = H (adκκκ t )dXt , −¤κκκ t (T ) = H (adκκκ t ) ¤Xt , (3)

the accompanying expansions is then precisely Magnus expansion [ 4 ,  25 ,  26 ,  39 ]. By taking X continuous and
piecewise linear on two adjacent intervals, say [0, 1) ∪ [1, 2), one obtains the Baker–Campbell–Hausdorff formula
(see e.g. [ 43 , Theorem 5.5])

κκκ0 (2) = log
(
exp(x1) exp(x2)

)
C BCH(x1, x2)

= x2 +
∫ 1

0
Ψ(exp(ad tx1) ◦ exp(ad x2)) (x1) dt ,

(4)

with

Ψ(z ) B ln(z )
z − 1 =

∑
n≥0

(−1)n
n + 1 (z − 1)

n

It is also instructive to let X piecewise constant on these intervals, with ∆X1 = x1,∆X2 = x2, in which case ( 2 )
reduces to the first equality in ( 4 ). Such jump variations of the Magnus expansion are discussed in  Section 5.1 .

� Writing x ↦→ x̂ for the projection from T to the symmetric algebra S as the linear space identified with symmetric
tensor series, equation ( 2 ), in its projected and commutative form becomes

FunctEqu S-Cum: κ̂κκ t (T ) = Åt
{
X̂t ,T +

1

2

〈
(X̂ + κ̂κκ)c

〉
t ,T

+
∑
t<u≤T

(
exp

(
∆X̂u + ∆κ̂κκu

)
− 1 − (∆X̂u + ∆κ̂κκu )

)} (5)

where X̂ is a S0-valued semimartingale, and exp : S0 ↦→ S1 defined by the usual power series. This includes
of course semimartingales with values in Òd , canonically embedded in S0. More interestingly, the case X̂ =
(0, aX , b 〈X 〉, 0, . . . ), for a d -dimensional continuous martingale X can be seen to underlie the expansions of [ 17 ],
which improves and unifies previous results [ 2 ,  34 ], treating (a, b) = (1, 0) and (a, b) = (1,−1/2), with motivation
from QFT and mathematical finance, respectively. Following Gatheral and coworkers, ( 5 ) and subsequent expansions
involve “diamond” products of semimartingales, given, whenever well-defined, by

(A � B)t (T ) B Åt
(
〈Ac ,Bc〉t ,T

)
.

All this is discussed in Section  5.2 . With regard to the existing (commutative) literature, our algebraic setup is ideally
suited to work under finite moment assumptions, we are able to deal with jumps, not treated in [ 2 ,  34 ]. Equation ( 5 )
has a remarkable interpretation in that it can be viewed as (with jumps: generalized) infinite-dimensional Riccati
differential equation and indeed reduces to the finite-dimensional equation when specialized to (sufficiently integrable)
“affine” continuous (resp. general) semimartingales [ 13 ,  14 ,  32 ]. Of recent interest, explicit diamond expansions have
been obtained for “rough affine” processes, non-Markov by nature, with cumulant generating function characterized
by Riccati Volterra equations, see [ 1 ,  17 ,  22 ]. It is remarkable that analytic tractability remains intact when one passes
to path space and considers signature cumulants, Section  6.3 .

2Here ◦ denotes composition, not to be confused with Stratonovich integration ◦dX.
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FIGURE 1. FunctEqu S-SigCum ( Theorem 4.1 ) and implications
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FIGURE 2. Computational consequence: accompanying recursions

2. PRELIMINARIES

2.1. The tensor algebra and tensor series. Denote byT (Òd ) the tensor algebra over Òd , i.e.

T (Òd ) B
∞⊕
k=0

(Òd )⊗k ,

elements of which are finite sums (a.k.a. tensor polynomials) of the form

x =
∑
k ≥0

x(k ) =
∑

w ∈Wd

xw ew (6)

with x(k ) ∈ (Òd )⊗k , xw ∈ Ò and linear basis vectors ew B e i1 · · · e ik ∈ (Òd )⊗k where w ranges over all words
w = i1 · · · ik ∈ Wd over the alphabet {1, . . . , d }. Note x(k ) =

∑
|w |=k xw ew where |w | denotes the length a word w .

The element e∅ = 1 ∈ (Òd )⊗0 � Ò is neutral element of the concatenation (a.k.a. tensor) product, is obtained by linear
extension of ew ew ′ = eww ′ whereww ′ ∈ Wd denotes concatenation of two words. We thus have, for x, y ∈ T (Òd ),

xy =
∑
k ≥0

k∑̀
=0

x(`)y(k−`) =
∑

w ∈Wd

( ∑
w1w2=w

xw1yw2

)
ew ∈ T (Òd ).

This extends naturally to infinite sums, a.k.a tensor series, elements of the “completed” tensor algebra

T B T ((Òd )) B
∞∏
k=0

(Òd )⊗k ,

which are written as in ( 6 ), but now as formal infinite sums with identical notation and multiplication rules; the resulting
algebra T obviously extendsT (Òd ). For any n ∈ Î≥1 define the projection to tensor levels by

πn : T → (Òd )⊗n , x ↦→ x(n) .

DOI 10.20347/WIAS.PREPRINT.2814 Berlin 2021
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Denote by T0 and T1 the subspaces of tensor series starting with 0 and 1 respectively; that is, x ∈ T0 (resp. T1) if and only if
x∅ = 0 (resp. x∅ = 1). Restricted to T0 and T1 respectively, the exponential and logarithm in T , defined by the usual series,

exp : T0 → T1, x ↦→ exp(x) B 1 +
∞∑
k=1

1

k !
(x)k ,

log : T1 → T0, 1 + x ↦→ log(1 + x) B
∞∑
k=1

(−1)k+1
k

(x)k ,

are globally defined and inverse to each other. The vector space T0 becomes a Lie algebra with

[x, y] B xy − yx, ad y : T0 → T0, x ↦→ [y, x] .

Its exponential image T1 = exp(T0) is a Lie group, at least formally so. We refrain from equipping the infinite-dimensional
T1 with a differentiable structure, not necessary in view of the “locally finite” nature of the group law (x, y) ↦→ xy.

Let (ak )k ≥1 be a sequence of real numbers then we can always define a linear operator on T0 by[∑
k ≥0

ak (ad x)k
]

: T0 → T0, y ↦→
∑
k ≥0

ak (ad x)k (y),

where (ad x)0 = Id is the identity operator and (ad x)n = ad x◦(ad x)n−1 for any n ∈ Î≥1. Indeed, there is no convergence
issue due to the graded structure as can be seen by projecting to some tensor level n ∈ Î≥1

πn

(∑
n≥0

ak (ad x)k (y)
)
=

n−1∑
k=0

akπn
(
(ad x)k (y)

)
= a0y(n) +

n−1∑
k=1

ak
∑

‖` ‖=n, |` |=k+1
(ad x(l2) ◦ · · · ◦ ad x(lk+1) ) (y(l1) ),

(7)

where the inner summation in the right-hand side is over a finite set of multi-indices ` = (l1, . . . , lk+1) ∈ (Î≥1)k+1 where
|` | B k +1 and ‖` ‖ B l1 + · · · + lk+1. In the following we will simply write (ad x ad y) ≡ (ad x◦ad y) for the composition of
adjoint operators. Further, when ` = (l1) is a multi-index of length one, we will use the notation (ad x(l2) · · · ad x(lk+1) ) ≡ Id.
Note also that the iteration of adjoint operations can be explicitly expanded in terms of left- and right-multiplication as follows

ad y(l2) · · · ad y(lk+1) (x(l1)u ) =
∑

I ¤∪J={1,...,k }
(−1) |J |

(∏
i ∈I

y(l i+1)
)
x(l1)u

©­«
∏
j ∈J

y(l j+1)
ª®¬. (8)

For a wordw ∈ Wd with |w | > 0 we define the directional derivative for a function f : T → Ò by

(∂w f ) (a) B ∂t (f (a + t ew ))
��
t=0
,

for any a ∈ T such that the right-hand derivative exists.

Write m: T ⊗ T → T for multiplication (concatenation) map, i.e. m(a ⊗ b) = ab , in general different from ba , extended
by linearity. For linear maps g , f : T → T we define g � f = m ◦ (g ⊗ f ), i.e.

(g � f ) (a ⊗ b) = g (a)f (b), a, b ∈ T ,

extended by linearity.

2.2. Some quotients of the tensor algebra. The symmetric algebra overÒd , denoted by S (Òd ) is the quotient ofT (Òd )
by the two-sided ideal I generated by {x y − yx : x , y ∈ Òd }. The canonical projectionT (Òd ) � S (Òd ), x ↦→ x̂, is an

algebra epimorphism. A linear basis of S (Òd ) is then given by {êw } over non-decreasing words,w = (i1, . . . , in ) ∈ Ŵd ,
with 1 ≤ i1 ≤ · · · ≤ in ≤ d , n ≥ 0. Every x̃ ∈ S (Òd ) can be written as finite sum,

x̃ =
∑
w ∈Ŵd

x̃w êw ,

and we have an immediate identification with polynomials in d commuting indeterminates. The canonical projection map
extends to an epimorphism T � S where T = T ((Òd )) and S = S ((Òd )) are the respective completions, identifiable as
formal series in d non-commuting (resp. commuting) indeterminates. As a vector space, S can be identified with symmetric

DOI 10.20347/WIAS.PREPRINT.2814 Berlin 2021



Unified signature cumulants and generalized Magnus expansions 5

formal tensor series. Denote by S0 and S1 the affine space determined by x̃∅ = 0 (resp. x̃∅ = 1). The usual power series
in S define êxp : S0 → S1 with inverse l̂og : S1 → S0 and we have�exp (x + y) = êxp(x̂)êxp(ŷ), x, y ∈ T0�log (xy) = l̂og(x̂) + l̂og(ŷ), x, y ∈ T1.

We shall abuse notation in what follows and write exp (resp. log), instead of êxp (resp. l̂og).

2.2.1. The (step-n) truncated tensor algebra. For n ∈ Î, the subspace

In B
∞∏

k=n+1
(Òd )⊗k

is a two sided ideal of T . Therefore, the quotient space T/In has a natural algebra structure. We denote the projection
map by π (0,n) . We can identify T/In with

T n B
n⊕
k=0

(Òd )⊗k ,

equipped with truncated tensor product,

xy =
n∑
k=0

∑
`1+`2=k

x(`1)y(`2) =
∑

w ∈Wd , |w | ≤n

( ∑
w1w2=w

xw1yw2

)
ew ∈ T n .

The sequence of algebras (T n : n ≥ 0) forms an inverse system with limit T . There are also canonical inclusions
T k ↪→ T n for k ≤ n ; in fact, this forms a direct system with limit T (Òd ). The usual power series in T n define
expn : T n0 → T

n
1 with inverse logn : T n1 → T

n
0 , we may again abuse notation and write exp and log when no confusion

arises. As before, T n0 has a natural Lie algebra structure, and T n1 (now finite dimensional) is a bona fide Lie group.

We equipT (Òd ) with the norm

|a |T (Òd ) B max
k ∈Î
|a (n) | (Òd )⊗k ,

where | · | (Òd )⊗k is the euclidean norm on (Òd )⊗k � Òd k , which makes it a Banach space. The same norm makes sense in
T n , and since the definition is consistent in the sense that |a |Tk = |a |Tn for any a ∈ T n and k ≥ n and |a |Tn = |a | (Òd )⊗n
for any a ∈ (Òd )⊗n . We will drop the index whenever it is possible and write simply |a |.

2.3. Semimartingales. Let D be the space of adapted càdlàg process X : Ω × [0,T ) → Ò withT ∈ (0,∞] defined on
some filtered probability space (Ω, (Ft )0≤t ≤T ,Ð). The space of semimartingales S is given by the processes X ∈ D
that can be decomposed as

Xt = X0 +Mt + At ,
where M ∈Mloc is a càdlàg local martingale, and A ∈ V is a càdlàg adapted process of locally bounded variation, both
started at zero. Recall that every X ∈ S has a well-defined continuous local martingale part denoted by X c ∈Mc

loc. The
quadratic variation process of X is then given by

[X ]t = 〈X c〉t +
∑
0<u≤t

(∆Xu )2, 0 ≤ t ≤ T ,

where 〈·〉 denotes the (predictable) quadratic variation of a continuous semimartingale. Covariation square resp. angle
brackets [X ,Y ] and 〈X c ,Y c〉, for another real-valued semimartingaleY , are defined by polarization. For q ∈ [1,∞),
write Lq = Lq (Ω, F ,Ð), then a Banach space Hq ⊂ S is given by those X ∈ S with X0 = 0 and

‖X ‖Hq B inf
X=M+A




[M ]1/2T +
∫ T

0
|dAs |





Lq
< ∞.

Note that for local martingale M ∈Mloc it holds (see [ 47 , Ch. V, p. 245])

‖M ‖Hq =



[M ]1/2T





Lq
.

For a process X ∈ D we define

‖X ‖Sq B



 sup
0≤t ≤T

|Xt |




Lq

and define the space Sq ⊂ S of semimartingales X ∈ S such that ‖X ‖Sq < ∞. Note that there exits a constant cq > 0
depending on q such that (see [ 47 , Ch. V, Theorem 2])

‖X ‖Sq ≤ cq ‖X ‖Hq . (9)

DOI 10.20347/WIAS.PREPRINT.2814 Berlin 2021



P. K. Friz, P. Hager, N. Tapia 6

We view d -dimensional semimartingales, X =
∑d
i=1 X

i e i ∈ S(Òd ), as special cases of tensor series valued semimartin-
gales S(T ) of the form

X =
∑
w ∈Wd

Xw ew

with each component Xw a real-valued semimartingale. (This extends mutatis mutandis to the spaces D,M, V. Note also
that we typically deal with T0-valued semimartingales which amounts to have only words with length |w | ≥ 1.) Standard
notions such as continuous local martingale Xc and jump process ∆Xt = Xt − Xt− are defined componentwise.

Brackets: Now let X and Y be T -valued semimartingales. We define the (non-commutative) outer quadratic covariation
bracket of X and Y by

ÈX, YÉt B
∑

w1,w2∈Wd

[Xw1 , Yw2 ]t ew1 ⊗ ew2 ∈ T ⊗ T .

Similarly, define the (non-commutative) inner quadratic covariation bracket by

[X, Y]t B m(ÈX, YÉ) =
∑
w ∈Wd

( ∑
w1w2=w

[Xw1 , Yw2 ]t

)
ew ∈ T ;

for continuous T -valued semimartingales X, Y, this coincides with the predictable quadratic covariation

〈X, Y〉t B
∑
w ∈Wd

( ∑
w1w2=w

〈Xw1 , Yw2〉t

)
ew ∈ T .

As usual, we may write ÈXÉ ≡ ÈX, XÉ and 〈X〉 ≡ 〈X, X〉.

H-spaces: The definition of Hq -norm naturally extends to tensor valued martingales. More precisely, for X(n) ∈
S((Òd )⊗n ) with n ∈ Î≥1 and q ∈ [1,∞) we define

‖X(n) ‖Hq B ‖X(n) ‖Hq ( (Òd )⊗n ) B inf
X(n )=M+A




| [M] |1/2T + |A|1−var;[0;T ]





Lq
,

where the infimum is taken over all possible decompositions X(n) = M + A with M ∈Mloc ((Òd )⊗n ) and A ∈ V ((Òd )⊗n ),
where

|A|1−var;[0;T ] B sup
0≤t1≤···≤tk ≤T

∑
t i

��At i+1 − At i
�� ≤ ∑

w ∈Wd , |w |=n

∫ T

0

��dAws ��,
with the supremum taken over all partitions of the interval [0,T ]. One may readily check that

‖X(n) ‖Hq ≤
∑

w ∈Wd , |w |=n
‖Xw ‖Hq ; and for X(n) ∈Mloc : ‖X(n) ‖Hq = ‖| [X(n) ] |T ‖Lq .

Further define the following subspace Hq ,N ⊂ S(T N0 ) of homogeneously integrable semimartingales

Hq ,N B
{
X ∈ S(T N0 )

��� X0 = 0, |||X|||Hq ,N < ∞
}
,

where for any X ∈ S(T N ) we define

|||X|||Hq ,N B
N∑
n=1

(
‖X(n) ‖HqN /n

)1/n
.

Note that |||·|||Hq ,N is sub-additive and positive definite on Hq ,N and it is homogeneous under dilation in the sense that

|||δλX|||Hq ,N = |λ | |||X|||Hq ,N , δλX B (X(0) , λX(1) , . . . , λNX(N ) ), λ ∈ Ò.

We also introduce the following subspace of S(T )

H∞− (T ) B {X ∈ S(T ) : Xw ∈ Hq , [ 1 ≤ q < ∞, w ∈ Wd }.

Note that if X ∈ S(T ) such that |||X(0,N ) |||H1,N < ∞ for all N ∈ Î≥1 then it also holds X ∈ H∞− (T ).

Stochastic integrals: We are now going to introduce a notation for the stochastic integration with respect to tensor valued
semimartingales. Let F : Ω × [0,T ] → L(T ;T) with (t ,ω) ↦→ Ft (ω; ·) such that it holds

(Ft (x))0≤t ≤T ∈ D(T ), for all x ∈ T (10)

and Ft (ω;In ) ⊂ In , for all n ∈ Î, (ω, t ) ∈ Ω × [0,T ], (11)
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Unified signature cumulants and generalized Magnus expansions 7

where In ⊂ T was introduced in  Section 2.2.1 , consisting of series with tensors of level n and higher. In this case, we can
define the stochastic Itô-integral (and then analogously the Stratonovich/Marcus integral) of F with respect to X ∈ S(T ) by∫

(0, ·]
Ft− (dXt ) :=

∑
w ∈Wd

∑
v ∈Wd , |v | ≤ |w |

∫
(0, ·]

Ft− (ev )wdXvt ew ∈ S(T ). (12)

For example, let Y, Z ∈ D(T ) and define F := Y Id Z, i.e. Ft (x) = Yt x Zt for all x ∈ T . Then we see that F indeed satisfies
the conditions ( 10 ) and ( 11 ) and we have∫

(0, ·]
(Yt− Id Zt−) (dXt ) =

∫
(0, ·]

Yt−dXtZt− =
∑
w ∈Wd

( ∑
w1w2w3=w

∫
(0, ·]

Zw1t−Yw3t− dXw2t

)
ew . (13)

Another important example is given by F = (ad Y)k for any Y ∈ D(T0) and k ∈ Î. Indeed, we immediately see F satisfies
the condition ( 11 ) and recalling from ( 8 ) that the iteration of adjoint operations can be expanded in terms of left- and
right-multiplication, we also see that F satisfies ( 10 ). More generally, let (ak )∞k=0 ⊂ Ò and let X ∈ S(T0), then the following
integral ∫

(0, ·]

[ ∞∑
k=0

ak (ad Yt−)k
]
(dXt ) =

∞∑
n=1

n−1∑
k=0

∑
‖` ‖=n, |` |=k+1

∫
(0, ·]

ad Y(l2)t− · · · ad Y(lk+1)t− (dX(l1)t ) (14)

is well define in the sense ( 13 ). The definition of the integral with integrands of the form F : Ω × [0,T ] → L(T ⊗ T ;T)
with respect to processes X ∈ S(T ⊗ T ) is completely analogous.

