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Stopping rules for accelerated gradient methods with additive
noise in gradient

Artem Vasin, Alexander Gasnikov, Vladimir Spokoiny

Abstract

In this article, we investigate an accelerated first-order method, namely, the method of similar
triangles, which is optimal in the class of convex (strongly convex) problems with a Lipschitz
gradient. The paper considers a model of additive noise in a gradient and a Euclidean prox-
structure for not necessarily bounded sets. Convergence estimates are obtained in the case of
strong convexity and its absence, and a stopping criterion is proposed for not strongly convex
problems.

1 Introduction

We consider 𝐿-smooth (𝜇-strongly) convex optimization problem (𝜇 ≥ 0):

min
𝑥∈𝑄

𝑓(𝑥).

This means that 𝑄 is convex set, and for all 𝑥, 𝑦 ∈ 𝑄:

𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑦 − 𝑥‖22 ≤ 𝑓(𝑦),

‖∇𝑓(𝑦) −∇𝑓(𝑥)‖2 ≤ 𝐿‖𝑦 − 𝑥‖2.
In the analysis of the rates of convergence of different first-order methods these relations are typically
rewrite as follows [15, 9, 6, 25, 4, 26, 37, 34, 50, 21, 48, 23, 13]

𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑦 − 𝑥‖22 ≤ 𝑓(𝑦)

≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿

2
‖𝑦 − 𝑥‖22. (1)

Note, that the last relation is a consequence of the previous ones and in general is not equivalent to
them [49, 26].

In many applications, especially for gradient-free methods (when estimating the gradient by finite
differences [11, 44, 7]) optimization problems in infinite dimensional spaces (such examples arise when
solving inverse problems [31, 27]) instead of an access to ∇𝑓(𝑥) we have an access to its inexact
approximation ∇̃𝑓(𝑥).

The two most popular conception of inexactness of gradient in practice are [42]: for all 𝑥 ∈ 𝑄

‖∇̃𝑓(𝑥) −∇𝑓(𝑥)‖2 ≤ 𝛿, (2)

‖∇̃𝑓(𝑥) −∇𝑓(𝑥)‖2 ≤ 𝛼‖∇𝑓(𝑥)‖2, 𝛼 ∈ [0, 1). (3)
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A. Vasin, A. Gasnikov, V. Spokoiny 2

For the first conception (2) several results about the accumulation of error can be found in [42, 12, 10, 1],
but all these results are still far from to be optimistic in general. The reason was described in [41]. We
can explain this reason by very simple example:

min
𝑥∈R𝑛

𝑓(𝑥) :=
1

2

𝑛∑︁
𝑖=1

𝜆𝑖 · (𝑥𝑖)2, (4)

where 0 ≥ 𝜇 = 𝜆1 ≤ 𝜆2 ≤ ... ≤ 𝜆𝑛 = 𝐿, 𝐿 ≥ 2𝜇. The solution of this problem is 𝑥* = 0. Assume
that inexactness takes place only in the first component. That is instead of 𝜕𝑓(𝑥)/𝜕𝑥1 = 𝜇𝑥1 we have
an access to 𝜕𝑓(𝑥)/𝜕𝑥1 = 𝜇𝑥1 − 𝛿. For simple gradient dynamic

𝑥𝑘 = 𝑥𝑘−1 −
1

𝐿
∇̃𝑓(𝑥𝑘−1),

we can conclude that for all 𝑘 ∈ N

𝑥1𝑘 ≥
𝛿

𝐿

1 − (1 − 𝜇/𝐿)𝑘

1 − (1 − 𝜇/𝐿)
≥ 𝛿

8𝜇
. (5)

Hence1

𝑓(𝑥𝑘) − 𝑓(𝑥*) ≥
𝛿2

2𝜇
.

So we have a problem with (5), since 𝜇 can be to small (𝜇 . 𝜀 – degenerate regime, where 𝜀 – desired
accuracy in function value) in denominator of the RHS. We may expect even more serious troubles
for accelerated gradient methods, since they are more sensitive to the level of noise [16, 26]. The
solution of this problem is well known (see, for example, [41, 42, 35]): to propose a stopping rule for
the considered algorithm or to use regularization 𝜇 ∼ 𝜀 [26]. Roughly speaking, for non accelerated
algorithms in [41, 42] it was proved that if 𝛿 ∼ 𝜀2, then it’s possible to reach 𝜀-accuracy in function value
(with almost the same number of iterations as for no noise case 𝛿 = 0) by applying computationally
convenient stopping rule.

In this paper we show that it’s sufficient to have 𝛿 ∼ 𝜀 both for primal-dual non accelerated and
accelerated gradient type methods [37, 26]. Primal-duality of methods is used to build computationally
convenient stopping rule in degenerate regime. We emphasize, that the results 𝛿 ∼ 𝜀 has a simple
explanation (see section 2) and one might think that it is well known. But to the best of our knowledge
the best results for accelerated methods require 𝛿 ∼ 𝜀3/2. So we consider our observation (that 𝛿 ∼ 𝜀)
to be an important part of this paper, although it has rather simple explanation.

The situation with the second criteria (3) is significantly better. For non accelerated algorithms inexact-
ness in this case lead only to the deceleration of convergence ∼ (1−𝛼)−1-times [42]. This result holds
true with the relaxed strong convexity assumption [26] (Polyak–Lojasiewicz condition). For accelerated
case to the best of our knowledge this is an open problem to estimate accumulation of an error [26].

In this paper we show that if 𝛼 .
(︀
𝜇
𝐿

)︀3/4
in 𝜇-strongly convex case and (on 𝑘-th iteration) 𝛼𝑘 .

