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Flexible modification of Gauss–Newton method and its
stochastic extension
Nikita Yudin, Alexander Gasnikov

Abstract

This work presents a novel version of recently developed Gauss–Newton method for solving
systems of nonlinear equations, based on upper bound of solution residual and quadratic reg-
ularization ideas. We obtained for such method global convergence bounds and under natural
non–degeneracy assumptions we present local quadratic convergence results. We developed
stochastic optimization algorithms for presented Gauss–Newton method and justified sub–linear
and linear convergence rates for these algorithms using weak growth condition (WGC) and
Polyak–Lojasiewicz (PL) inequality. We show that Gauss–Newton method in stochastic setting can
effectively find solution under WGC and PL condition matching convergence rate of the determin-
istic optimization method. The suggested method unifies most practically used Gauss–Newton
method modifications and can easily interpolate between them providing flexible and convenient
method easily implementable using standard techniques of convex optimization.

1 Introduction

1.1 Motivation

We consider the problem of solving systems of nonlinear equations, which is one of the most funda-
mental in numerical methods. Corresponding problems are widespread among various works and
monographs dedicated to numerical methods and optimization methods [26, 23, 22, 9]. The general
form of system of nonlinear equations is defined via multidimensional mapping F : Rn→ Rm:

F(x) = 0m, 0m = (0, . . . ,0)T . (1)

The next minimization problem of merit function is considered as a relaxation of the problem of solving
systems of equations:

min
x∈Rn

{
f1(x)

def
= ‖F(x)‖

}
, (2)

where ‖ ‖ is the standard Euclidean norm (it can be straightforwardly generalized to other types of
merit functions). This is quite typical way of dealing with problems like (1) [12, 15, 3, 5, 25]. The most
standard way to solve (2) is to perform direct minimization of

f2(x)
def
= ( f1(x))

2 ,

which can cause some numerical instability and losses of performance, e.g. in case of linear F this
transformation leads to squaring of the condition number of system (1). The direct optimization of
f2 is usually considered within trust region methods and quasi-Newton methods using variety of
heuristics [30, 8, 28, 6]. However, it is possible to alleviate usage of iterative minimization schemes by
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N. Yudin, A. Gasnikov 2

applying the Gauss–Newton method to the original problem (2), in which every iteration represents the
following auxiliary optimization task

min
h∈Rn

{∥∥∥F(x)+F
′
(x)h

∥∥∥ : x+h ∈ D(x)
}
,

F
′
(x) def

=

(
∂Fi

∂x j
(x)
)m,n

i, j=1
∈ Rm×n — Jacobian,

(3)

so we require smoothness for each function Fi, i ∈ {1, . . . ,m}, D(x) is an appropriate neighborhood
of point x ∈ Rn. This scheme allows us to optimize (2) with local quadratic speed under some natural
non-degeneracy conditions [23].

Our work establish different approach to problem (2). First of all we define normalized merit function,
and it stands for the standard Euclidean norm divided by square root of the number of coordinates in this
norm. Then, we construct iterative scheme in which the problem (3) is replaced by minimization problem
of parameterized local upper model of the introduced merit function. Our upper model represents
development of the idea of quadratic regularization of functionals, so auxiliary problem in our scheme
can be seen as some parametrized proximal mapping. Our local model unifies previously introduced
models [20, 21] and has undoubtedly convenient ability to interpolate between them smoothly.

We also consider different variants of relation between task dimensions m and n: m≤ n and m > n.
The first case is related to the classical setting for problems of solving systems of nonlinear equations.
The second case is usually described as the least–squares regression problem. For both cases we
established global and local convergence properties, for each case we developed stochastic algorithms
to solve (2). The whole analysis performed is applicable to various empirical risk minimization problems,
and optimized functional f2 possesses weak growth condition (WGC) [27, 29, 1]. The WGC states the
majorization of squared norm of the gradient of f2 by proportional to f2 function value, in stochastic
setting the gradient is replaced by its stochastic estimate and expectation is taken. Besides WGC
we consider Polyak–Lojasiewicz condition (PL) [24], which forces domination of squared norm of
the gradient of f2 over f2 value multiplied by some constant, so in stochastic setting PL condition
is satisfied for expected squared norm of stochastic gradient and f2 value. WGC and PL condition
combined in case of m≤ n allow us to establish the existence of solution for the problem (1), moreover
we proved the existence of stochastic iterative scheme with arbitrary batch size, which converges
linearly to the solution of (1). The existence of such schemes is deeply connected to properties of
overparameterized models in statistical learning theory, these properties are usually called interpolation
conditions [2, 19, 11, 10, 17, 18, 31, 16].

1.2 Main results

Our main contribution consists of designed algorithms and its analysis in both deterministic and stochas-
tic settings of Gauss–Newton method, we consider different relations between the most important
parameters of related tasks and offer a solution for each case. Our contribution is summarized as
follows:

� We develop general Gauss–Newton method with inexact proximal map, our analysis has conver-
gence guarantees for provided algorithm.

� We characterize difference between convergence types for developed methods. We elaborate
conditions for sublinear, linear and superlinear convergence within developed Gauss–Newton
framework.
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� We propose stochastic algorithms for solving merit optimization problems and derive convergence
conditions for each algorithm.

� We establish existence of stochastic algorithms with convergence rate of the deterministic
optimization method under WGC and PL condition.

1.3 Contents

The next subsection recall the most used and crucial mathematical terms and tools for theoretical
background. Section 2 describes Gauss–Newton framework with inexact oracle and describes its
convergence. Section 3 states stochastic algorithms for Gauss–Newton framework. Section 4 is
dedicated to analysis of proposed stochastic algorithms. Section 5 demonstrates experimental results
of developed algorithms. All proofs and auxiliary discussion are placed into Appendix (Supplementary
material).

1.4 Notation

Let us denote finite Euclidean space using letter E (we also equally use symbols subscripts to
denote other Euclidean spaces) with standard Euclidean norm ‖ ‖. Denote Euclidean spaces E1 with
dim(E1) = n and E2 with dim(E2) = m. The dual space for E is denoted as E∗ and represents the
space of linear functions over E , the value of function u ∈ E∗, evaluated at point x ∈ E , equals inner
(scalar) product 〈u,x〉. Norms ‖x‖,x ∈ E and ‖u‖,u ∈ E∗ are connected via following relation:‖x‖= max

u∈E∗
{〈u,x〉 : ‖u‖ ≤ 1} ;

‖u‖= max
x∈E
{〈u,x〉 : ‖x‖ ≤ 1} .

Consequently, these relations state Cauchy–Schwarz inequality: 〈u,x〉 ≤ ‖u‖‖x‖.
For a smooth function f : E1→ E2 we denote first and second derivatives, evaluated at x∈ E1: ∇x f (x)
and ∇2

x f (x) respectively (in case of unambiguity we drop subscripted x). For E2 ≡ R first and second
derivatives are called gradient and hessian respectively. Note that ∇ f (x) ∈ E∗1 , ∇2 f (x) : E1→ E∗1 is
a self–adjoint operator.

Further, for linear operator A : E1→ E2 we denote its adjoint A∗ : E∗2 → E∗1 :

〈u,Ax〉= 〈A∗u,x〉 , u ∈ E∗2 ,x ∈ E1.

Introduce for linear operator A : E1→ E2 its operator norm as maximal singular value σmax(A):

‖A‖= σmax(A) = max
x∈E1
{‖Ax‖ : ‖x‖ ≤ 1}=

=
√

λmax (AA∗) =
√

λmax (A∗A),

where λmax(·) is maximal eigenvalue. In addition, for operator A with corresponding matrix
(
ai j
)m,n

i, j=1
we denote Frobenius norm as ‖A‖F :

‖A‖F =

√√√√ m,n

∑
i, j=1
|ai j|2 =

√
Tr(AA∗) =

√
Tr(A∗A).
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N. Yudin, A. Gasnikov 4

Clearly, ‖A‖ ≤ ‖A‖F according to the property of trace Tr(·) of self–adjoint operator. We also define
minimal singular value for operator A:

σmin(A) = min
x∈E1
{‖Ax‖ : ‖x‖ ≤ 1} .

For multidimensional map F : E1→ E2 we introduce Jacobian F
′
(x), evaluated at a point x ∈ E1 using

linear operator from E1 to E2:

F
′
(x)h = lim

t→0

(
1
t
(F(x+ th)−F(x))

)
∈ E2, h ∈ E1.

For linear self–adjoint operators and its corresponding matrices we define partial order on positive
semi–definite cone:

A� A1, A1 � A, A : E→ E∗, A1 : E→ E∗⇔
⇔ 〈(A1−A)x, x〉 ≥ 0, ∀x ∈ E;

B� B1, B1 � B, B : E∗→ E, B1 : E∗→ E⇔
⇔ 〈u, (B1−B)u〉 ≥ 0, ∀u ∈ E∗.

Notice that it is easy to establish for linear operator A : E1→ E2 these relations:{
AA∗ � σmin(A∗)2Idim(E2);

A∗A� σmin(A)2Idim(E1).

Denote set of integers form 1 to m inclusively as 1,m. Notation f (x) = O(h(x)) means upper estimate
of function f using function h up to positive constant and possible polylogarithmic factors. In similar
manner f (x) = Ω(h(x)) defines lower estimate of f using function h up to positive constant and
possible polylogarithmic factors. Finally, we introduce

f ∗ = min
x∈E1

f (x), g∗(y) = min
x∈E1

g(x,y),

to define minimal values w.r.t. x for functions f and g respectively.

2 Modified Gauss–Newton method

2.1 Local upper model

Let us restate the problem of finding solution x∗ ∈ E1 of the smooth nonlinear system of equations:

F(x) = 0m, (4)

where F : E1 → E2 is smooth multidimensional map with Jacobian F
′
(x), x ∈ E1. To estimate

closeness to the solution of system of equations (4) we consider the following merit function depending

on F̂(x) def
= 1√

mF(x):

f̂1(x)
def
=

1√
m
‖F(x)‖=

∥∥F̂(x)
∥∥ .
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Flexible modification of Gauss-Newton method and its stochastic extension 5

Clearly it is possible to solve (4) using f̂1(x) in the following optimization problem:

f̂ ∗1 = min
x∈E1

{
f̂1(x) =

1√
m
‖F(x)‖= 1√

m

∥∥(F1(x), . . . ,Fm(x))
∗∥∥} . (5)

Existence of solution of (4) is equivalent to f̂ ∗1 = f̂1(x∗) = 0. We consider an iterative procedure to
construct solution of (5), based on minimization of local model :

φ(x,y) def
=
∥∥∥F̂(x)+ F̂

′
(x)(y− x)

∥∥∥ , (x,y) ∈ E2
1 ,

F̂
′
(x) =

1√
m

F
′
(x).

Classical Gauss–Newton method uses the following mapping at each iteration k ∈ Z+ to construct
minimization scheme for (4) through sequence of convex problems:

xk+1 ∈ Argmin
y∈E1

{φ(xk,y)} .

However, simple additive regularization for φ allows us to establish global convergence properties in
addition to local properties. In this section we consider a unified modification of local models considered
in [20, 21]. First of all, we introduce some basic assumptions about the problem. Consider F ⊆ E1 —
closed convex set with non-empty interior.

Assumption 1. Multidimensional map F̂(x) is smooth on F with Lipschitz continuous Jacobian:

∃LF̂ > 0 :
∥∥∥F̂

′
(y)− F̂

′
(x)
∥∥∥

F
≤ LF̂‖y− x‖, ∀(x,y) ∈F 2.

Assumption 1 leads to the following Lipschitz property:∥∥∥F̂
′
(y)− F̂

′
(x)
∥∥∥≤ LF̂‖y− x‖, ∀(x,y) ∈F 2.

Denote level set L (v) of function f̂1:

L (v) def
=
{

x : f̂1(x)≤ v
}
,

supposing that F is large enough:

L ( f̂1(x0))⊆F , x0 ∈F — initialization.

Assumption 2. Suppose the following PL condition is satisfied:

∃µ > 0, σmin(F̂
′
(x)∗)≥

√
µ, ∀x ∈F .

Assumption 2 is a PL–type condition because the inequality below is consequent from this assumption:∥∥∇ f̂2(x)
∥∥2

= 4
∥∥∥F̂

′
(x)∗F̂(x)

∥∥∥2
≥ 4µ f̂2(x), ∀x ∈F .

Note that assumption 2 implicitly requires dim(E1) ≤ dim(E2). Based on these assumptions, we
consider the following general modification of local model in the Gauss–Newton method recently
introduced by Yurii Nesterov [21]:

f̂1(y)≤ ψx,L,τ(y)
def
=

τ

2
+

(φ(x,y))2

2τ
+

L
2
‖y− x‖2, L≥ LF̂ ,

τ > 0, (x,y) ∈F 2.
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Algorithm 1 General method of Normalized Squares with an inexact proximal map

1: Input: setting (6).
2: for k = 0,1, to N−1 do
3: define τk = T (xk,Lk,εk), εk = E (k,xk,xk−1).
4: compute such xk+1 ∈ E1,

that ψxk,Lk,τk(xk+1)−ψxk,Lk,τk(TLk,τk(xk))≤ εk.
5: if f̂1(xk+1)> ψxk,Lk,τk(xk+1) then
6: define Lk := min

{
2Lk,2LF̂

}
and return

to step 3.
7: end if
8: Lk+1 = max

{
Lk
2 , L

}
.

9: end for
10: Output: xN .

This local model provides a natural way of updating approximation of the solution:

TL,τ(x)
def
= argmin

y∈E1

{ψx,L,τ(y)} ;

TL,τ(x) = x−
(

F̂
′
(x)∗F̂

′
(x)+ τLIn

)−1
F̂
′
(x)∗F̂(x).

2.2 Analysis of the scheme

The designed scheme of iterations in deterministic setting naturally unifies a variety of Gauss–Newton
methods and possesses some convenient properties, such as strong convexity of the local model
ψx,L,τ(y) w.r.t. y and strict convexity w.r.t. τ . It results into the uniqueness of optimal y at every iteration
and even allows us to find approximation of the closest local model to our criterion w.r.t. τ . The
developed optimization scheme is presented as algorithm 1, and because of f1 structure we call the
corresponding method as Method of Normalized Squares, the name we adopted from Yurii Nesterov’s
preprint [21]. This method requires objects outlined below:

x0 ∈ E1, L ( f̂1(x0))⊆F — initialization, x−1 = x0;
E (·) — error value function;
N ∈ N — number of outer iterations;
L — local Lipschitz constant estimate, L ∈ (0, LF̂ ], L0 = L;
T (·) — function to specify τ.

(6)

Algorithm 1 is quite conceptual as it has some degrees of freedom in (τk, εk) selection, and this
algorithm also exploits the idea of binary search of appropriate Lipschitz constant, which adaptively
exploits geometric properties of a merit function surface. Note that the presented method uses an
inexact oracle with some computational error εk of xk+1 and such error should be small enough to
ensure xk+1 ∈F . We established global convergence properties for this method in listed below terms:

� norm of the proximal gradient mapping: ‖Lk (TLk,τk(xk)− xk)‖;

� local decrease:
∆r(xk)

def
= f̂2(xk)−min

y∈E1

{
(φ(xk,y))

2 : ‖y− xk‖ ≤ r
}

, r > 0; f̂2(x)
def
=
(

f̂1(x)
)2
, x ∈ E1.
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Flexible modification of Gauss-Newton method and its stochastic extension 7

These values equivalently represent sets of stationary points in the following way:

� {x∗ : x∗ ∈ E1, ‖L(TL,τ(x∗)− x∗)‖= 0, ∀L > 0, ∀τ > 0};

� {x∗ : x∗ ∈ E1, ∆r(x∗) = 0, ∀r > 0}.

Formally convergence to these stationary points is justified in theorem 1.

Theorem 1. Suppose that assumption 1 is satisfied, k ∈ N, r > 0. Then Gauss–Newton method,
implemented using scheme 1 with τk = f̂1(xk), εk = ε ≥ 0, has the following estimates:

8L2
F̂

L

(
ε +

( f̂1(x0)− f̂1(xk))
k

)
≥ min

i∈0,k−1

{∥∥∥2LF̂

(
T2LF̂ , f̂1(xi)

(xi)− xi

)∥∥∥2
}

;

LF̂

(
ε +

( f̂1(x0)− f̂1(xk))
k

)
≥ min

i∈0,k−1

{
2
(
LF̂r
)2κ

(
∆r(xi)

4 f̂1(xi)LF̂ r2

)}
;

where κ(t) = t2

2 1{t∈[0,1]}+
(
t− 1

2

)
1{t>1}.

Theorem 1 states global sublinear rates of convergence, and does not imply existence of the solution of
(5). The next theorem establish local superlinear convergence under natural non–degeneracy conditions
for solvable systems (4).

Theorem 2. Suppose that assumption 1 is satisfied, Jacobian is bounded:
∥∥∥F̂

′
(x)
∥∥∥ ≤ MF̂ for all

x ∈F , and the solution x∗ ∈L ( f̂1(x0)), F̂(x∗) = 0m with σmin

(
F̂
′
(x∗)

)
≥ ς > 0 exists. Then

Gauss–Newton method 1 with τk = f̂1(xk), εk = 0 in region

‖xk− x∗‖ ≤min
{

2ς

5LF̂
,

1
12LF̂

((
3MF̂ +5ς

)
−
√(

3MF̂ +5ς
)2−24ς2

)}
, k ∈ Z+

superlinearly converges

‖xk+1− x∗‖ ≤
3LF̂‖xk−x∗‖2

2 +‖xk− x∗‖
√

f̂1(xk)Lk +
L2

F̂
‖xk−x∗‖2

4
ς −LF̂‖xk− x∗‖

≤ ‖xk− x∗‖,

xk+1 ∈L ( f̂1(x0)), f̂1(xk) = O(‖xk− x∗‖) .

Singular value bounds in theorem 2 require structural limitation dim(E1) ≤ dim(E2), so in case of
dim(E1)> dim(E2) there is no ς > 0 exists, however, assumption 2 can be held for (4) according to
the theorem below.

Theorem 3. Assume that assumptions 1 and 2 are held for Gauss–Newton method 1 with τk = f̂1(xk).
Then any sequence {xk}k∈Z+

has the property:

f̂1(xk+1)≤ εk +

 f̂1(xk)
2 +

LF̂
µ

f̂2(xk)≤ 3
4 f̂1(xk), if f̂1(xk)≤ µ

4LF̂
;

f̂1(xk)− µ

16LF̂
, otherwise.

Theorem 3 reveals a quite important property of independence of linear convergence rate from µ for
Gauss–Newton method.
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3 Stochastic modification of Gauss–Newton method

3.1 Stochastic local model

We consider the only two sources of randomness: sampling of initialization x0 ∈ E1 and independent
sampling of batches Bk of functions from (4) at each iteration of Gauss–Newton method. Batch Bk at
each iteration k has size |Bk|= b ∈ {1, . . . ,m} and is sampled without replacement, independently
and from random uniform distribution q over subsets of size b:

Bk =
{

Fi j(x)
∣∣ j ∈ {1, . . . ,b}, i j ∈ {1, . . . ,m}

}
.

The whole set (finite population) of functions from F is denoted as

B
def
= {Fi(x)| i ∈ {1, . . . ,m}} .

Based on sampling strategy we define following stochastic estimates of F̂ and F̂
′

w.r.t. batch B of size
b:

Ĝ(x,B) def
=

1√
b
(Fi1(x), . . . ,Fib(x))

∗ ;

Ĝ
′
(x,B) def

=
1√
b
(∇Fi1(x), . . . ,∇Fib(x))

∗.

These multidimensional maps define corresponding stochastic optimization criteria:

ĝ1(x,B)
def
=
∥∥Ĝ(x,B)

∥∥ ;

ĝ2(x,B)
def
= (ĝ1(x,B))

2 .

And for such functions we are able to deduce the stochastic local model :

ĝ1(y,B)≤ψ̂x,L,τ(y,B)
def
=

τ

2
+

L
2
‖y− x‖2 +

1
2τ

∥∥∥Ĝ(x,B)+ Ĝ
′
(x,B)(y− x)

∥∥∥2
, L≥ LF̂ ,

(x,y) ∈ E2
1 , τ > 0, B⊆B.

This local model offers directly convenient proximal map for construction iterative optimization schemes:

xk+1 = T̂Lk,τk(xk,Bk)
def
= argmin

y∈E1

{ψ̂xk,Lk,τk(y,Bk)} , k ∈ Z+;

xk+1 = xk−
(

Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ τkLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk).

3.2 Used assumptions

The stochastic version of Gauss–Newton method uses the next set of assumptions instead of the
previous one to extend all main optimization criteria properties up to stochastic settings.

Assumption 3. There are exist LF̂ > 0, lF̂ > 0, for which the following is satisfied

‖∇Fi(x)−∇Fi(y)‖ ≤ LF̂ ‖x− y‖ ,∣∣∣(Fi(x))
2− (Fi(y))

2
∣∣∣≤ lF̂‖x− y‖, ∀(x,y) ∈ E2

1 , ∀i ∈ 1,m.
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Flexible modification of Gauss-Newton method and its stochastic extension 9

Unlike assumption 1, the lipschitzness is considered relatively Fi and not over the whole set of functions
from (4).