Quotient algebras: All of this extends in a straight forward way to the case of semimartingales in the quotient algebra of
Section  2.2 , i.e. symmetric and truncated algebra. In particular, given X and Y in S(S) have well-defined continuous local
martingale parts denoted by Xc , Yc respectively, with inner (predictable) quadratic covariation given by

〈Xc , Yc〉 =
∑

w1,w2∈Ŵd

〈Xw1,c , Yw2,c〉êw1 êw2 .

Write SN for the truncated symmetric algebra, linearly spanned by {êw : w ∈ Ŵd , |w | ≤ N } and SN0 for those elements

with zero scalar entry. In complete analogy with non-commutative setting discussed above, we then write Ĥq ,N ⊂ S(SN0 )
for the corresponding space homogeneously q -integrable semimartingales.

2.4. Diamond Products. We extend the notion of the diamond product introduced in [  2 ] for continuous scalar semimartin-
gales to our setting.

Definition 2.1. For X and Y in S(T ) define

(X � Y)t (T ) B Åt
(
〈Xc , Yc〉t ,T

)
=

∑
w ∈Wd

( ∑
w1w2=w

(Xw1 � Yw2 )t (T )
)
ew ∈ T

whenever the T -valued quadratic covariation which appears on the right-hand side is integrable. Similar to the previous
section, we also define an outer diamond, for X, Y ∈ T , by

(X�Y)t (T ) B Åt (ÈXc , YcÉt ,T ) =
∑

w1,w2∈Wd

(Xw1 � Yw2 )t (T )ew1 ⊗ ew2 ∈ T ⊗ T .

This definition extends immediately to semimartingales with values in the quotient algebras of Section  2.2 . In particular,
given X̃ and Ỹ in S(S), we have

(X̃ � Ỹ)t (T ) B Åt
(
〈X̃c , Ỹc〉t ,T

)
=

∑
w1,w1∈Wd

(X̃w1 � Ỹw2 )t (T )êw1 êw2 ∈ S,

where the last expression is given in terms of diamond products of scalar semimartingales.

Lemma 2.2. Let p, q , r ∈ [1,∞) such that 1/p + 1/q + 1/r < 1 and let X ∈ Mc
loc ((Òd )⊗l ),

Y ∈Mc
loc ((Òd )⊗m ), and Z ∈ D((Òd )⊗n ) with l ,m, n ∈ Î, such that ‖X ‖Hp , ‖Y ‖Hq , ‖Z ‖Sr < ∞ then it holds for

all 0 ≤ t ≤ T

Åt

(∫ T

t
Zu−d(X �Y )u (T )

)
= −Åt

(∫ T

t
Zu−d〈X ,Y 〉u

)
.
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Proof. Using the Kunita-Watanabe inequality ( Lemma 7.1 ) we see that the expectation on the right hand side is well defined.
Further note that it follows from Emery’s inequality ( Lemma 7.3 ) and Doob’s maximal inequality that the local martingale∫ ·

0
Zu−d(Åu 〈X ,Y 〉T )

is a true martingale. Recall the definition of the diamond product and observe that the difference of left- and right-hand side
of the above equation is a conditional expectation of a martingale interment and is hence zero. �

2.5. Generalized signatures. We now give the precise meaning of ( 1 ), that is dS = S ◦dX, or component-wise, for every
wordw ∈ Wd ,

dSw =
∑

w1w2=w

Sw1 ◦dXw2 ,

where the driving noise X is a T0-valued semimartingale, so that X∅ ≡ 0. Following [ 6 ,  19 ,  33 ,  40 ,  41 ] the integral meaning of
this equation, started at time s from ξ ∈ T1, for times t ≥ s , is given by

St = ξ +
∫
(s,t ]

Su− dXu +
1

2

∫ t

s
Su− d〈Xc〉u +

∑
s<u≤t

Su−
(

exp(∆Xu ) − 1 − ∆Xu
)
, (15)

leaving the component-wise version to the reader. We have

Proposition 2.3. Let ξ ∈ T1 and suppose X takes values in T0. For every s ≥ 0 and ξ ∈ T1, equation ( 15 ) has a unique
global solution on T1 starting from Ss = ξ.

Proof. Note that S solves ( 15 ) iff ξ−1S solves the same equation started from 1 ∈ T1. We may thus take ξ = 1 without
loss of generality. The graded structure of our problem, and more precisely that X = (0,X ,Ø, . . . ) in ( 15 ) has no scalar
component, shows that the (necessarily) unique solution is given explicitly by iterated integration, as may be seen explicitly

when writing out S (0) ≡ 1, S (1)t =
∫ t
s

dX = Xs,t ∈ Òd ,

S
(2)
t =

∫
(s,t ]

S
(1)
u− dXu +Øt −Øs +

1

2
〈X c〉s,t +

1

2

∑
s<u≤t

(∆Xu )2 ∈ (Òd )⊗2.

and so on. (In particular, we do not need to rely on abstract existence, uniqueness results for Marcus SDEs [ 33 ] or Lie group
stochastic exponentials [ 23 ].) �

Definition 2.4. Let X be a T0-valued semimartingale defined on some interval [s, t ]. Then

Sig(X| [s,t ]) ≡ Sig(X)s,t
is defined to be the unique solution to ( 15 ) on [s, t ], such that Sig(X)s,s = 1.

The following can be seen as a (generalized) Chen relation.

Lemma 2.5. Let X be a T0-valued semimartingales on [0,T ] and 0 ≤ s ≤ t ≤ u ≤ T . Then the following identity holds
with probability one, for all such s, t ,u ,

Sig(X)s,tSig(X)t ,u = Sig(X)s,u . (16)

Proof. Call Φt←sξ B St the solution to ( 15 ) at time t ≥ s , started from Ss = ξ. By uniqueness of the solution flow,
we have Φu←t ◦ Φt←s = Φu←s . It now suffices to remark that, thanks to the multiplicative structure of ( 15 ) we have
Φt←sξ = ξSig(X)s,t . �

3. EXPECTED SIGNATURES AND SIGNATURE CUMULANTS

3.1. Definitions and existence. Throughout this section let X ∈ S(T0) be defined on a filtered probability space
(Ω, F , (Ft )0≤t ≤T ,Ð). When Å( |Sig(X)w0,t |) < ∞ for all 0 ≤ t ≤ T and all words w ∈ Wd , then the (conditional)
expected signature

µµµt (T ) B Åt
(
Sig(X)t ,T

)
=

∑
w ∈Wd

Åt (Sig(X)wt ,T )ew ∈ T1, 0 ≤ t ≤ T ,

is well defined with Åt denoting the conditional expectation with respect to the sigma algebra Ft . In this case, we can also
define the (conditional) signature cumulant of X by

κκκ t (T ) B log(Åt (µµµt (T ))) ∈ T0, 0 ≤ t ≤ T .
An important observation is the following

Lemma 3.1. Given Å( |Sig(X)w0,t |) < ∞ for all 0 ≤ t ≤ T and wordsw ∈ Wd , then µµµ (T ) ∈ S(T1) and κκκ (T ) ∈ S(T0).
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Proof. It follows from the relation ( 16 ) that

µµµt (T ) = Åt
(
Sig(X)t ,T

)
= Åt

(
Sig(X)−10,tSig(X)0,T

)
= Sig(X)−10,tÅt

(
Sig(X)0,T

)
.

Therefore projecting to the tensor components we have

µµµt (T )w =
∑

w1w2=w

(−1) |w1 |S (X)w10,tÅt
(
S (X)w20,T

)
, 0 ≤ t ≤ T , w ∈ Wd .

Since (Sig(X)w0,t )0≤t ≤T and (Åt (Sig(X)w0,T )0≤t ≤T are semimartingales (the latter in fact a martingale), it follows from
Itô’s product rule that µµµw (T ) is also a semimartingale for all wordsw ∈ Wd , hence µµµ (T ) ∈ S(T1). Further recall that
κκκ (T ) = log(µµµ (T )) and therefore it follows from the definition of the logarithm on T1 that each component κκκ (T )w with
w ∈ Wd is a polynomial of (µµµ (T )v )v ∈Wd , |v | ≤ |w | . Hence it follows again by Itô’s product rule that κκκ (T ) ∈ S(T0). �

It is of strong interest to have a more explicit necessary condition for the existence of the expected signature. The following
theorem below, the proof of which can be found in  Section 7.1 , yields such a criterion.

Theorem 3.2. Let q ∈ [1,∞) and N ∈ Î≥1, then there exist two constants c,C > 0 depending only on d , N and q ,
such that for all X ∈ Hq ,N

c |||X|||Hq ,N ≤ |||Sig(X)0, · |||Hq ,N ≤ C |||X|||Hq ,N .

In particular, if X ∈ H∞− (T0) then Sig(X)0, · ∈ H∞− (T1) and the expected signature exists.

Remark 3.3. Let X = (0,M , 0, . . . , 0) where M ∈M(Òd ) is a martingale, then

|||X|||Hq ,N = ‖M ‖HqN = ‖ | [M ]T |1/2‖LqN ,

and we see that the above estimate implies that

max
n=1,...,N

‖Sig(X) (n)0, · ‖
1/n
SqN /n ≤ C ‖M ‖HqN .

This estimate is already known and follows from the Burkholder-Davis-Gundy inequality for enhanced martingales, which
was first proved in the continuous case in [ 20 ] and for the general case in [ 9 ].

Remark 3.4. When q > 1, the above estimate also holds true when the signature Sig(X)0, · is replaced by the conditional
expected signature µµµ (T ) or the conditional signature cumulant κκκ (T ). This will be seen in the proof of  Theorem 4.1 below
(more precisely in  Claim 7.12 ).

3.2. Moments and cumulants. We quickly discuss the development of a symmetric algebra valued semimartingale, more
precisely X̃ ∈ S(S0), in the group S1. That is, we consider

dS̃ = S̃ ◦dX̃. (17)

It is immediate (validity of chain rule) that the unique solution to this equation, at time t ≥ s , started at S̃s = ξ̃ ∈ S1 is
given by

S̃t B exp
(
X̃t − X̃s

)
ξ̃ ∈ S1

and we also write S̃s,t = exp
(
X̃t − X̃s

)
for this solution started at time s from 1 ∈ S1. The relation to signatures is as

follows. Recall that the hat denotes the canonical projection from T to S.

Proposition 3.5. (i) Let X, Y ∈ S(T ) and Z =
∫

XdY in Itô sense. Then X̂, Ŷ ∈ S(S) and, in the sense of indistinguishable
processes,

Ẑ =

∫
X̂ dŶ. (18)

(ii) Let X ∈ S(T0). Then �Sig(X)s, · solves ( 17 ) started at time s from 1 ∈ S1 and driven by X̂ ∈ S(S0). In particular�Sig(X)s,t = exp(X̂t − X̂s ).

Proof. (i) That the projections X̂, Ŷ define S-valued semimartingales follows from the componentwise definition and the
fact that the canonical projection is linear. In particular, the right-hand side of  eq. (18)  is well defined. Now,  eq. (18)  

is true whenever X is piece-wise constant. By a limiting procedure, we immediately see that it is also true for general
semimartingales. Part (ii) is then immediate. �
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Assuming componentwise integrability, we then define symmetric moments and cumulants by

µ̃µµt (T ) B Åt exp
(
X̃T − X̃t

)
=

∑
w

Åt
(
exp

(
X̃T − X̃t

)w
t ,T

)
êw ∈ S1,

κ̃κκ t (T ) B log µ̃µµt (T ) ∈ S0, 0 ≤ t ≤ T .

If X̃ = X̂, for X ∈ S(T ), with expected signature and signature cumulants µµµ and κκκ, it is then clear that the symmetric
moments and cumulants of X̂ are obtained by projection,

µµµ ↦→ µ̂µµ, κκκ ↦→ κ̂κκ .

Example 3.6. Let X be an Òd -valued martingale in H∞−, and X̃t B
∑d
i=1 X

i
t ê i . Then

µ̃µµt (T ) =
∞∑
n=0

1

n !
Åt (XT − Xt )n ,

consists of the (time-t conditional) multivariate moments of XT −Xt ∈ Òd . And it readily follows, also noted in [ 5 , Example
3.3], that κ̃κκ t (T ) = logµµµt (T ) consists precisely of the multivariate cumulants of XT −Xt . Note that the symmetric moments
and cumulants of the scaled process aX , a ∈ Ò, is precisely given by δaµµµ and δaκκκ where the linear dilation map is defined

by δa : êw ↦→ a |w | êw . The situation is similar for a · X , a ∈ Òd , but now with δa : êw ↦→ aw ê
|w |
1 with aw = an11 · · · a

nd
d

where n i denotes the multiplicity of the letter i ∈ {1, . . . , d } in the wordw . ♦

We next consider linear combinations, X̃ = aX + b 〈X 〉, for general pairs a, b ∈ Ò, having already dealt with b = 0. The
special case b = −a2/2, by scaling there is no loss in generality to take (a, b) = (1,−1/2), yields a (at least formally)
familiar exponential martingale identity.

Example 3.7. Let X be an Òd -valued martingale in H∞−, and define

X̃t B
d∑
i=1

X i
t ê i −

1

2

∑
1≤i ≤j ≤d

〈X i ,X j 〉t ê i j .

In this case we have trivial symmetric cumulants, κ̃κκ t (T ) = 0 for all 0 ≤ t ≤ T . Indeed, Itô’s formula shows that
t ↦→ exp

(
X̃t

)
is an S1-valued martingale, so that

µ̃µµt (T ) = Åt exp(X̃T − X̃t ) = exp(−X̃t )Åt exp(X̃T ) = 1. ♦

While the symmetric cumulants of the last example carries no information, it suffices to work with

X̃ =
d∑
i=1

a iX +
d∑

j ,k=1

b j k 〈X j ,X k 〉

in which case µµµ = µµµ (a, b), κκκ = κκκ (a, b) contains full information of the joint moments of X and its quadratic variation
process. A recursion of these was constructed as diamond expansion in [ 17 ].

4. MAIN RESULTS

4.1. Functional equation for signature cumulants. Let X ∈ S(T0) defined one a filtered probability space (Ω, F , (Ft )0≤t ≤T <∞,Ð)
satisfying the usual conditions. For all x ∈ T0 (or T N0 ) define the following operators, with Bernoulli numbers (Bk )k ≥0 =
(1,− 12 ,

1
6 . . . ),

G (ad x) =
∞∑
k=0

(ad x)k
(k + 1)! , Q (ad x) =

∞∑
m,n=0

2
(ad x)n � (ad x)m

(n + 1)!(m)!(n +m + 2) ,

H (ad x) B
∞∑
k=0

Bk
k !
(ad x)k ,

(19)

noting G (z ) = (exp(z ) − 1)/z , H (z ) = G−1 (z ) = z/(exp(z ) − 1). Our main result is the following
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Theorem 4.1. Let X ∈ H∞− (T0), then the signature cumulant κκκ = κκκ (T ) = (logÅt (Sig(X)t ,T ))0≤t ≤T is the unique
solution (up to indistinguishably) of the following functional equation: for all 0 ≤ t ≤ T

0 = Åt
{
Xt ,T +

1

2
〈Xc〉t ,T +

∫
(t ,T ]

G (adκκκu−) (dκκκu ) +
1

2

∫ T

t
Q (adκκκu−) (dÈκκκc , κκκcÉu )

+
∫ T

t
(Id � G (adκκκu−)) (dÈXc , κκκcÉu )

+
∑
t<u≤T

(
exp(∆Xu ) exp(κκκu ) exp(−κκκu−) − 1 − ∆Xu −G (adκκκu−) (∆κκκu )

)}
.

(20)

Equivalently, κκκ = κκκ (T ) is the unique solution to

κκκ t = Åt
{ ∫
(t ,T ]

H (adκκκu−) (dXu ) +
1

2

∫ T

t
H (adκκκu−) (d〈Xc〉u )

+ 1
2

∫ T

t
H (adκκκu−) ◦ Q (adκκκu−) (dÈκκκc , κκκcÉu )

+
∫ T

t
H (adκκκu−) ◦ (Id � G (adκκκu−)) (dÈXc , κκκcÉu )

+
∑
t<u≤T

(
H (adκκκu−)

(
exp(∆Xu ) exp(κκκu ) exp(−κκκu−) − 1 − ∆Xu

)
− ∆κκκu

)}
.

(21)

Furthermore, if X ∈ H1,N for some N ∈ Î≥1, then the identities ( 20 ) and ( 21 ) still hold true for the truncated signature
cumulant κκκ B (logÅt (Sig(X(0,N ) )t ,T ))0≤t ≤T .