(︀
1
𝑘

)︀3/2
in degenerate regime we do not have any deceleration. Numerical experiments demonstrate that in
general for 𝛼 larger than mentioned above thresholds the convergence may slow down a lot up to
divergence for considered accelerated method.

Note, that close results (with the requirement 𝛼 .
(︀
𝜇
𝐿

)︀5/4
) in the case 𝜇≫ 𝜀 were recently obtained

by using another techniques in Stochastic Optimization with decision dependent distribution [18] and

1This bound corresponds to the worst-case philosophy concerning the choice of considered example for considered
class of methods [36, 37, 9, 26]. We expect more interesting results here by considering average-case complexity [46, 40]
(spectrum {𝜆𝑖} average).
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Stopping rules for accelerated gradient methods with additive noise in gradient 3

Policy Evaluation in Reinforcement Learning via reduction to stochastic Variational Inequality with
Markovian noise [33]. In [33, 18] it was assumed that

‖∇̃𝑓(𝑥) −∇𝑓(𝑥)‖2 ≤ 𝐵‖𝑥− 𝑥*‖2, 𝛼 ∈ [0, 1). (6)

Since 𝑥* is a solution, from Fermat’s principle ∇𝑓(𝑥*) = 0. Therefore,

‖∇𝑓(𝑥)‖2 = ‖∇𝑓(𝑥) −∇𝑓(𝑥*)‖2 ≤ 𝐿‖𝑥− 𝑥*‖2.

So if (3) holds true then 6 also holds true with 𝐵 = 𝛼𝐿.

2 Ideas behind the results

Important results in gradient error accumulation for first-order methods were developed in the cycle of
works of O. Devolder, F. Glineur and Yu. Nesterov 2011–2014 [14, 16, 17, 15]. In these works authors
were motivated by (1). The idea is to “relax” (1), assuming inexactness in gradient. So they introduce
inexact gradient ∇̃𝑓(𝑥), satisfying for all 𝑥, 𝑦 ∈ 𝑄

𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑦 − 𝑥‖22 − 𝛿 ≤ 𝑓(𝑦)

≤ 𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿

2
‖𝑦 − 𝑥‖22 + 𝛿. (7)

Such a definition allows to develop precise theory for error accumulation for first-order methods.

Namely, it was proved that for non-accelerated gradient methods

𝑓(𝑥𝑘) − 𝑓(𝑥*) = 𝑂

(︂
min

{︂
𝐿𝑅2

𝑘
+ 𝛿, 𝐿𝑅2 exp

(︁
−𝜇
𝐿
𝑘
)︁

+ 𝛿

}︂)︂
, (8)

and for accelerated ones [16, 20]

𝑓(𝑥𝑘) − 𝑓(𝑥*) = 𝑂

(︃
min

{︃
𝐿𝑅2

𝑘2
+ 𝑘𝛿, 𝐿𝑅2 exp

(︂
−
√︂
𝜇

𝐿

𝑘

2

)︂
+

√︃
𝐿

𝜇
𝛿

}︃)︃
, (9)

where𝑅 = ‖𝑥𝑠𝑡𝑎𝑟𝑡−𝑥*‖2 – the distance between starting point and the solution 𝑥*. If 𝑥* is not unique
we take such 𝑥* that is the closest to 𝑥𝑠𝑡𝑎𝑟𝑡. Both of these bounds are unimprovable [16, 17]. See also
[15, 22, 32] for “indermediate” situations between accelerated and non-accelerated methods.

Following to [17] we may reduce conception (2) to (7) by putting

𝛿 = 𝛿(7) =
𝛿2(2)

2𝐿
+
𝛿2(2)

𝜇
≃
𝛿2(2)

𝜇
(10)

and changing 2-times constant 𝜇, 𝐿. The key observations here are

⟨∇̃𝑓(𝑥) −∇𝑓(𝑥), 𝑦 − 𝑥⟩ ≤ 1

2𝐿
‖∇̃𝑓(𝑥) −∇𝑓(𝑥)‖22 +

𝐿

2
‖𝑦 − 𝑥‖22,

⟨∇̃𝑓(𝑥) −∇𝑓(𝑥), 𝑦 − 𝑥⟩ ≥ 1

𝜇
‖∇̃𝑓(𝑥) −∇𝑓(𝑥)‖22 −

𝜇

4
‖𝑦 − 𝑥‖22.
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So, when 𝜇 > 0 for non-accelerated methods this result is almost the same as we’ve obtained by
considering example (4). To reach 𝑓(𝑥𝑘) − 𝑓(𝑥*) = 𝜀 when2 𝜇 & 𝜀 we should put 𝛿(2) ∼ 𝜀 that is
good and rather expected. Unfortunately, for accelerated methods from this approach we will have
𝛿(2) ∼ 𝜀3/2. That is far from what we’ve declared in section 1. To improve this it’s worth to propose
more detailed conception rather then (7).

In the following works [16, 19, 20, 47, 48] the conception (7) was further developed

𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑦 − 𝑥‖22 − 𝛿1‖𝑦 − 𝑥‖2 ≤ 𝑓(𝑦)

≤ 𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿

2
‖𝑦 − 𝑥‖22 + 𝛿2. (11)

In this case (8) and (9) take a form for non-accelerated gradient methods

𝑓(𝑥𝑘) − 𝑓(𝑥*)

= 𝑂

(︂
min

{︂
𝐿𝑅2

𝑘
+ 𝑅̃𝛿1 + 𝛿2, 𝐿𝑅

2 exp
(︁
−𝜇
𝐿
𝑘
)︁

+ 𝑅̃𝛿1 + 𝛿2

}︂)︂
, (12)

and for accelerated ones [16, 20]

𝑓(𝑥𝑘) − 𝑓(𝑥*)

= 𝑂

(︃
min

{︃
𝐿𝑅2

𝑘2
+ 𝑅̃𝛿1 + 𝑘𝛿2, 𝐿𝑅

2 exp

(︂
−
√︂
𝜇

𝐿

𝑘

2

)︂
+ 𝑅̃𝛿1 +

√︃
𝐿

𝜇
𝛿2

}︃)︃
, (13)

where 𝑅̃ is the maximal distance between generated points and the solution.