Assumption 4. Let MĜ > 0, for which
∥∥∥Ĝ

′
(x,B)

∥∥∥≤MĜ for all x ∈ E1 and B⊆B, |B|= b ∈ 1,m.

In case of b = m exists MF̂ > 0, for which
∥∥∥F̂

′
(x)
∥∥∥≤MF̂ at all x ∈ E1.

Assumption 5. Let Pĝ1 > 0, for which ĝ1(x,B)≤ Pĝ1 , for all x ∈ E1 and B⊆B, |B|= b ∈ 1,m. In
case of b = m exists Pf̂1

> 0, for which
∥∥ f̂1(x)

∥∥≤ Pf̂1
at all x ∈ E1.

Assumptions 4 and 5 mean lipschitzness of (Fi(x))
2 and ĝ2(x,B). By Lipschitz continuity the best (the

least) value of the Lipschitz constant equals sup
x∈E1

{‖∇xĝ2(x,B)‖} [14] and this value is bounded:

sup
x∈E1

{‖∇xĝ2(x,B)‖} ≤min
{

lF̂ , 2MĜPĝ1

}
, ∀B⊆B,

because

|ĝ2(z,B)− ĝ2(y,B)| ≤ sup
x∈E1

{‖∇xĝ2(x,B)‖}︸ ︷︷ ︸
≤lF̂ (lemma 7)

‖z− y‖ , ∀(y,z) ∈ E2
1 , ∀B⊆B

and

sup
x∈E1

{‖∇xĝ2(x,B)‖}= sup
x∈E1

{∥∥∥2Ĝ
′
(x,B)∗Ĝ(x,B)

∥∥∥}≤ 2 sup
x∈E1

{∥∥∥Ĝ
′
(x,B)

∥∥∥∥∥Ĝ(x,B)
∥∥}≤

≤ 2MĜPĝ1, ∀B⊆B.

Assumption 6. There is exists σ > 0, for which EB

[∣∣ĝ2(x,B)− f̂2(x)
∣∣2] ≤ σ2 at all x ∈ E1 and

B⊆B, |B|= 1.

Assumption 6 is automatically satisfied under assumption 5 and it is introduced due to convenience
reason.

Assumption 7. Let µ > 0, for which Ĝ
′
(x,B)Ĝ

′
(x,B)∗ � µIb at all x ∈ E1 and B⊆B, |B|= b≤

min{m, n}.

Assumption 7 introduces lower bound for singular values of jacobian Ĝ
′
(x,B)∗. Usually it is satisfied for

cases with m≤ n, but theoretically it can be true for systems (4) with m > n.

3.3 Optimization scheme

According to stochastic local model ψ̂xk,Lk,τk(y,Bk) the next update rule uses scaled descent direction
to find another approximation of solution:

xk+1 = xk−ηk

(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ τkLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk), ηk ≥ 0. (7)
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Algorithm 2 General Three Stochastic Squares method with an inexact proximal map

1: Input: settings (9).
2: for k = 0,1, to N−1 do
3: sample batch Bk of size b from B.
4: define τk = T (xk,Lk,Bk).
5: compute xk+1 ∈ E1 using (7).
6: if ĝ1(xk+1,Bk)> ψ̂xk,Lk,τk(xk+1,Bk) then
7: set Lk := min

{
2Lk,γLF̂

}
and return

to step 4.
8: end if
9: Lk+1 = max

{
Lk
2 , L

}
.

10: end for
11: Output: xN .

The rule below is called doubly stochastic and is derived from stochastic local model, for which gradient
and hessian are estimated using independently sampled batches while xk+1 is computed via scaled
Newton method step:

xk+1 = xk−ηk

(
Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)+ τ̃kLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk), ηk ≥ 0,

B̃k ⊆B and Bk are independent samples, τ̃k > 0.
(8)

The developed optimization scheme is a straightforward modification of scheme 1 and is present as
algorithm 2. All presented stochastic Gauss–Newton methods are named with infix three stochastic
squares because the local model is fully estimated on batches, unlike the Method of Stochastic Squares
developed in [21], for which only the hessian of local model is batched. The whole process depends on
the settings listed below:

x0 ∈ E1 — initialization, x−1 = x0;
N ∈ N — number of outer iterations;
γ ≥ 1 — upper factor for LF̂ search;
L — local Lipschitz constant estimate, L ∈ (0, γLF̂ ],

L0 = L;
T (·) — function to specify τ;
B — population;
b ∈ 1,m — size of batch Bk ⊆B, k ∈ Z+.

(9)

Scheme 2 uses more flexible upper bound of Lipschitz constant search, its typical value is no less than
2LF̂ in case of unknown LF̂ . Doubly stochastic step is used in another stochastic gradient–like strategy,
based on the next settings:

x0 ∈ E1 — initialization;
N ∈ N — number of iterations;
T (·) — function to specify τ̃L;
B — population;
b, b̃ ∈ 1,m — sizes of batches Bk, B̃k ⊆B,

respectively, k ∈ Z+.

(10)
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Algorithm 3 General Three Stochastic Squares method with a doubly stochastic step

1: Input: settings (10).
2: for k = 0,1, to N−1 do
3: sample batches Bk, B̃k from B of corresponding sizes b, b̃.
4: determine τ̃kLk = T (xk, B̃k).
5: compute xk+1 ∈ E1 using (8).
6: end for
7: Output: xN .

And corresponding scheme 3 does not contain adaptive Lipschitz constant search procedures, it only
relies on step scale ηk.

4 Convergence analysis

4.1 Scaled step usage

Theorem 4 states general convergence result to approximate stationary point in mean.

Theorem 4. Suppose assumptions 3, 4, 5, 6 are satisfied. Consider Stochastic Gauss–Newton method
2 with τk = ĝ1(xk,Bk), ηk ∈ [η ,1], η ∈ (0,1] and some finite σ̃ ≥ σ . Then:

E
[

min
i∈0,k−1

∥∥∇ f̂2(xi)
∥∥2
]
≤

8
(

M2
Ĝ
+ γPĝ1LF̂

)
η(2−η)

(
E
[

f̂2(x0)
]

k
+2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+

+σ̃

√
1
b
− 1

m

)
, k ∈ N.

Expectation operator E [·] averages over all randomness in optimization procedure.

The following proposition states linear convergence in mean in case of PL condition (assumption 7).

Theorem 5. Suppose assumptions 3, 4, 5, 6, 7 are satisfied. Consider Stochastic Gauss–Newton
method 2 with τk = ĝ1(xk,Bk), ηk ∈ [η ,1], η ∈ (0,1] and some finite σ̃ ≥ σ . Then:

E
[∥∥∇ f̂2(xk)

∥∥2
]
≤ 4M2

Ĝ∆k,b;

E
[

f̂2(xk)
]
≤ f̂ ∗2 +∆k,b;

∆k,b
def
= E

[
f̂2(x0)

]
exp

(
− kη(2−η)µ

2
(
γLF̂Pĝ1 +µ

))+4

(
lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+

+σ̃

√
1
b
− 1

m

)(
γLF̂Pĝ1 +µ

η(2−η)µ

)
, k ∈ Z+, b ∈ 1, min{m,n}.

Expectation operator E [·] averages over all randomness in optimization procedure.
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4.2 Doubly stochastic step usage

The whole convergence of doubly stochastic step is justified using local model of f̂2, denoted as ϕx,l .
Scheme 3 is used to optimize in mean the following ϕx,l function:

f̂2(y)≤ϕx,l(y)
def
= f̂2(x)+

〈
∇ f̂2(x), y− x

〉
+

l
2
‖y− x‖2,

l ≥l f̂2
def
= 2

(
M2

F̂ +LF̂Pf̂1

)
, (x,y) ∈ E2

1 .

So, that’s why the value τ̃Lk is less principal and it is enough for appropriate ηk just to ensure that
τ̃Lk > 0.

Now consider solving nonlinear equation regime in problem (5):

dim(E1)≥ dim(E2), n≥ m,

the structure of used functions allows us to use weak growth condition (WGC) alongside PL condition
in current regime in context of assumptions 4 and 7:‖∇xĝ2(x,B)‖2 =

∥∥∥2Ĝ
′
(x,B)∗Ĝ(x,B)

∥∥∥2
≤ 4M2

Ĝ
ĝ2(x,B);

‖∇xĝ2(x,B)‖2 = 4
∥∥∥Ĝ

′
(x,B)∗Ĝ(x,B)

∥∥∥2
≥ 4µ ĝ2(x,B).

After averaging over batches B⊆B these inequalities lead to the following bounds:

4µ f̂2(x)≤ EB

[
‖∇xĝ2(x,B)‖2

]
≤ 4M2

Ĝ f̂2(x). (11)

Together WGC and PL condition mean for function f̂2 satisfaction of so called strong growth condition
(SGC): ∥∥∇ f̂2(x)

∥∥2
=
∥∥∥2F̂

′
(x)∗F̂(x)

∥∥∥2
≥ {assumption 7} ≥

≥ 4µ f̂2(x)⇒{(11)}⇒

⇒ EB

[
‖∇xĝ2(x,B)‖2

]
≤

M2
Ĝ

µ

∥∥∇ f̂2(x)
∥∥2

.

These conditions forces all sampled gradients to be equal zero in stationary points, which are also
global minimizers:

∇x∗ ĝ2(x∗,B) = 0n, B⊆B, x∗ : F(x∗) = 0m.

Thus, WGC and PL condition cause possibility to solve problem (5) in stochastic regime with arbitrary
batch size and arbitrary accuracy, as the theorem below states.

Theorem 6. Suppose that assumptions 3, 4, 5, 7 are satisfied. Consider Stochastic Gauss–Newton
method 3 with τ̃k ≥ τ̃ > 0, Lk ≥ L > 0. Then, for sequence

ηk =
µ (τ̃kLk)

2(
M2

Ĝ
+ τ̃kLk

)(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

, k ∈ Z+

the next estimate holds

E
[

f̂2(xk)
]
≤ E

[
f̂2(x0)

]
exp

− k(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

(
µτ̃L

M2
Ĝ
+ τ̃L

)2
 ,

k ∈ Z+.
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In case of ηk = 1, k ∈ Z+ convergence estimate is no better than
E
[

f̂2(xk)
]
≤ E

[
f̂2(x0)

]
exp

(
−kµ2

M2
Ĝ

(
2

µ+
(

LF̂ Pf̂1
+M2

F̂

)
c
− 1(

LF̂ Pf̂1
+M2

F̂

)
c2

))
;

c def
= 1

3

(
1+7 3

√
2

47+3
√

93
+

3
√

47+3
√

93
2

)
, k ∈ Z+.

Expectation operator E [·] averages over all randomness in optimization procedure.

Theorem 6 states linear convergence for all considered cases. As corollary, the most optimal choice
in the worst case scenario for τ̃ and L is τ̃L→+∞, which morphs Gauss–Newton step into gradient
method step, if we use dynamic ηk. In case of ηk = 1 convergence speed is slower in the worst case
scenario.

5 Experiments

We conduct numerical experiments to evaluate performance of algorithm 1, algorithm 2 and algorithm
3. The whole set of algorithms is implemented in Python 3.8 running on a Linux–based ASUS laptop
with Intel Core i5–4200H CPU @ 2.80GHz × 4 processor and 16 Gb RAM. The estimated runtime for
experiments is 6 hours, 5 minutes and 46 seconds. Details of our experiments are in supplementary
material.

We consider three benchmark functions to test main features of presented methods. The main task
is unconstrained minimization, which is achievable for smooth convex functions using equivalence
between unconstrained minimization task and solving system of equations, which represents first order
optimality conditions. More formally, it means ∇ f (x) ≡ F(x), if we have to minimize function f (x)
using optimization of merit ‖F(x)‖. So, we have to find a solution for this task:

min
x∈E1

f (x).

But our benchmark functions are non–convex, so our solution of the system of equations F(x) = 0n
can represent a local minimum point or even a saddle point.

We test the following three different doubly smooth functions f (x), x = (x1, . . . ,xn):

� Nesterov–Skokov function [9]:

fNS(x) = 1
4

(
x1−1

)2
+

n−1
∑

i=1

(
xi+1−2

(
xi)2

+1
)2

;

� Hat function: fH(x) = (‖x‖2−1)2;

� PL function: fPL(x) = ‖x‖2 +3
n
∑

i=1
sin2(xi).

Clearly, in such conditions we always have m = n.

Function fNS is one of the hardest to optimize because of its fluctuating landscape, achieved using

superpositions with Chebyshev polynomials of first kind P2(xi) = 2
(
xi)2− 1. Function fH is non–

convex and possesses quadratic growth property:

∃ν > 0 : f (x)− f ∗ ≥ ν

2
‖x−P(x)‖2 , ∀x ∈ E1,

P : E1→ E1,
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Figure 1: Performance of deterministic Gauss–Newton method on Nesterov–Skokov function

Figure 2: Performance of deterministic Gauss–Newton method on Hat function

where P is the projection of x onto set of global minimizers of f . Function fPL is non–convex, bounded
by two paraboloids and also satisfies quadratic growth property. All of three functions have global
minimum equal 0.

DOI 10.20347/WIAS.PREPRINT.2813 Berlin 2021



Flexible modification of Gauss-Newton method and its stochastic extension 15

Figure 3: Performance of deterministic Gauss–Newton method on PL function

For deterministic Gauss–Newton method we use τk = f̂1(xk) and test three different values of dimen-
sion n: 10, 100 and 1000. We use the exact proximal map: εk ≡ 0. All settings are averaged over 5
random initializations. Depicted uncertainty intervals have two standard deviations width.

All test runs show us the hardness of optimization fNS (figure 1) dispite having a unique global minimum,
the convergence speed is sublinear. fPL (figure 3) demonstrates linear speed of convergence to a
saddle point, however, trigonometric fluctuations slow down the whole process. And fH (figure 2)
shows the best properties to achieve even superlinear speed of convergence to the global minimum
in later iterations demonstrating typical change of slope between linear and superlinear regions of
convergence.

Results of stochastic algorithms performance are in supplementary material.
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SUPPLEMENTARY MATERIAL

A The proof of auxiliary results for Gauss–Newton method

The next lemma derives the local upper model for problem (5).

Lemma 1 ([21]). Let (x,y) ∈ F 2,L ≥ LF̂ ,τ > 0 and assumption 1 is satisfied. Then f̂1(y) ≤
ψx,L,τ(y).

Proof. We deduce an upper estimate for
∥∥∥F̂(y)− F̂(x)− F̂

′
(x)(y− x)

∥∥∥:

∥∥∥F̂(y)− F̂(x)− F̂
′
(x)(y− x)

∥∥∥=
F̂(y) = F̂(x)+

1∫
0

F̂
′
(x+ t(y− x))(y− x)d t

=

=

∥∥∥∥∥∥
1∫

0

(
F̂
′
(x+ t(y− x))− F̂

′
(x)
)
(y− x)d t

∥∥∥∥∥∥≤ {‖ ·‖ is convex, Jensen’s inequality} ≤

≤
1∫

0

∥∥∥(F̂
′
(x+ t(y− x))− F̂

′
(x)
)
(y− x)

∥∥∥d t ≤
1∫

0

∥∥∥F̂
′
(x+ t(y− x))− F̂

′
(x)
∥∥∥‖y− x‖d t ≤

≤ {assumption 1} ≤
1∫

0

LF̂‖y− x‖2t d t =
LF̂
2
‖y− x‖2.

(12)
Consider an auxiliary inequality:(√

τ

2
− 1√

2τ

∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥)2

=
τ

2
+

1
2τ

∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥2
−

−
∥∥∥F̂(x)+ F̂

′
(x)(y− x)

∥∥∥≥ 0⇒

⇒ τ

2
+

1
2τ

∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥2
≥

≥
∥∥∥F̂(x)+ F̂

′
(x)(y− x)

∥∥∥ .
(13)

Then for f̂1 we have

f̂1(y) =
∥∥F̂(y)

∥∥= ∥∥∥F̂(y)− F̂(x)− F̂
′
(x)(y− x)+ F̂(x)+ F̂

′
(x)(y− x)

∥∥∥≤
≤
∥∥∥F̂(y)− F̂(x)− F̂

′
(x)(y− x)

∥∥∥+∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥≤ {inequality from (12)} ≤

≤
LF̂
2
‖y− x‖2 +

∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥≤ {inequality from (13)} ≤ τ

2
+

LF̂
2
‖y− x‖2+

+
1

2τ

∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥2
= ψx,LF̂ ,τ

(y)≤ ψx,L,τ(y).

Corollary 1.1. For τ = φ(x,y) the gap between f̂1(y) and ψx,L,τ(y) is minimal, according to (13).
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The following lemma characterizes decrease relatively to the point of minimum of local model. The
decrease is measured proportional to the squared norm of proximal gradient map.

Lemma 2. Suppose that assumption 1 holds and x ∈F , TL,τ(x) ∈F , τ > 0, L≥ LF̂ . Then

τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥

L
2
‖TL,τ(x)− x‖2 .

Proof. Consider function

h(t) = min
y∈E1

{
ψx,t−1,τ(y)

}
= min

y∈E1

{
τ

2
+

1
2τ

∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥2
+

1
2t
‖y− x‖2

}
.

The local model ψx,t−1,τ(y) is convex w.r.t. (τ,y, t) on convex set{
(y,τ, t,α) ∈ E1×R3

+ : ‖y− x‖2 ≤ αt
}
.

The function h(t) has convex epigraph as the result of convex set projection, therefore, h(t) is convex
(Theorem 3.1.7, [22]). So we have for convex function

h(0)≥ h(t)+h
′
(t)(0− t) = h(t)−h

′
(t)t;

h
′
(t) =

〈
1
τ

F̂
′
(x)∗

(
F̂(x)+ F̂

′
(x)
(
Tt−1,τ(x)− x

))
+

1
t

(
Tt−1,τ(x)− x

)
︸ ︷︷ ︸

=∇yψx,t−1,τ (y)=0n as result of taking minimum w.r.t. y

,
∂Tt−1,τ(x)

∂ t

〉
−

− 1
2t2

∥∥Tt−1,τ(x)− x
∥∥2

=− 1
2t2

∥∥Tt−1,τ(x)− x
∥∥2

.

Using the main property of proximal map respectively t we have lim
t→0

argmin
y∈E1

{
ψx,t−1,τ(y)

}
= x⇒

h(0) = τ

2 +
‖F̂(x)‖2

2τ
= τ

2 +
f̂2(x)
2τ

. Thus,

τ

2
+

f̂2(x)
2τ
≥ ψx,t−1,τ(Tt−1,τ(x))+

1
2t

∥∥Tt−1,τ(x)− x
∥∥2 ≥ {lemma 1} ≥ f̂1(Tt−1,τ(x))+

+
1
2t

∥∥Tt−1,τ(x)− x
∥∥2⇒

{
t−1 = L

}
⇒ τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥

L
2
‖TL,τ(x)− x‖2 .

Corollary 2.1. The results of lemma also mean the inequality below:

τ

2
+

f̂2(x)
2τ
−ψx,L,τ(TL,τ(x))≥

L
2
‖TL,τ(x)− x‖2 ,

which is true for L > 0 and x ∈ E1.

Corollary 2.2. TL,τ(x) = argmin
y∈E1

{ψx,L,τ(y)} has explicit form for L > 0:

TL,τ(x) = x−
(

F̂
′
(x)∗F̂

′
(x)+ τLIn

)−1
F̂
′
(x)∗F̂(x).
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That’s why lim
L→+∞

TL,τ(x) = x and

τ

2
+

f̂2(x)
2τ
− f̂1(x)≥

1
2

lim
L→+∞

(
L‖TL,τ(x)− x‖2

)
=

=
1
2

lim
L→+∞

(
L
∥∥∥∥(F̂

′
(x)∗F̂

′
(x)+ τLIn

)−1
F̂
′
(x)∗F̂(x)

∥∥∥∥2
)

=

=
1
2

lim
L→+∞

∥∥∥∥∥
(

1√
L

F̂
′
(x)∗F̂

′
(x)+ τ

√
LIn

)−1

F̂
′
(x)∗F̂(x)

∥∥∥∥∥
2

= 0.

However, the value ‖L(TL,τ(x)− x)‖ converges to the norm of gradient of ψx,L,τ(y) w.r.t. y evaluated
at y = x when taking the limit in L→+∞:

lim
L→+∞

‖L(TL,τ(x)− x)‖= lim
L→+∞

∥∥∥∥L
(

F̂
′
(x)∗F̂

′
(x)+ τLIn

)−1
F̂
′
(x)∗F̂(x)

∥∥∥∥=
= lim

L→+∞

∥∥∥∥∥
(

1
L

F̂
′
(x)∗F̂

′
(x)+ τIn

)−1

F̂
′
(x)∗F̂(x)

∥∥∥∥∥=
∥∥∥∥1

τ
F̂
′
(x)∗F̂(x)

∥∥∥∥ .
The function ‖TL,τ(x)− x‖2 is decreasing of L and τ .