Proof. We postpone the proof for the fact that κκκ satisfies the equations ( 20 ) and ( 21 ) to section  Section 7.2 . The uniqueness
part of the statement can be easily seen as follows: Regarding equation ( 20 ) we first note that it holds

Åt

{∫
(t ,T ]

G (adκκκu−) (dκκκu )
}
= Åt

{∫
(t ,T ]
(G (adκκκu−) − Id) (dκκκu )

}
− κκκ t , 0 ≤ t ≤ T ,

where we have used that κκκT ≡ 0 (and the fact that the conditional expectation is well defined, which is shown in the first
part of the proof). Hence, after separating the identity from G , we can bring κκκ t to the left-hand side in ( 20 ). This identity is
an equality of tensor series in T0 and can be projected to yield an equality for each tensor level of the series. As presented
in more detail in the following subsection, we see that projecting the latter equation to tensor level say n ∈ Î≥1, the
right-hand side only depends on κκκ (k ) for k < n , hence giving an explicit representation κκκ (n) in terms of X and strictly lower
tensor levels of κκκ. Therefore the equation ( 20 ) characterizes κκκ up to a modification and then due to right-continuity up to
indistinguishably. The same argument applies to the equation ( 21 ), referring to the following subsections for details on the
recursion. �

Diamond formulation: The functional equations given in  Theorem 4.1 above, can be phrased in terms of the diamond
product between T0-valued semimartingales. Writing Jt (T ) =

∑
t<u≤T (. . . ) for the last (jump) sum in ( 20 ), this equation

can be written, thanks to Lemma  2.2 , which applies just the same with outer diamonds,

1

2
(X � X)t (T ) + Åt

{
Xt ,T +

∫
(t ,T ]

G (adκκκu−) (dκκκu ) + Jt (T )
}

=Åt
{1
2

∫ T

t
Q (adκκκu−)d(κκκ�κκκ)u (T ) +

∫ T

t
(Id � G (adκκκu−))d(X�κκκ)u (T )

}
and a similar form may be given for ( 21 ). While one may, or may not, prefer this equation to ( 20 ), diamonds become very
natural in d = 1 (or upon projection to the symmetric algebra, cf.  Section 5.2 ). In this case G = Id, Q = Id � Id and with
identities of the form ∫ T

t
(Id � Id)d(X�Y)u (T ) = (X � Y)u (T ) |Tu=t = −(X � Y)t (T )

some simple rearrangement, using bilinearity of the diamond product, gives

κκκ t (T ) = Åt {Xt ,T } +
1

2
((X + κκκ) � (X + κκκ))t (T ) + Åt {Jt (T )}. (22)

If we further impose martingality and continuity, we arrive at

κκκ t (T ) =
1

2
((X + κκκ) � (X + κκκ))t (T ).
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4.2. Recursive formulas for signature cumulants. Theorem  4.1 allows for an iterative computation of signature cumulants,
trivially started from

κκκ
(1)
t = µµµ (1)t = Åt

(
X(1)t ,T

)
.

The second signature cumulant, obtained from Theorem  4.1 , or from first principles, reads

κκκ
(2)
t = Åt

{
X(2)t ,T +

1

2

〈
X(1)c

〉
t ,T
+ 1
2

∫
(t ,T ]

[
κκκ
(1)
u− , dκκκ

(1)
u

]
+ 1
2

〈
κκκ (1)c

〉
t ,T
+

〈
X(1)c , κκκ (1)c

〉
t ,T

+
∑
t<u≤T

(1
2

(
∆X(1)u

)2
+ ∆X(1)u ∆κκκ (1)u +

1

2

(
∆κκκ (1)u

)2)}
For instance, consider the special case with vanishing higher order components, X(i ) ≡ 0, for i , 1, and X = X(1) ≡ M , a
d -dimensional continuous square-integrable martingale. In this case, κκκ (1) = µµµ (1) ≡ 0 and from the very definition of the
logarithm relating κκκ and µµµ, we have κκκ (2) = µµµ (2) − 1

2µµµ
(1)µµµ (1) = µµµ (2) . It then follows from Stratonovich-Ito correction that

κκκ
(2)
t = Åt

∫ T

t
(Mu −Ms ) ◦ dMu =

1

2
Åt 〈M 〉t ,T =

1

2
Åt

〈
X(1)

〉
t ,T

which is indeed a (very) special case of the general expression for κκκ (2) . We now treat general higher order signature
cumulants.

Corollary 4.2. Let X ∈ H1,N for some N ∈ Î≥1, then we have

κκκ
(1)
t = Åt

(
X(1)t ,T

)
,

for all 0 ≤ t ≤ T and for n ∈ {2, . . . ,N } we have recursively (the r.h.s. only depends on κκκ (j ) , j < n)

κκκ
(n)
t = Åt

(
X(n)t ,T

)
+ 1
2

n−1∑
k=1

Åt

(〈
X(k )c , X(n−k )c

〉
t ,T

)
+

∑
|` | ≥2, ‖` ‖=n

Åt
(
Mag(κκκ; `)t ,T + Qua(κκκ; `)t ,T + Cov(X, κκκ; `)t ,T + Jmp(X, κκκ; `)t ,T

)
(23)

with ` = (l1, . . . , lk ), l i ∈ Î≥1, |` | B k ∈ Î≥1, ‖` ‖ B l1 + · · · + lk and

Mag(κκκ; l1, . . . , lk )t ,T =
1

k !

∫
(t ,T ]

adκκκ (l2)u− · · · adκκκ (lk )u− (dκκκ (l1)u )

Qua(κκκ; l1, . . . , lk )t ,T =
1

k !

k∑
m=2

(
k − 1
m − 1

)
×

∫ T

t

(
adκκκ (l3)u− · · · adκκκ (lm )u− � adκκκ (lm+1)u− · · · adκκκ (lk )u−

) (
d
�
κκκ (l1)c , κκκ (l2)c

�
u

)
Cov(X, κκκ; l1, . . . , lk )t ,T =

1

(k − 1)!

∫ T

t

(
Id � adκκκ (l3)u− · · · adκκκ (lk )u−

) (
d
�

X(l1)c , κκκ (l2)c
�
u

)
Jmp(X, κκκ; l1, . . . , lk )t ,T =

∑
t<u≤T

∑
1≤m≤j ≤k

(
(−1)k−j ∆X(l1)u · · ·∆X(lm )u κκκ

(lm+1)
u · · · κκκ (l j )u κκκ

(l j+1)
u− · · · κκκ (lk )u−

m!(m − j )!(k − j )!

)
− 1

k !
adκκκ (l2)u− · · · adκκκ (lk )u−

(
∆κκκ (l1)u

)
.

Proof. Recall from  Section 2.3 , more specifically ( 14 ), the definition of the stochastic Itô integral of a power series of adjoint
operations with respect to a tensor valued semimartingale. As in the proof of  Theorem 4.1 above, in ( 20 ), we can separate
the identity from G and bring the resulting κκκ t to the left-hand side. The recursion then follows from projecting the resulting
form of the equation to tensors of level n ∈ {1, . . . ,N }. We demonstrate this projection for the first appearing term, which
is the stochastic integral with respect to κκκ. It holds

πnÅt

{∫
(t ,T ]
(G (adκκκu−) − Id) (dκκκu )

}
= Åt


n∑
k=1

1

k !

∑
‖` ‖=n, |` |=k

∫
(t ,T ]

adκκκ (l2)u− · · · adκκκ (lk )u− (dκκκ (l1)u )


= Åt


∑
‖` ‖=n

Mag(κκκ; `)t ,T
,

DOI 10.20347/WIAS.PREPRINT.2814 Berlin 2021



Unified signature cumulants and generalized Magnus expansions 13

for all 0 ≤ t ≤ T , where in the first equality we have used the linearity to interchange πn with the expectation and the
explicit form of the projection of a power series of adjoint operations given in ( 7 ). The projection of the remaining terms in
equation ( 20 ) follows analogously except for the jump part. Regarding the latter, we note again that due to the linearity we
can interchange the projection πn with the expectation and the sum over the interval (t ,T ]. The remaining steps in order to
arrive at the above form of the Jmp(X, κκκ) term are a simple combinatorial exercise. �

We obtain another recursion for the signature cumulants from projecting the functional equation ( 21 ). Note that, apart from
the first two levels, it is far from trivial to see that the following recursion is equivalent to the recursion in  Corollary 4.2 .

Corollary 4.3. Let X ∈ H1,N for some N ∈ Î≥1, then we have

κκκ
(n)
t = Åt

(
X(n)t ,T

)
+

∑
|` | ≥2, | |` | |=n

Åt
(
HMag1 (X, κκκ; `)t ,T +

1

2
HMag2 (X, κκκ; `)t ,T + HQua(κκκ; `)t ,T

+ HCov(X, κκκ; `)t ,T + HJmp(X, κκκ; `)t ,T
)

(24)

with ` = (l1, . . . , lk ), l i ≥ 1, |` | = k , | |` | | = l1 + · · · + lk and

HMag1 (X, κκκ; l1, . . . , lk )t ,T =
Bk−1
(k − 1)!

∫
(t ,T ]

adκκκ (l2)u− · · · adκκκ (lk )u−

(
dX(l1)u

)
HMag2 (X, κκκ; l1, . . . , lk )t ,T =

Bk−2
(k − 2)!

∫ T

t
adκκκ (l3)u− · · · adκκκ (lk )u−

(
d
〈
X(l1)c , X(l2)c

〉
u

)
HQua(κκκ; l1, . . . , lk )t ,T =

∫ T

t

k∑
j=2

Bk−j

(k − j )! adκκκ
(l j+1)
u− · · · adκκκ (lk )u−

(
dQua(κκκ; l1, . . . , l j )u

)
HCov(X, κκκ; l1, . . . , lk+1)t ,T =

∫ T

t

k∑
j=1

Bk−j

(k − j )! adκκκ
(l j+1)
u− · · · adκκκ (lk )u−

(
dCov(X, κκκ; l1, . . . , l j )u

)
HJmp(X, κκκ; l1, . . . , lk )t ,T =

∑
t<u≤T

∑
1≤m≤j ≤i ≤k

(−1)k−j
(
Bk−i
(k − i )!

× adκκκ (l i+1)u− · · · adκκκ (lk )u−

(
∆X(l1)u · · ·∆X(lm )u κκκ

(lm+1)
u · · · κκκ (l j )u κκκ

(l j+1)
u− · · · κκκ (l i )u−

m!(m − j )!(k − j )!

))
.

Proof. The recursion follows from projecting the equation ( 21 ) to each tensor level, analogously to the way that the recursion
of  Corollary 4.2 follows from ( 20 ) (see the proof of  Corollary 4.2 ). �

Diamonds. All recursions here can be rewritten in terms of diamonds. In a first step, by definition the second term in
 Corollary 4.2 can be rewritten as

1

2

n∑
k=1

(X(k ) � X(n−k ) )t (T ).

Thanks to  Lemma 2.2 we may also write

ÅtQua(κκκ; `)t ,T

= −Åt
{
1

k !

k∑
m=2

(
k − 1
m − 1

) ∫ T

t

(
adκκκ (`3)u− · · · adκκκ (`m )u− � adκκκ (`m+1)u− · · · adκκκ (`k )u−

) (
d(κκκ (`1)�κκκ (`2) )u (T )

)}
.

Similarly,

ÅtCov(X, κκκ; `)t ,T = −Åt
{

1

(k − 1)!

∫ T

t

(
Id � adκκκ (`3)u− · · · adκκκ (`k )u−

) (
d(X(`1)�κκκ (`2) )u (T )

)}
.

Inserting these expressions into  Equation (24) we may obtain a “diamond” form of the recursions in H form.

When d = 1 (or in the projection onto the symmetric algebra, c.f.  Section 5.2 ) the recursions take a particularly simple form,
since ad x ≡ 0 for all x ∈ T0, for d = 1 a commutative algebra.  Equation (23) then becomes

κκκ
(n)
t (T ) = Åt

(
X(n)t ,T

)
+ 1
2

n−1∑
k=1

((X(k ) + κκκ (k ) ) � (X(n−k ) + κκκ (n−k ) ))t (T ) + Åt
(
J(n)t (T )

)
where J(n)t (T ) =

∑
|` | ≥2, ‖` ‖=n Jmp(X , κκκ; `)t ,T contains the n-th tensor component of the jump contribution. The above

diamond recursion can also be obtained by projecting the functional relation ( 22 ) to the n-th tensor level. We shall revisit
this in a multivariate setting and comment on related works in Section  5.2 .
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5. TWO SPECIAL CASES

5.1. Variations on Hausdorff, Magnus and Baker–Campbell–Hausdorff. We now consider a deterministic driver X
of finite variation. This includes the case when X is absolutely continuous, in which case we recover, up to a harmless
time reversal, t ↔ T − t , Hausdorff’s ODE and the classical Magnus expansion for the solution to a linear ODE in a
Lie group [ 8 ,  24 ,  25 ,  39 ]. Our extension with regard to discontinuities seems to be new and somewhat unifies Hausdorff’s
equation with multivariate Baker–Campbell–Hausdorff integral formulas.

Theorem 5.1. Let X ∈ V (T0), and more specifically X : [0,T ] → T0 deterministic, càdlàg of bounded variation. The
log-signature Ωt = Ωt (T ) B log(Sig(X)t ,T ) satisfies the integral equation

Ωt (T ) =
∫ T

t
H (adΩu−) (dXcu ) +

∑
t<u≤T

∫ 1

0
Ψ(exp(ad θ∆Xu ) ◦ exp(adΩu )) (∆Xu ) dθ, (25)

with Ψ(z ) B H (log z ) = log z/(z − 1) as in the introduction. The sum in ( 25 ) is absolutely convergent, over (at most
countably many) jump times of X, vanishes when X ≡ Xc , in which case  eq. (4) reduces to Hausdorff’s ODE.

(i) The accompanying Jump Magnus expansion becomes Ω (1)t (T ) = X(1)t ,T followed by

Ω (n)t (T ) = X(n)t ,T +
∑

|` | ≥2, ‖` ‖=n

(
HMag1 (X,Ω; `)t ,T + HJmp(X,Ω; `)t ,T

)
where the right-hand side only depends on Ω (k ) , k < n .

(ii) If X ∈ V (V ) for some linear subspaceV ⊂ T0 = T0 ((Òd )), it follows that, for all t ∈ [0,T ],
Ωt (T ) ∈ L B Lie((V )) ⊂ T0, Sig(X)t ,T ∈ exp(L) ⊂ T1,

we say that Ωt (T ) is Lie inV . In caseV = Òd one speaks of (free) Lie series, cf. [ 36 , Def. 6.2].

Proof. Since we are in a purely deterministic setting the signature cumulant coincides with the log-signature κκκ t (T ) =
Ωt (T ) and Theorem  4.1 applies without any expectation and angle brackets.

Using ∆Ωu = Ωu − Ωu− = Ωu − log(e∆Xu eΩu ) we see that

Ωt (T ) =
∫ T

t
H (adΩu−) (dXcu ) −

∑
t<u≤T

∆Ωu

=

∫ T

t
H (adΩu−) (dXcu ) −

∑
t<u≤T

(Ωu − BCH(∆Xu ,Ωu ))

=

∫ T

t
H (adΩu−) (dXcu ) +

∑
t<u≤T

∫ 1

0
Ψ(exp(θ ad∆Xu ) ◦ exp(adΩu )) (∆Xu ) dθ,

where we used the identity

BCH(x1, x2) − x2 = log
(
exp(x1) exp(x2)

)
− x2 =

∫ 1

0
Ψ(exp(θ ad x1) ◦ exp(ad x2)) (x1) dθ. (26)

�

Remark 5.2 (Baker–Campbell–Hausdorff). The identity ( 26 ) is well-known, but also easy to obtain en passant, thereby
rendering the above proof self-contained. We treat directly the n-fold case. Given x1, . . . , xn ∈ T0 one defines a continuous
piecewise affine linear path (Xt : 0 ≤ t ≤ n) with Xi − Xi−1 = xi . Then Sig(X| [i−1,i ]) = Sig(X)i−1,i = exp(xi ) and by
Lemma  2.5 have Sig(X)0,n = exp(x1) · · · exp(xn ) and therefore

Ω0 = log(exp(x1) · · · exp(xn )) C BCH(x1, . . . , xn ).
A computation based on Theorem  5.1 , but now applied without jumps, reveals the general form

BCH(x1, . . . , xn ) = xn +
n−1∑
k=1

∫ 1

0
Ψ(exp(θ ad xk ) ◦ exp(ad xk+1) ◦ · · · ◦ exp(ad xn )) (xk ) dθ

=
∑
i

xi +
1

2

∑
i<j

[xi , xj ] +
1

12

∑
i<j

( [xi , [xi , xj ]] + [xj , [xj , xi ]])

− 1
6

∑
i<j<k

[xj , [xi , xk ]] −
1

24

∑
i<j

[xi , [xj , [xi , xj ]]] · · ·

The flexibility of our Theorem  5.1 is then nicely illustrated by the fact that this n-fold BCH formula is an immediate
consequence of ( 25 ), applied to a piecewise constant càdlàg path (Xt : 0 ≤ t ≤ n) with X· − Xi−1 ≡ xi on [i − 1, i ).
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5.2. Diamond relations for multivariate cumulants. As in Section  2.2 we write S for the symmetric algebra over Òd , and
S0,S1 for those elements with scalar component 0, 1, respectively. Recall the exponential map exp : S0 → S1 with global
defined inverse log. Following Definition  2.1 the diamond product for S0-valued semimartingales X̃, Ỹ is another S0-valued
semimartingale given by

(X̃ � Ỹ)t (T ) = Åt
(
〈X̃c , Ỹc〉t ,T

)
=

∑
(Åt 〈X̃w1 , Ỹw2〉t ,T )êw1 êw2 ,

with summation over all w1,w2 ∈ Ŵd , provided all brackets are integrable. This trivially adapts to SN -valued semi-
martingales, N ∈ Î≥1, in which case all words have length less equal N , the summation is restricted accordingly to
|w1 + |w2 | ≤ N .

Theorem 5.3. (i) Let Ξ = (0, Ξ (1) , Ξ (2) , ...) be an FT -measurable random variable with values inS0 (Òd ), componentwise
in L∞−. Then

Ët (T ) B logÅt exp(Ξ)
satisfy the following functional equation, for all 0 ≤ t ≤ T ,

Ët (T ) = ÅtΞ +
1

2
(Ë �Ë)t (T ) + Êt (T ) (27)

with jump component,

Êt (T ) = Åt

( ∑
t<u≤T

(
e∆Ëu − 1 − ∆Ëu

))
= Åt

( ∑
t<u≤T

(
1

2!
(∆Ëu )2 +

1

3!
(∆Ëu )3 + · · ·

))
.

Furthermore, if N ∈ Î≥1, and Ξ = (Ξ (1) , ..., Ξ (N ) ) is FT -measurable with graded integrability condition

‖Ξ (n) ‖LN /n < ∞, n = 1, ...,N , (28)

then the identity ( 27 ) holds for the truncated signature cumulant Ë(0,N ) B (logÅt (Sig(X(0,N ) )t ,T ))0≤t ≤T with values in

S (N )0 (Òd ).