Thus from (12), (13) we may conclude that if 𝑅̃ is bounded,3 then by choosing

𝛿1 = 𝛿(2), 𝛿2 =
𝛿2(2)

2𝐿
,

we will have the desired result: it is possible to reach 𝑓(𝑥𝑘) − 𝑓(𝑥*) = 𝜀 with 𝛿(2) ∼ 𝜀.

But in general situation there is a problem in the assumption “if 𝑅̃ is bounded”. As we may see from
example (4) in general degenerate regime only such bound

𝑅̃ ≃ 𝑅 +
𝛿(2)

𝜇
& 𝑅 +

𝛿(2)

𝜀

takes place [26]. This dependence spoils the result. The growth of 𝑅̃ we observe in different experiments.
In the paper below we investigate this problem. In particular, we propose an alternative approach to
regularization4 that is based on “early stopping”5 of considered iterative procedure by developing proper
stopping rule.

2If 𝜇 . 𝜀, we can regularize the problem and guarantee the required condition [26]. Another advantage of strong
convexity is possibility to use the norm of inexact gradient for the stopping criteria [26], like in [41]. But regularization requires
some prior knowledge about the size of the solution [26]. Since we typically don not have such information the procedure
becomes more difficult via applying the restarts [25, 26].

3In many situations this is true. For example, when 𝑄 is bounded, when 𝜇 ≫ 𝜀.
4By using regularization we can guarantee 𝜇 ∼ 𝜀 and therefore with 𝛿(2) ∼ 𝜀 we have the desired 𝑅̃ ≃ 𝑅.
5This terminology is popular also in Machine Learning community, where “early stopping” is used also as alternative to

regularization to prevent overfitting [29].
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Now we explain how to reduce relative inexactness (3) to (7) and to apply (9) when 𝜇 ≫ 𝜀. Since
𝑓(𝑥) has Lipschitz gradient from (3), (7) we may derive that after 𝑘 iterations (where 𝑘 is greater than√︀
𝐿/𝜇 on a logarithmic factor log (𝐿𝑅2/𝜀), where 𝜀 – accuracy in function value)

𝑓(𝑥𝑘) − 𝑓(𝑥*)
(9),(10)
≃ 𝜀

2
+

√︃
𝐿

𝜇

𝛿2(2)

𝜇
≃

√︃
𝐿

𝜇

𝛿2(2)

𝜇

(3),(7)
≃

√︃
𝐿

𝜇

𝛼2 max𝑡=1,...,𝑘 ‖∇𝑓(𝑥𝑡)‖22
𝜇

≤

√︃
𝐿

𝜇

2𝐿𝛼2 max𝑡=1,...,𝑘(𝑓(𝑥𝑘) − 𝑓(𝑥*))

𝜇

.

√︃
𝐿

𝜇

4𝐿𝛼2 (𝑓(𝑥0) − 𝑓(𝑥*))

𝜇
. (14)

To guarantee that (restart condition)

𝑓(𝑥𝑘) − 𝑓(𝑥*) ≤
1

2
(𝑓(𝑥0) − 𝑓(𝑥*))

we should have 𝛼 .
(︀
𝜇
𝐿

)︀5/4
. Then we restart the method. After log (∆𝑓/𝜀) restarts we can guarantee

the desired 𝜀-accuracy in function value. In degenerate case the calculations are more tricky, but

the idea remains the same with the replacing
√︀
𝐿/𝜇 to 𝑘 (see (9)) that lead to 𝛼𝑘 .

(︀
1
𝑘

)︀5/2
. More

accurate analysis in the subsequent part of the paper allows to improve these bounds:

𝛼 .
(︀
𝜇
𝐿

)︀3/4
, 𝛼𝑘 .

(︀
1
𝑘

)︀3/2
.

Below we’ll concentrate only on accelerated method and choose the method with one projection (Similar
Triangles Method (STM)), see [28, 10, 30, 47, 23] and reference there in. We decided to choose this
method because: 1) it’s primal-dual [28]; 2) has a nice theory of how to bound 𝑅̃ in no noise regime
[28, 37] (𝑅̃ ≤ 𝑅) and noise one [30]; 3) and has previously been intensively investigated, see [23] and
references there in.

3 Some motivation for inexact gradients

In this section we describe only two directions where inexact gradient play an important role. We
emphasise that although the results below are not new, the way they are presented is of some value in
our opinion and can be useful for specialist in these directions.

3.1 Gradient-free methods

In this section we consider convex optimization problem:

min
𝑥∈𝑄⊆R𝑛

𝑓(𝑥).

DOI 10.20347/WIAS.PREPRINT.2812 Berlin 2021
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In some applications we do not have an access to gradient ∇𝑓(𝑥) of target function, but can calculate
the value of6 𝑓(𝑥) with accuracy 𝛿𝑓 [11]:

|𝑓(𝑥) − 𝑓(𝑥)| ≤ 𝛿𝑓 .