Corollary 2.3. If we set τ = f̂1(x) > 0, then for x ∈L ( f̂1(x)) ⊆F the proved inequality means
TL, f̂1(x)

(x) ∈L ( f̂1(x)):

τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥

L
2
‖TL,τ(x)− x‖2⇒

{
τ = f̂1(x)

}
⇒ f̂1(x)− f̂1(TL, f̂1(x)

(x))≥

≥ L
2

∥∥∥TL, f̂1(x)
(x)− x

∥∥∥2
≥ 0⇒ f̂1(x)≥ f̂1(TL, f̂1(x)

(x))⇒

⇒ TL, f̂1(x)
(x) ∈L ( f̂1(TL, f̂1(x)

(x)))⊆L ( f̂1(x)).

The lemma below estimates local decrease of the optimized functional using ∆r(x).

Lemma 3. Let assumption 1 holds and x ∈F , TL,τ(x) ∈F , τ > 0, L≥ LF̂ . Then, for any r > 0 the
next inequality holds

τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥ Lr2κ

(
∆r(x)
2τLr2

)
,

where 
∆r(x)

def
= f̂2(x)−min

y∈E1

{
(φ(x,y))2 : ‖y− x‖ ≤ r

}
;

κ(t) def
=

[
t2

2 , t ∈ [0, 1];
t− 1

2 , t > 1.
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Proof. We introduce hr = argmin
h∈E1

{
(φ(x,x+h))2 : ‖h‖ ≤ r

}
. Express local model at TL,τ(x):

f̂1(TL,τ(x))≤ {lemma 1} ≤ ψx,L,τ(TL,τ(x))≤

≤ min
t∈[0, 1]

{
τ

2
+

1
2τ

∥∥∥F̂(x)+ tF̂
′
(x)hr

∥∥∥2
+

L
2
(tr)2

}
=

τ

2
+

+ min
t∈[0, 1]

{
1

2τ

∥∥∥(1− t)F̂(x)+ t
(

F̂(x)+ F̂
′
(x)hr

)∥∥∥2
+

L
2
(tr)2

}
≤
{
‖ · ‖2 convex

}
≤ τ

2
+

+ min
t∈[0, 1]

{
(1− t)

2τ
f̂2(x)+

t
2τ

(φ(x,x+hr))
2 +

L
2
(tr)2

}
=

τ

2
+

f̂2(x)
2τ

+

+ min
t∈[0, 1]

{
−t
2τ

∆r(x)+
L
2
(tr)2

}
⇒ τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥ Lr2 max

t∈[0, 1]

{
∆r(x)
2τLr2 t− 1

2
t2
}
.

The RHS of the inequality above hides under max operator a quadratic polynomial with negative

coefficient at the highest degree term and with roots t ∈
{

0, ∆r(x)
τLr2

}
, which means two cases for the

computation of point of maximal value t∗: ∆r(x)
2r2τL ≤ 1 and ∆r(x)

2r2τL > 1. In the first case t∗ = ∆r(x)
2τLr2 , in the

second one t∗ = 1. The estimate obtained has the following expression:

τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥ Lr2 ·

1
2

(
∆r(x)
2τLr2

)2
, for t∗ = ∆r(x)

2τLr2 ;

∆r(x)
2τLr2 − 1

2 , for t∗ = 1.
(14)

Define function κ(t) =

[
t2

2 , t ∈ [0,1];
t− 1

2 , t > 1.
Express the estimate (14) using this function:

τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥ Lr2κ

(
∆r(x)
2τLr2

)
.

Note that f̂2(x)≥ ∆∞(x)≥ ∆r(x)≥ ∆0(x) = 0 and κ(t)≥ 0 by construction.

Corollary 3.1. The proved results hide the following inequality:

τ

2
+

f̂2(x)
2τ
−ψx,L,τ(TL,τ(x))≥ Lr2κ

(
∆r(x)
2τLr2

)
,

which holds for L > 0 and x ∈ E1. Moreover, for sufficiently small values of Lr2, that ∆r(x)
2τLr2 ≥ 1, we

have:
τ

2
+

f̂2(x)
2τ
−ψx,L,τ(TL,τ(x))≥

∆r(x)
2τ
− Lr2

2
.

For great values of Lr2, for which ∆r(x)
2τLr2 ≤ 1, we have different estimate:

τ

2
+

f̂2(x)
2τ
−ψx,L,τ(TL,τ(x))≥

(∆r(x))
2

8τ2Lr2 .

Corollary 3.2. For sufficiently great values of Lr2, for which ∆r(x)
2τLr2 ≤ 1, the obtained estimate simplifies:

τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥

(∆r(x))
2

8τ2Lr2 .
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For sufficiently small values of r, for which ∆r(x)
2τLr2 ≥ 1, the other estimate holds:

τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥

∆r(x)
2τ
− Lr2

2
.

In these inequalities the function Lr2κ
(

∆r(x)
2τLr2

)
is decreasing of L and τ .

Corollary 3.3. For τ = f̂1(x)> 0 the obtained estimates for x ∈L ( f̂1(x))⊆F mean TL, f̂1(x)
(x) ∈

L ( f̂1(x)):

τ

2
+

f̂2(x)
2τ
− f̂1(TL,τ(x))≥ Lr2κ

(
∆r(x)
2τLr2

)
⇒
{

τ = f̂1(x)
}
⇒ f̂1(x)− f̂1(TL, f̂1(x)

(x))≥

≥ Lr2κ
(

∆r(x)
2 f̂1(x)Lr2

)
≥ 0⇒ f̂1(x)≥ f̂1(TL, f̂1(x)

(x))⇒

⇒ TL, f̂1(x)
(x) ∈L ( f̂1(TL, f̂1(x)

(x)))⊆L ( f̂1(x)).

Lemma 4 bounds the local model for function f̂1. As corollary, this lemma also bounds the local model
with distance to solution of the system of equations (4).

Lemma 4. Let x ∈F , TL,τ(x) ∈F , L > 0, τ > 0. Then

ψx,L,τ(TL,τ(x))≤ min
y∈F

{
τ

2
+

L‖y− x‖2

2
+

f̂2(y)
2τ

+
f̂1(y)LF̂‖y− x‖2

2τ
+

L2
F̂
‖y− x‖4

8τ

}
.

Proof. By definition of ψx,L,τ(·):

ψx,L,τ(TL,τ(x)) = min
y∈F

{
τ

2
+

1
2τ

∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥2
+

L
2
‖y− x‖2

}
=

τ

2
+

+min
y∈F

{
1

2τ

(∥∥∥F̂(y)−
(

F̂(y)− F̂(x)− F̂
′
(x)(y− x)

)∥∥∥)2
+

L
2
‖y− x‖2

}
≤ τ

2
+

+min
y∈F

{
1

2τ

(
f̂1(y)+

∥∥∥F̂(y)− F̂(x)− F̂
′
(x)(y− x)

∥∥∥)2
+

L
2
‖y− x‖2

}
≤

≤ {inequality (12)} ≤

≤ τ

2
+min

y∈F

{
1

2τ

(
f̂1(y)+

LF̂
2
‖y− x‖2

)2

+
L
2
‖y− x‖2

}
≤ τ

2
+

+min
y∈F

{
L‖y− x‖2

2
+

f̂2(y)
2τ

+
f̂1(y)LF̂‖y− x‖2

2τ
+

L2
F̂
‖y− x‖4

8τ

}
.

Corollary 4.1. Suppose x∗ ∈F is the solution of (4): F̂(x∗) = 0m, L ( f̂1(x))⊆F . Then

ψx,L,τ(TL,τ(x))≤ min
y∈F

{
τ

2
+

L‖y− x‖2

2
+

f̂2(y)
2τ

+
f̂1(y)LF̂‖y− x‖2

2τ
+

L2
F̂
‖y− x‖4

8τ

}
≤ τ

2
+

+
L‖y− x‖2

2
+

f̂2(y)
2τ

+
f̂1(y)LF̂‖y− x‖2

2τ
+

L2
F̂
‖y− x‖4

8τ
= {y = x∗}=

=
τ

2
+

L‖x− x∗‖2

2
+

L2
F̂
‖x− x∗‖4

8τ
.
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B The proof of main results for Gauss–Newton method

The deterministic Gauss–Newton method is considered within settings (6). The general deterministic
Gauss–Newton framework is conceptually described as algorithm 1. However, the scheme above
deserves some criticism. Values εk can’t be arbitrary big and we either should choose small enough
values for εk or design procedures to force xk+1 ∈F for scheme correctness reason. The main and
maybe already conventional ways are listed below:

� add auxiliary rule for xk+1 ∈F search: f̂1(xk)≥ ψ̂xk,Lk,τk(xk+1) and force xk+1 := xk in case
of inability to achieve strict inequality;

� choose small enough εk ≥ 0 to guarantee xk+1 ∈F : L ( f̂1(xk)+ εk)⊆F ;

� introduce "correction procedure", e.g. projection onto F for every obtained xk+1.

B.1 The proof of theorem 1

Theorem 1 states global sublinear convergence rate to approximate stationary point.

Theorem 1. Suppose that assumption 1 is satisfied, k ∈ N, r > 0. Then Gauss–Newton method,
implemented using scheme 1 with τk = f̂1(xk), εk = ε ≥ 0, has the following estimates:

8L2
F̂

L

(
ε +

( f̂1(x0)− f̂1(xk))
k

)
≥ min

i∈0,k−1

{∥∥∥2LF̂

(
T2LF̂ , f̂1(xi)

(xi)− xi

)∥∥∥2
}

;

LF̂

(
ε +

( f̂1(x0)− f̂1(xk))
k

)
≥ min

i∈0,k−1

{
2
(
LF̂r
)2κ

(
∆r(xi)

4 f̂1(xi)LF̂ r2

)}
;

where κ(t) = t2

2 1{t∈[0,1]}+
(
t− 1

2

)
1{t>1}.

Proof. According to lemmas 2, 3 and corollaries 2.3, 3.3 for τ = f̂1(xk), L = Lk, x = xk we have
f̂1(xk)−ψxk,Lk, f̂1(xk)

(TLk, f̂1(xk)
(xk))≥ Lk

2

∥∥∥TLk, f̂1(xk)
(xk)− xk

∥∥∥2
;

f̂1(xk)−ψxk,Lk, f̂1(xk)
(TLk, f̂1(xk)

(xk))≥ Lkr2κ
(

∆r(xk)

2 f̂1(xk)Lkr2

)
.

Add and subtract ψxk,Lk, f̂1(xk)
(xk+1):

f̂1(xk)+
(

ψxk,Lk, f̂1(xk)
(xk+1)−ψxk,Lk, f̂1(xk)

(TLk, f̂1(xk)
(xk))

)
−ψxk,Lk, f̂1(xk)

(xk+1)≥

≥ Lk

2

∥∥∥TLk, f̂1(xk)
(xk)− xk

∥∥∥2
;

f̂1(xk)+
(

ψxk,Lk, f̂1(xk)
(xk+1)−ψxk,Lk, f̂1(xk)

(TLk, f̂1(xk)
(xk))

)
−ψxk,Lk, f̂1(xk)

(xk+1)≥

≥ Lkr2κ
(

∆r(xk)

2 f̂1(xk)Lkr2

)
.

We use conditions
ψxk,Lk,τk(xk+1)−ψxk,Lk,τk(TLk,τk(xk))≤ εk = ε
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and −ψxk,Lk, f̂1(xk)
(xk+1)≤− f̂1(xk+1):

f̂1(xk)+ ε− f̂1(xk+1)≥
Lk

2

∥∥∥TLk, f̂1(xk)
(xk)− xk

∥∥∥2
;

f̂1(xk)+ ε− f̂1(xk+1)≥ Lkr2κ
(

∆r(xk)

2 f̂1(xk)Lkr2

)
.

We average both parts of inequalities over first k iterations:
ε +

f̂1(x0)− f̂1(xk)

k
≥ 1

k

k−1

∑
i=0

Li

2

∥∥∥TLi, f̂1(xi)
(xi)− xi

∥∥∥2
;

ε +
f̂1(x0)− f̂1(xk)

k
≥ 1

k

k−1

∑
i=0

Lir2κ
(

∆r(xi)

2 f̂1(xi)Lir2

)
.

(15)

Using the following restriction Lk ≥ L in scheme 1 and monotonicity of
∥∥∥TLi, f̂1(xi)

(xi)− xi

∥∥∥2
and

Lir2κ
(

∆r(xi)

2 f̂1(xi)Lir2

)
over Li (corollaries 2.2 and 3.2):

ε +
f̂1(x0)− f̂1(xk)

k
≥ 1

k

k−1

∑
i=0

Li

2

∥∥∥TLi, f̂1(xi)
(xi)− xi

∥∥∥2
≥

≥ 1
k

k−1

∑
i=0

L
2

∥∥∥T2LF̂ , f̂1(xi)
(xi)− xi

∥∥∥2
≥ min

i∈0,k−1

{
L
2

∥∥∥T2LF̂ , f̂1(xi)
(xi)− xi

∥∥∥2
}

;

ε +
f̂1(x0)− f̂1(xk)

k
≥ 1

k

k−1

∑
i=0

Lir2κ
(

∆r(xi)

2 f̂1(xi)Lir2

)
≥

≥ 1
k

k−1

∑
i=0

2LF̂r2κ

(
∆r(xi)

4 f̂1(xi)LF̂r2

)
≥ min

i∈0,k−1

{
2LF̂r2κ

(
∆r(xi)

4 f̂1(xi)LF̂r2

)}
.

Finally, we multiply both sides of the inequalities above by constants to obtain bounds on generalized
proximal gradients:

8L2
F̂

L

(
ε +

( f̂1(x0)− f̂1(xk))
k

)
≥ min

i∈0,k−1

{∥∥∥2LF̂

(
T2LF̂ , f̂1(xi)

(xi)− xi

)∥∥∥2
}

;

LF̂

(
ε +

( f̂1(x0)− f̂1(xk))
k

)
≥ min

i∈0,k−1

{
2
(
LF̂r
)2κ

(
∆r(xi)

4 f̂1(xi)LF̂ r2

)}
.

Corollary 1.1. In case of adaptive accuracy for xk+1 computation, such as ε0 = ε f̂1(x0), εk =
ε
(

f̂1(xk−1)− f̂1(xk)
)
, k ∈ N, ε ≥ 0, it is possible to achieve approximation of solution for (4) with

arbitrary low approximation error. To prove that we consider (15) use the defined above εk computation
strategy:

ε
(
2 f̂1(x0)− f̂1(xk−1)

)
k

+
f̂1(x0)− f̂1(xk)

k
≥ 1

k

k−1

∑
i=0

Li

2

∥∥∥TLi, f̂1(xi)
(xi)− xi

∥∥∥2
;

ε
(
2 f̂1(x0)− f̂1(xk−1)

)
k

+
f̂1(x0)− f̂1(xk)

k
≥ 1

k

k−1

∑
i=0

Lir2κ
(

∆r(xi)

2 f̂1(xi)Lir2

)
.
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Using the proof scheme of theorem 1 we get:
8L2

F̂
kL

(
(1+2ε) f̂1(x0)− ε f̂1(xk−1)− f̂1(xk)

)
≥ min

i∈0,k−1

{∥∥∥2LF̂

(
T2LF̂ , f̂1(xi)

(xi)− xi

)∥∥∥2
}

;

LF̂
k

(
(1+2ε) f̂1(x0)− ε f̂1(xk−1)− f̂1(xk)

)
≥ min

i∈0,k−1

{
2
(
LF̂r
)2κ

(
∆r(xi)

4 f̂1(xi)LF̂r2

)}
.

Corollary 1.2. If we substitute the initial iteration with the k–th one and substitute k–th iteration with
(k+N +1) ∈ N iteration, we obtain estimate for the tail of optimization procedure k ∈ Z+:

8L2
F̂

(N +1)L
(
ε
(

f̂1(xk−1)− f̂1(xk+N)
)
+ f̂1(xk)− f̂1(xk+N+1)

)
≥

≥ min
i∈k,k+N

{∥∥∥2LF̂

(
T2LF̂ , f̂1(xi)

(xi)− xi

)∥∥∥2
}

;

LF̂
N +1

(
ε
(

f̂1(xk−1)− f̂1(xk+N)
)
+ f̂1(xk)− f̂1(xk+N+1)

)
≥

≥ min
i∈k,k+N

{
2
(
LF̂r
)2κ

(
∆r(xi)

4 f̂1(xi)LF̂r2

)}
.

Unrolling theorem 1 proof for initial iteration k > 0 and final iteration k+N we have estimate for the
sum of inequalities in (15):

f̂1(xk)− f̂1(xk+N+1)+ ε
(

f̂1(xk−1)− f̂1(xk+N)
)
≥ L

2

k+N

∑
i=k

∥∥∥T2LF̂ , f̂1(xi)
(xi)− xi

∥∥∥2
≥

≥ L
2

∥∥∥T2LF̂ , f̂1(xk)
(xk)− xk

∥∥∥2
;

f̂1(xk)− f̂1(xk+N+1)+ ε
(

f̂1(xk−1)− f̂1(xk+N)
)
≥

k+N

∑
i=k

2LF̂r2κ

(
∆r(xi)

4 f̂1(xi)LF̂r2

)
≥

≥ 2LF̂r2κ

(
∆r(xk)

4 f̂1(xk)LF̂r2

)
.

In the limit N→+∞ we get
f̂1(xk)− f̂ ∗1 + ε

(
f̂1(xk−1)− f̂ ∗1

)
≥ L

2

∥∥∥T2LF̂ , f̂1(xk)
(xk)− xk

∥∥∥2
;

f̂1(xk)− f̂ ∗1 + ε
(

f̂1(xk−1)− f̂ ∗1
)
≥ 2LF̂r2κ

(
∆r(xk)

4 f̂1(xk)LF̂ r2

)
.

(16)

Inequalities in (16) conditioned on lim
k→+∞

εk = lim
k→+∞

ε
(

f̂1(xk−1)− f̂1(xk)
)
= 0 mean

lim
k→+∞

xk+1 = lim
k→+∞

T2LF̂ , f̂1(xk)
(xk) = x∗

and  lim
k→+∞

‖xk+1− xk‖= 0;

lim
k→+∞

∆r(xk)

f̂1(xk)
= 0.

(17)
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Limits in (17) are deduced as consequence after taking limits in (16) over k→+∞, these limits bound
variation for sequence {xk}k∈Z+

and state connectivity for the set of limit points

{x∗ : x∗ ∈ E1, ∆r(x∗) = 0}

of sequence {xk}k∈Z+
.

Corollary 1.3. Formally, convergence condition up to the level ε̂ > 0 for the norm of proximal gradient
map is presented below:

min
i∈0,k−1

{∥∥∥2LF̂

(
T2LF̂ , f̂1(xi)

(xi)− xi

)∥∥∥}≤ ε̂.

And such condition puts limitations for k and ε :


8L2

F̂
ε

L ≤ rε̂2, r ∈ (0,1);

8L2
F̂( f̂1(x0)− f̂1(xk))

Lk ≤ (1− r)ε̂2.

The system of inequalities results into these asymptotics:

ε =
rε̂2L
8L2

F̂

= O
(
ε̂

2) , k =

⌈
8L2

F̂
f̂1(x0)

(1− r)ε̂2L

⌉
= O

(
1
ε̂2

)
.

B.2 The proof of theorem 2

Theorem 2 states local superlinear convergence rate to solution of problem (5).