Remark 5.4. Identity ( 27 ) is reminiscent of generalized Riccati equations for affine jump diffusions. The relation is, in a
nutshell, that (  27 ) reduces to a PIDE system when the involved processes have a Markov structure. (We will make this point
explicit in Section  6.2 below, even in the fully non-commutative setting.) These PIDEs reduce to generalized Riccati under
appropriate (affine linear) structure of the characteristics. The framework described here however requires neither Markov
nor affine structure. We will show in Section  6.3 that such computations also possible in the fully non-commutative setting,
i.e. to obtain signature cumulants.

Proof. We first observe that since Ξ ∈ L∞−, by Doob’s maximal inequality and the BDG inequality, we have that X̃t B ÅtΞ
is a martingale in H∞− (S0). In particular, thanks to  Theorem 3.2 , the signature moments are well defined. According to

 Section 3.2 , the signature is then given by

Sig(X̃)t ,T = exp(Ξ − ÅtΞ),
hence κκκ t (T ) = Ët (T ) − X̃t .

Projecting  Equation (21) onto the symmetric algebra yields

κκκ t (T ) = Åt
{
X̃t ,T +

1

2
〈X̃c〉t ,T +

1

2
〈κκκ (T )c〉t ,T + 〈X̃c , κκκ (T )c〉t ,T

+
∑
t<u≤T

(
e∆X̃u+∆κκκu (T ) − 1 − ∆X̃u − ∆κκκu (T )

)}
= Åt

{
Ξ + 1

2
〈Ë(T )c〉t ,T +

∑
t<u≤T

(
e∆Ëu (T ) − 1 − ∆Ëu (T )

)}
− X̃t ,

and  eq. (27) follows upon recalling that (Ë �Ë)t (T ) = Åt 〈Ë(T )c〉t ,T . The proof of the truncated version is left to the
reader. �

As a corollary, we provide a general view on recent results of [ 2 ,  17 ,  34 ]. Note that we also include jump terms in our
recursion.

Corollary 5.5. The conditional multivariate cumulants (Ët )0≤t ≤T of a random variable Ξ with values in S0 (Òd ), compo-
nentwise in L∞− satisfy the recursion

Ë(1)t = Åt (Ξ (1) ) and Ë(n)t = Åt (Ξ (n) ) +
1

2

n∑
k=1

(
Ë(k ) �Ë(n−k )

)
t
(T ) + Ê(n)t (T ) for n ≥ 2, (29)
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with

Ê(n)t (T ) = Åt
©­«

∑
t<u≤T

n∑
k=2

1

k !

∑
‖` ‖=n, |` |=k

∆Ë(`1)u (T ) · · ·∆Ë(`k )u (T )ª®¬.
The analogous statement holds true in the N -truncated setting, i.e. as recursion for n = 1, ..,N under the condition ( 28 ).

Example 5.6 (Continuous setting). In case of absence of jumps and higher order information (i.e. Ê ≡ 0, Ξ (2) = Ξ (3) =
... ≡ 0, this type of cumulant recursion appears in [ 34 ] and under optimal integrability conditions Ξ (1) with finite N .th
moments, [ 17 ]. (This requires a localization argument which is avoided here by directly working in the correct algebraic
structure.) ♦

Example 5.7 (Discrete filtration). As opposite of the previous continuous example, we consider a purely discrete situation,
starting from a discretely filtered probability space with filtration (Ft : t = 0, 1, . . . ,T ∈ Î). For Ξ as in Corollary  5.5 , a
discrete martingale is defined by Åt exp(Ξ), which may regard as cádlág semimartingale with respect to Ft B F[t ] , and
similar for Ët (T ) = logÅt exp(Ξ) ∈ S0, i.e. the conditional cumulants of Ξ. Clearly, the continuous martingale part of
Ë(T ) vanishes, as does any diamond product with Ë(T ). What remains is the functional equation

Ët (T ) = Åt (Ξ) + Êt (T ) = Åt (Ξ) + Åt
( T∑
u=t+1

(
e∆Ëu − 1 − ∆Ëu

) )
As before, the resulting expansions are of interest. On the first level, trivially, Ë(1)t = Åt (Ξ (1) ), whereas on the second level
we see

Ë(2)t (T ) = Åt (Ξ
(2) ) + Åt

( T∑
u=t+1
(Åu (Ξ (1) ) − Åu−1 (Ξ (1) ))2

)
which one can recognize, in case Ξ (2) = 0 as energy identity for the discrete square-integrable martingale `u := ÅuΞ (1) .
Going further in the recursion yields increasingly non-obvious relations. Taking Ξ (2) = Ξ (3) = ... ≡ 0 for notational
simplicity gives

Ë(3)t (T ) = Åt

(
T∑

u=t+1
(`u − `u−1)3 + 3(`u − `u−1){Åuκ (`, `)u,T − Åu−1κ (` , `)u−1,T }

)
It is interesting to note that related identities have appeared in the statistics literature under the name Bartlett identities, cf.
Mykland [ 44 ] and the references therein.

♦

5.3. Remark on tree representation. As illustrated in the previous section, in the case where d = 1, or when projecting
onto the symmetric algebra, our functional equation takes a particularly simple form (see  Theorem 5.3 ). If one further
specializes the situation, in particular discards all jump, we are from an algebraic perspective in the setting of Friz, Gatheral
and Radoiçić [ 17 ] which give a tree series expansion of cumulants using binary trees. This representation follows from the
fact that the diamond product of semimartingales is commutative but not associative. As an example (with notations taken
from  Section 5.2 ), in case of a one-dimensional continuous martingale, the first terms are

Ët (T ) = + 1
2
+ 1
2

+ 1
2

+ 1
8

+ · · ·

This expansion is organized (graded) in terms of the number of leaves in each tree, and each leaf represents the underlying
martingale.

In the deterministic case, tree expansions are also known for the Magnus expansion [ 25 ] and the BCH formula [ 7 ].
These expansions also in terms of binary trees, but this time they are also required to be non-planar to account for the
non-commutativity of the Lie algebra. As an example (with the notations of  Section 5.1 ), we have

Ωt (T ) = + 1
2
+ 1

12
+ 1
4

+ · · ·

In this expansion, the nodes represent the underlying vector field and edges represent integration and application of the the
Lie bracket, coming from the ad operator.

Since our functional equation and the associated recursion puts both contexts into a single common framework. We suspect
that our general recursion, Corollary  4.2 and thereafter, allows for a sophisticated tree representation, at least in absence of
jumps, and propose to return to this question in future work.
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6. APPLICATIONS

6.1. Brownian and stopped Brownian signature cumulants.

6.1.1. Time dependent Brownian motion. Let B be a m-dimensional standard Brownian motion defined on a portability
space (Ω, F ,Ð) with the canonical filtration (Ft )t ≥0 and define the continuous (Gaussian) martingale X = (Xt )0≤t ≤T by

Xt =

∫ t

0
σ (u) dBu , 0 ≤ t ≤ T ,

with σ ∈ L2 ( [0,T ],Òm×d ). An immediate application of  Theorem 4.1  shows that the integrability condition X =
(0,X , 0, . . . ) ∈ H∞− is trivially satisfied. The Brownian signature cumulants κκκ t (T ) = log(Åt (Sig(X)t ,T )) satisfies
the functional equation, with a (t ) B σ (t )σ (t )T ∈ Sym(Òd ⊗ Òd ),

κκκ t (T ) =
∫ T

t
H (adκκκu (T )) (a (u))du, 0 ≤ t ≤ T . (30)

Therefore the tensor levels are precisely given by the Magnus expansion, starting with

κκκ
(1)
t (T ) = 0, κκκ

(2)
t (T ) = 1

2

∫ T

t
a (u)du,

and the general term

κκκ
(2n−1)
t (T ) ≡ 0, κκκ

(2n)
t (T ) =

∑
|` | ≥2, ‖` ‖=2n

HMag2 (X, κκκ; `)t ,T

=
∑
‖` ‖=n−1

Bk
k !

∫ T

t
adκκκ (2·l1)u · · · adκκκ (2·lk )u (a (u))du .

Note that κκκ t (T ) is Lie in Sym(Òd ⊗Òd ) ⊂ T0, but, in general, not a Lie series. In the special case X = B , i.e.m = d and
identity matrix σ = Id =

∑d
i=1 e i i ∈ Sym(Òd ⊗ Òd ), all commutators vanish and we obtain what is known as Fawcett’s

formula [ 16 ,  18 ].

κκκ t (T ) = 1
2 (T − t )Id .

Example 6.1. Consider B1,B2 two Brownian motions on the filtered space (Ω, F ,Ð), with correlation d〈B1,B2〉t = ρ dt
for some fixed constant ρ ∈ [−1, 1]. Suppose that K 1,K 2 : [0,∞)2 → Ò are two kernels such that K i (t , ·) ∈ L2 ( [0, t ])
for all t ∈ [0,T ], and set

X i
t B X i

0 +
∫ t

0
K i (t , s) dB is , i = 1, 2

for some fixed initial values X 1
0 ,X

2
0 . Note that neither process is a semimartingale in general. However, for eachT > 0,

the process ξit (T ) B Åt [X i
T ] is a martingale and we have

ξit (T ) = X i
0 +

∫ t

0
K i (T , s) dB is ,

that is, (ξ1, ξ2) is a time-dependent Brownian motion as defined above. In particular, one sees that

a (t ) =
( ∫ t

0
K 1 (T ,u)2 du ρ

∫ t
0
K 1 (T ,u)K 2 (T ,u) du

ρ
∫ t
0
K 1 (T ,u)K 2 (T ,u) du

∫ t
0
K 2 (T ,u)2 du

)
.

 Equation (30) and the paragraph below it then give an explicit recursive formula for the signature cumulants, the first of
which are given by

κκκ
(1)
t (T ) = 0,

κκκ
(2)
t (T ) =

1

2
©­«

∫ T
t

∫ u
0
K 1 (T , r )2 dr du ρ

∫ T
t

∫ u
0
K 1 (T , r )K 2 (T , r ) dr du

ρ
∫ T
t

∫ u
0
K 1 (T , r )K 2 (T , r ) dr du

∫ T
t

∫ u
0
K 2 (T , r )2 dr du

ª®¬,
κκκ
(3)
t (T ) = 0,

κκκ
(4)
t (T ) =

1

2

2∑
i ,j ,i ′,j ′=1

[∫ T

t

∫ T

u

(
ai j (u)ai ′j ′ (r ) − ai ′j ′ (u)ai j (r )

)
dr du

]
e i j i ′j ′ .
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We notice that in the particular case when K 1 = K 2 ≡ K , the matrix a has the form

a (t ) =
∫ t

0
K (T ,u)2 du ×

(
1 ρ
ρ 1

)
.

Therefore, we have a (t ) ⊗ a (t ′) − a (t ′) ⊗ a (t ) = 0 for any t , t ′ ∈ [0,T ]. Hence, in this case, our recursion shows that
for any ρ ∈ [−1, 1],

κκκ
(1)
t (T ) = 0, κκκ

(2)
t (T ) =

1

2

∫ T

t

∫ u

0
K (T , r )2 dr du ×

(
1 ρ
ρ 1

)
,

and κκκ (n)t (T ) = 0 for all 0 ≤ t ≤ T and n ≥ 3. ♦

6.1.2. Brownian motion up to the first exit time from a domain. Let B = (Bt )t ≥0 be a d -dimensional Brownian motion
defined on a filtered probability space (Ω, F ,Ð) with the canonical filtration (Ft )t ≥0 and a possibly random starting value
B0. Assume that there is a family of probability measures {Ðx }x ∈Òd on (Ω, F ) such that Ðx (B0 = x ) = 1 and denote by
Åx the expectation with respect to Ðx . Further let Γ ⊂ Òd be a bounded domain and define the stopping time τΓ of the first
exit of B from the domain Γ, i.e.

τΓ = inf{t ≥ 0 | Bt ∈ Γc }.

In [ 37 ] Lyons–Ni exhibit an infinite system of partial differential equations for the expected signature of the Brownian motion
until the exit time as a functional of the starting point. The following result can be seen as the corresponding result for the
signature cumulant, which follows directly from the expansion in  Theorem 1.1 . Recall that a boundary point x ∈ ∂Γ is called
regular if and only if

Ðx
(

inf{t > 0 | Bt ∈ Γc } = 0
)
= 1. (31)

The domain Γ is called regular if all points on the boundary are regular. For example domains with smooth boundary are
regular and see [ 30 , Section 4.2.C] for a further characterization of regularity.

Corollary 6.2. Let Γ ⊂ Òd be a regular domain, such that

sup
x ∈Γ

Åx (τnΓ ) < ∞, n ∈ Î≥1. (32)

The signature cumulant κκκ t = log(Å(Sig(B)t∧τΓ,τΓ )) of the Brownian motion B up to the first exit from the domain Γ has
the following form

κκκ t = 1{t<τΓ }F(Bt ), t ≥ 0,

where F =
∑
|w | ≥2 ewF

w with F w ∈ C 0 (Γ,Ò) ∩ C 2 (Γ,Ò) is the unique bounded classical solution to the elliptic PDE

−∆F(x ) =
d∑
i=1

H (ad F(x ))
(
e i i + Q (ad F(x )) (∂iF(x )⊗2) + 2e iG (ad F(x )) (∂iF(x ))

)
, (33)

for all x ∈ Γ with the boundary condition F|∂Γ ≡ 0.

Proof. Define the martingale X = ((0,Bt∧τΓ , 0, . . . ))t ≥0 ∈ S(T0) and note that |〈X〉∞ | = τΓ. It then follows from
the integrability of τΓ that X ∈ H∞− (T0) and thus by  Theorem 3.2 that (Sig(X)0,t )t ≥0 ∈ H(T1)∞−. This implies that
the signature cumulant κκκ t (T ) B log(Åt (Sig(X)t ,T )) is well defined for all 0 ≤ t ≤ T < ∞ and furthermore under
(component-wise) application of the dominated convergence theorem that it holds

κκκ t = lim
T→∞

κκκ t (T ) = lim
T→∞

log(Åt (Sig(X)t ,T )) = log(Åt (Sig(B)t∧τΓ,τΓ )), t ≥ 0.

Again by X ∈ H∞− (T0) it follows that  Theorem 1.1 applies to the martingale (Xt )0≤t ≤T for any T > 0 and therefore
κκκ (T ) satisfies the functional equation ( 21 ). It is well known that all martingales with respect to the filtration (Ft )0≤t ≤T are
continuous, and therefore it is easy to see that also κκκ (T ) ∈ Sc (T0). Therefore ( 21 ) simplifies to the following equation

κκκ t (T ) = 1{t<τΓ }Åt
{
1

2

∫ τΓ∧T

t
H (adκκκu ) (Id ) du +

∫ τΓ∧T

t

1

2
H (adκκκu ) ◦ Q (adκκκu ) (dÈκκκ, κκκÉu )

+
∫ τΓ∧T

t
H (adκκκu ) ◦ (Id � G (adκκκu )) (dÈX , κκκÉu )

}
, (34)
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where we have already used the martingality of X and the explicit form of the quadratic variation 〈X〉t = Id (t ∧ τΓ) with
Id =

∑d
i=1 e i i ∈ (Òd )⊗2. It follows that κκκ (1) ≡ κκκ (T ) (1) ≡ 0 and for the second level we have from the integrability of τΓ

and the strong Markov property of Brownian motion that

κκκ
(2)
t =

1

2
Id lim
T→∞

Åt
(
1{t<τΓ } (τΓ ∧T − t )

)
=
1

2
Id1{t<τΓ } Å

x (τΓ) |x=Bt , t ≥ 0.

Now note that the function u (x ) B Åx (τΓ) for x ∈ Γ is in C 0 (Γ,Ò) ∩ C 2 (Γ,Ò) and solves the Poisson equation
−(1/2)∆u = g with boundary condition u |∂Γ = 0 and data g ≡ 1. Indeed, since Γ is regular and g is bounded and
differentiable, this follows from Theorem 9.3.3 (and the remark thereafter) in [ 46 ]. Moreover from the assumption ( 32 ) we
immediately see that u is bounded on Γ and it follows from Theorem 9.3.2 in [ 46 ] that u is the unique bounded classical
such solution. Thus we have shown that the statement holds true up to the second tensor level with F(1) ≡ 0 and F(2) = Idu
under the usual notation F(n) =

∑
|w |=n ewF

w .

Now assume that the statement of the corollary holds true up to the tensor level (N − 1) for some N ≥ 3. Then, for any
n, k < N we have by applying Itô’s formula�

κκκ (n) , κκκ (k )
�
t
=

d∑
i=1

∫ t∧τΓ

0
(∂iF(n) (Bu )) ⊗ (∂iF(k ) (Bu )) du, t ≥ 0,

and �
X, κκκ (n)

�
t
=

d∑
i=1

∫ t∧τΓ

0
e i ⊗ (∂iF(n) (Bu )) du, t ≥ 0.

Further define the function G(N ) by the projection under πN of the right hand side of ( 33 ) multiplied by the factor 1/2. Then
applying  Theorem 4.1 to X(0,N ) on the probability space (Ω, F ,Ðx ) we see that it follows from the estimate ( 72 ) that there
exists a constant c > 0 such that

sup
x ∈Γ

Åx
{∫ τΓ

0

��G(N ) (Bu )�� du

}
≤ c sup

x ∈Γ
|||X(0,N ) |||H1,N (Ðx ) = c sup

x ∈Γ
Åx (τNΓ ) < ∞

Therefore it follows, from projecting ( 34 ) to level N and using the dominated convergence theorem to pass to theT →∞
limit, that κκκ (N ) is of the form

κκκ
(N )
t = 1{t<τΓ }F

(N ) (Bt ) with F(N ) (x ) B Åx
{∫ τΓ

0
G(N ) (Bu ) du

}
, x ∈ Γ.