In this case there exist different conceptions for full gradient estimation (see [7] and references there
in). For example (below we assuming that 𝑓 has 𝐿𝑝-Lipschitz 𝑝-order derivatives in 2-norm),

� (𝑝-order finite-differences)

∇̃𝑖𝑓(𝑥) =
𝑓(𝑥+ ℎ𝑒𝑖) − 𝑓(𝑥− ℎ𝑒𝑖)

2ℎ
for 𝑝 = 2,

where 𝑒𝑖 is 𝑖-th ort. Here we have

𝛿 =
√
𝑛𝑂

(︂
𝐿𝑝ℎ

𝑝 +
𝛿𝑓
ℎ

)︂
in the conception (2), see [7]. Optimal choice of ℎ guarantees 𝛿 ∼

√
𝑛𝛿

𝑝
𝑝+1

𝑓 . From section 1 we
know that it is possible to solve the problem with accuracy (in function value) 𝜀 ∼ 𝛿. Hence,

𝛿𝑓 ∼
(︂

𝜀√
𝑛

)︂ 𝑝+1
𝑝

.

Unfortunately, such simple idea does not give tight lower bound in the class of algorithm that
has sample complexity Poly(𝑛, 1

𝜀
) [44] (obtained for 𝑝 = 0, that is only Lipschitz-continuity of 𝑓

required):

𝛿𝑓 ∼ max

{︂
𝜀2√
𝑛
,
𝜀

𝑛

}︂
. (15)

Note, that instead of finite-difference approximation approach in some applications we can use
kernel approach [43, 3]. The interest to this alternative has grown last time [2, 39].

� (Gaussian Smoothed Gradients)

∇̃𝑓(𝑥) =
1

ℎ
E𝑓(𝑥+ ℎ𝑒)𝑒,

where 𝑒 ∈ 𝑁(0, 𝐼𝑛) is standard normal random vector. Here we have

𝛿 = 𝑂

(︂
𝑛𝑝/2𝐿𝑝ℎ

𝑝 +

√
𝑛𝛿𝑓
ℎ

)︂
in the conception (2), see [38, 7]. Optimal choice of ℎ guarantees 𝛿 ∼ (𝑛𝛿𝑓 )

𝑝
𝑝+1 . Hence,

𝛿𝑓 ∼
𝜀

𝑝+1
𝑝

𝑛
.

That is also does not match the lower bound. Moreover, here (and in the approach below) we
have additional difficulty: how to estimate 𝑓(𝑥). We can do it only roughly, for example, by using
Monte Carlo approach [7]. This is a payment for the better quality of approximation!

6Note, that the approach describe above required that function values should be available not only in 𝑄, but also in some
(depends on approach we used) vicinity of 𝑄. This problem can be solved in a two different ways. The first one is “margins
inward approach” [8]. The second one is “continuation” 𝑓 to R𝑛 with preserving of convexity and Lipschitz continuity [44]:
𝑓𝑛𝑒𝑤(𝑥) := 𝑓

(︀
proj𝑄(𝑥)

)︀
+ 𝛼min𝑦∈𝑄 ‖𝑥− 𝑦‖2.
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Stopping rules for accelerated gradient methods with additive noise in gradient 7

� (Sphere Smoothed Gradients)

∇̃𝑓(𝑥) =
𝑛

ℎ
E𝑓(𝑥+ ℎ𝑒)𝑒,

where 𝑒 is random vector with uniform distribution in a unit sphere (with center at 0) in R𝑛. Here
we have

𝛿 = 𝑂

(︂
𝐿𝑝ℎ

𝑝 +
𝑛𝛿𝑓
ℎ

)︂
in the conception (2), see [7]. Optimal choice of ℎ guarantees 𝛿 ∼ (𝑛𝛿𝑓 )

𝑝
𝑝+1 . Hence,

𝛿𝑓 ∼
𝜀

𝑝+1
𝑝

𝑛
.

That is also does not match the lower bound. One can consider that the last two approach are
almost the same, but below we describe more accurate result concerning Sphere smoothing.
We do not know how to obtain such a result for Gaussian smoothing. The results is as follows
[16, 44]: For Sphere smoothed gradient in conception (7) we have

𝛿 ≃ 2𝐿0ℎ+

√
𝑛𝛿𝑓 𝑅̃

ℎ
, (16)

where 𝐿0 is Lipschitz constant of 𝑓 and 𝐿 = min
{︁
𝐿1,

7𝐿2
0

ℎ

}︁
in (7), when 𝑝 = 1 and 𝐿 =

7𝐿2
0

ℎ
,

when 𝑝 = 0. The bound (16) is more accurate than the previous ones, since it corresponds
to the first part of the lower bound (15). Indeed, by choosing properly ℎ in (16) we obtain
𝜀 ∼ 𝛿 ∼ 𝑛1/4𝛿

1/2
𝑓 . Hence,

𝛿𝑓 ∼
𝜀2√
𝑛
.

The rest part (𝛿𝑓 ∼ 𝜀
𝑛

) of lower bound (15) is also tight, see [5].

The last calculations (see (16)) additionally confirm that the conception of inexactness and algorithms
we use and develop in section 2 are also tight (optimal) enough. Otherwise, it’d be hardly possible to
reach lower bound by using gradient-free methods reduction to gradient ones and proposed analysis of
an error accumulation for gradient-type methods.

3.2 Inverse problems

Another rather big direction of research where gradients are typically available only approximately is
optimization in a Hilbert spaces [51]. Such optimization problems arise, in particular, in inverse problems
theory [31].

We start with the reminder of how to calculate a derivative in general Hilbert space. Let

𝐽(𝑞) := 𝐽(𝑞, 𝑢(𝑞)),

where 𝑢(𝑞) is determine as unique solution of

𝐺(𝑞, 𝑢) = 0.
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Assume that 𝐺𝑞(𝑞, 𝑢) is invertible, then

𝐺𝑞(𝑞, 𝑢) +𝐺𝑢(𝑞, 𝑢)∇𝑢(𝑞) = 0,

hence
∇𝑢(𝑞) = − [𝐺𝑢(𝑞, 𝑢)]−1𝐺𝑞(𝑞, 𝑢).