Theorem 2. Suppose that assumption 1 is satisfied, Jacobian is bounded:
∥∥∥F̂

′
(x)
∥∥∥ ≤ MF̂ for all

x ∈F , and the solution x∗ ∈L ( f̂1(x0)), F̂(x∗) = 0m with σmin

(
F̂
′
(x∗)

)
≥ ς > 0 exists. Then

Gauss–Newton method 1 with τk = f̂1(xk), εk = 0 in region

‖xk− x∗‖ ≤min
{

2ς

5LF̂
,

1
12LF̂

((
3MF̂ +5ς

)
−
√(

3MF̂ +5ς
)2−24ς2

)}
, k ∈ Z+

superlinearly converges

‖xk+1− x∗‖ ≤
3LF̂‖xk−x∗‖2

2 +‖xk− x∗‖
√

f̂1(xk)Lk +
L2

F̂
‖xk−x∗‖2

4
ς −LF̂‖xk− x∗‖

≤ ‖xk− x∗‖,

xk+1 ∈L ( f̂1(x0)), f̂1(xk) = O(‖xk− x∗‖) .
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Proof. According to lemma 4 (corollary 4.1) ψxk,Lk,τk(TLk,τk(xk)) has upper bound:

ψxk,Lk,τk(TLk,τk(xk))≤
τk

2
+

Lk‖xk− x∗‖2

2
+

L2
F̂
‖xk− x∗‖4

8τk
⇒

⇒{add ψxk,Lk,τk(xk+1)−ψxk,Lk,τk(TLk,τk(xk))≤ εk}⇒

⇒ ψxk,Lk,τk(xk+1)≤
τk

2
+

Lk‖xk− x∗‖2

2
+

L2
F̂
‖xk− x∗‖4

8τk
+ εk⇒

⇒ ψxk,Lk,τk(xk+1) =
τk

2
+

(φ(xk,xk+1))
2

2τk
+

Lk

2
‖xk+1− xk‖2 ≤

≤ τk

2
+

Lk‖xk− x∗‖2

2
+

L2
F̂
‖xk− x∗‖4

8τk
+ εk⇒

⇒ (φ(xk,xk+1))
2

2τk
≤ Lk‖xk− x∗‖2

2
+

L2
F̂
‖xk− x∗‖4

8τk
+ εk⇒

⇒

√
τkLk‖xk− x∗‖2 +

L2
F̂
‖xk− x∗‖4

4
+2τkεk ≥

≥ φ(xk,xk+1)⇒

√√√√‖xk− x∗‖2

(
τkLk +

L2
F̂
‖xk− x∗‖2

4

)
+2τkεk ≥

≥
∥∥∥F̂(xk)+ F̂

′
(xk)(xk+1− xk)

∥∥∥ .
Now we rewrite φ(xk,xk+1) in a different way:

∥∥∥F̂(xk)+ F̂
′
(xk)(xk+1− xk)

∥∥∥=
∥∥∥∥∥∥∥∥∥F̂

′
(x∗)(xk+1− x∗)︸ ︷︷ ︸

def
=A

+
(

F̂(xk)− F̂(x∗)− F̂
′
(x∗)(xk− x∗)

)
︸ ︷︷ ︸

def
=B

+

+
(

F̂
′
(xk)− F̂

′
(x∗)

)
(xk+1− xk)︸ ︷︷ ︸

def
=C

∥∥∥∥∥∥∥∥∥ .
Using triangle inequality for norm ‖ · ‖:

‖A‖= ‖A+B+C−B−C‖ ≤ ‖A+B+C‖+‖−B‖+‖−C‖⇒
⇒ ‖A+B+C‖ ≥ ‖A‖−‖B‖−‖C‖ ;

‖A‖ ≥ {using minimal singular value definition} ≥ ς‖xk+1− x∗‖;

‖B‖ ≤ {inequality (12)} ≤
LF̂
2
‖xk− x∗‖2;

‖C‖ ≤ {submultiplicativity of norm} ≤
∥∥∥F̂

′
(xk)− F̂

′
(x∗)

∥∥∥‖xk+1− xk‖ ≤ {assumption 1} ≤

≤ LF̂‖xk− x∗‖‖xk+1− x∗+ x∗− xk‖ ≤ LF̂‖xk− x∗‖2 +LF̂‖xk− x∗‖‖xk+1− x∗‖.

Combining the inequalities above we get the lower bound for φ(xk,xk+1) :

φ(xk,xk+1)≥
(
ς −LF̂‖xk− x∗‖

)
‖xk+1− x∗‖−

3LF̂
2
‖xk− x∗‖2.
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Now we link lower and upper bounds for φ(xk,xk+1) into the inequality below:√√√√‖xk− x∗‖2

(
τkLk +

L2
F̂
‖xk− x∗‖2

4

)
+2τkεk ≥

≥
(
ς −LF̂‖xk− x∗‖

)
‖xk+1− x∗‖−

3LF̂‖xk− x∗‖2

2
⇒

⇒

√
‖xk− x∗‖2

(
τkLk +

L2
F̂
‖xk−x∗‖2

4

)
+2τkεk +

3LF̂‖xk−x∗‖2

2

ς −LF̂‖xk− x∗‖
≥ ‖xk+1− x∗‖.

To prove the theorem for specific τk we deduce upper bound for f̂1(xk) using local model
ψx∗,LF̂ ,φ(x

∗,xk)(xk):

f̂1(xk)≤ {lemma 1} ≤

∥∥∥∥∥∥∥F̂(x∗)︸ ︷︷ ︸
=0m

+F̂
′
(x∗)(xk− x∗)

∥∥∥∥∥∥∥+
LF̂
2
‖xk− x∗‖2 ≤

∥∥∥F̂
′
(x∗)(xk− x∗)

∥∥∥︸ ︷︷ ︸
≤MF̂‖xk−x∗‖

+

+
LF̂
2
‖xk− x∗‖2 ≤MF̂‖xk− x∗‖+

LF̂
2
‖xk− x∗‖2 <

<

{
upper bound for

superlinear convergence region: ‖xk− x∗‖< ς

LF̂

}
<
(

MF̂ +
ς

2

)
‖xk− x∗‖ ≤

≤
{

ς ≤ σmin(F̂
′
(x∗))≤ σmax(F̂

′
(x∗))≤MF̂

}
≤

3MF̂
2
‖xk− x∗‖⇒

⇒ f̂1(xk) = O(‖xk− x∗‖) .
(18)

In limit, the inequality above is nonstrict. We substitute values τk and εk into the convergence estimate
using alias tk = ‖xk− x∗‖:

tk+1 ≤
3LF̂ t2

k
2 + tk

√
f̂1(xk)Lk +

L2
F̂

t2
k

4
ς −LF̂‖xk− x∗‖

<
{

Lk ≤ 2LF̂ , estimate (18)
}
<

< tk

 3LF̂ tk
2 +

√
3MF̂LF̂tk +

L2
F̂

t2
k

4
ς −LF̂tk


︸ ︷︷ ︸

∈[0,1] by theorem conditions

≤ tk.

Let us describe possible values for tk form the limitations above:

0≤
3LF̂tk

2
+

√
3MF̂LF̂tk +

L2
F̂

t2
k

4
≤ ς −LF̂tk⇒ 0≤

√
3MF̂LF̂tk +

L2
F̂

t2
k

4
≤ ς −

5LF̂tk
2
⇒

⇒ tk ≤
2ς

5LF̂
,

the first condition is obtained. We square the inequality above to get rest of conditions:

3MF̂LF̂tk +
L2

F̂
t2
k

4
≤
(

ς −
5LF̂t

2

)2

⇒−6L2
F̂t2

k +
(
3MF̂LF̂ +5LF̂ς

)
tk− ς

2 ≤ 0⇒{tk ≥ 0}⇒

⇒ 0≤ tk ≤
1

12LF̂

((
3MF̂ +5ς

)
−
√(

3MF̂ +5ς
)2−24ς2

)
.
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Combining restrictions for tk ≥ 0 we justify lower bound for the region of superlinear convergence:

‖xk− x∗‖ ≤min
{

2ς

5LF̂
,

1
12LF̂

((
3MF̂ +5ς

)
−
√(

3MF̂ +5ς
)2−24ς2

)}
.

Corollary 2.1. The statement of theorem implicitly put restrictions for system of equations (4):

� the nondegeneracy of (4) in the point of minimum σmin

(
F̂
′
(x∗)

)
≥ ς > 0 means dim(E2)≥

dim(E1);

� the solvability of the system of equations (4) F̂(x∗) = 0m is usually meet the following limitation:
dim(E2)≤ dim(E1).

So, typically we can achieve local superlinear convergence solving the system of equations with
dim(E1) = dim(E2).

B.3 The proof of theorem 3

Theorem 3 states global sublinear and local linear convergence rates to approximate solution of problem
(5).

Theorem 3. Assume that assumptions 1 and 2 are held for Gauss–Newton method 1 with τk = f̂1(xk).
Then any sequence {xk}k∈Z+

has the property:

f̂1(xk+1)≤ εk +

 f̂1(xk)
2 +

LF̂
µ

f̂2(xk)≤ 3
4 f̂1(xk), if f̂1(xk)≤ µ

4LF̂
;

f̂1(xk)− µ

16LF̂
, otherwise.

Proof. Consider system of linear equations F̂(x)+ F̂
′
(x)h = 0m, x ∈F . There is h ∈ E1: F̂(x)+

F̂
′
(x)h = 0m, x ∈F according to PL condition and

h =−F̂
′
(x)∗

(
F̂
′
(x)F̂

′
(x)∗

)−1
F̂(x).

Then, using assumption 2 we have

‖h‖=
∥∥∥∥F̂

′
(x)∗

(
F̂
′
(x)F̂

′
(x)∗

)−1
F̂(x)

∥∥∥∥=√〈(F̂ ′(x)F̂ ′(x)∗)−1 F̂(x), F̂(x)
〉
≤
∥∥F̂(x)

∥∥
√

µ
=

=
f̂1(x)√

µ
.

(19)
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By definition of the local model for xk+1, k ∈ Z+:

f̂1(xk+1)≤ ψxk,Lk, f̂1(xk)
(xk+1) = ψxk,Lk, f̂1(xk)

(TLk, f̂1(xk)
(xk))+

(
ψxk,Lk, f̂1(xk)

(xk+1)−

−ψxk,Lk, f̂1(xk)
(TLk, f̂1(xk)

(xk))
)
≤ εk +ψxk,Lk, f̂1(xk)

(TLk, f̂1(xk)
(xk)) = εk+

+min
y∈E1

{
f̂1(xk)

2
+

(φ(xk,xk + y))2

2 f̂1(xk)
+

Lk

2
‖y‖2

}
≤

≤
{

instead of y we substitute thk =−tF̂
′
(xk)

∗
(

F̂
′
(xk)F̂

′
(xk)

∗
)−1

F̂(xk), t ∈ [0, 1]
}
≤

≤ εk +
f̂1(xk)

2
+ min

t∈[0, 1]

{
1

2 f̂1(xk)

∥∥∥F̂(xk)+ tF̂
′
(xk)hk

∥∥∥2
+

t2Lk

2
‖hk‖2

}
≤

≤ {inequality (19)} ≤ εk +
f̂1(xk)

2
+ min

t∈[0, 1]

{∥∥(1− t)F̂(xk)
∥∥2

2 f̂1(xk)
+

t2Lk

2µ
f̂2(xk)

}
≤

≤
{
‖ · ‖2 is convex

}
≤ εk +

f̂1(xk)

2
+ min

t∈[0, 1]

{
1− t

2
f̂1(xk)+

t2Lk

2µ
f̂2(xk)

}
=

= εk + f̂1(xk)+
f̂2(xk)Lk

µ
min

t∈[0, 1]

{
−tµ

2 f̂1(xk)Lk
+

t2

2

}
= εk+

+ f̂1(xk)−
f̂2(xk)Lk

µ
max

t∈[0, 1]

{
tµ

2 f̂1(xk)Lk
− t2

2

}
= {(14), lemma 3}= εk + f̂1(xk)−

− f̂2(xk)Lk

µ
κ
(

µ

2 f̂1(xk)Lk

)
≤ {monotone decrease over Lk} ≤

≤ εk + f̂1(xk)−
2 f̂2(xk)LF̂

µ
κ

(
µ

4 f̂1(xk)LF̂

)
.

We express using the explicit form of κ(·) considering monotone decrease of f̂2(xk)Lk
µ

κ
(

µ

2 f̂1(xk)Lk

)
over Lk (corollary 3.2):

f̂1(xk+1)≤ εk +

 f̂1(xk)− µ

16LF̂
, if f̂1(xk)≥ µ

4LF̂
;

f̂1(xk)
2 +

f̂2(xk)LF̂
µ
≤ 3

4 f̂1(xk), if f̂1(xk)≤ µ

4LF̂
.

Corollary 3.1. An adaptive choice of εk ≥ 0 allows us to solve (5) with arbitrary precision. As an
example for such choice define the following sequence {δk}k∈Z+

: 3
4δk > δk+1 > 0, δ−1 = 8

3δ0,
lim

k→+∞
δk = 0 and additionally define

f̂1(x−1)
def
=

µ

4LF̂
.

We define as N ∈ Z+∪{−1} the minimal number of the iteration for which the next inequalities hold
(and set N =−1 if such iteration does not exist):

f̂1(xN)≥
µ

4LF̂
≥ f̂1(xN+1).
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The next strategy of εk choice allows us to achieve an arbitrary precision of the approximate solution
for (4):

εk =

δ0 : δ0 <
µ

16LF̂
, for k = 0;

δk−1−δk, if 0 < k ≤ N +1;
3
4δk−1−δk, if k > N +1.

So the strategy states decrease of the approximation error of xk+1 search forming the convergence
estimates below: f̂1(xk)≤ 2δ0−δk−1 + f̂1(x0)− kµ

16LF̂
, if 0 < k ≤ N +1;

f̂1(xk)≤
(3

4

)k−N−1
f̂1(xN+1)+δN

(3
4

)k−N−1−δk−1, if k > N +1.

Corollary 3.2. If we have a constant level of the approximation error εk = ε > 0, we can formally
deduce necessary number of iterations and the maximal value of error in the worst case scenario to get
f̂1(xk)≤ ε̂ :

� if ε̂ ≥ µ

4LF̂
, then k ≥

⌈(
µ

16LF̂
− ε

)−1 (
f̂1(x0)− ε̂

)
1{ f̂1(x0)>ε̂}

⌉
, ε < µ

16LF̂
;

� if ε̂ < µ

4LF̂
, then k ≥


(

µ

16LF̂
− ε

)−1(
f̂1(x0)− µ

4LF̂

)
1{

f̂1(x0)>
µ

4LF̂

}+ log 4
3

(
µ

4rε̂LF̂

), ε ≤

(1−r)ε̂
4 , r ∈ (0,1).

C The proof of auxiliary results for stochastic Gauss–Newton
method

Lemma 5 states an important partial order for establishing linear convergence under PL condition.

Lemma 5 ([21]). Suppose the linear operator A : E1→ E2 with dim(E1) = n, dim(E2) = m, m≤ n
is row–nondegenerate:

AA∗ � µIm

for some µ > 0. Then for any ξ > 0 we have

A(ξ In +A∗A)−t A∗ � µ

(ξ +µ)t Im, t ∈ [0, 1].

The partial order � is defined on positive semi–definite cone.

Proof. Consider the singular value decomposition of the operator matrix A:

A =UΛV ∗, U∗U = Im, V ∗V = Im,

where Λ is a diagonal matrix, Λ�√µIm (by statement of this lemma). Define matrix W with columns
as orthogonal complement of columns in V up to full basis in E1:

VV ∗+WW ∗ = In, W ∗V = 0(n−m)×m.
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Exploiting block structure as result of the identity W ∗V = 0(n−m)×m we get:

A(ξ In +A∗A)−t A∗ =UΛV ∗
(
ξ (VV ∗+WW ∗)+V Λ

2V ∗
)−t

V ΛU∗ =

=UΛV ∗
(
V
(
ξ Im +Λ

2)V ∗+ξWW ∗
)−t

V ΛU∗ =

=UΛV ∗
(

V
(
ξ Im +Λ

2)−t
V ∗+

1
ξ t WW ∗

)
V ΛU∗ =

=UΛ
(
ξ Im +Λ

2)−t
ΛU∗ =

=U
(

ξ Λ
− 2

t +Λ
2− 2

t

)−t
U∗ � 1(

ξ µ
− 1

t +µ
1− 1

t

)t Im =
µ

(ξ +µ)t Im.

The lemma below describes main properties of the partial order on positive semi–definite cone.

Lemma 6. Let assumptions 4 and 7 hold. Then for every t ≥ 0, x∈E1, B⊆B, |B|= b∈ 1,min{m,n}
the next relations are satisfied:

τ tIn �
(

Ĝ
′
(x,B)∗Ĝ

′
(x,B)+ τIn

)t
�
(

M2
Ĝ
+ τ

)t
In, τ ≥ 0;

1(
M2

Ĝ
+τ

)t In �
(

Ĝ
′
(x,B)∗Ĝ

′
(x,B)+ τIn

)−t
� 1

τt In, τ > 0;

(µ + τ)t Ib �
(

Ĝ
′
(x,B)Ĝ

′
(x,B)∗+ τIb

)t
�
(

M2
Ĝ
+ τ

)t
Ib, τ ≥ 0;

1(
M2

Ĝ
+τ

)t Ib �
(

Ĝ
′
(x,B)Ĝ

′
(x,B)∗+ τIb

)−t
� 1

(µ+τ)t Ib, τ ≥ 0.

Partial order � is defined on positive semi–definite cone.

Proof. Assumption 4 bounds maximal singular value of Ĝ
′
(x,B) from above:∥∥∥Ĝ

′
(x,B)

∥∥∥= σmax(Ĝ
′
(x,B))≤MĜ⇔Ĝ

′
(x,B)∗Ĝ

′
(x,B)�M2

ĜIn,

Ĝ
′
(x,B)Ĝ

′
(x,B)∗ �M2

ĜIb.

Assumption 7 bounds minimal singular value of Ĝ
′
(x,B)∗ from below:

Ĝ
′
(x,B)Ĝ

′
(x,B)∗ � µIb⇔ σmin(Ĝ

′
(x,B)∗)≥

√
µ.

Symmetric matrices
(

Ĝ
′
(x,B)∗Ĝ

′
(x,B)+ τIn

)t
and

(
Ĝ
′
(x,B)Ĝ

′
(x,B)∗+ τIb

)t
have spectral de-

composition (or eigendecomposition) with corresponding diagonal matrices Λt
1 and Λt

2, with corre-
sponding orthogonal matrices Q1 and Q2. For arbitrary v ∈ E1 we have:〈(

Ĝ
′
(x,B)∗Ĝ

′
(x,B)+ τIn

)t
v, v
〉
=

〈
Q1 (Λ1 + τIn)

t Q∗1v︸︷︷︸
def
=v1

, v

〉
=

=



〈
(Λ1 + τIn)

t︸ ︷︷ ︸
σmax(Λ1)≤M2

Ĝ

v1, v1

〉
≤
(

M2
Ĝ + τ

)t
‖v1‖2 , ∀v1 ∈ E1︸ ︷︷ ︸

bounding Rayleigh quotient

;

〈
(Λ1 + τIn)

t︸ ︷︷ ︸
σmin(Λ1)≥0

v1, v1

〉
≥ τ

t ‖v1‖2 , ∀v1 ∈ E1︸ ︷︷ ︸
bounding Rayleigh

quotient

.
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Analogously for arbitrary w ∈ E∗3 , dim(E∗3) = b we have:〈
w,
(

Ĝ
′
(x,B)Ĝ

′
(x,B)∗+ τIb

)t
w
〉
=

〈
w, Q2 (Λ2 + τIb)

t Q∗2w︸︷︷︸
def
=w1

〉
=

=



〈
w1, (Λ2 + τIb)

t︸ ︷︷ ︸
σmax(Λ2)≤M2

Ĝ

w1

〉
≤
(

M2
Ĝ + τ

)t
‖w1‖2 , ∀w1 ∈ E∗3︸ ︷︷ ︸

bounding Rayleigh quotient

;

〈
w1, (Λ2 + τIb)

t︸ ︷︷ ︸
σmin(Λ2)≥µ

w1

〉
≥ (µ + τ)t ‖w1‖2 , ∀w1 ∈ E∗3︸ ︷︷ ︸

bounding Rayleigh
quotient

.

In both cases after replacement t for −t we cause inversion of the spectrum forcing to interchange
lower and upper estimates by Courant–Fischer–Weyl min–max principle. This means satisfaction for
the next relation of partial order:

τ tIn �
(

Ĝ
′
(x,B)∗Ĝ

′
(x,B)+ τIn

)t
�
(

M2
Ĝ
+ τ

)t
In, τ ≥ 0;

1(
M2

Ĝ
+τ

)t In �
(

Ĝ
′
(x,B)∗Ĝ

′
(x,B)+ τIn

)−t
� 1

τt In, τ > 0;

τ tIb �
(

Ĝ
′
(x,B)Ĝ

′
(x,B)∗+ τIb

)t
�
(

M2
Ĝ
+ τ

)t
Ib, τ ≥ 0;

1(
M2

Ĝ
+τ

)t Ib �
(

Ĝ
′
(x,B)Ĝ

′
(x,B)∗+ τIb

)−t
� 1

τt Ib, τ > 0.

(20)

The next proposition deduces lipschitzness of jacobians Ĝ
′

and F̂
′
.

Lemma 7. Suppose assumption 3 holds. Then F̂
′

and Ĝ
′

are Lipschitz continuous:
∥∥∥F̂

′
(x)− F̂

′
(y)
∥∥∥≤ LF̂ ‖x− y‖ , ∀(x,y) ∈ E2

1 ;∥∥∥Ĝ
′
(x,B)− Ĝ

′
(y,B)

∥∥∥≤ LF̂ ‖x− y‖ , ∀(x,y) ∈ E2
1 , ∀B⊆B, |B|= b.

Analogously functions f̂2 and ĝ2 are Lipschitz continuous:{∣∣ f̂2(x)− f̂2(y)
∣∣≤ lF̂ ‖x− y‖ , ∀(x,y) ∈ E2

1 ;
|ĝ2(x,B)− ĝ2(y,B)| ≤ lF̂ ‖x− y‖ , ∀(x,y) ∈ E2

1 , ∀B⊆B, |B|= b.