Furthermore, by the assumption it also holds that Gw ∈ C 1 (Γ) for all w ∈ Wd , |w | = N . Therefore we can conclude
again with Theorem 9.3.3 in [ 46 ] that F w ∈ C 0 (Γ,Ò) ∩ C 2 (Γ,Ò) solves the Poisson equation with data g = Gw for all
wordsw with |w | = N . The statement then follows by induction. �

Example 6.3. For n ∈ {1, . . . , d }, letÄn be the open unit ball inÒn and define the (regular) domain Γ = Än×Òd−n ⊂ Òd .
Further note that it holds

τΓ = inf{t ≥ 0 | Bt < Γ} = inf{t ≥ 0 | | (B1t , . . . ,Bnt ) | ≥ 1}.

Hence we readily see that τΓ satisfies the condition ( 32 ). Applying  Corollary 6.2 it follows that the signature cumulant of the
Brownian motion B up to the exit of the domain Γ is of the form κκκ t = 1{t<τΓ }F(Bt ), where F satisfies the PDE ( 33 ). Recall
that F(1) ≡ 0 and projecting to the second level we see that

−∆F(2) (x ) = Id , x ∈ Γ; F(2) |∂Γ ≡ 0.

The unique bounded solution the above Poisson equation is given by

F(2) (x ) = 1

2
Id

(
1 −

n∑
i=1

x 2i

)
, x ∈ Γ.

More generally, we see that the Poisson equation ∆u = −g on Γ with zero boundary condition, where g : Γ → Ò is a
polynomial in the first n-variables, has a unique bounded solution u which is also a polynomial of the first n-variables of
degree deg(u) = deg(g ) + 2 and has the factor (1 − ∑n

i=1 x
2
i ) (see Lemma 3.10 in [ 37 ]). Hence it follows inductively

that each component of F(n) is a polynomial of degree n with the factor (1 − ∑n
i=1 x

2
i ). The precise coefficients of the

polynomial can be obtained as the solution to a system of linear equations recursively derived from the forcing term in ( 33 ).
This is similar to [ 37 , Theorem 3.5], however we note that a direct conversion of the latter result for the expected signature to
signature cumulants is not trivially seen to yield the same recursion and requires combinatorial relations as studied in [ 5 ]. ♦
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6.2. Lévy and diffusion processes. Let X ∈ S(Òd ) and throughout this section assume that the filtration (Ft )0≤t ≤T is
generated by X . Denote by εa the Dirac measure at point a ∈ Òd , the random measure µX associated to the jumps of X
is an integer-valued random measure of the form

µX (ω; dt , dx ) B
∑
s≥0

1{∆Xs (ω),0}ε (s,∆Xs (ω)) (dt , dx ).

There is a version of the predictable compensator of µX , denoted by ν, such that the Òd -valued semimartingale X is
quasi-left continuous if and only if ν (ω, {t } × Òd ) = 0 for all ω ∈ Ω, see [ 28 , Corollary II.1.19]. In general, ν satisfies
( |x |2 ∧ 1) ∗ ν ∈ Aloc, i.e. locally of integrable variation. The semimartingale X admits a canonical representation (using
the usual notation for stochastic integrals with respect to random measures as introduced e.g. in [ 28 , II.1])

X = X0 + B (h) + X c + (x − h (x )) ∗ µX + h (x ) ∗ (µX − ν), (35)

where h (x ) = x1 |x | ≤1 is a truncation function (other choice are possible.) Here B (h) is a predictable Òd -valued process
with components in V and X c is the continuous martingale part of X .

Denote by C the predictable Òd ⊗ Òd -valued covariation process defined as C i j B 〈X i ,c ,X j ,c〉. Then the triplet
(B (h),C , ν) is called the triplet of predictable characteristics of X (or simply the characteristics of X ). In many cases
of interest, including the case of Lévy and diffusion processes discussed in the subsection below, we have differential
characteristics (b, c,K ) such that

dBt = bt (ω)dt , dCt = ct (ω)dt , ν (dt , dx ) = Kt (dx ;ω)dt ,
where b is a d -dimensional predictable process, c is a predictable process taking values in the set of symmetric non-
negative definite d × d -matrices and K is a transition kernel from (Ω ×Ò+,Bd ) into (Òd ,Bd ). We call such a process Itô
semimartingale and the triplet (b, c,K ) its differential (or local) characteristics. This extends mutatis mutandis to an T N0
(and then T0) valued semimartingale X, with local characteristics (b, c,K).

While every Itô semimartingale is quasi-left continuous it is in general not true that κκκ is continuous (with the notable exception
of time-inhomogeneous Lévy processes discussed below) and therefore there is no significant simplification of the functional
equation ( 21 ) in these general terms. The following example illustrates this point in more detail.

Example 6.4. Take X ∈ S(Òd ) and then d = 1, so that we are effectively in the symmetric setting. In this case
êxp(κκκ t (T )) = Åt (êxp(XT − Xt )), in the power series sense of enlisting all moments with factorial factors. These can
also be obtained by taking higher order derivatives at u = 0 of Åt (eu (XT −Xt ) ), now with the classical calculus interpretation
of the exponential. The important class of affine models satisfies

Åt (euXT −uXt ) = exp(φ (T − t ,u) + (Ψ(T − t ,u) − u)Xt )
In the Levy-case, we have the trivial situation Ψ(·,u) ≡ u , but otherwise (φ,Ψ) solve (generalized) Riccati equations and
are in particular continuous inT − t . We see that, in non-trivial situations, the log of Åt (euXT −uXt ) and any of its derivatives
will jump when X jumps. In particular, κt (T ) will not be continuous in t , even if X is quasi-left continuous. Let us note in
this context that, in the general non-commutative setting and directly from definition of κκκ,

exp(κκκ t−) = Åt− (exp(∆Xt ) exp(κκκ t )) = Åt− (expκκκ t )
where the second equality holds true under the assumption of quasi-left continuity of X . If we assume for a moment
Ft− = Ft , then we could conclude that κκκ t− = κκκ t and hence (right-continuity is clear) that κκκ t is continuous in t . Since we
know that this fails beyond Lévy processes, if follows that such left continuity of filtrations is not a good assumption, at least
not beyond Lévy processes. ♦

6.2.1. The case of time-inhomogeneous Lévy processes. We consider now a d -dimensional time-inhomogeneous Lévy
processes of the form

Xt =

∫ t

0
b (u) du +

∫ t

0
σ (u) dBu +

∫
(0,t ]

∫
|x | ≤1

x (µX − ν) (ds, dx ) +
∫
(0,t ]

∫
|x |>1

x µX (ds, dx ), (36)

for all 0 ≤ t ≤ T , with b ∈ L1 ( [0,T ], R d ), σ ∈ L2 ( [0,T ],Òm×d ), B a d -dimensional Brownian motion, µX is
an independent inhomogeneous Poisson random measure with the intensity measure ν on [0,T ] × Òd , such that
ν (dt , dx ) = Kt (dx )dt with Lévy measures Kt , i.e. Kt ({0}) = 0, and∫ T

0

∫
Òd
( |x |2 ∧ 1)Kt (dx )dt < ∞,

and measurability of t ↦→ Kt (A) ∈ [0,∞], any measurable A ⊂ Òd . Consider further the condition∫ T

0

∫
Òd
|x |N 1 |x |>1Kt (dx ) < ∞, (37)
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for some integer N ∈ Î≥1. The Brownian case ( 30 ) then generalizes as follows.

Corollary 6.5. Let X be an inhomogenous Lévy process of the form ( 36 ), such that the family of Lévy measures
{Kt }t>0 satisfy the moment condition ( 37 ) for all N ∈ Î≥1. Then X ∈ H∞− (Òd )and the signature cumulant κκκ t B
log(Åt (Sig(X )t ,T )) satisfies the following integral equation

κκκ t =

∫ T

t
H (adκκκu ) (y(u)) du, 0 < t ≤ T , (38)

where a (t ) = σ (t )σ (t )T ∈ Òd ⊗ Òd ⊂ T0 and

y(t ) B b (t ) + 1
2
a (t ) +

∫
Òd
(exp(x ) − 1 − x1 |x | ≤1)Kt (dx ) ∈ T0. (39)

In case the Lévy measures {Kt }t>0 satisfy the condition ( 37 ) only up to some finite level N ∈ Î≥1, we have X ∈ HN and
the identity ( 38 ) holds for the truncated signature cumulant in T N0 .

Remark 6.6. Corollary  6.5 extends a main result of [ 19 ], where a Lévy-Kintchin type formula was obtained for the expected
signature of Lévy processes with triplet (b, a,K ). Now this is an immediate consequence of ( 38 ), with all commutators
vanishing in time-homogeneous case, and explicit solution

κκκ t (T ) = (T − t )
(
b + 1

2
a +

∫
Òd
(exp(x ) − 1 − x1 |x | ≤1)K (dx )

)
.

Proof. Assume that the Lévy measures {Kt }t>0 satisfy the condition ( 37 ) for some N ∈ Î≥1. We will first show that
X ∈ HN (Òd ). Note that the decomposition ( 36 ) naturally yields a semimartingale decomposition X = M + A, where the
local martingale M and the adapted bounded variation process A are defined by

M =

∫ ·

0
σ (u) dBu + (x1 |x | ≤1) ∗ (µX − ν), A =

∫ ·

0
b (u) du + (x1 |x |>1) ∗ µX .

Regarding the integrability of the 1-variation of A we have first note that it holds

|A |1−var;[0,T ] =

∫ T

0
|b (u) | du + (|x |1 |x |>1) ∗ µXT .

Define the increasing, piecewise constant processV B (|x |1 |x |>1) ∗ µX . Since b is deterministic and integrable over the
interval [0,T ] it suffices to show thatVT has finite N th moment. To this end, note that it holds

Å(VT ) =
∫ T

0

∫
|x |>1
|x |Kt (dx )dt < ∞.

Further it holds for any n ∈ {1, . . . ,N } that

V n
T =

∑
0<t ≤T

(
V n
t −V n

t−
)
=

∑
0<t ≤T

n−1∑
k=0

(
n

k

)
V k
s− (∆Vs )n−k

and by definition ∆Vt = |∆Xt |1 |∆Xt |>1. Now let n = 2 and k ∈ {0, . . . , n − 1} then we have

Å

( ∑
0<t ≤T

V k
s− (∆Vs )n−k

)
= Å

(∫ T

0

∫
|x |>1

V k
s− |x |n−kKt (dx )dt

)
≤ Å

(
V k
T

) ∫ T

0

∫
|x |>1
|x |n−kKt (dx )dt < ∞.

It then follows inductively that Å(V n
T ) is finite for all n = 1, . . . ,N and hence that the 1-variation of A has finite N -th

moment.

Concerning the integrability of the quadratic variation of M , letw ∈ {1, . . . , d }, then it is well known that (see e.g. [ 28 , Ch.
II Theorem 1.33]) 〈

(xw1 |x | ≤1) ∗ (µX − ν)
〉
T
= (xw )21 |x | ≤1 ∗ νT ,

where 〈M 〉 denotes the dual predictable projection (or compensator) of [M ]. Further using that the compensated martingale
(x1 |x | ≤1) ∗ (µX − ν) is orthogonal to continuous martingales, we have

〈Mw 〉T =
∫ T

0
aww (t )dt +

∫ T

0

∫
|x | ≤1
(xw )2Kt (dx )dt < ∞.
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Now let q ∈ [1,∞), then from Theorem 8.2.20 in [ 11 ] we have the following estimation

Å
(
[Mw ]qT

)
≤ c Å

(
〈Mw 〉qT + sup

0≤t ≤T
(∆Mw

t )2q
)
≤ c

(
〈Mw 〉qT + 1

)
< ∞,

where c > 0 is a constant depending on q .

We have shown that X = (0,X , 0, . . . , 0) ∈ H1,N and it follows from  Theorem 4.1 that the signature cumulant κκκ t =
log(Åt (Sig(X)t ,T )) satisfies the functional equation ( 21 ). On the other hand, it follows from the condition ( 37 ) that y in ( 39 )
is well defined. Now define κ̃κκ = (κ̃κκ t )0≤t ≤T by the identity ( 38 ). Noting that κ̃κκ is deterministic and has absolutely continuous
components it is easy to see that κ̃κκ also satisfies the functional equation ( 21 ) for the semimartingale X . It thus follows that
κκκ and κ̃κκ are identical. �

6.2.2. Markov jump diffusions. The generator of a general Markov jump diffusion X is given by

Lf (x ) =
∑
i

b i (x )∂i f (x ) +
∑
i ,j

a i j (x )∂i ∂j f (x ) +
∫
Òd

(
f (x + y ) − f (x ) − 1 |y | ≤1

∑
i

y i ∂i f (x )
)
K (x , dy ), (40)

where the summations are over i , j ∈ {1, . . . , d }, b : Òd → Òd and a : Òd → Òd ⊗ Òd (symmetric, positive definite)
are bounded Lipschitz, K is a Borel transition kernel from Òd into Òd with K (·, {0}) ≡ 0 and

sup
x ∈Òd

∫
Òd
( |y |2 ∧ 1)K (x , dy ) < ∞.

Note that (the law of) X is the unique solution to the martingale problem associated to L. That said, the extensions to
Markov processes with differential characteristics (b(t , x ), a(t , x ),K (t , x , dy )), with associated local Lévy generators [ 49 ]
is mostly notational. For the construction of general jump diffusions and their semimartingale characteristics see e.g. [  28 , Ch.
III.2.c] and [ 27 , XIII.3].

The expected signature of X was seen in [ 19 ] (in [ 45 ] for the continuous case) to satisfy a system of (linear) partial
integro-differential equations (PIDEs). Passage to signatures cumulants amounts to take the logarithm, which represents a
non-commutative Cole–Hopf transform, with resulting quadratic non-linearity, if viewed as T1-valued PIDE, resolved thanks
to the graded structure so that again a system of (linear) PIDEs arises. In the proof of the following corollary we will show
how this PIDE can be derived from  Theorem 4.1 .

Corollary 6.7. Let X be a d -dimensional Markov diffusion with generator given by ( 40 ), where the transition kernel K have
uniformly bounded moments of all orders, i.e.

sup
x ∈Òd

(∫
Òd
|y |nK (x , dy )

)
< ∞, n ∈ Î. (41)

Then X ∈ H∞− and the signature cumulant is of the form

κκκ t (T ) = v(t ,Xt ;T ) = v(t ,Xt ),

where v =
∑
w vw ew is the unique solution with vw ∈ C 1,2

b
( [0,T ] × Òd ;Ò) for all w ∈ Wd of the following partial

integro-differential equation

− [∂t + L]v = H (ad v)
{
b + 1

2
a + 1

2

∑
i ,j

ai jQ (ad v) (∂i v ⊗ ∂j v) +
∑
i ,j

ai j e jG (ad v)∂i v
}

+
∫
Òd

{
H (ad v)

(
exp(y ) exp(v ◦ τy ) exp(−v) − 1 − 1 |y | ≤1y

)
−

(
v ◦ τy − v

)}
K (·, dy ),

(42)

on [0,T ] ×Òd with terminal condition v(T , ·) ≡ 0, where τy (t , x ) = (t , x + y ).

Proof. First note that X has the semimartingale characteristics (B ,C , ν) where (see [ 27 , XIII.3])

dBt = b(Xt−)dt , dCt = a(Xt−)dt , ν (dt , dx ) = dtK (Xt−, dx ),

with respect to the truncation function h (x ) = 1 |x | ≤1. Further denote by µX the random measure associated with the jumps
of X and recall the canonical representation ( 35 ). We can easily verify that the boundedness of b and a, and the moment
condition ( 41 ) implies that X = (0,X , 0, . . . ) ∈ H∞− (compare also with the proof of  Corollary 6.5 ). It then follows from

 Theorem 4.1 that κκκ (T ) = (Åt (Sig(X)t ,T ))0≤t ≤T is the unique solution to the functional equation ( 21 ).

Now assume that v is the (unique) solution to the above PIDE with vw ∈ C 1,2
b
( [0,T ] × Òd ;Ò) for all w ∈ Wd (this

is really an infinite-dimensional system of linear PIDEs, solved inductively upon projection to the linear span of ew with
|w | ≤ ` , for ` ∈ Î≥1, see that standard results as found in [ 12 , Section 12.2] and references therein apply). Then define
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κ̃κκ ∈ S(T0) by κ̃κκ t B v(t ,Xt ) for all 0 ≤ t ≤ T and note that κ̃κκ t− = v(t ,Xt−). We are going to show that also κ̃κκ also
satisfies the functional equation ( 21 ).

Since X solves the martingale problem with generator L and v is sufficiently regular it holds

κ̃κκ t = −Åt
(
v(T ,XT ) − v(t ,Xt )

)
= Åt

(
−

∫ T

t
[∂t + L]v(u,Xu−)du

)
. (43)

On the other hand, we can plug in κ̃κκ into the right-hand side of ( 21 ). We then obtain for the first integral inside the conditional
expectation ∫

(0,t ]
H (ad κ̃κκu−) (dXu ) =

∫
(0,t ]

H (ad κ̃κκu−) (dBu + dX c
u ) +W ∗ (µX − ν)t +W ∗ µXt ,

where

Wt (y ) B H (ad κ̃κκ t−) (h (y )), and Wt (y ) B H (ad κ̃κκ t−) (y − h (y )),

for all 0 ≤ t ≤ T and y ∈ Òd . Similarly we have∑
0<u≤t

{
H (ad κ̃κκu−)

(
exp(∆Xu ) exp(κ̃κκu ) exp(−κ̃κκu−) − 1 − ∆Xu

)
− ∆κ̃κκu

}
= J ∗ µXt ,

where 0 ≤ t ≤ T and y ∈ Òd

Jt (y ) B
{
H (ad v)

(
exp(y ) exp(v ◦ τy ) exp(−v) − 1 − y

)
− (v ◦ τy − v)

}
(t ,Xt−).