Therefore

∇𝐽(𝑞) := 𝐽𝑞(𝑞, 𝑢) + 𝐽𝑢(𝑞, 𝑢)∇𝑢(𝑞) = 𝐽𝑞(𝑞, 𝑢) − 𝐽𝑢(𝑞, 𝑢) [𝐺𝑢(𝑞, 𝑢)]−1𝐺𝑞(𝑞, 𝑢).

The same result could be obtained by considering Lagrange functional

𝐿(𝑞, 𝑢;𝜓) = 𝐽(𝑞, 𝑢(𝑞)) + ⟨𝜓,𝐺(𝑞, 𝑢)⟩

with
𝐿𝑢(𝑞, 𝑢;𝜓) = 0, 𝐺𝑞(𝑞, 𝑢) = 0

and
∇𝐽(𝑞) = 𝐿𝑞(𝑞, 𝑢;𝜓).

Indeed, by simple calculations we can relate these two approaches, where

𝜓(𝑞, 𝑢) = −
[︀
𝐺𝑢(𝑞, 𝑢)𝑇

]︀−1
𝐽𝑢(𝑞, 𝑢)𝑇 .

Now we demonstrate this technique on inverse problem for elliptic initial-boundary value problem.

Let 𝑢 be the solution of the following problem (P)

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0, 𝑥, 𝑦 ∈ (0, 1) ,

𝑢 (1, 𝑦) = 𝑞 (𝑦) , 𝑦 ∈ (0, 1) ,

𝑢𝑥 (0, 𝑦) = 0, 𝑦 ∈ (0, 1) ,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) = 0, 𝑥 ∈ (0, 1) .

The first two relations
−𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 0, 𝑥, 𝑦 ∈ (0, 1) ,

𝑞 (𝑦) − 𝑢 (1, 𝑦) = 0, 𝑦 ∈ (0, 1) ,

we denote as 𝐺(𝑞, 𝑢) = 𝐺̄ · (𝑞, 𝑢) = 0 and the last two ones as 𝑢 ∈ 𝑄.

Assume that we want to estimate 𝑞(𝑦) ∈ 𝐿2(0, 1) by observing 𝑏(𝑦) = 𝑢(0, 𝑦) ∈ 𝐿2(0, 1), where
𝑢(𝑥, 𝑦) ∈ 𝐿2 ((0, 1) × (0, 1)) is the (unique) solution of (P) [31]. This is an inverse problem. We can
reduce this problem to optimization one [31]:

min
𝑞

J(𝑞) := min
𝑢: 𝐺̄·(𝑞,𝑢)=0,𝑢∈𝑄

𝐽(𝑞, 𝑢) := 𝐽(𝑢) =

∫︁ 1

0

|𝑢(0, 𝑦) − 𝑏(𝑦)|2𝑑𝑦. (17)

We can solve (17) numerically. This problem is convex quadratic optimization problem. We can directly
apply Lagrange multipliers principle to (17), see [51]:

𝐿 (𝑞, 𝑢;𝜓 := (𝜓(𝑥, 𝑦), 𝜆(𝑦))) = 𝐽(𝑢) + ⟨𝜓, 𝐺̄ · (𝑞, 𝑢)⟩ =

∫︁ 1

0

|𝑢(0, 𝑦) − 𝑏(𝑦)|2𝑑𝑦−∫︁ 1

0

∫︁ 1

0

(𝑢𝑥𝑥 + 𝑢𝑦𝑦)𝜓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 +

∫︁ 1

0

(𝑞(𝑦) − 𝑢(1, 𝑦))𝜆(𝑦)𝑑𝑦.
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To obtain conjugate problem for 𝜓 we should vary 𝐿 (𝑞, 𝑢;𝜓) on 𝛿𝑢 satisfying 𝑢 ∈ 𝑄:

𝛿𝑢𝐿 (𝑞, 𝑢;𝜓) = 2

∫︁ 1

0

(𝑢(0, 𝑦) − 𝑏(𝑦)) 𝛿𝑢(0, 𝑦)𝑑𝑦−∫︁ 1

0

∫︁ 1

0

(𝛿𝑢𝑥𝑥 + 𝛿𝑢𝑦𝑦)𝜓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 −
∫︁ 1

0

𝛿𝑢(1, 𝑦)𝜆(𝑦)𝑑𝑦, (18)

where
𝛿𝑢𝑥 (0, 𝑦) = 0, 𝑦 ∈ (0, 1) ,

𝛿𝑢 (𝑥, 0) = 𝛿𝑢 (𝑥, 1) = 0, 𝑥 ∈ (0, 1) .

Using integration by part, from (18) we can derive

𝛿𝑢𝐿 (𝑞, 𝑢;𝜓) =

∫︁ 1

0

(2 (𝑢(0, 𝑦) − 𝑏(𝑦)) − 𝜓𝑥(0, 𝑦)) 𝛿𝑢(0, 𝑦)𝑑𝑦−∫︁ 1

0

𝜓(1, 𝑦)𝛿𝑢𝑥(1, 𝑦)𝑑𝑦 −
∫︁ 1

0

𝜓(𝑥, 1)𝛿𝑢𝑦(𝑥, 1)𝑑𝑥+

∫︁ 1

0

𝜓(𝑥, 0)𝛿𝑢𝑦(𝑥, 0)𝑑𝑦+∫︁ 1

0

∫︁ 1

0

(𝜓𝑥𝑥 + 𝜓𝑦𝑦) 𝛿𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦 +

∫︁ 1

0

(𝜓𝑥(1, 𝑦) − 𝜆(𝑦)) 𝛿𝑢(1, 𝑦)𝑑𝑦.