Proof. Consider batch of functions Ĝ, for arbitrary (x,y) ∈ E2
1 we express the following:

∥∥∥Ĝ
′
(x,B)− Ĝ

′
(y,B)

∥∥∥=
√√√√1

b

b

∑
j=1

∥∥∇Fi j(x)−∇Fi j(y)
∥∥2 ≤ {assumptions 3} ≤

≤

√√√√1
b

b

∑
j=1

L2
F̂
‖x− y‖2 = LF̂ ‖x− y‖ ;

∥∥∥F̂
′
(x)− F̂

′
(y)
∥∥∥=√Eq

[∥∥∇Fξ (x)−∇Fξ (y)
∥∥2
]
≤ {assumption 3} ≤

≤
√
Eq

[
L2

F̂
‖x− y‖2

]
= LF̂ ‖x− y‖ , q defines a distribution over B.
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By analogy, for arbitrary (x,y) ∈ E2
1 we express inequalities for ĝ2 and f̂2:

|ĝ2(x,B)− ĝ2(y,B)|=

∣∣∣∣∣1b b

∑
j=1

(
Fi j(x)

)2− 1
b

b

∑
j=1

(
Fi j(y)

)2

∣∣∣∣∣≤ 1
b

b

∑
j=1

∣∣∣(Fi j(x)
)2−

(
Fi j(y)

)2
∣∣∣≤

≤ {assumption 3} ≤ 1
b

b

∑
j=1

lF̂ ‖x− y‖= lF̂ ‖x− y‖ ;

∣∣ f̂2(x)− f̂2(y)
∣∣= ∣∣∣Eq

[(
Fξ (x)

)2−
(
Fξ (y)

)2
]∣∣∣≤ Eq

[∣∣∣(Fξ (x)
)2−

(
Fξ (y)

)2
∣∣∣]≤

≤ {assumption 3} ≤ Eq
[
lF̂ ‖x− y‖

]
= lF̂ ‖x− y‖ , ξ ∼ q.

Corollary 7.1. The statement of lemma also holds for infinite population B.

Lemma 8 deduces stochastic variant of the local model.

Lemma 8. Let (x,y) ∈ E2
1 , B ⊆B, L ≥ LF̂ , τ > 0, ĝ1(x,B) > 0 almost sure and assumption 3

holds. Then
ĝ1(y,B)≤ ψ̂x,L,τ(y,B) = τ

2 +
L
2 ‖y− x‖2 + 1

2τ

∥∥∥Ĝ(x,B)+ Ĝ
′
(x,B)(y− x)

∥∥∥2
;

f̂1(y)≤ ψx,L,τ(y)
def
= ψ̂x,L,τ(y,B) = τ

2 +
L
2 ‖y− x‖2 + 1

2τ

∥∥∥F̂(x)+ F̂
′
(x)(y− x)

∥∥∥2
.

Proof. The proof uses structure of the proof from lemma 1 with F̂ := Ĝ under batch B⊆B for arbitrary
(x,y) ∈ E2

1 , L≥ LF̂ , τ > 0.

The next lemma expresses main properties of scaled descend direction update in the optimization
procedure.

Lemma 9. Suppose assumption 3 holds, xk ∈ E1, τk > 0, Lk ≥ LF̂ , Bk ⊆B, ηk > 0, initialization x0
is chosen randomly and independently from Bk, k ∈ Z+. Then

xk+1 = xk−ηk

(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ τkLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk);

ĝ1(xk,Bk)− ĝ1(xk+1,Bk)≥ ĝ1(xk,Bk)−
τk

2
− ĝ2(xk,Bk)

2τk
+

+
ηk(2−ηk)

2τk

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ τkLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
〉
.

(21)

Proof. By definition of ψ̂x,L,τ(y,B):

ĝ1(xk,Bk)− ĝ1(xk+1,Bk)≥ ĝ1(xk,Bk)− ψ̂xk,Lk,τk(xk+1,Bk) = ĝ1(xk,Bk)−
τk

2
−

− Lk

2
‖xk+1− xk‖2− 1

2τk

∥∥∥Ĝ(xk,Bk)+ Ĝ
′
(xk,Bk)(xk+1− xk)

∥∥∥2
.

(22)
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Substitute expression of xk+1 into (22):

ĝ1(xk,Bk)− ĝ1(xk+1,Bk)≥ ĝ1(xk,Bk)−
τk

2
− 1

2τk

∥∥∥Ĝ(xk,Bk)+ Ĝ
′
(xk,Bk)(xk+1− xk)

∥∥∥2
−

− Lk

2
‖xk+1− xk‖2 = ĝ1(xk,Bk)−

τk

2
−

− 1
2τk

∥∥∥∥Ĝ(xk,Bk)−ηkĜ
′
(xk,Bk)

(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

∥∥∥∥2

−

− Lk

2

∥∥∥∥ηk

(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

∥∥∥∥2

= ĝ1(xk,Bk)−
τk

2
− ĝ2(xk,Bk)

2τk
+

+
1

2τk

(
2
〈

ηk

(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk), Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

〉
−

−
〈

ηk

(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)ηk

(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

〉
−

−Lkτk

〈
ηk

(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

ηk

(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

〉)
=

= ĝ1(xk,Bk)−
τk

2
− ĝ2(xk,Bk)

2τk
+

+
ηk(2−ηk)

2τk

〈(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk), Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

〉
=

= ĝ1(xk,Bk)−
τk

2
− ĝ2(xk,Bk)

2τk
+

+
ηk(2−ηk)

2τk

〈
Ĝ
′
(xk,Bk)

(
LkτkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk), Ĝ(xk,Bk)

〉
.

Corollary 9.1. If we take ηk ∈ (0,2), τk = ĝ1(xk,Bk), we automatically obtain local decrease on
batch Bk:

ĝ1(xk,Bk)− ĝ1(xk+1,Bk)≥

≥ ηk(2−ηk)

2ĝ1(xk,Bk)

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
〉
≥ 0,

because matrix
(

Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
is positive semi–definite.

Corollary 9.2. Corollary 9.1 also holds for ĝ2 in expectation:

ĝ1(xk,Bk)− ĝ1(xk+1,Bk)≥

≥ ηk(2−ηk)

2ĝ1(xk,Bk)

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
〉
≥ 0⇒ ĝ2(xk,Bk)− ĝ2(xk+1,Bk)≥

≥ ĝ2(xk,Bk)− ĝ1(xk,Bk)ĝ1(xk+1,Bk)≥
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≥ ηk(2−ηk)

2

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
〉
≥ 0.

After averaging over the whole randomness we get:

E [ĝ2(xk,Bk)− ĝ2(xk+1,Bk)] = E
[

f̂2(xk)− ĝ2(xk+1,Bk)
]
= E

[
f̂2(xk)

]
−E [ĝ2(xk+1,Bk)]≥

≥ E
[

ηk(2−ηk)

2

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
〉]
≥ 0.

If we average the local decrease only over batches Bk, we can establish the following:√
EBk [ĝ2(xk,Bk)] =

√
f̂2(xk) = f̂1(xk)≥

√
EBk [ĝ2(xk+1,Bk)]≥ {Jensen’s inequality} ≥

≥ EBk

[√
ĝ2(xk+1,Bk)

]
⇒ f̂1(xk)≥ EBk [ĝ1(xk+1,Bk)] ,

because the value xk+1 depends on Bk.

Corollary 9.3 ([21]). In deterministic settings (Bk = B) we have analogous results:

xk+1 = xk−ηk

(
F̂
′
(xk)

∗F̂
′
(xk)+ τkLkIn

)−1
F̂
′
(xk)

∗F̂(xk);

f̂1(xk)− f̂1(xk+1)≥ f̂1(xk)−
τk

2
− f̂2(xk)

2τk
+

+
ηk(2−ηk)

2τk

〈(
F̂
′
(xk)

∗F̂
′
(xk)+ τkLkIn

)−1
F̂
′
(xk)

∗F̂(xk), F̂
′
(xk)

∗F̂(xk)

〉
.

For ηk ∈ (0,2), τk = f̂1(xk) we have

f̂1(xk)− f̂1(xk+1)≥

≥ ηk(2−ηk)

2 f̂1(xk)

〈(
F̂
′
(xk)

∗F̂
′
(xk)+ f̂1(xk)LkIn

)−1
F̂
′
(xk)

∗F̂(xk), F̂
′
(xk)

∗F̂(xk)

〉
≥ 0,

because matrix
(

F̂
′
(xk)

∗F̂
′
(xk)+ f̂1(xk)LkIn

)−1
is also positive semi–definite.

Lemmas 10 and 11 reveal main effects of batching in the optimization procedure relatively function
value variance.

Lemma 10. Suppose assumption 6 is satisfied. Under sampling without replacement of batches
B⊆B, |B|= b from uniform distribution q over subsets B we have upper bound:

Eq

[∣∣ĝ2(x,B)− f̂2(x)
∣∣2]≤ σ̃2

b

(
1− b

m

)
, ∀x ∈ E1,

for some finite σ̃ ≥ σ .
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Proof. The expectation of ĝ2(x,B) over batch sample B can be represented using dependent Bernoulli
random variables Zi ∈ {0,1}, which encode exclusion of Fi using value 0 and inclusion of Fi into batch
B using value 1:

Eq [ĝ2(x,B)] = Eq

[
1
b

b

∑
j=1

(
Fi j(x)

)2

]
=

1
b
E

[
m

∑
i=1

(Fi(x))
2 Zi

]
=

1
b

m

∑
i=1

(Fi(x))
2E [Zi] =

=
1
m

m

∑
i=1

(Fi(x))
2 = f̂2(x), i j ∼ q,

because probability of picking Fi for sample B equals

P(Zi = 1) =
Cb−1

m−1

Cb
m

=
(m−1)!

(m−b)!(b−1)!
(m−b)!b!

m!
=

b
m
, i ∈ 1,m.

By definition of variance over finite population:

Vq

[(
Fξ (x)

)2
]
=

1
m

m

∑
i=1

(
(Fi(x))

2− f̂2(x)
)2

=
m−1

m
(σ(x))2 ≤ σ

2, ξ ∼ q,

σ(x) — quasi–variance for sample B with |B| = 1 for arbitrary x ∈ E1. By assumption 6: σ(x) ≤
σ

√
m

m−1 . The variance of function g2 value equals:

Vq [ĝ2(x,B)] = Eq

[∣∣ĝ2(x,B)− f̂2(x)
∣∣2]= V

[
1
b

m

∑
i=1

(Fi(x))2Zi

]
=

=
1
b2

(
m

∑
i=1

(Fi(x))4V [Zi]+2
m

∑
i=1

m

∑
j=i+1

(Fi(x)Fj(x))2 Cov(Zi,Z j)

)
,

where summation over empty set considered to be equal zero. Zi, i ∈ 1,m are Bernoulli random
variables, so V and Cov are defined in the following way:V [Zi] =

b
m

(
1− b

m

)
;

Cov(Zi,Z j) = E
[
ZiZ j

]
−E [Zi]E

[
Z j
]
=

Cb−2
m−2
Cb

m
−
( b

m

)2
= b(b−1)

m(m−1) −
( b

m

)2
.

Substitute these values into Vq [ĝ2(x,B)]:

Vq [ĝ2(x,B)] =
1
b2

(
m

∑
i=1

(Fi(x))4V [Zi]+2
m

∑
i=1

m

∑
j=i+1

(Fi(x)Fj(x))2 Cov(Zi,Z j)

)
=

=
1
b2

(
m

∑
i=1

(Fi(x))4 b
m

(
1− b

m

)
+

+2
m

∑
i=1

m

∑
j=i+1

(Fi(x)Fj(x))2

(
b(b−1)
m(m−1)

−
(

b
m

)2
))

=

=
(m−b)

mb

(
1
m

m

∑
i=1

(Fi(x))4− 2
m(m−1)

m

∑
i=1

m

∑
j=i+1

(Fi(x)Fj(x))2

)
=
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=
1
b

(
1− b

m

) 1
m−1

(
m

∑
i=1

(Fi(x))
2− f̂2(x)

)2
=

(σ(x))2

b

(
1− b

m

)
.

Define σ̃
def
= σ

√
m

m−1 , then

Eq

[∣∣ĝ2(x,B)− f̂2(x)
∣∣2]= (σ(x))2

b

(
1− b

m

)
≤ mσ2

b(m−1)

(
1− b

m

)
=

σ̃2

b

(
1− b

m

)
,

∀x ∈ E1.

Corollary 10.1. The estimate obtained can be straightforwardly generalized for infinite population:

Eq

[∣∣ĝ2(x,B)− f̂2(x)
∣∣2]≤ lim

m→+∞

[
σ̃2

b

(
1− b

m

)]
=

σ̃2

b
, ∀x ∈ E1.

This estimate coincides with estimate for case of sampling with replacement:

Vq [ĝ2(x,B)] = Vq

[
1
b

b

∑
j=1

(
Fi j(x)

)2

]
=

1
b2

b

∑
j=1

Vq

[(
Fi j(x)

)2
]
≤ σ2

b
≤ σ̃2

b
,

while lim
m→+∞

[σ̃ ] = σ .

Corollary 10.2. The lemma conditions bounds
∣∣ĝ2(x,B)− f̂2(x)

∣∣ for all x ∈ E1:

Eq
[∣∣ĝ2(x,B)− f̂2(x)

∣∣]= Eq

[√∣∣ĝ2(x,B)− f̂2(x)
∣∣2]≤√Eq

[∣∣ĝ2(x,B)− f̂2(x)
∣∣2]≤

≤ σ̃

√
1
b
− 1

m
.

Lemma 11. Let assumptions 3 and 6 hold for sequence {xk−1}k∈N, xk−1 ∈ E1, obtained using one of
the rules: (7) or (8). Under independent sampling without replacement of Bk−1 ⊆B, |Bk−1|= b from
uniform distribution over subsets Bk−1 for each k ∈ N we have

E
[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣]≤ 2lF̂E [‖xk− xk−1‖]1{b<m}+ σ̃

√
1
b
− 1

m
,

for some finite σ̃ ≥ σ . Averaging is done over samples Bk−1, k ∈ N and initialization.

Proof. Firstly, we express upper bound:

E
[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣]= E
[∣∣ f̂2(xk)− f̂2(xk−1)+ f̂2(xk−1)− ĝ2(xk−1,Bk−1)+

+ĝ2(xk−1,Bk−1)− ĝ2(xk,Bk−1)|]≤ E
[∣∣ f̂2(xk)− f̂2(xk−1)

∣∣]+
+E

[∣∣ f̂2(xk−1)− ĝ2(xk−1,Bk−1)
∣∣]+E [|ĝ2(xk−1,Bk−1)− ĝ2(xk,Bk−1)|]≤

≤
{

lipschitzness of ĝ2 and f̂2
}
≤ 2lF̂E [‖xk− xk−1‖]+E

[√∣∣ f̂2(xk−1)− ĝ2(xk−1,Bk−1)
∣∣2]≤

≤ 2lF̂E [‖xk− xk−1‖]+
√

E
[∣∣ f̂2(xk−1)− ĝ2(xk−1,Bk−1)

∣∣2]≤
≤ {lemma 10} ≤ 2lF̂E [‖xk− xk−1‖]+

√
σ̃2

b

(
1− b

m

)
= 2lF̂E [‖xk− xk−1‖]+ σ̃

√
1
b
− 1

m
=
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= 2lF̂E [‖xk− xk−1‖]1{b<m}+ σ̃

√
1
b
− 1

m
, (23)

because for b = m we have f̂2(xk) = ĝ2(xk,B) = ĝ2(xk,Bk−1). Sometimes, it is convenient to
express (23) in the following way:

E
[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣]≤ 2lF̂E [‖xk− xk−1‖]1{b<m}+ σ̃

√
1
b
− 1

m
≤

≤
√

1
b
− 1

m

(
2lF̂
√

m(m−1)E [‖xk− xk−1‖]1{b<m}+ σ̃

)
.

(24)

Corollary 11.1. As in lemma 10, the proved estimate has a natural generalization for infinite population:

E
[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣]≤ lim
m→+∞

[
2lF̂E [‖xk− xk−1‖]+ σ̃

√
1
b
− 1

m

]
=

= 2lF̂E [‖xk− xk−1‖]+
σ̃√

b
, ∀k ∈ N.

Analogously this estimate coincides with the case of sampling with replacement and can be obtained
using corollary 10.1:

E
[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣]≤ {(23)} ≤ 2lF̂E [‖xk− xk−1‖]+

+

√
E
[∣∣ f̂2(xk−1)− ĝ2(xk−1,Bk−1)

∣∣2]≤
≤ {lemma 10, corollary 10.1} ≤ 2lF̂E [‖xk− xk−1‖]+

σ̃√
b
,

while lim
m→+∞

[σ̃ ] = σ .

Corollary 11.2. For |Bk−1|= m, k ∈ N we have E
[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣]= 0.

The lemma below represents local model relatively the step (7).

Lemma 12. Let assumption 3 holds for sequence {xk}k∈Z+ , xk ∈ E1 obtained using (7) with τk > 0,
Lk > 0, Bk ⊆B, ηk ∈ (0,2). Then, for arbitrary y ∈ E1 we have

ψ̂xk,Lk,τk(y,Bk) = ψ̂xk,Lk,τk(xk+1,Bk)+
Lk

2
‖y− xk+1‖2+

+
1

2τk

∥∥∥Ĝ
′
(xk,Bk)(y− xk+1)

∥∥∥2
+

1−ηk

2τk
〈y− xk+1, ∇xk ĝ2(xk,Bk)〉 .

Proof. Firstly, we rewrite ψ̂xk,Lk,τk(y,Bk):

ψ̂xk,Lk,τk(y,Bk) =
τk

2
+

Lk

2
‖y− xk‖2 +

1
2τk

∥∥∥Ĝ(xk,Bk)+ Ĝ
′
(xk,Bk)(y− xk)

∥∥∥2
=

τk

2
+

+
Lk

2
‖(y− xk+1)+(xk+1− xk)‖2 +

1
2τk

∥∥∥Ĝ(xk,Bk)+ Ĝ
′
(xk,Bk)((y− xk+1)+(xk+1− xk))

∥∥∥2
=

=
τk

2
+

Lk

2
‖y− xk+1‖2 +Lk 〈y− xk+1, xk+1− xk〉+

Lk

2
‖xk+1− xk‖2+

+
1

2τk

∥∥∥(Ĝ(xk,Bk)+ Ĝ
′
(xk,Bk)(xk+1− xk)

)
+ Ĝ

′
(xk,Bk)(y− xk+1)

∥∥∥2
=

=

(
τk

2
+

Lk

2
‖xk+1− xk‖2 +

1
2τk

∥∥∥Ĝ(xk,Bk)+ Ĝ
′
(xk,Bk)(xk+1− xk)

∥∥∥2
)
+

Lk

2
‖y− xk+1‖2+
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+ 〈y− xk+1, Lk(xk+1− xk)〉+
1
τk

〈
Ĝ
′
(xk,Bk)(y− xk+1), Ĝ(xk,Bk)+ Ĝ

′
(xk,Bk)(xk+1− xk)

〉
+

+
1

2τk

∥∥∥Ĝ
′
(xk,Bk)(y− xk+1)

∥∥∥2
= ψ̂xk,Lk,τk(xk+1,Bk)+

Lk

2
‖y− xk+1‖2+

+
1

2τk

∥∥∥Ĝ
′
(xk,Bk)(y− xk+1)

∥∥∥2
+

+

〈
y− xk+1,Lk(xk+1− xk)+

1
τk

Ĝ
′
(xk,Bk)

∗
(

Ĝ(xk,Bk)+ Ĝ
′
(xk,Bk)(xk+1− xk)

)
︸ ︷︷ ︸

=∇xk+1 ψ̂xk ,Lk ,τk (xk+1,Bk)

〉
=

= ψ̂xk,Lk,τk(xk+1,Bk)+
Lk

2
‖y− xk+1‖2 +

1
2τk

∥∥∥Ĝ
′
(xk,Bk)(y− xk+1)

∥∥∥2
+

+
1

2τk

〈
y− xk+1, 2

((
τkLkIn + Ĝ

′
(xk,Bk)

∗Ĝ
′
(xk,Bk)

)
(xk+1− xk)+ Ĝ

′
(xk,Bk)

∗Ĝ(xk,Bk)
)〉

=

=

{
xk+1− xk =−ηk

(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ τkLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

}
=

= ψ̂xk,Lk,τk(xk+1,Bk)+
Lk

2
‖y− xk+1‖2 +

1
2τk

∥∥∥Ĝ
′
(xk,Bk)(y− xk+1)

∥∥∥2
+

+
1

2τk

〈
y− xk+1, (1−ηk)

(
2Ĝ

′
(xk,Bk)

∗Ĝ(xk,Bk)
)〉

= ψ̂xk,Lk,τk(xk+1,Bk)+
Lk

2
‖y− xk+1‖2+

+
1

2τk

∥∥∥Ĝ
′
(xk,Bk)(y− xk+1)

∥∥∥2
+

1−ηk

2τk
〈y− xk+1, ∇xk ĝ2(xk,Bk)〉 .