Finally for the quadratic variation terms with respect to continuous parts we have

Ut B

∫ t

0
H (ad κ̃κκu−)

{
d〈X〉u +

(
Id � G (ad κ̃κκu−)

) (
dÈXc , κ̃κκcÉu

)
+ Q (ad κ̃κκu−)

(
dÈκ̃κκc , κ̃κκcÉu

)}
=

∑
i ,j

∫ t

0
ai jH (ad v)

{
e i j + (Id � G (ad v)) (e i ⊗ ∂j v) + Q (ad v) (∂i v ⊗ ∂j v)

}
(t ,Xu−)du

C

∫ t

0
H (ad v) (u(u,Xu−))du .

Provided that we can show the following integrability property holds for all wordsw ∈ Wd

Å
( ∫ T

0

��{H (ad κ̃κκu−) (b(Xu−) + u(u,Xu−))
}w ��du + (

|Ww |2 + |Ww | + |Jw |
)
∗ νT

)
< ∞, (44)

it follows that

Åt
{ ∫
(t ,T ]

H (ad κ̃κκu−) (dXu ) + Ut ,T + J ∗ µXt ,T
}

= Åt
{ ∫ T

t
H (ad κ̃κκu−) (dBu ) + Ut ,T + (J −W) ∗ νt ,T

}
= Åt

{ ∫
(t ,T ]

(
H (ad v)

(
b(Xu−) + u(u,Xu−)

)
+

∫
Òd
(Ju (y ) −Wu (y ))K (Xu−, dy )

)
du

}
= Åt

(
−

∫ T

t
[∂t + L]v(u,Xu−)du

)
.

where in the last line we have used v satisfies the PIDE. Since the above left-hand side is precisely the right-hand side of
the functional equation ( 21 ), it follows together with ( 43 ) that κ̃κκ satisfies the functional equation ( 21 ).

Note that in case the integrability condition ( 44 ) is satisfied for all wordsw ∈ Wd with |w | ≤ n for some length n ∈ Î≥1
it follows that the above equality holds up to the projection with π (0,n) . For words with |w | = 1 the condition ( 44 ) is an
immediate consequence of X ∈ H∞−. It then follows inductively, by the same arguments as in the proof of  Claim 7.12 that
( 44 ) is indeed satisfied for all wordsw ∈ Wd .

Since κκκ (T ) is the unique solution to ( 21 ) it then follows that κ̃κκ ≡ κκκ (T ).

�
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6.3. Affine Volterra processes. For i = 1, 2 let K i be an integration kernel such that K i (t , ·) ∈ L2 ( [0, t ]) for all
0 ≤ t ≤ T and letV i be the solution to the Volterra integral equation

V i
t =V

i
0 +

∫ t

0
K i (t , s)

√
V i
s dW i

s , 0 ≤ t ≤ T ,

withV i
0 > 0, whereW 1 andW 2 are uncorrelated standard Brownian motions which generate the filtration (Ft )0≤t ≤T .

Note that in generalV i is not a semimartingale. In particular this is not the case when K i is a power-law kernel of the form
K (t , s) ∼ (t − s)H−1/2 for some H ∈ (0, 1/2), which is the prototype of a rough affine volatility model (see e.g. [ 31 ]).
However, a martingale ξi (T ) is naturally associated toV i by

ξit (T ) = Åt (V i
T ), 0 ≤ t ≤ T .

In the financial context, ξi (T ) is the central object of a forward variance model (see e.g. [ 22 ]). It was seen in [ 17 ] that the
iterated diamond products of ξ1 (T ) are of a particularly simple form and easily translated to a system of convolutional
Riccati equations of the type studied in [  1 ], [ 22 ] for the cumulant generating function. We are interested in the signature
cumulant of the two dimensional martingale X = (ξ1 (T ), ξ2 (T )).

Corollary 6.8. It holds that X = (0, ξ1 (T )e1 + ξ2 (T )e2, 0, . . . ) ∈ H∞− and the signature cumulant κκκ t (T ) =
logÅt (Sig(X)t ,T ) is the unique solution to the functional equation: for all 0 ≤ t ≤ T

κκκ t (T ) = −Åt
(
1

2

∑
i=1,2

∫ T

t
H (adκκκu ) (e i i )K i (T ,u)2V i

u du + 1
2

∫ T

t
H (adκκκu ) ◦ Q (adκκκu ) (d(κκκ�κκκ)u (T ))

+
∑
i=1,2

∫ T

t
H (adκκκu )

{
e iG (adκκκu )

(
d(ξi (T ) � κκκ)u (T )

)})
.

Proof. Regarding the integrability statement it suffices to check thatV i
T has moments of all order for i = 1, 2. This is indeed

the case and we refer to [ 1 , Lemma 3.1] for a proof. Hence we can apply  Theorem 4.1 and we see that κκκ satisfies the
functional equation ( 21 ). As described in  Section 4.1 this equation can be reformulated with brackets replaced by diamonds.
Further note that, due to the continuity, jump terms vanish and, due to the martingality, the Itô integrals with respect to X
have zero expectation. The final step to arrive at the above form of the functional equation is to calculated the brackets
〈ξi (T ), ξj (T )〉. From the definition ξi (T ) andV i we have for all 0 ≤ t ≤ T

ξit (T ) = Åt
(
V i
0 +

∫ t

0
K i (T , s)

√
V i
s dW i

s +
∫ T

t
K i (t , s)

√
V i
s dW i

s

)
=V i

0 +
∫ t

0
K i (T , s)

√
V i
s dW i

s .

Therefore and due to the independence we have 〈ξ1 (T ), ξ2 (T )〉 = 0 and for the square bracket we have d〈ξi (T ), ξi (T )〉t =
K i (T , t )2V i

t dt . �

The recursion for the signature cumulants from  Corollary 4.3 are easily simplified in analogy to the above corollary. In the
rest of this section we are going to demonstrate explicit calculations for the first four levels. Clearly, due to the martingality
the first level signature cumulants are identically zero κκκ (1) (T ) ≡ 0. In the second level we start to observe the type of
simplifications that appear due to the affine structure

κκκ
(2)
t (T ) =

1

2

∑
i=1,2

e i i (ξi (T ) � ξi (T ))t (T ) =
1

2

∑
i=1,2

e i iÅt

(∫ T

t
K i (T ,u)2V i

u du

)
=
1

2

∑
i=1,2

e i i

∫ T

t
K i (T ,u)2ξit (u)du,

where ξit (u) = Åt (V i
u ) for all 0 ≤ t ≤ u ≤ T . The third level is of the same form

κκκ
(3)
t (T ) =

1

2

∑
i=1,2

e i (ξi (T ) � κκκ (2) (T ))t (T )

=
1

2

∑
i=1,2

e i i i

∫ T

t

(∫ T

u
K i (T , s)2K i (T ,u)K i (s,u)ds

)
ξi (u)du,

where we have used that for any suitable h : [0,T ] → Ò it holds for all 0 ≤ t ≤ T∫ T

t
h (u)ξit (u)du =

∫ T

0
h (u)V i

0du −
∫ t

0
h (u)V i

u du +
∫ t

0

(∫ T

u
h (s)K i (s,u)ds

)√
V i
u dW i

u .
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The fourth level starts to reveal some of the structure that is not visible in the commutative setting

κκκ
(4)
t (T ) =

∑
i=1,2

{
1

8
[e ī ī , e i i ]

∫ T

t

(∫ T

u
K ī (T , s)ξ ī ds

)
K i (T ,u)2ξit (u)du + e i i i i

∫ T

t
hi (T ,u)ξit (u)du

}
,

where {i , ī } = {1, 2} and hi is defined by

hi (T ,u) =1
8

(∫ T

u
K i (T , s)2K i (u, s)ds

)2
+ 1
2

∫ T

u

(∫ T

s
K i (T , r )2K i (T , s)K i (r , s)dr

)
K i (T , s)K i (s,u)ds, 0 ≤ u ≤ T .

7. PROOFS

For ease of notation we introduce a norm on the space of tensor valued finite variation process, which could have been
introduced already in  Section 2.3 , was however not needed until now. Let q ∈ [1,∞) and A ∈ V ((Òd )⊗n ) for some
n ∈ Î≥1 then we define

‖A‖ Vq B ‖A‖ Vq ( (Òd )⊗n ) B


|A|1−var;[0,T ]




Lq .

It is easy to see that it holds ‖A‖Hq ≤ ‖A‖ Vq and this inequality can be strict.

Further for an element Á ∈ T ⊗ T we introduce the following notation

Á =
∑

w1,w2∈Wd

Áw1,w2 ew1⊗ ew2 , Áw1,w2 ∈ Ò,

and for l1, l2 ∈ Î≥1
Á(l1,l2) =

∑
|w1 |=l1, |w2 |=l2

ew1w2 ⊗ Áw1,w2 ∈ (Òd )⊗l1 ⊗ (Òd )⊗l2 ⊂ T ⊗ T .

Next we will proof two well known lemmas translated to the setting of tensor valued semimartingales.

Lemma 7.1 (Kunita-Watanabe inequality). Let X ∈ S((Òd )⊗n ) and Y ∈ S((Òd )⊗n ) then the following estimate holds
a.s.

|〈Xc , Yc〉|1−var;[0,T ] +
∑
0<t ≤T

|∆Xt∆Yt | ≤
∑
|w1 |=n

√
[Xw1 ]T

∑
|w2 |=m

√
[Yw2 ]T

≤ c
√
| [X]T |

√
| [Y]T |,

where c > 0 is a constant that only depends on d , m and n .

Proof. From the definition of the quadratic variation of tensor valued semimartingales in  Section 2.3 we have

|〈Xc , Yc〉|1−var;[0,T ] +
∑

0<s≤T
|∆Xs∆Ys | ≤

∑
|w1 |=n, |w2 |=m

∫ T

0
|d〈Xw1c , Yw2c〉s | +

∑
0<s≤T

��∆Xw1s ∆Yw2s
��

≤
∑

|w1 |=n, |w2 |=m

√
[Xw1 ]T

√
[Yw2 ]T

≤ d (n+m)/2
√ ∑
|w1 |=n

[Xw1 ]T
√ ∑
|w2 |=m

[Yw2 ]T

≤ d n+m | [X]T | | [Y]T |,
where the first estimate follows form the triangle inequality, the second estimate from the (scalar) Kunita-Watanabe
inequality [ 47 , Ch. II, Theorem 25] and the last two estimates follow from the standard estimate between the 1-norm and the
2-norm on (Òd )⊗m � Òd

m
. �

In order to proof the next well known lemma (Emery’s inequality) we need the following technical

Lemma 7.2. Let A ∈ V ((Òd )⊗m ), Y ∈ D((Òd )⊗l ), Z ∈ D((Òd )⊗m ) then it holds����∫
(0, ·]

Ys−dAsZs−

����
1−var;[0,T ]

≤
∫
(0,T ]
|Ys−Zs− | |dAs |
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where the integration with respect to |dA| denotes the integration with respect to the increasing one-dimensional path
( |A|1−var;[0,t ])0≤t ≤T . Further, let Y′ ∈ D((Òd )⊗l ′), Z′ ∈ D((Òd )⊗m′) and let (Át )0≤t ≤T be a process taking values in

(Òd )⊗m ⊗ (Òd )⊗m′ such that Aw1,w2 ∈ V for allw1,w2 ∈ Wd with |w1 | = m andw2 = m ′. Then it holds����∫
(0, ·]
(Ys−IdY′s−) � (Zs−IdZ′s−) (dÁs )

����
1−var;[0,T ]

≤
∫
(0,T ]
|YY′ZZ′ |s− |dm (Á)s |,

where (YIdY′) (A) = YAY′ is the left- respectively right-multiplication by Y respectively Y′.

Proof. Let 0 ≤ s ≤ t ≤ T then it holds����∫
(s,t ]

Yu−dAuZu−

���� ≤ ∫
(s,t ]
|Yu−Zu− | |dAu |.

Indeed, as it follows e.g. from [  50 , Theorem on Stieltjes integrability], we can approximate the integral in the left-hand side
by Riemann sums. Then for a partition (t i )i=1,...,k of the interval [s, t ] we have�����k−1∑

i=1

Yt i− (At i+1 − At i )Zt i−

����� ≤ k−1∑
i=1

��Yt i− (At i+1 − At i )Zt i−
�� ≤ k−1∑

i=1

��Yt i−Zt i−
����At i+1 − At i

��,
where the last inequality follows from the fact that for homogeneous tensors x ∈ (Òd )⊗m and y ∈ (Òd )⊗n it holds that
|xy| = |yx| ≤ |x| |y|. Regarding the 1-variation we then have����∫

(0, ·]
Ys−dAsZs−

����
1−var;[0,T ]

= sup
0≤t1≤···≤tk ≤T

k∑
i=1

����∫
(t i ,t i+1 ]

Ys−dAsZs−

����
≤ sup
0≤t1≤···≤tk ≤T

k∑
i=1

∫
(t i ,t i+1 ]

|Ys−Zs− | |dAs |

=

∫
(0,T ]
|Ys−Zs− | |dAs |.

Regarding the second statement we see that for any 0 ≤ s ≤ t ≤ T we have����∫
(s,t ]
(Yu−IdY′u−) � (Zu−IdZ′u−) (dÁu )

���� ≤ ∫
(s,t ]
|YY′ZZ′ |u− |dm (Á)u |

Indeed, we approximate the integral in the right-hand side again by a Riemann sum. Then for a partition (t i )i=1,...,k of the
interval [s, t ] then we have�����k−1∑

i=1

(Yt i−IdY′t i−) � (Zt i−IdZ′t i−) (Át i+1 −Át i )
�����

≤
k−1∑
i=1

������ ∑
|w1 |=m, |w2 |=m′

Yt i−ew1Y
′
t i−Zt i−ew2Z

′
t i− (At i+1 − At i )

������
≤
k−1∑
i=1

��Yt i−Y′t i−Zt i−Z′t i−
����m (Át i+1 ) −m (Át i )��,

where the last inequality follows from the definition of the norm on (homogeneous) tensors and the definition of the
multiplication map m. We conclude analogously to the proof of the first statement. �

Lemma 7.3 (Emery’s inequality). Let X ∈ S((Òd )⊗n ), Y ∈ D((Òd )⊗l ) and Z ∈ D((Òd )⊗m ) then for p, q ∈ [1,∞) and
1/r = 1/p + 1/q it holds



∫

(0, ·]
Ys−dXsZs−






Hr ( (Òd )⊗(l+n+m) )

≤ c‖YZ‖Sq ( (Òd )⊗(l+m) ) ‖X‖Hp ( (Òd )⊗n ) ,

where c > 0 is a constant the only depends on d and m.
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Proof. Let X = X0 + M + A be a semimartingale decomposition with M0 = A0 = 0. Then it follows by definition of the
Hr -norm and the above  Lemma 7.2 



∫

(0, ·]
Ys−dXsZs−






Hr

≤





����∫(0,T ] (Ys−IdZs−)�2dÈM,MÉs

����1/2 + ����∫
(0, ·]

Ys−dAsZs−

����
1−var;[0,T ]







Lr

≤





����∫(0,T ] ��(Ys−Zs−)2

��|d[M]s |����1/2 + ∫
(0,T ]
|Ys−Zs− | |dAs |







Lr

≤




 sup
0≤s≤T

|YsZs |
(
| [M]T |

1/2
1−var;[0;T ] + |A|1−var;[0,T ]

)




Lr

≤ c‖YZ‖Sq



| [M]T | + |As |1−var;[0,T ]



Lp ,

where we have used the generalized Hölder inequality and the Kunita-Watanabe inequality ( Lemma 7.1 ) to get to the last
line. Taking the infimum of over all semimartingale decomposition M + A yields the statement. �

The following technical lemma will be used in the proof of both  Theorem 3.2 and  Theorem 4.1 .

Lemma 7.4. Let X, Y ∈ S(T N ), N ∈ Î≥1, q ∈ [1,∞) and assume that there exists a constant c > 0 such that

‖Y(n) ‖HqN /n ≤ c
∑
‖` ‖=n
‖X(l1) ‖HqN /l1 · · · ‖X(l j ) ‖HqN /l j , n = 1, . . . ,N ,

where the summation is over ` = (l1, . . . , l j ) ∈ (Î≥1)j , j ∈ Î≥1, ‖` ‖ = l1 + · · · + l j . Then there exists a constant C > 0,
depending only on c and N , such that

|||Y|||Hq ,N ≤ C |||X|||Hq ,N .

Proof. Note that for any n ∈ {1, . . . ,N } it holds( ∑
‖` ‖=n
‖X(l1) ‖HqN /l1 · · · ‖X(l j ) ‖HqN /l j

)1/n
≤

∑
‖` ‖=n
(‖X(l1) ‖1/l1

HqN /l1
) l1/n · · · (‖X(l j ) ‖1/l j

H
qN /l j
) l j /n

≤
∑
‖` ‖=n

(
l1
n
‖X(l1) ‖1/l1

HqN /l1
+ · · · + l1

n
‖X(l j ) ‖1/l j

H
qN /l j

)
≤cn

n∑
i=1

‖X(i ) ‖1/i
HqN /i ,

where cn > 0 is a constant depending only on n and second inequality follows from Young’s inequality for products. Hence
by the above estimate and the assumption we have

|||Y|||Hq ,N =
N∑
n=1

‖Y(n) ‖1/n
HqN /n ≤ c1/ncn

N∑
n=1

n∑
i=1

‖X(i ) ‖1/i
HqN /i ≤ C |||X|||Hq ,N ,

where C > 0 is a constant depending only on c and N . �

7.1. Proof of  Theorem 3.2 .

Proof. Denote by S = (Sig(X)0,t )0≤t ≤T the signature process. We will first proof the upper inequality, i.e. that there exists
a constant C > 0 depending only on d , N and q such that

|||S|||Hq ,N ≤ C |||X|||Hq ,N . (45)

According to  Lemma 7.4 it is sufficient to show that for all n ∈ {1, . . . ,N } it holds

cn ‖S(n) ‖HqN /n ≤
∑
‖` ‖=n
‖X(l1) ‖HqN /l1 · · · ‖X(l j ) ‖HqN /l j C ρnX (46)

where cn > 0 is a constant (depending only on q , d and n). Note that it holds∑
‖` ‖=n |` | ≤2

ρ l2X ‖X
(l1) ‖HqN /l1 =

∑
‖` ‖=n, |` | ≤k

ρ lkX ‖X
(lk−1) ‖

H
qN /l j−1 · · · ‖X(l1) ‖HqN /l1 = ρ

n
X (47)

for any k ∈ {1, . . . ,N } and

ρnX ≤
∑
‖` ‖=n

ρ
l j
X ‖X

(l j−1) ‖
H

qN /l j−1 · · · ‖X(l1) ‖HqN /l1 ≤ c ′ρnX (48)
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where c ′ is a constant. We are going to proof ( 46 ) inductively.