Consider corresponding conjugate problem (D)

𝜓𝑥𝑥 + 𝜓𝑦𝑦 = 0, 𝑥, 𝑦 ∈ (0, 1) ,

𝜓𝑥 (0, 𝑦) = 2 (𝑢(0, 𝑦) − 𝑏(𝑦)) , 𝑦 ∈ (0, 1) ,

𝜓 (1, 𝑦) = 0, 𝑦 ∈ (0, 1) ,

𝜓 (𝑥, 0) = 𝜓 (𝑥, 1) = 0, 𝑥 ∈ (0, 1)

and additional relation between Lagrange multipliers

𝜆(𝑦) = 𝜓𝑥(1, 𝑦), 𝑦 ∈ (0, 1) . (19)

These relations appears since 𝛿𝑢𝐿 (𝑞, 𝑢;𝜓) = 0 and 𝛿𝑢(0, 𝑦), 𝛿𝑢𝑥(1, 𝑦), 𝛿𝑢(1, 𝑦) ∈ 𝐿2(0, 1);
𝛿𝑢𝑦(𝑥, 1), 𝛿𝑢𝑦(𝑥, 0) ∈ 𝐿2(0, 1); 𝛿𝑢(𝑥, 𝑦) ∈ 𝐿2 ((0, 1) × (0, 1)) are arbitrary.

Since [45]

J(𝑞) = min
𝑢:(𝑞,𝑢)∈(𝑃 )

𝐽(𝑢) = min
𝑢: 𝐺̄·(𝑞,𝑢)=0,𝑢∈𝑄

𝐽(𝑢) = min
𝑢∈𝑄

max
𝜓∈(𝐷)

𝐿(𝑞, 𝑢;𝜓),

from the Demyanov–Danskin’s formula [45]7

∇J(𝑞) = ∇𝑞 min
𝑢∈𝑄

max
𝜓∈(𝐷)

𝐿(𝑞, 𝑢;𝜓) = 𝐿𝑞(𝑞, 𝑢(𝑞);𝜓(𝑞)),

where 𝑢(𝑞) is the solution of (P) and 𝜓(𝑞) is the solution of (D) where

𝜓𝑥 (0, 𝑦) = 2 (𝑢(0, 𝑦) − 𝑏(𝑦)) , 𝑦 ∈ (0, 1)

7The same result in more simple situation (without additional constraint 𝑢 ∈ 𝑄) we consider at the beginning of this
section. We don’t apply Demyanov–Danskin’s formula and use inverse function theorem.
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and 𝑢(0, 𝑦) depends on 𝑞(𝑦) via (P) and, at the same time, the pair (𝑢(𝑞), 𝜓(𝑞)) is the solution of

min
𝑢∈𝑄

max
𝜓∈(𝐷)

𝐿(𝑞, 𝑢;𝜓)

saddle-point problem. Since 𝛿𝜓𝐿(𝑞, 𝑢;𝜓) = 0 entails 𝐺̄ · (𝑞, 𝑢) = 0 that is form (P) if we add 𝑢 ∈ 𝑄
and 𝛿𝑢𝐿(𝑞, 𝑢;𝜓) = 0, when 𝑢 ∈ 𝑄 entails (D) as we’ve shown above.

Note also that

𝐿𝑞(𝑞, 𝑢(𝑞);𝜓(𝑞))(𝑦) = 𝜆(𝑦), 𝑦 ∈ (0, 1) .

Hence, due to (19)

∇J(𝑞)(𝑦) = 𝜓𝑥(1, 𝑦), 𝑦 ∈ (0, 1)

So we reduce ∇J(𝑞)(𝑦) calculation to the solution of two correct initial-boundary value problem for
elliptic equation in a square (P) and (D) [31].

This result can be also interpreted in a little bit different manner. We introduce a linear operator

𝐴 : 𝑞(𝑦) := 𝑢(1, 𝑦) ↦→ 𝑢(0, 𝑦).

Here 𝑢(𝑥, 𝑦) is the solution of problem (P). It was shown in [31] that

𝐴 : 𝐿2(0, 1) → 𝐿2(0, 1).

Conjugate operator is [31]

𝐴* : 𝑝(𝑦) := 𝜓𝑥(0, 𝑦) ↦→ 𝜓𝑥(1, 𝑦), 𝐴* : 𝐿2(0, 1) → 𝐿2(0, 1).

Here 𝜓(𝑥, 𝑦) is the solution of conjugate problem (D). So, by considering

J(𝑞)(𝑦) = ‖𝐴𝑞 − 𝑏‖22,

we can write

∇J(𝑞)(𝑦) = 𝐴* (2 (𝐴𝑞 − 𝑏)) ,

that completely corresponds to the same scheme as described above:

1. Based on 𝑞(𝑦) we solve (P) and obtain 𝑢(0, 𝑦) = 𝐴𝑞(𝑦) and define 𝑝(𝑦) = 2 (𝑢(0, 𝑦) − 𝑏(𝑦)).

2. Based on 𝑝(𝑦) we solve (D) and calculate ∇J(𝑞)(𝑦) = 𝐴*𝑝(𝑦) = 𝜓𝑥(1, 𝑦).

So inexactness in gradient ∇J(𝑞) arises since we can solve (P) and (D) only numerically.