Corollary 12.1. For ηk = 1 the representation obtained allows us to estimate closeness to the global
minimum of ψ̂xk,Lk,τk(·,Bk), if we define x̂k+1 ∈ E1 as an approximate value of xk+1 computed with
error εk ≥ 0 and use the following representation of difference ψ̂xk,Lk,τk(y,Bk)− ψ̂xk,Lk,τk(xk+1,Bk):

0≤ ψ̂xk,Lk,τk(x̂k+1,Bk)− ψ̂xk,Lk,τk(xk+1,Bk) =
Lk

2
‖x̂k+1− xk+1‖2+

+
1

2τk

∥∥∥Ĝ
′
(xk,Bk)(x̂k+1− xk+1)

∥∥∥2
≤ εk, xk+1 = T̂Lk,τk(xk,Bk).

Corollary 12.2. In the deterministic case (Ĝ(x,B) = F̂(x), x ∈ E1) we have an analogous represen-
tation for ψxk,Lk,τk(y), y ∈ E1:

ψxk,Lk,τk(y) = ψxk,Lk,τk(xk+1)+
Lk

2
‖y− xk+1‖2 +

1
2τk

∥∥∥F̂
′
(xk)(y− xk+1)

∥∥∥2
+

+
1−ηk

2τk

〈
y− xk+1, ∇ f̂2(xk)

〉
.

Lemma 13 describes bounds of variation for the sequence {xk}k∈Z+ under considered update rules.

Lemma 13. Let assumptions 3 and 4 hold for sequence {xk}k∈Z+ obtained using update rule (7),
τk = ĝ1(xk,Bk), ηk ∈ (0,1], Lk > 0. Then we have bounds of sequence variation:

‖xk+1− xk‖ ∈

 ηk ‖∇xk ĝ2(xk,Bk)‖

2
(

M2
Ĝ
+ ĝ1(xk,Bk)Lk

) , min

{√
2ĝ1(xk,Bk)

Lk
,

ηkMĜ
Lk

} , k ∈ Z+.
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In case of update rule (8) variation ‖xk+1− xk‖ is bounded in the following way:

‖xk+1− xk‖ ∈

ηk ‖∇xk ĝ2(xk,Bk)‖

2
(

M2
Ĝ
+ τ̃kLk

) ,
ηkMĜĝ1(xk,Bk)

τ̃kLk

 , k ∈ Z+.

Proof. According to (7) we define B̃k = Bk, τ̃k = τk to get

‖xk+1− xk‖=
∥∥∥∥−ηk

(
Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)+ τ̃kLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

∥∥∥∥=
= ηk

∥∥∥∥∥∥∥∥
(

Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)+ τ̃kLkIn

)−1

︸ ︷︷ ︸
symmetric matrix

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

∥∥∥∥∥∥∥∥=
= ηk

(〈(
Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)+ τ̃kLkIn

)−2
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk), Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

〉) 1
2

=

=
{

∇xk ĝ2(xk,Bk) = 2Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
}
=

=
ηk

2

√〈(
Ĝ′(xk, B̃k)∗Ĝ

′
(xk, B̃k)+ τ̃kLkIn

)−2
∇xk ĝ2(xk,Bk), ∇xk ĝ2(xk,Bk)

〉
≥

≥ {assumption 4, (20)} ≥
ηk ‖∇xk ĝ2(xk,Bk)‖

2
(

M2
Ĝ
+ τ̃kLk

) ≥ {τ̃k = ĝ1(xk,Bk)} ≥
ηk ‖∇xk ĝ2(xk,Bk)‖

2
(

M2
Ĝ
+ ĝ1(xk,Bk)Lk

) .
(25)

So, the formulas we got hold for the case of update rule (8) even for B̃k 6= Bk. Now consider the upper
bound:

ψ̂xk,Lk,ĝ1(xk,Bk)(xk,Bk) = ĝ1(xk,Bk) = {lemma 12}= ψ̂xk,Lk,ĝ1(xk,Bk)(xk+1,Bk)+

+
Lk

2
‖xk− xk+1‖2+

+
1

2ĝ1(xk,Bk)

∥∥∥Ĝ
′
(xk,Bk)(xk− xk+1)

∥∥∥2
+

1−ηk

2ĝ1(xk,Bk)
〈xk− xk+1, ∇xk ĝ2(xk,Bk)〉=

= ψ̂xk,Lk,ĝ1(xk,Bk)(xk+1,Bk)+
Lk

2
‖xk− xk+1‖2 +

1
2ĝ1(xk,Bk)

∥∥∥Ĝ
′
(xk,Bk)(xk− xk+1)

∥∥∥2
+

+
(1−ηk)ηk

4ĝ1(xk,Bk)

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
∇xk ĝ2(xk,Bk), ∇xk ĝ2(xk,Bk)

〉
≥ 0.

(26)
The expression above leads to

ĝ1(xk,Bk)≥ ĝ1(xk,Bk)− ψ̂xk,Lk,ĝ1(xk,Bk)(xk+1,Bk)≥
Lk

2
‖xk+1− xk‖2⇒

⇒‖xk+1− xk‖ ≤

√
2ĝ1(xk,Bk)

Lk
.

There is also exists another upper bound with defined B̃k = Bk, τ̃k = τk:

‖xk+1− xk‖=
∥∥∥∥−ηk

(
Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)+ τ̃kLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

∥∥∥∥=
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= ηk


〈(

Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)+ τ̃kLkIn

)−2

︸ ︷︷ ︸
B̃k can be sampled independently from Bk

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk), Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

〉
1
2

≤

≤ ηk

τ̃kLk

∥∥∥Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
∥∥∥≤ ηk

τ̃kLk

∥∥∥Ĝ
′
(xk,Bk)

∗
∥∥∥∥∥Ĝ(xk,Bk)

∥∥≤ ηkMĜĝ1(xk,Bk)

τ̃kLk
=

= {τk = ĝ1(xk,Bk)}=
ηkMĜ

Lk
.

(27)
Expressions in (27) are applicable for the rule (8) allowing us to deduce upper bound on ‖xk+1− xk‖
in case of (8).

Corollary 13.1. For τk ∈
[
τ̃, T̃

]
, τ̃ ∈

(
0, T̃

]
, Lk ∈

[
L, γ̃LF̂

]
, L ∈

(
0, γ̃LF̂

]
, γ̃ ≥ 1 and under

assumption 5 the value ‖xk+1− xk‖ obtained using update rule (7) is bounded:

‖xk+1− xk‖ ∈

ηk ‖∇xk ĝ2(xk,Bk)‖

2
(

M2
Ĝ
+ γ̃T̃ LF̂

) , min


√√√√1

L

(
T̃ +

P2
ĝ1

τ̃

)
,

ηkMĜPĝ1

τkLk


 .

Lower bound is obtained from (25) using monotone decrease over τkLk. Upper bound
ηkMĜPĝ1

τkLk
is

deduced from (27) using assumptions 4 and 5. Upper bound√√√√1
L

(
T̃ +

P2
ĝ1

τ̃

)

is expressed via (26) for local model ψ̂xk,Lk,τk(·,Bk) under assumption 5:

T̃

2
+

P2
ĝ1

2τ̃
≥ ψ̂xk,Lk,τk(xk,Bk) =

τk

2
+

ĝ2(xk,Bk)

2τk
≥ Lk

2
‖xk+1− xk‖2 ≥ L

2
‖xk+1− xk‖2 .

Corollary 13.2. Under assumption 5 and Lk ∈ [L, γLF̂ ], L ∈ (0, γLF̂ ], γ ≥ 1 we can bound the value
‖xk+1− xk‖ obtained using update rule (7) in the following way:

‖xk+1− xk‖ ∈

ηk ‖∇xk ĝ2(xk,Bk)‖

2
(

M2
Ĝ
+ γPĝ1LF̂

) , min

{√
2Pĝ1

L
,

ηkMĜ
L

} , k ∈ Z+.

Corollary 13.3. In the deterministic setting Ĝ(xk,Bk) = F̂(xk), B̃k = Bk = B and τ̃k = τk = f̂1(xk)
we have bounded variation for the sequence {xk}k∈Z+ built using 9.3:

‖xk+1− xk‖ ∈

 ηk
∥∥∇ f̂2(xk)

∥∥
2
(

M2
F̂
+ f̂1(xk)Lk

) , min


√

2 f̂1(xk)

Lk
,

ηkMĜ
Lk


 , k ∈ Z+.

Corollary 13.4. Under constant step scale ηk = η = const, 0 < Lk ≤ γLF̂ , γ ≥ 1, k ∈ Z+ and under
assumptions 3, 4 and 5 the lower bound for ‖xk+1− xk‖ obtained using update rule (7) is proportional
to the norm of gradient of optimization criterion and can be used as stopping criterion to achieve level
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ε > 0 of the gradient norm:

E
[∥∥∇ f̂2(xk)

∥∥]≤√E
[∥∥∇ f̂2(xk)

∥∥2
]
≤
√

E
[
E
[
‖∇xk ĝ2(xk,Bk)‖2

]]
=

=

√
E
[
‖∇xk ĝ2(xk,Bk)‖2

]
≤

2
(

M2
Ĝ
+ γPĝ1LF̂

)
η

√
E
[
‖xk+1− xk‖2

]
≤ ε,

it means

E [‖xk+1− xk‖]≤
√
E
[
‖xk+1− xk‖2

]
≤ εη

2
(

M2
Ĝ
+ γPĝ1LF̂

) ,
where we average over the whole randomness of the optimization procedure. In cases of update rule
(8) with τ̃k ≤ T̃ this condition transforms in the following way:

E [‖xk+1− xk‖]≤
√

E
[
‖xk+1− xk‖2

]
≤ εη

2
(

M2
Ĝ
+ γT̃ LF̂

) .
Lemma 14 presents the lipschitzness of gradients of bounded functions f̂2 and ĝ2.

Lemma 14. Let assumptions 3, 4, 5 hold. Then function ĝ2 has Lipschitz gradient with an upper

estimate of the Lipschitz constant lĝ2 = 2
(

M2
Ĝ
+LF̂Pĝ1

)
.

Proof. We compute lĝ2 — an upper estimate for the best (the lowest) Lipschitz constant for arbitrary
(x,y) ∈ E2

1 and B⊆B:∥∥∇yĝ2(y,B)−∇xĝ2(x,B)
∥∥= ∥∥∥2Ĝ

′
(y,B)∗Ĝ(y,B)−2Ĝ

′
(x,B)∗Ĝ(x,B)

∥∥∥=
= 2

∥∥∥(Ĝ
′
(y,B)∗Ĝ(y,B)− Ĝ

′
(x,B)∗Ĝ(y,B)

)
+
(

Ĝ
′
(x,B)∗Ĝ(y,B)− Ĝ

′
(x,B)∗Ĝ(x,B)

)∥∥∥≤
≤ 2

(∥∥∥Ĝ
′
(y,B)∗Ĝ(y,B)− Ĝ

′
(x,B)∗Ĝ(y,B)

∥∥∥+∥∥∥Ĝ
′
(x,B)∗Ĝ(y,B)− Ĝ

′
(x,B)∗Ĝ(x,B)

∥∥∥)≤
≤ 2

(∥∥∥Ĝ
′
(y,B)∗− Ĝ

′
(x,B)∗

∥∥∥∥∥Ĝ(y,B)
∥∥+∥∥∥Ĝ

′
(x,B)∗

∥∥∥∥∥Ĝ(y,B)− Ĝ(x,B)
∥∥)≤

≤ 2
(

LF̂‖y− x‖Pĝ1 +M2
Ĝ‖y− x‖

)
≤
(

2
(

LF̂Pĝ1 +M2
Ĝ

))
‖y− x‖⇒ lĝ2 = 2

(
LF̂Pĝ1 +M2

Ĝ

)
.

We use the lipschitzness of multidimensional map Ĝ from above:

∥∥Ĝ(y,B)− Ĝ(x,B)
∥∥=

∥∥∥∥∥∥
1∫

0

Ĝ
′
(x+ t(y− x),B)(y− x)d t

∥∥∥∥∥∥≤
≤

1∫
0

∥∥∥Ĝ
′
(x+ t(y− x),B)

∥∥∥‖y− x‖d t ≤MĜ ‖y− x‖ .

Corollary 14.1. For B = B function f̂2 has Lipschitz gradient with the Lipschitz constant estimate

l f̂2
def
= 2

(
M2

F̂
+LF̂Pf̂1

)
.
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Lemma 15 justifies local model used in doubly stochastic step analysis.

Lemma 15. Suppose assumptions 3, 4, 5 hold. Then there is exists the following stochastic local model
for function ĝ2:

ĝ2(y,B)≤ ϕ̂x,l(y,B) = ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+ l
2
‖y− x‖2 , ∀l ≥ lĝ2,

∀(x,y) ∈ E2
1 , ∀B⊆B.

Proof. Consider an upper estimate for ĝ2(x,B) under arbitrary (x,y) ∈ E2
1 and B⊆B:

ĝ2(y,B) = ĝ2(y,B)− ĝ2(x,B)−〈∇xĝ2(x,B), y− x〉+ ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉 ≤
≤ ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+ |ĝ2(y,B)− ĝ2(x,B)−〈∇xĝ2(x,B), y− x〉|=
= ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+

+

∣∣∣∣∣∣
1∫

0

〈
∇x+t(y−x)ĝ2(x+ t(y− x),B), y− x

〉
d t−〈∇xĝ2(x,B), y− x〉

∣∣∣∣∣∣=
= ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+

+

∣∣∣∣∣∣
1∫

0

〈
∇x+t(y−x)ĝ2(x+ t(y− x),B)−∇xĝ2(x,B), y− x

〉
d t

∣∣∣∣∣∣≤
≤ ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+

+

1∫
0

∣∣〈∇x+t(y−x)ĝ2(x+ t(y− x),B)−∇xĝ2(x,B), y− x
〉∣∣d t ≤

≤ ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+

+

1∫
0

∥∥∇x+t(y−x)ĝ2(x+ t(y− x),B)−∇xĝ2(x,B)
∥∥‖y− x‖d t ≤

≤ ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+
1∫

0

tlĝ2 ‖y− x‖2 d t =

= ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+
lĝ2

2
‖y− x‖2︸ ︷︷ ︸

=ϕ̂x,lĝ2
(y,B)

≤

≤ ĝ2(x,B)+ 〈∇xĝ2(x,B), y− x〉+ l
2
‖y− x‖2 , l ≥ lĝ2.

Corollary 15.1. In case of B = B the local model for ĝ2 morphs into the local model for f̂2:

f̂2(y)≤ ϕx,l(y)
def
= f̂2(x)+

〈
∇ f̂2(x), y− x

〉
+

l
2
‖y− x‖2 , ∀l ≥ l f̂2

, ∀(x,y) ∈ E2
1 .

Lemma 16 bounds of the gradient norm under WGC and PL condition.
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Lemma 16. Let assumptions 4 and 7 are satisfied. Then the squared norm of gradient of ĝ2 is bounded
from both sides with ĝ2:

4µ ĝ2(x,B)≤ ‖∇xĝ2(x,B)‖2 ≤ 4M2
Ĝĝ2(x,B), ∀x ∈ E1, ∀B⊆B.

Proof. Conditions 4 and 7 state the following inequalities:

4µ ĝ2(x,B)≤ {assumption 7} ≤ 4
∥∥∥Ĝ

′
(x,B)∗Ĝ(x,B)

∥∥∥2
= ‖∇xĝ2(x,B)‖2 ≤

≤ 4
∥∥∥Ĝ

′
(x,B)

∥∥∥2∥∥Ĝ(x,B)
∥∥2 ≤ {assumption 4} ≤

≤ 4M2
Ĝĝ2(x,B), ∀x ∈ E1,∀B⊆B⇒ µ ≤M2

Ĝ, 4µ ĝ2(x,B)≤ ‖∇xĝ2(x,B)‖2 .

(28)

Corollary 16.1. The averaged over batches B squared norm of the gradient of function ĝ2 is also
bounded from both sides:

4µ f̂2(x)≤ EB

[
‖∇xĝ2(x,B)‖2

]
≤ 4M2

Ĝ f̂2(x), ∀x ∈ E1.

D The proof of results for stochastic Gauss–Newton method

The general Gauss–Newton method with scaled step uses the update rule based on direct minimization
of the local model ψ̂xk,Lk,τk(y,Bk) over y ∈ E1 (7), where the minimal value of ψ̂xk,Lk,τk(xk+1,Bk)
is obtained at ηk = 1. This framework is described via settings (9), and conceptual scheme of the
framework forms up algorithm 2.

D.1 The proof of theorem 4

Theorem 4 proves sublinear global convergence rate to approximate stationary point in mean.

Theorem 4. Suppose assumptions 3, 4, 5, 6 are satisfied. Consider Stochastic Gauss–Newton method
2 with τk = ĝ1(xk,Bk), ηk ∈ [η ,1], η ∈ (0,1] and some finite σ̃ ≥ σ . Then:

E
[

min
i∈0,k−1

∥∥∇ f̂2(xi)
∥∥2
]
≤

8
(

M2
Ĝ
+ γPĝ1LF̂

)
η(2−η)

(
E
[

f̂2(x0)
]

k
+2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+

+σ̃

√
1
b
− 1

m

)
, k ∈ N.

(29)
Expectation operator E [·] averages over all randomness in optimization procedure.

Proof. According to update rule for xk (7), (21):

ĝ1(xk,Bk)− ĝ1(xk+1,Bk)≥ ĝ1(xk,Bk)−
τk

2
− ĝ2(xk,Bk)

2τk
+

+
ηk(2−ηk)

2τk

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ τkLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
〉
≥

≥
{

τk = ĝ1(xk,Bk), ηk ≥ η , ∇xk ĝ2(xk,Bk) = 2Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk), corollary 9.1
}
≥
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≥ η(2−η)

8ĝ1(xk,Bk)

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
∇xk ĝ2(xk,Bk),

∇xk ĝ2(xk,Bk)〉 ≥ 0⇒
⇒ ĝ2(xk,Bk)− ĝ2(xk+1,Bk)≥ ĝ2(xk,Bg)− ĝ1(xk,Bk)ĝ1(xk+1,Bk)≥

≥ η(2−η)

8

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
∇xk ĝ2(xk,Bk), ∇xk ĝ2(xk,Bk)

〉
≥

≥ {using assumptions 4 and 5, (20)} ≥
η(2−η)‖∇xk ĝ2(xk,Bk)‖2

8
(

M2
Ĝ
+Pĝ1Lk

) ≥
{

Lk ≤ γLF̂
}
≥

≥
η(2−η)‖∇xk ĝ2(xk,Bk)‖2

8
(

M2
Ĝ
+ γPĝ1LF̂

) .

We sum the inequalities above for the first k iterations and average it using E [·] operator:

E

[
k−1

∑
i=0

(ĝ2(xi,Bi)− ĝ2(xi+1,Bi))

]
= E

[
k−1

∑
i=0

(
f̂2(xi)− ĝ2(xi+1,Bi)

)]
≥

≥ E

k−1

∑
i=0

η(2−η)‖∇xi ĝ2(xi,Bi)‖2

8
(

M2
Ĝ
+ γPĝ1LF̂

)
=

=
η(2−η)

8
(

M2
Ĝ
+ γPĝ1LF̂

) k−1

∑
i=0

E
[
E
[
‖∇xi ĝ2(xi,Bi)‖2

]]
≥ η(2−η)

8
(

M2
Ĝ
+ γPĝ1LF̂

) k−1

∑
i=0

E
[∥∥∇ f̂2(xi)

∥∥2
]
≥

≥ kη(2−η)

8
(

M2
Ĝ
+ γPĝ1LF̂

) min
i∈0,k−1

(
E
[∥∥∇ f̂2(xi)

∥∥2
])
≥ kη(2−η)

8
(

M2
Ĝ
+ γPĝ1LF̂

)E[ min
i∈0,k−1

∥∥∇ f̂2(xi)
∥∥2
]
.

Now we rewrite the obtained inequality:

kη(2−η)

8
(

M2
Ĝ
+ γPĝ1LF̂

)E[ min
i∈0,k−1

∥∥∇ f̂2(xi)
∥∥2
]
≤

≤ E

[
f̂2(x0)+

k−1

∑
i=1

(
f̂2(xi)− ĝ2(xi,Bi−1)

)
− ĝ2(xk,Bk−1)

]
≤

≤ E
[

f̂2(x0)
]
+

k−1

∑
i=1

E
[

f̂2(xi)− ĝ2(xi,Bi−1)
]
=

∣∣∣∣∣E[ f̂2(x0)
]
+

k−1

∑
i=1

E
[

f̂2(xi)− ĝ2(xi,Bi−1)
]∣∣∣∣∣≤

≤ E
[

f̂2(x0)
]
+

k−1

∑
i=1

E
[∣∣ f̂2(xi)− ĝ2(xi,Bi−1)

∣∣] .
According to lemma 11 the expression above is bounded:

kη(2−η)

8
(

M2
Ĝ
+ γPĝ1LF̂

)E[ min
i∈0,k−1

∥∥∇ f̂2(xi)
∥∥2
]
≤ E

[
f̂2(x0)

]
+

k−1

∑
i=1

E
[∣∣ f̂2(xi)− ĝ2(xi,Bi−1)

∣∣]≤
≤ E

[
f̂2(x0)

]
+

k−1

∑
i=1

(
2lF̂E [‖xi− xi−1‖]1{b<m}+ σ̃

√
1
b
− 1

m

)
≤

≤ {lemma 13, corollary 13.2, Lk ≥ L, ηk ≤ 1} ≤
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≤ E
[

f̂2(x0)
]
+(k−1)

(
2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m

)
= E [ĝ2(x0,B0)]+

+(k−1)

(
2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m

)
≤

≤ E
[

f̂2(x0)
]
+ k

(
2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m

)
.