For n = 1 we have S(1) = X(1) − X(1)0 = X(1) ∈ HqN and therefore the estimate follows immediately. Now, assume that
( 46 ) holds for all tensor levels up to some level n − 1 with n ∈ {2, . . . ,N }. We will denote by c ′, c ′′ > 0 constants that
only depend on n , d and q . Then we have from ( 15 )

S(n)t =
∑

‖` ‖=n, |` | ≤2

∫ t

0
S(l2)u− dX(l1)u +

∑
‖` ‖=n, 2≤ |` | ≤3

1

2

∫ t

0
S(l3)u− d〈X(l2)c , X(l3)c〉u

+
∑

‖` ‖=n, |` | ≥2

∑
0≤u≤t

S
(l j )
u−

∆X
(l j−1)
u · · ·∆X(l1)u

(j − 1)! .

For the first term in the above right-hand side we have by Emery’s inequality ( Lemma 7.3 ) the following estimate





 ∑
‖` ‖=n, |` | ≤2

∫ ·

0
S(l2)u− dX(l1)u








HqN /n

≤ c ′
∑

‖` ‖=n, |` | ≤2
‖S(l2) ‖SqN /l2 ‖X(l1) ‖HqN /l2 ≤ c ′′ρnX

where the last inequality follows from the induction claim and ( 47 ). Further, from the Kunita-Watanabe inequality ( Lemma 7.1 )
and the generalized Hölder inequality, it follows that for all l1, l2 ∈ Î≥1 with l1 + l2 ≤ n we have


〈X(l2)c , X(l1)c〉




VqN /(l1+l2 )
≤c ′‖X(l2) ‖HqN /l2 ‖X(l1) ‖HqN /l1

Then we have again by Emery’s inequality, the induction base and ( 47 ) that it holds





 ∑
‖` ‖=n, 2≤ |` | ≤3

∫ t

0
S(l3)u− d〈X(l2)c , X(l3)c〉u








HqN /n

≤ c ′ρnX .

Finally we have for the summation term





 ∑
‖` ‖=n, |` | ≥2

∑
0≤u≤t

S
(l j )
u−

∆X(l2)u · · ·∆X(lk )u

(j − 1)!








HqN /n

≤
∑

‖` ‖=n, |` | ≥2






 ∑
0≤u≤t

���S(lk )u−

������∆X(lk−1)u

��� · · · ���∆X(l3)u

������∆X(l1)u ∆X(l2)u

���





LqN /|w |

≤ c ′
∑

‖` ‖=n, |` | ≥2
‖S(lk ) ‖

S
qN /l1
∞
‖X(lk−1) ‖

S
qN /lk−1
∞

· · · ‖X(l3) ‖
S
qN /l3
∞






 ∑
0≤u≤t

���∆X(l1)u ∆X(l2)u

���





LqN /(l1+l2 )

≤ c ′′ρnX
with the last inequality follows again by the Kunita-Watanabe inequality and the induction basis. Thus we have shown that
( 46 ) holds for all n ∈ {1, . . . ,N }.

Now we will proof the lower inequality, i.e. that there exists a constant c > 0 depending only on d , N and q such that

c |||X|||Hq ,N ≤ |||S|||Hq ,N (49)

Therefore define X̄n B (0, X1, . . . , X(n) , 0, . . . , 0) and note that it holds

|||X̄1 |||Hq ,N = ‖X(1) ‖HqN = ‖S(1) ‖HqN ≤ |||S|||Hq ,N .

Now assume that it holds
|||X̄n−1 |||Hq ,N ≤ c ′ |||S|||Hq ,N

for some n ∈ {1, . . . ,N }. It follows from the definition of the signature that Snt = X(n)0,t + Sig(X̄n−1) (n)0,t and further we have
from the upper bound ( 45 ), which was already proven above, that

|||Sig(X̄n−1)0, · |||Hq ,N ≤ C |||X̄n−1 |||Hq ,N ≤ Cc ′ |||S|||Hq ,N

Then we have

|||X̄n |||Hq ,N = |||X̄n−1 |||Hq ,N + ‖X(n) ‖1/n
HqN /n

≤ c ′ |||S|||Hq ,N + ‖S(n) ‖1/n
HqN /n + ‖Sig(X̄n−1) (n)0, · ‖

1/n
HqN /n

≤ c ′ |||S|||Hq ,N + |||S|||Hq ,N + |||Sig(X̄n−1)0, · |||Hq ,N

≤ c ′′ |||S|||Hq ,N .

Therefore, noting that X̄N = X, the inequality ( 49 ) follows by induction. �
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7.2. Proof of  Theorem 4.1 . We prepare the proof of  Theorem 4.1 with a few more lemmas.

Lemma 7.5. Let N ∈ Î then we have the following directional derivatives of the truncated exponential map expN : T N0 →
T N1

(∂w expN ) (x) = G (ad x) (ew ) expN (x) = expN (x)G (− ad x) (ew ), x ∈ T N0 ,

(∂w ∂w ′ expN ) (x) = Q̃ (ad x) (ew ⊗ ew ′) expN (x), x ∈ T N0 ,

for all wordsw ,w ′ ∈ Wd ) with 1 ≤ |w |, |w ′ | ≤ N , where G is defined in ( 19 ) and for x, a, b ∈ T N0

Q̃ (ad x) (a ⊗ b) = G (ad x) (b)G (ad x) (a) +
∫ 1

0
τ [G (τ ad x) (b), eτ ad x (a)] dτ

=
N∑

n,m=0

(ad x)n (b)
(n + 1)!

(ad x)m (a)
(m + 1)! +

N∑
n,m=0

[(ad x)n (b), (ad x)m (a)]
(n +m + 2) (n + 1)!m!

.

Proof. The projections of the of the map expN : T N0 → T N1 to each tensor component is polynomial in the tensor

components of T N0 . Therefore the map is smooth and in particular the first and second order partial derivatives exist in all
directions. For the explicit form of the first order partial derivatives we refer to [ 21 , Theorem 7.23] for a proof. For the second
order derivatives we follow the proof of [ 29 , Lemma A.1]. Therefore let x ∈ T N0 andw ,w ′ arbitrary with 1 ≤ |w |, |w ′ | ≤ N .

Then we have by the definition of the partial derivatives in T N0 and the product rule

∂w (∂w ′ expN (x)) =
d

dt

(
G (ad x + t ew ) (ew ′) expN (x + t ew )

)���
t=0

=
d

dt
G (ad x + t ew ) (ew ′)

���
t=0

expN (x) +G (ad x) (ew ′)G (ad x) (ew ) expN (x).

From [ 21 , Lemma 7.22] it holds exp(ad x) (y ) = expN (x)y expN (−x) for all x, y ∈ T N0 and it follows further by
representing G in integral form that

d

dt
G (ad x + t ew ) (ew ′)

���
t=0

=
d

dt

( ∫ 1

0
exp(τ ad x + t ew ) (ew ′) dτ

)���
t=0

=

∫ 1

0

d

dt

(
expN (τ (x + t ew ))ew ′ expN (−τ (x + t ew ))

)���
t=0

dτ

=

∫ 1

0
τG (ad τx) (ew ) expN (τx)ew ′ expN (−τx) dτ

−
∫ 1

0
τ expN (τx)ew ′ expN (−τx)G (ad τx) (ew ) dτ

=

∫ 1

0
τ [G (τ ad x) (ew ), exp(τ ad x) (ew ′)] dτ .

Then the proof if finished after noting that∫ 1

0
τG (τ ad x) (ew ) exp(τ ad x) (ew ′) dτ =

∫ t

0
τ

N∑
n,m=0

(τ ad x)n
(n + 1)!

(τ ad x)m
m!

dτ

=

∫ t

0

N∑
n,m=0

(ad x)n
(n + 1)!

(ad x)m
m!

τ1+m+n dτ

=
N∑

n,m=0

(ad x)n (ad x)m
(n + 1)!m!(n +m + 2) .

�

Lemma 7.6. Let N ∈ Î≥1 and x ∈ T N0 , then it holds

Q̃ (ad x) (Á) = Q (ad x) (Á),

for all Á ∈ T N0 ⊗ T
N
0 with symmetric coefficients Áw1,w2 = Áw2,w1 .
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Proof. Let N ∈ Î≥1 and x ∈ T N0 be arbitrary. Then from the bilinearity of Q̃ (ad x) and the symmetry of Á we have, with
summation over all wordsw1,w2 with 1 ≤ |w1 |, |w2 | ≤ N ,

Q̃ (ad x) (Á) =
∑
w1,w2

Áw1,w2
N∑

n,m=0

( (ad x)n (ew2 )
(n + 1)!

(ad x)m (ew1 )
(m + 1)! +

[(ad x)n (ew2 ), (ad x)m (ew1 )]
(n +m + 2) (n + 1)!m!

)
=

∑
w1,w2

Áw1,w2
( N∑
n,m=0

(ad x)n (ew2 )
(n + 1)!

(ad x)m (ew1 )
(m + 1)!

+
(ad x)n (ew2 ) (ad x)m (ew1 ) − (ad x)m (ew1 ) (ad x)n (ew2 )

(n +m + 2) (n + 1)!m!

)
=

∑
w1,w2

Áw1,w2
( N∑
n,m=0

(ad x)n (ew1 )
(n + 1)!

(ad x)m (ew2 )
(m + 1)!

+
(ad x)n (ew1 ) (ad x)m (ew2 )
(n +m + 2) (n + 1)!m!

−
(ad x)n (ew1 ) (ad x)m (ew2 )
(m + n + 2) (m + 1)! n !

)
=

∑
w1,w2

Áw1,w2
N∑

n,m=0

(2m + 2)
(ad x)n (ew1 ) (ad x)m (ew2 )
(n + 1)!(m + 1)!(n +m + 2) (Á) = Q (ad x) (Á).

�

Lemma 7.7 (Itô’s product rule). Let X, Y ∈ S(T N1 ) for some N ∈ Î≥1, then it holds

XtYt − X0Y0 =

∫
(0,t ]
(dXu )Yu +

∫
(0,t ]

Xu (dYu ) + m(ÈX, YÉ0,T ), 0 ≤ t ≤ T .

Proof. The statement is an immediate consequence of the one-dimensional Itô’s product rule for càdlàg semimartingales
(e.g. [ 47 , Ch. II, Corollary 2]) and the definition of the outer bracket and the multiplication map in  Section 2.3 . �

Lemma 7.8. Let X ∈ S(T N0 ) for some N ∈ Î≥1, then it holds

expN (Xt ) − expN (X0) =
∫
(0,t ]

G (ad Xu−) (dXu ) expN (Xu−) +
∫ t

0
Q (ad Xu−) (dÈXc , XcÉu ) expN (Xu−)

+
∑
0<u≤t

(
expN (Xu ) − expN (Xu−) −G (ad Xu−) (∆Xu ) expN (Xu−)

)
,

for all 0 ≤ t ≤ T .

Proof. The projections of the of the map expN : T N0 → T N1 to each tensor component are polynomial in the tensor

components of T N0 and therefore the map is clearly smooth. Further T N0 is isomorphic to ÒD with D = d + · · · + dN and
we can apply the multidimensional Itô’s formula for càdlàg semimartingales (e.g. [ 47 , Ch. II, Theorem 32]) to obtain

expN (Xt ) − expN (X0) =
∑

1≤ |w | ≤N

∫
(0,t ]
(∂w expN ) (Xu−) dXwu

+ 1
2

∑
1≤ |w1 |, |w2 | ≤N

∫ t

0
(∂w1∂w2 expN ) (Xu−) d〈Xw1c , Xw2c〉u

+
∑
0<u≤t

(
expN (Xu ) − expN (Xu−) −

∑
1≤ |w | ≤N

(∂w expN ) (Xu−) (∆Xwu )
)

for all 0 ≤ t ≤ T . From  Lemma 7.5 we then have for the first integral term∑
1≤ |w | ≤N

∫
(0,t ]
(∂w expN ) (Xu−) dXwu =

∑
1≤ |w | ≤N

∫
(0,t ]

G (ad Xu−) (ew ) expN (Xu−) dXwu

=

∫
(0,t ]

G (ad Xu−) (dXu ) expN (Xu−),

and analogously ∑
1≤ |w | ≤N

(∂w expN ) (Xu−) (∆Xwu ) =
∑

1≤ |w | ≤N
G (ad Xu−) (∆Xu ) expN (Xu−).
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Moreover, from  Lemma 7.8 and the definition of the outer bracket in  Section 2.3 ∑
1≤ |w1 |, |w2 | ≤N

∫
(0,t ]
(∂w1∂w2 expN ) (Xu−)d〈Xw1c , Xw2c〉u =

∫ t

0
Q̃ (ad Xu−)(dÈXc , XcÉu ) expN (Xu−).

Since ÈXc , XcÉt ∈ T N0 ⊗ T
N
0 is symmetric in the sense of  Lemma 7.6 , we can replace Q̃ with Q in the above identity. �

Lemma 7.9. Let X ∈ S(T0) and let A ∈ V (T0). For any k ∈ Î≥1 and ` = (l1, . . . , lk ) ∈ (Î≥1)k it holds����∫ t

0

(
ad X(l2)u · · · ad X(lk )u

) (
dA(l1)u

)���� ≤ 2k−1 ∫ t

0

���X(l2)u · · · X(lk )u

������dA(l1)u

���,
for all 0 ≤ t ≤ T . Furthermore, let (Át )0≤t ≤T be a process taking values in T0 ⊗ T0 such that Áw1,w2 ∈ V for all
w1,w2 ∈ Wd . Then it holds for all 0 ≤ t ≤ T����∫ t

0

(
ad X(l3)u · · · ad X(lm )u � ad X(lm+1)u · · · ad X(lk )u

) (
dÁ(l1,l2)u

)���� ≤ 2k−2 ∫ t

0

���X(l3)u · · · X(lk )u

������dm (
Á(l1,l2)

)���.
Proof. We expand the iterated adjoined operations into a sum of left- and right tensor multiplications and apply Lemma  7.2 .
Note again that for homogeneous tensors x and y it holds |xy| = |yx|. Therefore the statement follows by counting the
terms in the expansion. �

Lemma 7.10. Let N ∈ Î≥1, ∆x, y,∆y ∈ T N0 and define the function

f : [0, 1] × [0, 1] → T N1 , (s, t ) ↦→ f (s, t ) = expN (s∆x) expN (y + t∆y) expN (−y).

Then f (0, 0) = 1 and the first order partial derivatives of f at (s, t ) = (0, 0) are given by

(∂sf ) | (s,t )=(0,0) = ∆x, (∂t f ) | (s,t )=(0,0) = G (ad y) (∆y).

Further the following explicit bound for the second order partial derivatives holds

sup
0≤s,t ≤1

���(+2f (n) ) | (s,t ) ��� ≤ cn ∑
‖` ‖=n, |` | ≥2

(���∆x(l1)
��� + ���∆y(l1)

���) (���∆x(l2)
��� + ���∆y(l2)

���)z l3 · · · z l3 ,
for all n ∈ {2, . . . ,N }, where cn > 0 is a constant, ` = (l1, . . . , lk ) ∈ (Î≥1)k with |` | = k and z l B max{|∆x(l ) |, |y(l ) |, | (y+
∆y) (l ) |} for all l ∈ {1, . . . ,N − 2}.

Proof. The tensor components of f (s, t ) are polynomial in s and t and it follows that f is smooth. From  Lemma 7.5 we
have that the first order partial derivatives of f are given by

(∂sf ) | (s,t ) = G (ad s∆x) (∆x) expN (s∆x) expN (y + t∆y) expN (−y),
(∂t f ) | (s,t ) = expN (s∆x)G (ad y + t∆y) (∆y) expN (y + t∆y) expN (−y).

Evaluating at s = t = 0 we obtain the first result. Now let n ∈ {2, . . . ,N }. Then it follows from  Lemmas 7.5 and  7.9 that
we can bound the second order derivatives as follows

sup
0≤s,t ≤1

(∂ssf (n) ) | (s,t )

≤ sup
0≤s,t ≤1

��π (n) (Q (ad s∆x) ((∆x)⊗2) expN (s∆x) expN (y + t∆y) expN (−y)
) ��

≤ c ′n
∑

‖` ‖=n, |` | ≥2
|∆x(l1) | |∆x(l2) |z l3 · · · z lk ,

sup
0≤s,t ≤1

(∂t t f (n) ) | (s,t )

≤ sup
0≤s,t ≤1

��π (n) ( expN (s∆x)Q (ad y + t∆y) ((∆y)⊗2) expN (y + t∆y) expN (−y)
) ��

≤ c ′′n
∑

‖` ‖=n, |` | ≥2
|∆y(l1) | |∆y(l2) |z l3 · · · z lk ,
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and

sup
0≤s,t ≤1

(∂st f (n) ) | (s,t )

≤ sup
0≤s,t ≤1

��π (n) (G (ad s∆x) (∆x) expN (s∆x)G (ad y + t∆y) expN (y + t∆y) expN (−y)
) ��

≤ c ′′′n
∑

‖` ‖=n, |` | ≥2
|∆x(l1) | |∆y(l2) |z l3 · · · z lk ,

where c ′n , c
′′
n , c

′′′
n > 0 are constants and the second statement of the lemma follows. �

Lemma 7.11. For all N ∈ Î≥1 and all x ∈ T N0 it holds

H (ad x) ◦G (ad x) = Id.

where G and H are defined in ( 19 ). Hence, the identity also holds for all x ∈ T0.

Proof. Recall the exponent generating function of the Bernoulli numbers, for z near 0,

H (z ) =
∞∑
n=0

Bk
k !
z k =

z

ez − 1 , G (z ) =
∞∑
k=0

1

k + 1!
z k =

ez − 1
z
.

Therefore H (z )G (z ) ≡ 1 identically in a neighborhood of zero. Repeated differentiation in z then yields the following
property of the Bernoulli numbers

n∑
k=0

Bk
k !

1

(n − k + 1)! = 0, n ∈ Î≥1.

Hence the statement of the lemma follows by projecting H (ad x) ◦G (ad x) to each tensor level. �

We are now ready to give the

Proof of  Theorem 4.1 . Since π (0,N )Sig(X) = Sig(X(0,N ) ) for any X ∈ S(T0) and all truncation levels N ∈ Î≥1, it suffices
to show that the identities ( 20 ) and ( 21 ) hold for the signature cumulant of an arbitrary X ∈ H1,N . Recall from  Theorem 3.2 

that this implies that Sig(X) ∈ H1,N and thus the truncated signature cumulant κκκ = (Åt (Sig(X)t ,T ))0≤t ≤T ∈ S(T N0 ) is
well defined. Throughout the proof we use the symbol "." to denote an inequality that holds up to a multiplication of the
right-hand side by a constant that may depend on d and N .