The described above technique can be applied to many different inverse problems [31] and optimal
control problems [51]. Note that for optimal control problems in practice another strategy widely used.
Namely, instead of approximate calculation of gradient, optimization problem replaced by approximate
one (for example, by using finite-differences schemes). For this reduced (finite-dimensional) problem
the gradient is typically available precisely [24]. Moreover, in [24] the described above Lagrangian
approach is based to explain the core of automatic differentiation where the function calculation tree
represented as system of explicitly solvable interlocking equations.
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4 Basic assumptions and problem description

We consider convex optimization problem on a convex (not necessarily bounded) set 𝑄 ⊆ R𝑛:

min
𝑥∈𝑄

𝑓(𝑥).

Assume that

‖∇̃𝑓(𝑥) −∇𝑓(𝑥)‖2 6 𝛿, (20)

where ∇̃𝑓(𝑥) oracle gradient value. We consider two cases: 𝑄 is a compact set and 𝑄 is unbounded,
for example R𝑛. We define the constant:

𝑅 = ‖𝑥𝑠𝑡𝑎𝑟𝑡 − 𝑥*‖2

to be the distance between the solution 𝑥* and starting point 𝑥𝑠𝑡𝑎𝑟𝑡, if 𝑥* is not unique we take such 𝑥*

that is the closest to 𝑥𝑠𝑡𝑎𝑟𝑡. We assume that function 𝑓 has Lipschitz gradient with constant 𝐿𝑓 :

∀𝑥, 𝑦 ∈ 𝑄, ‖∇𝑓(𝑥) −∇𝑓(𝑦)‖2 6 𝐿𝑓‖𝑥− 𝑦‖2. (21)

This implies inequality:

∀𝑥, 𝑦 ∈ 𝑄, 𝑓(𝑦) 6 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿𝑓
2
‖𝑥− 𝑦‖22. (22)

We will use following lemma:

Lemma 4.1 (Fenchel inequality). Let (ℰ , ⟨·, ·⟩) – euclidean space, then ∀𝜆 ∈ R+,∀𝑢, 𝑣 ∈ ℰ the
inequality holds:

⟨𝑢, 𝑣⟩ 6 1

2𝜆
‖𝑢‖2ℰ +

𝜆

2
‖𝑣‖2ℰ .

From previous assumptions we can get upper bound with inexact oracle.

Claim 1. ∀𝑥, 𝑦 ∈ 𝑄, the following estimate holds:

𝑓(𝑦) 6 𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿

2
‖𝑥− 𝑦‖22 + 𝛿2,

where 𝐿 = 2𝐿𝑓 , 𝛿2 = 𝛿2

2𝐿𝑓
.

Proof. The proof follows from

𝑓(𝑦) 6 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿𝑓
2
‖𝑥− 𝑦‖22 6

6 𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
1

2𝐿𝑓
‖∇𝑓(𝑥) − ∇̃𝑓(𝑥)‖22 +

𝐿𝑓
2
‖𝑥− 𝑦‖22 +

𝐿𝑓
2
‖𝑥− 𝑦‖22 6

6 𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿

2
‖𝑥− 𝑦‖22 + 𝛿2.
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We also assume strong convexity of 𝑓 with parameter 𝜇, however 𝜇 may equal zero – this corresponds
to the ordinary convexity, supposed initially. Further we will use only a consequence of this:

𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑥− 𝑦‖22 6 𝑓(𝑦). (23)

We obtain similar to claim 1 two lower bounds with inexact oracle.

Claim 2. ∀𝑥, 𝑦 ∈ 𝑄, the following estimate holds:

𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑥− 𝑦‖22 − 𝛿1‖𝑥− 𝑦‖2 6 𝑓(𝑦),

where 𝛿1 = 𝛿.

Proof. Using Cauchy inequality and (23) we obtain:

𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑥− 𝑦‖22 − 𝛿1‖𝑥− 𝑦‖2 6 𝑓(𝑥)+

+ ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑥− 𝑦‖22 − ‖∇̃𝑓(𝑥) −∇𝑓(𝑥)‖2‖𝑥− 𝑦‖2 6

6 𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑥− 𝑦‖22−

− ⟨∇̃𝑓(𝑥) −∇𝑓(𝑥), 𝑦 − 𝑥⟩ = 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑥− 𝑦‖22 6 𝑓(𝑦) ⇒

𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑥− 𝑦‖22 − 𝛿1‖𝑥− 𝑦‖2 6 𝑓(𝑦).

Claim 3. ∀𝑥, 𝑦 ∈ 𝑄, if in (23) 𝜇 ̸= 0, the following estimate holds,

𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

4
‖𝑦 − 𝑥‖22 − 𝛿3 6 𝑓(𝑦),

where 𝛿3 = 𝛿2

𝜇
.

Proof. Trivial calculations bring

𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

4
‖𝑥− 𝑦‖22 − 𝛿3 = 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+

+ ⟨∇̃𝑓(𝑥) −∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

4
‖𝑥− 𝑦‖22 − 𝛿3.

Using lemma 1 we obtain:

𝑓(𝑥) + ⟨∇̃𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

4
‖𝑥− 𝑦‖22 − 𝛿3 6 𝑓(𝑥)+

+ ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝛿2

𝜇
+
𝜇

4
‖𝑥− 𝑦‖22 +

𝜇

4
‖𝑦 − 𝑥‖22 − 𝛿3 =

= 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑦 − 𝑥‖22 6 𝑓(𝑦).

The last two inequalities give different results in convergence under certain conditions. We will study
two models based on statements 2, 3 and we will denote them by the index 𝜏 , that is denote:

𝜇1 = 𝜇,

𝜇2 =
𝜇

2
.

(24)

Further in the text, we will use statements 3 and 2 in the notation corresponding to (24).
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5 Similar Triangles Method and its properties

In this section we describe an accelerated method we choose to investigate gradient-error accumulation.