So, dividing by kη(2−η)

8
(

M2
Ĝ
+γPĝ1LF̂

) we get the desired estimate (29):

E
[

min
i∈0,k−1

∥∥∇ f̂2(xi)
∥∥2
]
≤

8
(

M2
Ĝ
+ γPĝ1LF̂

)
η(2−η)

(
E
[

f̂2(x0)
]

k
+2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+

+σ̃

√
1
b
− 1

m

)
, k ∈ N.

Corollary 4.1. The proved estimate has irreducible term

16lF̂
(

M2
Ĝ
+ γPĝ1LF̂

)
η(2−η)

min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m},

so it is more convenient to use inequality (24) to get an upper estimate for the batch size. And to
achieve an ε̂ > 0 level for minimal value of norm of gradient in expectation we consider the system of
inequalities below:

8(M2
Ĝ
+γPĝ1LF̂ )E[ĝ2(x0,B0)]

kη(2−η) ≤ (1− r)ε̂2;

8(M2
Ĝ
+γPĝ1LF̂ )

η(2−η)

(
2lF̂
√

m(m−1)min
{√

2Pĝ1
L ,

MĜ
L

}
1{b<m}+ σ̃

)√
1
b −

1
m ≤ rε̂2.

(30)

Inequalities (30) put the following restrictions for the number of iterations and for the batch size:
k =

⌈
8(M2

Ĝ
+γPĝ1LF̂ )E[ĝ2(x0,B0)]

ε̂2(1−r)η(2−η)

⌉
, r ∈ (0,1);

b = min

m,


64(M2

Ĝ
+γPĝ1

LF̂ )2

η2(2−η)2

(
2lF̂
√

m(m−1)min
{√

2Pĝ1
L ,

MĜ
L

}
+σ̃

)2

ε̂4r2+
64(M2

Ĝ
+γPĝ1

LF̂ )2

mη2(2−η)2

(
2lF̂
√

m(m−1)min
{√

2Pĝ1
L ,

MĜ
L

}
+σ̃

)2


 ;

(31)

these estimates asymptotically look like

k = O
(

1
ε̂2

)
, b = min

{
m, O

(
1
ε̂4

)}
.

D.2 The proof of theorem 5

Theorem 5 proves linear global convergence rate to approximate solution of problem (5) point in mean.
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Theorem 5. Suppose assumptions 3, 4, 5, 6, 7 are satisfied. Consider Stochastic Gauss–Newton
method 2 with τk = ĝ1(xk,Bk), ηk ∈ [η ,1], η ∈ (0,1] and some finite σ̃ ≥ σ . Then:

E
[∥∥∇ f̂2(xk)

∥∥2
]
≤ 4M2

Ĝ∆k,b;

E
[

f̂2(xk)
]
≤ f̂ ∗2 +∆k,b;

∆k,b
def
= E

[
f̂2(x0)

]
exp

(
− kη(2−η)µ

2
(
γLF̂Pĝ1 +µ

))+4

(
lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+

+σ̃

√
1
b
− 1

m

)(
γLF̂Pĝ1 +µ

η(2−η)µ

)
, k ∈ Z+, b ∈ 1, min{m,n}.

(32)
Expectation operator E [·] averages over all randomness in optimization procedure.

Proof. According to update rule for xk (7), (21) we have the following (corollary 9.1):

ĝ1(xk,Bk)− ĝ1(xk+1,Bk)≥

≥ ηk(2−ηk)

2ĝ1(xk,Bk)

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ ĝ1(xk,Bk)LkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
〉
≥ 0⇒ ĝ2(xk,Bk)− ĝ2(xk+1,Bk)≥ ĝ2(xk,Bk)− ĝ1(xk,Bk)ĝ1(xk+1,Bk)≥

≥
{

ηk ≥ η , Lk ≤ γLF̂
}
≥

≥ η(2−η)

2

〈(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ γ ĝ1(xk,Bk)LF̂ In

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
〉
=

=
η(2−η)

2

〈
Ĝ
′
(xk,Bk)

(
Ĝ
′
(xk,Bk)

∗Ĝ
′
(xk,Bk)+ γ ĝ1(xk,Bk)LF̂ In

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk),

Ĝ(xk,Bk)
〉
≥ {lemma 5} ≥

η(2−η)
∥∥Ĝ(xk,Bk)

∥∥2
µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

) = ĝ2(xk,Bk)
η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

) ⇒
⇒ ĝ2(xk+1,Bk)≤ ĝ2(xk,Bk)

(
1− η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

)) .

We add − f̂ ∗2 ≤ 0 to the inequality above:

ĝ2(xk+1,Bk)− f̂ ∗2 ≤
(
ĝ2(xk,Bk)− f̂ ∗2

)
− ĝ2(xk,Bk)

η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

) ≤
≤
(
ĝ2(xk,Bk)− f̂ ∗2

)(
1− η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

))=
(
ĝ2(xk,Bk)− f̂2(xk)+ f̂2(xk)−

−ĝ2(xk,Bk−1)+ ĝ2(xk,Bk−1)− f̂ ∗2
)(

1− η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

))≤
≤
(∣∣ĝ2(xk,Bk)− f̂2(xk)+ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣+
+ĝ2(xk,Bk−1)− f̂ ∗2

)(
1− η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

))≤
≤
(∣∣ĝ2(xk,Bk)− f̂2(xk)

∣∣+ ∣∣ f̂2(xk)− ĝ2(xk,Bk−1)
∣∣+
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+
(
ĝ2(xk,Bk−1)− f̂ ∗2

))(
1− η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

)) . (33)

Now we average the inequality above using operator E [·]:
E
[
ĝ2(xk+1,Bk)− f̂ ∗2

]
≤ E

[(∣∣ĝ2(xk,Bk)− f̂2(xk)
∣∣+ ∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣+
+
(
ĝ2(xk,Bk−1)− f̂ ∗2

))(
1− η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

))]≤ {according to assumption 5} ≤

≤

E
[∣∣ĝ2(xk,Bk)− f̂2(xk)

∣∣]︸ ︷︷ ︸
is bounded with batch variance

+E
[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣]︸ ︷︷ ︸
is bounded according to lemma 11

+

+E
[
ĝ2(xk,Bk−1)− f̂ ∗2

])(
1− η(2−η)µ

2
(
γLF̂Pĝ1 +µ

)) .

The expression above is bounded according to lemmas 10 (corollary 10.2) and 11:

E
[
ĝ2(xk+1,Bk)− f̂ ∗2

]
≤

(
σ̃

√
1
b
− 1

m
+2lF̂E [‖xk− xk−1‖]1{b<m}+ σ̃

√
1
b
− 1

m
+

+E
[
ĝ2(xk,Bk−1)− f̂ ∗2

])(
1− η(2−η)µ

2
(
γLF̂Pĝ1 +µ

))≤ {corollary 13.2, ηk ≤ 1} ≤

≤

(
2

(
lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m

)
+

+E
[
ĝ2(xk,Bk−1)− f̂ ∗2

])(
1− η(2−η)µ

2
(
γLF̂Pĝ1 +µ

)) .

(34)

Formula (34) represents a recurrent dependency over iterations k ∈ N:
ak

def
= E

[
ĝ2(xk,Bk−1)− f̂ ∗2

]
;

ck
def
= c = 2

(
lF̂ min

{√
2Pĝ1

L ,
MĜ
L

}
1{b<m}+ σ̃

√
1
b −

1
m

)
;

q def
=

(
1− η(2−η)µ

2(γLF̂ Pĝ1+µ)

)
≤ exp

(
− η(2−η)µ

2(γLF̂ Pĝ1+µ)

)
∈ (0,1).

(35)

So, for sequence {ak}k∈N defined in (35) we have
a0

def
= E [ĝ2(x0,B0)] ;

a1 ≤ a0q≤ a0q+ cq;
ak+1 ≤ (ak + c)q, k ∈ N.

The bound for a1 is straightforwardly deduced from (33):

ĝ2(xk+1,Bk)− f̂ ∗2 ≤ ĝ2(xk+1,Bk)≤ ĝ2(xk,Bk)

(
1− η(2−η)µ

2
(
γLF̂ ĝ1(xk,Bk)+µ

))≤
≤ {assumption 5} ≤ ĝ2(xk,Bk)

(
1− η(2−η)µ

2
(
γLF̂Pĝ1 +µ

))⇒{k = 0}⇒ E
[
ĝ2(x1,B0)− f̂ ∗2

]
≤

≤ E [ĝ2(x0,B0)]

(
1− η(2−η)µ

2
(
γLF̂Pĝ1 +µ

))≤ E [ĝ2(x0,B0)]exp

(
− η(2−η)µ

2
(
γLF̂Pĝ1 +µ

)) .
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Now, we can bound ak form above using the following sum:

ak ≤ (ak−1 + c)q≤ ((ak−2 + c)q+ c)q︸ ︷︷ ︸
partial sum for geometric series

≤ ·· · ≤ a0qk + c
k−1

∑
i=1

qi = a0qk + cq
(

1−qk−1

1−q

)
1{k>0},

k ∈ Z+.
(36)

We link ak bound with f̂2(xk) upper bound:

f̂2(xk)− f̂ ∗2 = f̂2(xk)− ĝ2(xk,Bk−1)+ ĝ2(xk,Bk−1)− f̂ ∗2 ≤
∣∣ f̂2(xk)− ĝ2(xk,Bk−1)

∣∣+
+ ĝ2(xk,Bk−1)− f̂ ∗2 ⇒ E

[
f̂2(xk)− f̂ ∗2

]
≤ E

[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)
∣∣]+

+E
[
ĝ2(xk,Bk−1)− f̂ ∗2

]
≤ {according to lemma 11 and corollary 13.2, ηk ≤ 1} ≤

≤ 2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m
+E

[
ĝ2(xk,Bk−1)− f̂ ∗2

]
= {(35)}=

= 2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m
+ak ≤ {(36)} ≤

≤ 2lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m
+a0qk + cq

(
1−qk−1

1−q

)
1{k>0} ≤

≤ 2

(
lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m

)
+a0qk + cq

(
1−qk−1

1−q

)
1{k>0} =

= a0qk + c
(

1+q
(

1−qk−1

1−q

)
1{k>0}

)
, k ∈ Z+.

And we express E
[

f̂2(xk)
]

estimate from the inequality above:

E
[

f̂2(xk)
]
≤ f̂ ∗2 +a0qk + c

(
1+q

(
1−qk−1

1−q

)
1{k>0}

)
, k ∈ Z+. (37)

We use WGC to bound the mean squared norm of the gradient:

E
[∥∥∇ f̂2(xk)

∥∥2
]
≤ E

[
E
[
‖∇xk ĝ2(xk,Bk)‖2

]]
= E

[∥∥∥2Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)
∥∥∥2
]
≤

≤ 4E
[∥∥∥Ĝ

′
(xk,Bk)

∗
∥∥∥2∥∥Ĝ(xk,Bk)

∥∥2
]
≤ {assumption 4} ≤ 4M2

ĜE [ĝ2(xk,Bk)] .

Consider the next expression:

ĝ2(xk,Bk)− f̂ ∗2 = ĝ2(xk,Bk)− f̂2(xk)+ f̂2(xk)− ĝ2(xk,Bk−1)+ ĝ2(xk,Bk−1)− f̂ ∗2 ≤
≤
∣∣ĝ2(xk,Bk)− f̂2(xk)

∣∣+ ∣∣ f̂2(xk)− ĝ2(xk,Bk−1)
∣∣+ (ĝ2(xk,Bk−1)− f̂ ∗2

)
⇒

⇒ E
[
ĝ2(xk,Bk)− f̂ ∗2

]
≤ E

[∣∣ĝ2(xk,Bk)− f̂2(xk)
∣∣]+E

[∣∣ f̂2(xk)− ĝ2(xk,Bk−1)
∣∣]+

+E
[
ĝ2(xk,Bk−1)− f̂ ∗2

]
≤ {corollary 10.2 and lemma 11} ≤ σ̃

√
1
b
− 1

m
+

+2lF̂E [‖xk− xk−1‖]1{b<m}+ σ̃

√
1
b
− 1

m
+E

[
ĝ2(xk,Bk−1)− f̂ ∗2

]
≤

≤ {corollary 13.2, ηk ≤ 1} ≤ 2

(
lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+ σ̃

√
1
b
− 1

m

)
+
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+E
[
ĝ2(xk,Bk−1)− f̂ ∗2

]
= c+ak ≤ {(36)} ≤ a0qk + c

(
1+q

(
1−qk−1

1−q

)
1{k>0}

)
, k ∈ Z+.

(38)
Using the arbitrariness of f̂ ∗2 ≥ 0 in (33) and (38) we can set f̂ ∗2 = 0 in (33) and (38) to estimate

E
[∥∥∇ f̂2(xk)

∥∥2
]
:

E
[∥∥∇ f̂2(xk)

∥∥2
]
≤ 4M2

Ĝ

(
a0qk + c

(
1+q

(
1−qk−1

1−q

)
1{k>0}

))
, k ∈ Z+. (39)

Simplifying (37) and (39) we obtain the desired result:

a0qk + c
(

1+q
(

1−qk−1

1−q

)
1{k>0}

)
≤ a0qk + c

(
1+

q
1−q

)
=

= E [ĝ2(x0,B0)]

(
1− η(2−η)µ

2
(
γLF̂Pĝ1 +µ

))k

+2

(
lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+

+σ̃

√
1
b
− 1

m

)(
1+

(
1− η(2−η)µ

2
(
γLF̂Pĝ1 +µ

)) 2
(
γLF̂Pĝ1 +µ

)
η(2−η)µ

)
≤

≤ E
[

f̂2(x0)
]

exp

(
− kη(2−η)µ

2
(
γLF̂Pĝ1 +µ

))+4

(
lF̂ min

{√
2Pĝ1

L
,

MĜ
L

}
1{b<m}+

+σ̃

√
1
b
− 1

m

)(
γLF̂Pĝ1 +µ

η(2−η)µ

)
= ∆k,b, k ∈ Z+, b ∈ 1, min{m, n}.

So, the estimates (37) and (39) using ∆k,b represent (32):E
[

f̂2(xk)
]
≤ f̂ ∗2 +∆k,b;

E
[∥∥∇ f̂2(xk)

∥∥2
]
≤ 4M2

Ĝ
∆k,b.

Corollary 5.1. Analogously to corollary 4.1 we establish the following conditions on the batch size and
on the number of iterations using approach from (30) and (31):

k =
⌈

2(γLF̂ Pĝ1+µ)
η(2−η)µ ln

(
4M2

Ĝ
E[ĝ2(x0,B0)]

ε̂2(1−r)

)⌉
, r ∈ (0,1);

b = min

m, n,


256M4

Ĝ

(
lF̂
√

m(m−1)min
{√

2Pĝ1
L ,

MĜ
L

}
+σ̃

)2(
γLF̂ Pĝ1

+µ

η(2−η)µ

)2

ε̂4r2+
256M4

Ĝ
m

(
lF̂
√

m(m−1)min
{√

2Pĝ1
L ,

MĜ
L

}
+σ̃

)2(
γLF̂ Pĝ1

+µ

η(2−η)µ

)2


 ;

or asymptotically:

k = O
(

ln
(

1
ε̂

))
, b = min

{
m, n, O

(
1
ε̂4

)}
.

In such conditions we can be sure that

E
[∥∥∇ f̂2(xk)

∥∥2
]
≤ ε̂

2.

However, the batch size limitation b≤min{m, n} restricts from achieving arbitrary low ε̂ ≥ 0 value of
the gradient norm in mean with linear convergence speed in the worst case.
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D.3 The proof of theorem 6

The doubly stochastic step is described in (8). This step is originally based on the two batch estimate of
local model ψ̂xk,Lk,τ̃k(y, B̃k):

ψ̂xk,Lk,τ̃k(y, B̃k) =
τ̃k

2
+

Lk

2
‖y− xk‖2 +

1
2τ̃k

∥∥∥Ĝ(xk, B̃k)+ Ĝ
′
(xk, B̃k)(y− xk)

∥∥∥2
=

=

(
τ̃k

2
+

ĝ2(xk, B̃k)

2τ̃k

)
+

〈
Ĝ
′
(xk, B̃k)

∗Ĝ(xk, B̃k)

τ̃k
, y− xk

〉
+

+
1
2

〈(
Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)

τ̃k
+LkIn

)
(y− xk), y− xk

〉
⇒

⇒ ψ̂xk,Lk,τ̃k(y, B̃k)≈
(

τ̃k

2
+

ĝ2(xk, B̃k)

2τ̃k

)
+

〈
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)

τ̃k
, y− xk

〉
+

+
1
2

〈(
Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)

τ̃k
+LkIn

)
(y− xk), y− xk

〉
.

So, the rule from (8) can be viewed as some scaled step of Newton method to optimize the two batch
estimate of ψ̂xk,Lk,τ̃k(y, B̃k). Note that estimate of ∇yψ̂xk,Lk,τ̃k(y, B̃k) evaluated at y = xk is unbiased
w.r.t. Bk. The stochastic Gauss–Newton framework with doubly stochastic step possesses settings
(10). And formal description of this framework is presented in algorithm 3. Theorem 6 elaborates linear
convergence rates in mean to solution of problem (5) in the worst case scenario. The whole procedure
3 is justified as the optimizer for local model ϕxk,lk(y), y := xk+1 in mean:

f̂2(y)≤ ϕxk,lk(y)︸ ︷︷ ︸
by corollary 15.1

= f̂2(xk)+
〈
∇ f̂2(xk), y− xk

〉
+

lk
2
‖y− xk‖2,

lk ≥l f̂2
= 2

(
M2

F̂ +LF̂Pf̂1

)
︸ ︷︷ ︸

by corollary 14.1

, (x,y) ∈ E2
1 .

Theorem 6. Suppose that assumptions 3, 4, 5, 7 are satisfied. Consider Stochastic Gauss–Newton
method 3 with τ̃k ≥ τ̃ > 0, Lk ≥ L > 0. Then, for sequence

ηk =
µ (τ̃kLk)

2(
M2

Ĝ
+ τ̃kLk

)(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

, k ∈ Z+

the next estimate holds

E
[

f̂2(xk)
]
≤ E

[
f̂2(x0)

]
exp

− k(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

(
µτ̃L

M2
Ĝ
+ τ̃L

)2
 , k ∈ Z+.

In case of ηk = 1, k ∈ Z+ convergence estimate is no better than
E
[

f̂2(xk)
]
≤ E

[
f̂2(x0)

]
exp

(
−kµ2

M2
Ĝ

(
2

µ+
(

LF̂ Pf̂1
+M2

F̂

)
c
− 1(

LF̂ Pf̂1
+M2

F̂

)
c2

))
;

c def
= 1

3

(
1+7 3

√
2

47+3
√

93
+

3
√

47+3
√

93
2

)
, k ∈ Z+.

(40)

Expectation operator E [·] averages over all randomness in optimization procedure.
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Proof. Function f̂2 has the Lipschitz gradient with the Lipschitz constant estimate

l f̂2
= 2

(
LF̂Pf̂1

+M2
F̂

)
from corollary 14.1. Consider local model for function f̂2 at k–th iteration evaluated at xk+1, k ∈ Z+

(corollary 15.1):

f̂2(xk+1)≤ f̂2(xk)+
〈
∇ f̂2(xk), xk+1− xk

〉
+

l f̂2
2
‖xk+1− xk‖2.

Update rule for xk is defined as follows:

xk+1 = xk−ηk

(
Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)+ τ̃kLkIn

)−1

︸ ︷︷ ︸
def
=2Hk

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)︸ ︷︷ ︸
def
= 1

2 ∇xk ĝ2(xk,Bk)

=

= xk−ηkHk∇xk ĝ2(xk,Bk), ηk > 0.

Bk, B̃k ⊆B — independently sampled batches at k–th iteration. Substitute this update rule into the
local model:

f̂2(xk+1)≤ f̂2(xk)−ηk
〈
∇ f̂2(xk), Hk∇xk ĝ2(xk,Bk)

〉
+

η2
k l f̂2
2
‖Hk∇xk ĝ2(xk,Bk)‖2 =

= f̂2(xk)−ηk
〈
∇ f̂2(xk),Hk∇xk ĝ2(xk,Bk)

〉
+

η2
k l f̂2
2
〈
H2

k ∇xk ĝ2(xk,Bk),∇xk ĝ2(xk,Bk)
〉
.

For matrix Hk the next relations hold (lemma 6):

1(
2
(

M2
Ĝ
+ τ̃kLk

))t In � Ht
k �

1
(2τ̃kLk)

t In, k ∈ Z+, t ≥ 0.