Recall the definition of the signature in the Marcus sense from  Section 2.5 . Projecting ( 15 ) to the truncated tensor algebra,
we see that the signature process S = (Sig(X)0,t )0≤t ≤T ∈ S(T N1 ) satisfies the integral equation

St = 1 +
∫
(0,t ]

Su−dXu +
1

2

∫ t

0
Sud〈Xc〉u +

∑
0<u≤t

Su−
(

expN (∆Xu ) − 1 − ∆Xu
)
, (50)

for 0 ≤ t ≤ T . Then by Chen’s relation ( 16 ) we have

Åt (ST expN (κκκT )) = Åt (Sig(X)0,T ) = StÅt (Sig(X)t ,T ) = St expN (κκκ t ), 0 ≤ t ≤ T .

It then follows from the above identity and the integrability of ST that the process S expN (κκκ) is a T N1 -valued martingale in
the sense of  Section 2.3 . On the other hand, we have by applying Itô’s product rule in  Lemma 7.7 

St expN (κκκ t ) − 1 =
∫
(0,t ]
(dSu ) expN (κκκu−) +

∫
(0,t ]

Su− (d expN (κκκu )) +m
(
ÈS , expN (κκκ)Éc0,t

)
+

∑
0<u≤t

∆Su ∆ expN (κκκu )

Further, by applying the Itô’s rule for the exponential map from  Lemma 7.8 to the T N0 -valued semimartingale κκκ and using
( 50 ), we have the following form of the continuous covariation term

m
(
ÈS c , expN (κκκc)É0,t

)
= m

(�∫
(0, ·]

Su−dXcu ,

∫
(0, ·]

G (adκκκu−) (dκκκcu ) expN (κκκu−)
�
0,u

)
=

∫
(0,t ]

Su− (Id � G (adκκκu−))
(
dÈXc , κκκcÉu

)
expN (κκκu−)

and for the jump covariation term∑
0<u≤t

∆Su ∆ expN (κκκu ) =
∑
0<u≤t

Su−
(

expN (∆Xu ) − 1
) (

expN (κκκu ) expN (−κκκu−) − 1
)

expN (κκκu−).
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From the above identities and again with  Lemma 7.8 and ( 50 ) we have

St expN (κκκ t ) − 1 =
∫
(0,t ]

Su−d(Lu + κκκu ) expN (κκκu−), 0 ≤ t ≤ T , (51)

where L ∈ S(T N0 ) is defined by

Lt = Xt +
1

2
〈Xc〉t +

∑
0<u≤t

(
expN (∆Xu ) − 1 − ∆Xu

)
+

∫
(0,t ]
(G − Id) (adκκκu−) (dκκκu )

+
∫ t

0

1

2
Q (adκκκu−) (dÈκκκc , κκκcÉu ) +

∑
0<u≤t

(
expN (κκκu ) expN (−κκκu−) − 1 −G (adκκκu−) (∆κκκu )

)
+

∫
(0,t ]
(Id � G (adκκκu−)) (dÈXc , κκκcÉu )

+
∑
0<u≤t

(
expN (∆Xu ) − 1

) (
expN (κκκu ) expN (−κκκu−) − 1

)
= Xt +

1

2
〈Xc〉t +

∫
(0,t ]
(G − Id) (adκκκu−) (dκκκu ) + Vt + Ct + Jt ,

(52)

with V,C, J ∈ V (T0) given by

Vt =
1

2

∫ t

0
Q (adκκκu−) (dÈκκκc , κκκcÉu ),

Ct =

∫
(0,t ]
(Id � G (adκκκu−)) (dÈXc , κκκcÉu ),

Jt =
∑
0<u≤t

(
expN (∆Xu ) expN (κκκu ) expN (−κκκu−) − 1 − ∆Xu −G (adκκκu−) (∆κκκu )

)
.

Note that we have explicitly separated the identity operator Id from G in the above definition of L. The left-hand side in ( 51 )
is a martingale and therefore L + κκκ is a T N0 -valued local martingale. Let (τk )k ≥1 be a sequence of increasing stopping
times with τk → T a.s. for k →∞, such that the stopped process (Lt∧τk +κκκ t∧τk )0≤t ≤T is a true martingale. Using further
that κκκT = 0 we have

κκκ t∧τk = Åt
{
LT ∧τk ,t∧τk

}
, 0 ≤ t ≤ T , k ∈ Î≥1. (53)

Claim 7.12. It holds that
|||L|||H1,N . |||X|||H1,N . (54)

Note that this justifies the use of the dominated convergence argument for passing to the limit in ( 53 ), which proves equation
( 20 ), and hence the first part of  Theorem 4.1 .

According to  Lemma 7.4 it suffices to show that for all n ∈ {1, . . . ,N } it holds

‖L(n) ‖HqN /n .
∑
‖` ‖=n
‖X(l1) ‖HqN /l1 · · · ‖X(l j ) ‖HqN /l j C ρnX,

where the summation above (and in the rest of the proof) is over multi-indices ` = (l1, . . . , l j ) ∈ (Î≥1)j , with |` | = j and
‖` ‖ = l1 + · · · + l j . For M ∈Mloc (T N0 ) and A ∈ V (T N0 ) define

ρnM,A B
∑
‖` ‖=n

ζ l1/N (M(l1) ,A(l1) ) · · · ζ l j /N (M(l j ) ,A(l j ) ) < ∞, n = 1, . . . ,N ,

where for any q ∈ [1,∞)

ζq (M(l ) ,A(l ) ) B



| [M(l ) ]T |1/2 + |A(l ) |1−var;[0,T ]





Lq
.

Note that it holds

ρnM,A ≤
∑
‖` ‖=n

(
ρ l1M,A · · · ρ

l j
M,A

)
. ρnM,A. (55)

Furthermore, it follows from the definition of the Hq norm that

ρnX = inf
X=M+A

ρnM,A,

where the infimum is taken over all semimartingale decomposition of X.
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Now fix M ∈Mloc (T N0 ) and A ∈ V (T N0 ) arbitrarily, such that X = M + A and ρnM,A < ∞ for all n ∈ {1, . . . ,N } (such a

decomposition always exists since X ∈ H1,N ). In particular it holds that M is a true martingale.

The estimate ( 54 ) then follows from then following claim, which we are going to proof inductively.

Claim 7.13. For all n ∈ {1, . . . ,N } it holds

‖L(n) ‖HN /n . ρnM,A, (56)

and further there exits a semimartingale decomposition κκκ (n) = κκκ
(n)
0 + m(n) + a(n) , with m(n) ∈ M((Òd )⊗n ) and

a(n) ∈ V ((Òd )⊗n ) such that ‖a(n) ‖ VN /n < ρnM,A and in case n ≤ N − 1 it holds

ζn/N (m(n) , a(n) ) . ρnM,A. (57)

Proof of  Claim 7.13 . We first proof the induction base n = 1. Note that we have L(1) = X(1) , and therefore

‖L(1) ‖HN ≤ ζN (M(1) ,A(1) ) = ρ1M,A.

Using that M(1) is a martingale we can identify a semimartingale decomposition of κκκ (1) by

m(1)t B Åt
(
A(1)T

)
− Å

(
A(1)T

)
, a(1)t B −At , 0 ≤ t ≤ T .

In case N ≥ 2, we further have from the BDG-inequality and the Doob’s maximal inequality that


m(1)




HN
.




m(1)




SN
.




m(1)T





LN

=



Å(

A(1)T

)
− A(1)T





LN
.




A(1)





VN /n
. ρ1M,A

and this shows the second part of the induction claim.

Now assume that N ≥ 2 and that the induction claim ( 56 ) and ( 57 ) holds true up level n − 1 for some n ∈ {2, . . . ,N }.
Note that L(n) has the following decomposition

L(n) =
{
M(n) + N(n)

}
+

{
A(n) + 1

2
〈Xc〉 (n) + B(n) + V(n) + C(n) + J(n)

}
, (58)

where N(n) ∈Mloc ((Òd )⊗n ) and B(n) ∈ V ((Òd )⊗n ) are defined by

N(n) = π (n)

∫
(0,t ]
(G − Id) (adκκκu−) (dmu ),

B(n) = π (n)

∫
(0,t ]
(G − Id) (adκκκu−) (dau )

with a = π (0,N ) (a(1) + · · · + a(n−1) ) ∈ V (T N0 ) and m = π (0,N ) (m(1) + · · · +m(n−1) ) ∈M(T N0 ).

From  Lemma 7.1 and the generalized Hölder inequality we have


〈Xc〉 (n)



VN /n
≤

n∑
i=1




〈M(i )c ,M(n−i )c
〉




VN /n
.

n∑
i=1




M(i )




HN /i




M(n−i )




HN /(n−i )

. ρnM,A. (59)

It follows from ( 57 ) and the induction basis that for all l ∈ {1, . . . , n − 1} it holds that

‖κκκ (l ) ‖HN /l = ‖κκκ (l ) − κκκ (l )0 ‖HN /l . ρ lM,A, (60)

and further that

κ l ∗T B sup
0≤t ≤T

|κκκ (l )t |, ‖κκκ
(l ) ‖SN /l = ‖κ l ∗T ‖LN /l ≤ |κκκ

(l )
0 | + ‖κκκ

(l ) − κκκ (l )0 ‖SN /l . ρ lM,A. (61)

From the definition and linearity of Q (ad x) (x ∈ T N0 ),  Lemmas 7.1 and  7.9 we have the following estimate���V(n) ���
1−var;[0,T ]

.
∑

‖` ‖=n, |` | ≥2

j∑
m=2

����∫ ·

0

(
adκκκ (l3)u− · · · adκκκ (lm )u− � adκκκ (lm+1)u− · · · adκκκ

(l j )
u−

) (
d
�

m(l1)c ,m(l2)c
�
u

)����
1−var;[0,T ]

.
∑

‖` ‖=n, |` | ≥2

∫ t

0

���κκκ (l3)u−

��� · · · ���κκκ (l j )u−

��� d
���〈m(l1)c ,m(l l2 )c

〉
u

���
.

∑
‖` ‖=n, |` | ≥2

κ l3∗T · · · κ
l j ∗
T

√��[m(l1) ]
T

��√��[m(l2) ]
T

��.
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It then follows from the generalized Hölder inequality


V(n)





VN /n
.

∑
‖` ‖=n, |` | ≥2




κκκ (l3)T





SN /l3

· · ·



κκκ (l j )T





S
N /l j




m(l1)




HN /l1




m(l2)




HN /l2

.
∑

‖` ‖=n, |` | ≥2
ρ l1M,A · · · ρ

l j
M,A

. ρnM,A, (62)

where the second inequality follows from the induction basis and the estimates ( 61 ) and ( 57 ), noting that ‖` ‖ = n and
|l | ≥ 2 implies that l1, . . . , l j ≤ n − 1, and the third inequality follows from ( 55 ). From similar arguments we see that the
following two estimate also hold


C(n)





VN /n
.

∑
‖` ‖=n, |` | ≥2





∫ ·

0

(
Id � adκκκ (l3)u− · · · adκκκ

(l j )
u−

) (
d
�

M(l1)c ,m(l2)c
�
u

)




VN /n

.
∑

‖` ‖=n, |` | ≥2




κκκ (l3)T





SN /l3

· · ·



κκκ (l j )T





S
N /l j




M(l1)




HN /l1




m(l2)




HN /l2

. ρnM,A (63)

and 


B(n)





VN /n
.

∑
‖` ‖=n, |` | ≥2




κκκ (l2)T





SN /l3

· · ·



κκκ (l j )T





S
N /l j




a(l1)





VN /l1
. ρnM,A. (64)

For the local martingale N(n) , we use  Lemmas 7.1 and  7.9 to estimate its quadratic variation as follows��� [N(n) ]
T

��� = ������


∑
‖` ‖=n, |` | ≥2

∫
(0, ·]

1

k !

(
adκκκ (l2)u− · · · adκκκ (lk )u−

) (
dm(l1)u

)T
������

.
∑

‖` ‖=2n, |` | ≥4

����∫
(0,T ]

(
adκκκ (l2)u− · · · adκκκ (lm )u− � adκκκ (lm+1)u− · · · adκκκ (lk )u−

) (
d
�

m(l1) ,m(l2)
�
u

)����
.

∑
‖` ‖=2n, |` | ≥4

κ l3∗T · · · κ
l j ∗
T

√��[m(l1) ]
T

��√��[m(l2) ]
T

��.
Then it follows once again by the generalized Hölder inequality and the induction basis that


N(n)





HN /n

. ρnM,A. (65)

Finally let us treat the term J(n) . First define

Z l B sup
0<u≤T

(
max

{���∆X(l )u

���, ���κκκ (l )u− ���, ���κκκ (l )u ���}), l = {1, . . . , n − 1}.

and from( 61 ) it follows that for all l = {1, . . . , n − 1} it holds

‖Z l ‖LN /l ≤ 2‖X(l ) ‖SN /l + ‖κκκ (l )T ‖SN /l ≤ 2‖X(l ) ‖HN /l + ‖κκκ (l )T ‖SN /l . ρ l ,NM,A. (66)

Then by Taylor’s theorem and  Lemma 7.10 we have���J(n) ���
1−var;[0,T ]

=
∑

0<u≤T

���π (n) ( expN (∆Xu ) expN (κκκu ) expN (−κκκu−) − 1 − ∆Xu −G (adκκκu−) (∆κκκu )
)���

.
∑

‖` ‖=n, | |` | ≥2
Z l3 · · · Z l j

∑
0<u≤T

(���∆X(l1)u

��� + ���∆κκκ (l1)u

���) (���∆X(l2)u

��� + ���∆κκκ (l2)u

���)
.

∑
‖` ‖=n, | |` | ≥2

Z l3 · · · Z l j

(√��[X(l1) ]
T

�� +√��[κκκ (l1) ]
T

��) (√��[X(l2) ]
T

�� +√��[κκκ (l2) ]
T

��) .
Hence it follows by the generalized Hölder inequality that


J(n)





VN /n
.

∑
‖` ‖=n, | |` | ≥2



Z l3



LN /l1 · · ·



Z l j



LN /l j

(


X(l1)




HN /l1

+



κκκ (l1)




HN /l1

)
·
(


X(l2)





HN /l2

+



κκκ (l2)




HN /l2

)
. ρnM,A (67)

where the last estimate follows from ( 66 ), ( 60 ) and ( 55 ).
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Summarizing the estimates ( 62 ), ( 63 ), ( 64 ), ( 65 ) and ( 67 ) we have


L(n)




HN /n

.



M(n)





HN /n

+



N(n)





HN /n

+



A(n)





VN /n
+




〈Xc〉 (n)



VN /n

+



B(n)





VN /n
+




V(n)





VN /n
+




C(n)





VN /n
+




J(n)





VN /n

. ρnM,A,

(68)

which proofs the first part of the induction claim ( 56 ). Then it follows form dominated convergence theorem that projecting
( 53 ) to the tensor level n and passing to the k →∞ limit yields

κκκ
(n)
t = Åt

(
L(n)T ,t

)
, 0 ≤ t ≤ T .

Since M(n) and N(n) are true martingales (for the latter this follows from ( 65 )), we are able to identify a decomposition
κκκ (n) = κκκ (n)0 +m(n) + a(n) by

a(n) = −
{
A(n) + 1

2
〈Xc〉 (n) + B(n) + V(n) + C(n) + J(n)

}
m(n)t = Å

(
a(n)T

)
− Åt

(
a(n)T

)
, 0 ≤ t ≤ T .

Again from the estimates ( 62 ), ( 63 ), ( 65 ) and ( 67 ) it follows that

‖a(n) ‖ VN /n . ρnM,A

and in case n ≤ N − 1 it follows from the BDG-inequality and Doob’s maximal inequality that


m(n)




HN /n

.



m(n)





SN /n
.




m(n)T





LN /n

=



Å(

a(n)T

)
− a(n)T





LN /n
.




a(n)





VN /n
. ρnM,A,

which proofs the second part of the induction claim ( 57 ). �

Note that since 〈Xc〉, V, C and J are independent of the decomposition X = M + A it follows from taking the infimum over all
such decompositions in the inequality ( 68 ) that


〈Xc〉 (n)




VN /n
+




B(n)





VN /n
+




V(n)





VN /n
+




C(n)





VN /n
+




J(n)





VN /n
. ρnX, (69)

for all n ∈ {1, . . . ,N }. The same argument applies to κκκ and the estimate ( 60 ) and we obtain


κκκ (n)



HN /n

. ρnX, (70)

for all n ∈ {1, . . . ,N − 1}.

Next we are going to show that κκκ satisfies the functional equation ( 21 ). Recall that L + κκκ ∈Mloc (T N0 ). From Lemma  7.11 

we have the following equality ∫ t

0
H (adκκκu ) (d(Lu + κκκu )) = κκκ t − κκκ0 + L̃t

for all 0 ≤ t ≤ T , where

L̃t =

∫
(0,t ]

H (adκκκu−)
{
dXu +

1

2
d〈Xc〉u + dVu + dCu + dJu

}
. (71)

From  Lemma 7.3 (Emery’s inequality) and the estimates ( 69 ) and ( 70 ) it follows

‖L̃(n) ‖HN /n .
∑
‖` ‖=n




κκκ (l2)



SN /l2

· · ·



κκκ (l j )




S
N /l j

{


X(l1)




HN /l1

+



〈Xc〉 (l1)




VN /l1

+



V(l1)





VN /l1

+



C(l1)





VN /l1

+



J(l1)





VN /l1

}
. ρnX,

Hence by  Lemma 7.4 it holds

|||̃L|||H1,N . |||X|||H1,N . (72)

Now note that we have already shown in  Claim 7.13 that κκκ = κκκ0 +m + a, where m ∈M(T N0 ) and a ∈ V (T N0 ) which

satisfies that ‖a(n) ‖ V < ∞ for all n ∈ {1, . . . ,N }. Together with the above estimate it then follows that κκκ + L̃ is indeed a
true martingale and therefore

κκκ t = Å
(
L̃T ,t

)
, 0 ≤ t ≤ T ,

which is precisely the identity ( 21 ). �
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