Now we average local model using the expectation operator:

E
[

f̂2(xk+1)
]
≤ E

[
f̂2(xk)

]
−ηkE

[〈
∇ f̂2(xk),Hk∇ f̂2(xk)

〉]
+

+
η2

k l f̂2
2

E
[〈

H2
k ∇xk ĝ2(xk,Bk),∇xk ĝ2(xk,Bk)

〉]
≤

≤ E
[

f̂2(xk)
]
−

ηkE
[∥∥∇ f̂2(xk)

∥∥2
]

2
(

M2
Ĝ
+ τ̃kLk

) +
η2

k l f̂2

8(τ̃kLk)
2E
[
‖∇xk ĝ2(xk,Bk)‖2

]
.

We use WGC and PL condition from (28) for the inequality above:

E
[

f̂2(xk+1)
]
≤ E

[
f̂2(xk)

]
−

ηkE
[∥∥∇ f̂2(xk)

∥∥2
]

2
(

M2
Ĝ
+ τ̃kLk

) +
η2

k l f̂2

8(τ̃kLk)
2E
[
‖∇xk ĝ2(xk,Bk)‖2

]
≤

≤ E
[

f̂2(xk)
]
−

2ηkµE
[

f̂2(xk)
]

M2
Ĝ
+ τ̃kLk

+
η2

k M2
Ĝ

l f̂2

2(τ̃kLk)
2E
[

f̂2(xk)
]
=

= E
[

f̂2(xk)
](

1− 2ηkµ

M2
Ĝ
+ τ̃kLk

+
l f̂2
2

(
ηkMĜ
τ̃kLk

)2
)

=

= E
[

f̂2(xk)
](

1− 2ηkµ

M2
Ĝ
+ τ̃kLk

+
(

LF̂Pf̂1
+M2

F̂

)(
ηkMĜ
τ̃kLk

)2
)
.
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We compute the optimal step scale for each iteration:

η
2
k

((
LF̂Pf̂1

+M2
F̂

)( MĜ
τ̃kLk

)2
)
−ηk

(
2µ

M2
Ĝ
+ τ̃kLk

)
→ min

ηk>0
⇒

⇒ ηk =
µ (τ̃kLk)

2(
M2

Ĝ
+ τ̃kLk

)(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

, τ̃k > 0, Lk > 0, k ∈ Z+.

Such step scale leads to linear convergence speed with an arbitrary batch size:

E
[

f̂2(xk+1)
]
≤ E

[
f̂2(xk)

]1−

(
µτ̃kLk

M2
Ĝ
+ τ̃kLk

)2
1(

LF̂Pf̂1
+M2

F̂

)
M2

Ĝ


︸ ︷︷ ︸
∈(0, 1) because 0<µ≤min{M2

F̂
, M2

Ĝ
} and τ̃kLk>0

≤

≤ E
[

f̂2(x0)
]

exp

 −(k+1)(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

(
µτ̃L

M2
Ĝ
+ τ̃L

)2
 , k ∈ Z+.

Now look closer at convergence estimate. Define function

α(t) def
= 1−

(
µt

M2
Ĝ
+ t

)2
1(

LF̂Pf̂1
+M2

F̂

)
M2

Ĝ

,

and find its minimal value and points of the minimal value t = τ̃kLk to estimate the best decrease
E
[

f̂2(xk+1)
]
:

E
[

f̂2(xk+1)
]
≤ α(τ̃kLk)E

[
f̂2(xk)

]
.

The search of minimum of α(t) is equivalent to the search of maximum of the function below:

β (t) def
=

µt
M2

Ĝ
+ t

.

Function β (t) has non negative first derivative and non positive second derivative on R+:

β
′
(t) =

µ

M2
Ĝ
+ t

(
1− t

M2
Ĝ
+ t

)
≥ 0;

β
′′
(t) =

2µ(
M2

Ĝ
+ t
)2

(
t

M2
Ĝ
+ t
−1

)
≤ 0.

It means, the greater t we have, the less α(t) we get:

1 = α(0)≥ α(t)≥ lim
t→+∞

α(t) = 1− µ2(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

> 0, t ∈ R+,
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because µ ≤min{M2
Ĝ
, M2

F̂
} (by assumption 4). Consider change of the update rule relatively t = τ̃kLk:

ηkHk∇xk ĝ2(xk,Bk) =
µ (τ̃kLk)

2
(

Ĝ
′
(xk, B̃k)

∗Ĝ
′
(xk, B̃k)+ τ̃kLkIn

)−1
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)(
M2

Ĝ
+ τ̃kLk

)(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

⇒

⇒ lim
t→+∞

µt
M2

Ĝ
+ t

(
Ĝ
′
(xk,B̃k)

∗Ĝ
′
(xk,B̃k)

t + In

)−1

Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

=

=

 µ

2
(

LF̂Pf̂1
+M2

F̂

)
M2

Ĝ

∇xk ĝ2(xk,Bk).

So, the faster estimate we get, the closer stochastic Gauss–Newton method update to stochastic
gradient method update.

If we set the value ηk = 1, we can find the unique optimal t = τ̃kLk, k ∈ Z+ from the local decrease
estimate

E
[

f̂2(xk+1)
]
≤ E

[
f̂2(xk)

](
1− 2µ

M2
Ĝ
+ t

+
(

LF̂Pf̂1
+M2

F̂

)(MĜ
t

)2
)
.

To prove that we directly find the optimal convergence rate:(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

t2 − 2µ

M2
Ĝ
+ t︸ ︷︷ ︸

def
=ζ (t)

→min
t>0

.

We express optimality conditions of the second order for defined function ζ (t):
ζ
′
(t) =

−2
(

LF̂ Pf̂1
+M2

F̂

)
M2

Ĝ
t3 + 2µ(

M2
Ĝ
+t
)2 = 0;

ζ
′′
(t) =

6
(

LF̂ Pf̂1
+M2

F̂

)
M2

Ĝ
t4 − 4µ(

M2
Ĝ
+t
)3 > 0.

Condition ζ
′
(t) = 0 leads to cubic equation

µt3−
(

LF̂Pf̂1
+M2

F̂

)
M2

Ĝt2−2
(

LF̂Pf̂1
+M2

F̂

)
M4

Ĝt−
(

LF̂Pf̂1
+M2

F̂

)
M6

Ĝ = 0,

with unique real root obtained from the general formula for roots of cubic equation:

t∗ =

(
LF̂Pf̂1

+M2
F̂

)
M2

Ĝ

3µ

1+7 3

√
2

47+3
√

93
+

3

√
47+3

√
93

2

 ,

for this value we have ζ
′′
(t∗)> 0. Moreover, for t∗ we have linear convergence with estimate (40), and

linear convergence rate lies in (0,1):
0 < 1− µ2

M2
Ĝ

(
2

µ+
(

LF̂ Pf̂1
+M2

F̂

)
c
− 1(

LF̂ Pf̂1
+M2

F̂

)
c2

)
< 1;

c = 1
3

(
1+7 3

√
2

47+3
√

93
+

3
√

47+3
√

93
2

)
∈ (2, 3).
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Inequalities µ ≤min
{

M2
Ĝ
, M2

F̂

}
and 3 > c > 2 force for convergence rate to be within (0, 1). If we

compare this rate with the convergence rate for non fixed, adaptive ηk, the second one turns out to be
less in the limit case, when taking t→+∞, and, thus, possesses faster convergence in the worst case
scenario.

Corollary 6.1. Unlike corollaries 4.1 and 5.1, we can state the convergence condition relatively function
f̂2 value:

E
[

f̂2(xk)
]
≤ ε̂

2.

So, for adaptive ηk we have the following minimal number of iterations:

k =


M2

Ĝ

(
LF̂Pf̂1

+M2
F̂

)
µ2

(
M2

Ĝ
τ̃L

+1

)2

ln
(
E [ĝ2(x0,B0)]

ε̂2

)= O
(

ln
(

1
ε̂

))
.

The same asymptotics we have for the case of ηk = 1 with optimal value of τ̃kLk:

k =


M2

Ĝ
µ2

 2

µ +
(

LF̂Pf̂1
+M2

F̂

)
c
− 1(

LF̂Pf̂1
+M2

F̂

)
c2

−1

ln
(
E [ĝ2(x0,B0)]

ε̂2

)=

= O
(

ln
(

1
ε̂

))
.

And because of independence from the batch sizes b̃ and b we can assume a constant asymptotics for
batches, achieving the lowest polylogarithmic complexity cost of the number of oracle calls within our
work for m≤ n in the worst case:

� bk = min
{

O
(

m
ε̂2

)
, O
(

1
ε̂6

)}
from corollary 4.1;

� bk = min
{

O
(
m ln

(1
ε̂

))
, O
(

1
ε̂4 ln

(1
ε̂

))}
from corollary 5.1;

�
(
b̃+b

)
k = O

(
ln
(1

ε̂

))
from theorem 6.

E Details of the experiments for Gauss–Newton method

This section provides the details of our experiments, including hyperparameters descriptions, data
generating procedures and experiment configurations. We describe experiments in both deterministic
and stochastic settings.

We run experiments on three benchmark tasks based on unconstrained minimization task. The original
task means the following minimization of doubly smooth function f :

min
x∈E1
{ f (x)} .

For our case we consider an aggregated form of this task, solving the system of nonlinear equations to
obtain a stationary point, not necessarily minimum point:

∇ f (x)≡ F(x) = 0m, x ∈ E1.

DOI 10.20347/WIAS.PREPRINT.2813 Berlin 2021



Flexible modification of Gauss-Newton method and its stochastic extension 57

And for such system we have the optimizable merit ‖F(x)‖. Clearly, the obtained system is square in

terms of dimensions m= n. Using ‖F(x)‖ we test three distinct functions f (x), x def
= (x1, . . . ,xn)∗, x∈

E1:

� Nesterov–Skokov function [9]: fNS(x) := 1
4(x

1−1)2 +
n−1
∑

i=1

(
xi+1−2

(
xi)2

+1
)2

;

� Hat function: fH(x) :=
(
‖x‖2−1

)2
;

� PL function: fPL(x) = ‖x‖2 +3
n
∑

i=1
sin2 (xi).

Function fNS is non–convex and has one of the hardest surface for optimization because of its fluctuating

landscape created using superpositions of Chebyshev polynomials of first kind P2
(
xi)= 2

(
xi)2−1,

function has unique minimum point x∗ = (1, . . . ,1). Function fH is non–convex, has quadratic growth
property and all its minima are global minima with ‖x∗‖= 1. Function PL is non–convex, it is bounded
by paraboloids from both sides and also satisfies quadratic growth property, this function has unique
global minimum x∗ = 0n.

We fix random seed for reproducibility of the experiments. For numerical stability reasons we clip
absolute values for all variates to stay within Chebyshev ball with radius 1012 centered at origin. For
all symmetric matrix inversion operations we also clip matrix spectra by 10−6 from below and by 1012

from above. For efficient and stable computation of xk+1 we consider matrix factorizations described in
the next subsection.

E.1 Fast binary search of the local Lipschitz constant

The most expensive operation in the designed algorithms is matrix inversion, so we use matrix
factorization with an asymptotic cost of the one unoptimized iteration to have linear w.r.t. min{m, n}
in asymptotics matrix inversion at each inner iteration. Firstly, we perform factorization of the update
direction towards xk+1. For simplicity we consider deterministic case, however we can extend the
factorization to stochastic setting by substitution of the local model. The value min{m, n} points out
the necessity to consider two cases: m > n and m≤ n.

In the first case we use eigendecomposition of the matrix F̂
′
(xk)

∗F̂
′
(xk):

F̂
′
(xk)

∗F̂
′
(xk) = QnΛnQ∗n, Q∗nQn = In, Λn is a diagonal matrix;

F̂
′
(xk)

∗F̂
′
(xk)+ τkLkIn = QnΛnQ∗n + τkLkIn = Qn (Λn + τkLkIn)Q∗n⇒

⇒
(

F̂
′
(xk)

∗F̂
′
(xk)+ τkLkIn

)−1
= Qn (Λn + τkLkIn)

−1 Q∗n, m > n⇒

⇒ xk+1 = xk−ηkQn (Λn + τkLkIn)
−1 Q∗nF̂

′
(xk)

∗F̂(xk).

For the expressions above we have O(n) complexity of the matrix inversion (Λn + τkLkIn)
−1. The

eigendecomposition has complexity cost O(n3) achievable using the divide–and–conquer algorithm
for tridiagonalization with Householder reflections [13, 7, 4]. Note that orthogonal matrix Qn and
diagonal matix Λn occupy O(n2 +n) memory. Fixed vector Q∗nF̂

′
(xk)

∗F̂(xk) can be computed using
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O(n2+nm) operations, matrix multiplication of Qn and (Λn + τkLkIn)
−1 Q∗nF̂

′
(xk)

∗F̂(xk) uses O(n2)
operations. The whole number of inner iterations is bounded by⌈

log2

(
γLF̂

L

)⌉
+1, γ ≥ 2, L ∈

(
0, LF̂

]
,

because the local Lipschitz constant is estimated via some binary search–like procedure. Also, we
have at most only two inner iterations after hitting Lk−1 ∈

[
LF̂ , 2LF̂

]
at the k-th step. So, we have the

overall cost of the optimized step:

O
(

n3 +n2 +mn+n(n+1)
(⌈

log2

(
γLF̂

L

)⌉
+1
))

,

which stays conceptually the same in stochastic settings with m substituted with b, assuming b̃≤ b.

For the second case we use Sherman–Morrison–Woodbury formula and an eigendecomposition to
have matrix inversion with the const O(m). We perform the eigendecomposition for symmetric matrix
F̂
′
(xk)F̂

′
(xk)

∗ using O(m3) operations and O(m2 +m) memory:

F̂
′
(xk)F̂

′
(xk)

∗ = QmΛmQ∗m, Q∗mQm = Im, Λm is a diagonal matrix;(
F̂
′
(xk)

∗F̂
′
(xk)+ τkLkIn

)−1
=

1
τkLk

In−

− 1
τkLk

F̂
′
(xk)

∗
(

τkLkIm + F̂
′
(xk)F̂

′
(xk)

∗
)−1

F̂
′
(xk) =

=
1

τkLk
In−

1
τkLk

F̂
′
(xk)

∗Qm (τkLkIm +Λm)
−1 Q∗mF̂

′
(xk), m≤ n⇒

⇒ xk+1 = xk−ηk

(
1

τkLk
In−

− 1
τkLk

F̂
′
(xk)

∗Qm (τkLkIm +Λm)
−1 Q∗mF̂

′
(xk)

)
F̂
′
(xk)

∗F̂(xk) =

= xk−
ηk

τkLk

(
F̂
′
(xk)

∗F̂(xk)− F̂
′
(xk)

∗Qm (τkLkIm +Λm)
−1

ΛmQ∗mF̂(xk)
)
=

= xk−
ηk

τkLk
F̂
′
(xk)

∗
(

F̂(xk)−Qm (τkLkIm +Λm)
−1

ΛmQ∗mF̂(xk)
)
.

We compute vector ΛmQ∗mF̂(xk) using O
(
m2 +m

)
operations, and xk+1 is computed with the cost

O
(
m2 +mn+m+n

)
. So, we have the following cost of the step:

O
(

m3 +m2 +m+
(
m2 +mn+m+n

)(⌈
log2

(
γLF̂

L

)⌉
+1
))

,

which also stays conceptually the same in stochastic settings with m substituted with b, assuming
b̃≤ b. But for doubly stochastic step with b̃ = b we have another form of the fast update:

xk+1 = xk−ηk

(
1

τ̃kLk
In−

− 1
τ̃kLk

Ĝ
′
(xk, B̃k)

∗Qb (τ̃kLkIb +Λb)
−1 Q∗bĜ

′
(xk, B̃k)

)
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk) =

= xk−
ηk

τ̃kLk

(
Ĝ
′
(xk,Bk)

∗Ĝ(xk,Bk)−

−Ĝ
′
(xk, B̃k)

∗Qb (τ̃kLkIb +Λb)
−1 Q∗bĜ

′
(xk, B̃k)Ĝ

′
(xk,Bk)

∗Ĝ(xk,Bk)
)

;

Ĝ
′
(xk, B̃k)Ĝ

′
(xk, B̃k)

∗ = QbΛbQ∗b, Q∗bQb = Ib, Λb is a diagonal matrix,
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with the overall computational complexity of the step:

O
(

b3 +b2(n+1)+bn+(bn+b+n)
(⌈

log2

(
γLF̂

L

)⌉
+1
))

,

if we use binary search for Lk, otherwise we have the following complexity:

O
(
b3 +b2(n+1)+bn+b+n

)
,

which is also cheaper for n� 1 than straightforward computation because we assumed b̃ = b ≤
n. Besides, the described factorizations allow us to clip spectrum of diagonal matrices to achieve
numerically stable matrix inversion.

E.2 The performance of deterministic Gauss–Newton method

For the experiment we average every combination of the setting over 5 runs. For each run we sample
initial value x0 from standard normal multidimensional distribution. For deterministic Gauss–Newton
method we use the exact oracle with ηk = 1 and set τk = f̂1(xk) and εk = 0. We also use inequality
τk ≤ 10−6 as an early stopping criterion and define L0 = 1. The maximal number of outer iterations
equals 102. We test benchmark functions on different values of n: 10, 102 and 103. All depicted
uncertainty intervals have two standard pointwise deviations width.

Figure 1 shows us sublinear convergence on function fNS, while figure 3 shows us linear convergence
with a major slowdown near the end of optimization procedure achieving a saddle point due to
trigonometric fluctuations. Meanwhile, figure 2 shows us typical local superlinear convergence. All
tested benchmark functions are unbounded but the experiments show us that it is sufficient to stay
within the region of bounded values to achieve convergence rates proved for bounded functionals.

E.3 The performance of stochastic Gauss–Newton method with scaled step

For stochastic settings we average every combination of hyperparameters over the same set of initial
points used in deterministic Gauss–Newton method. We fix n = 103 and use constant step size
ηk = η ∈ (0, 1], we also set L0 = 1 and τk = ĝ1(xk,Bk). The maximal number of outer iterations
equals 102. For experimental runs we use the following ranges of hyperparameters:

� batch size b ∈ {1,10,102,103};

� step scale η ∈ {10−4,10−3,10−2,10−1,1}.

Every run stands for the combination of hyperparameters taken as an element of cartesian product of
the sets above and depicted uncertainty intervals have two standard pointwise deviations width. The
stochastic Gauss–Newton method uses the same early stopping criterion as the deterministic method:
τk ≤ 10−6.

For stochastic setting we have preservance of convergence types from deterministic setting as averaged
line show. Figure 4 stands for processes with sublinear convergence, figure 5 describes processes with
local superlinear convergence, while figure 6 establishes linear convergence. Obviously, these figures
state the increasing of the batch size leads to speedup of the convergence for conventional optimization
tasks achieving better interpolation. The increase of the step scale up to 1 also causes such effects.
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Figure 4: The performance of stochastic Gauss–Newton method with scaled step on Nesterov–Skokov
function

E.4 The performance of doubly stochastic step usage

For these stochastic settings we also average every combination of hyperparameters over the same set
of initial points used in deterministic Gauss–Newton method. We bound the maximal number of outer
iterations by 102. We use constant values of τ̃kLk = τ̃L and ηk = ητ̃L to simulate conditions similar
to conditions from theorem 6. In doubly stochastic case we also set n = 103 and for experimental runs
we use the following ranges of hyperparameters:

� batch size b = b̃ ∈ {1,10,102,103};

� step scale η ∈ {10−7,10−6,10−5,10−4,10−3,10−2,10−1,1};

� value τ̃L ∈ {10−4,1,103,106,+∞}.

Every run stands for the combination of hyperparameters taken as an element of cartesian product of
the sets above.
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Figure 5: The performance of stochastic Gauss–Newton method with scaled step on Hat function

Unlike to the previous case, doubly stochastic setting requires to know the global Lipschitz constant of
function f̂2, and figures 7, 8 and 9 show that the lack of such information leads to slower convergence
and even to divergence. In the presented figures column with τkLk = +∞, τ̃k = τk stands for the
gradient descend method. Experiments with doubly stochastic step show that gradient and stochastic
gradient methods perform no better than corresponding Gauss–Newton methods, especially with the
increase of batch size. And only for small values of ηk these methods possess similar quality under
small batch size: 1 and 10. Another observation states the "harder" function to optimize, the more
quality gap between gradient methods and Gauss–Newton methods. Such criterion allows us to order
functions with increasing of "the hardness" of unconstrained minimization problem to find stationary
point: fPL � fH � fNS.
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Figure 6: The performance of stochastic Gauss–Newton method with scaled step on PL function
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Figure 7: The performance of stochastic Gauss–Newton method with doubly stochastic step on
Nesterov–Skokov function
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Figure 8: The performance of stochastic Gauss–Newton method with doubly stochastic step on Hat
function
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Figure 9: The performance of stochastic Gauss–Newton method with doubly stochastic step on PL
function
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