Algorithm 1 𝑆𝑇𝑀(𝐿, 𝜇, 𝜏, 𝑥𝑠𝑡𝑎𝑟𝑡), 𝑄 ⊆ R𝑛

Input: Starting point 𝑥𝑠𝑡𝑎𝑟𝑡, number of steps 𝑁
Output: 𝑥𝑁

1: Set 𝑥̃0 = 𝑥𝑠𝑡𝑎𝑟𝑡
2: Set 𝐴0 = 1

𝐿
, 𝛼0 = 1

𝐿
,

3: Set 𝜓0(𝑥) = 1
2
‖𝑥− 𝑥̃0‖22 + 𝛼0

(︁
𝑓(𝑥̃0) + ⟨∇̃𝑓(𝑥̃0), 𝑥− 𝑥̃0⟩ + 𝜇

2
‖𝑥− 𝑥̃0‖22

)︁
,

4: Set 𝑧0 = argmin
𝑦∈𝑄

𝜓0(𝑦),

5: Set 𝑥0 = 𝑧0.
6: for 𝑘 = 1, 2 . . . 𝑁 do

7: 𝛼𝑘 = 1+𝜇𝜏𝐴𝑘−1

2𝐿
+
√︁

1+𝜇𝜏𝐴𝑘−1

4𝐿2 + 𝐴𝑘−1

1+𝜇𝜏𝐴𝑘−1
,

8: 𝐴𝑘 = 𝐴𝑘−1 + 𝛼𝑘,
9: 𝑥̃𝑘 = 𝐴𝑘−1𝑥𝑘−1+𝛼𝑘𝑧𝑘−1

𝐴𝑘
,

10: 𝜓𝑘(𝑥) = 𝜓𝑘−1(𝑥) + 𝛼𝑘

(︁
(𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑥− 𝑥̃𝑘⟩ + 𝜇

2
‖𝑥− 𝑥̃𝑘‖22

)︁
,

11: 𝑧𝑘 = argmin
𝑦∈𝑄

𝜓𝑘(𝑦),

12: 𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1+𝛼𝑘𝑧𝑘
𝐴𝑘

.
13: end for
14: return 𝑥𝑁

Figure 5 describes the position of the vertices. On the sides, not their lengths are marked, but the
relationships in the corresponding sides in the similarity of triangles. In the case 𝑄 = R𝑛, we can
simplify the step of the algorithm by replacing it with:

𝑧𝑘 = 𝑧𝑘−1 −
𝛼𝑘

1 + 𝐴𝑘𝜇𝜏

(︁
∇̃𝑓(𝑥̃𝑘)+𝜇𝜏 (𝑧𝑘−1 − 𝑥̃𝑘)

)︁
.

We define constant:

𝑅̃ = max
06𝑘6𝑁

{‖𝑧𝑘 − 𝑥*‖2, ‖𝑥𝑘 − 𝑥*‖2, ‖𝑥̃𝑘 − 𝑥*‖2}.

We will also write down several identities that we will need in the proofs

𝐴𝑘(𝑥𝑘 − 𝑥̃𝑘) = 𝛼𝑘(𝑧𝑘 − 𝑥̃𝑘) + 𝐴𝑘−1(𝑥𝑘−1 − 𝑧𝑘),

1 + 𝜇𝜏𝐴𝑘−1

2
‖𝑧𝑘 − 𝑧𝑘−1‖22 =

𝐿

2
‖𝑥𝑘 − 𝑥̃𝑘‖22,

𝐴𝑘−1‖𝑥̃𝑘 − 𝑥𝑘−1‖2 = 𝛼𝑘‖𝑥̃𝑘 − 𝑧𝑘−1‖2.

(25)

Some of the identities can be obtained from geometric considerations, for example, from a figure,
others by direct substitution into the definitions of the sequences 𝑥𝑘, 𝑥̃𝑘, 𝑧𝑘. Also very important are
the estimates for the sequence 𝐴𝑘.
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Figure 1: Geometry of Similar Triangles method [28]

Claim 4. If 𝜇 ̸= 0 and ∀𝑘 ∈ N the following inequality holds:

𝐴𝑘 > 𝐴𝑘−1𝜆𝜇𝜏 ,𝐿,

where

𝜃𝜇𝜏 ,𝐿 =
𝜇𝜏
𝐿
, 𝜆𝜇𝜏 ,𝐿 =

(︂
1 +

1

2
𝜃𝜇𝜏 ,𝐿 +

1

2

√︁
𝜃2𝜇𝜏 ,𝐿 + 4𝜃𝜇𝜏 ,𝐿

)︂
.

Proof. Using the definition of the sequences 𝐴𝑘 and solving the quadratic equation, we obtain:

𝐴𝑘(1 + 𝜇𝜏𝐴𝑘−1) = 𝐿𝛼2
𝑘 = 𝐿(𝐴𝑘 − 𝐴𝑘−1)

2 = 𝐿𝐴2
𝑘 − 2𝐿𝐴𝑘𝐴𝑘−1 + 𝐿𝐴𝑘−1 ⇔

⇔ 𝐴2
𝑘 − 𝐴𝑘 (1 + 𝐴𝑘−1 (2 + 𝜃𝜇𝜏 ,𝐿)) + 𝐴2

𝑘−1 = 0,𝒟 = (1 + 2𝐴𝑘−1 + 𝜃𝜇𝜏 ,𝐿)2 − 4𝐴2
𝑘

𝐴𝑘,𝑎𝑝𝑒𝑥 =
1

2
+

(︂
1 +

1

2
𝜃𝜇𝜏 ,𝐿

)︂
𝐴𝑘 ⇒ 𝐴𝑘 =

1

2

(︁
(1 + (2 + 𝜃𝜇𝜏 ,𝐿))𝐴𝑘−1 +

√
𝒟
)︁

√
𝒟 =

√︁
1 + (2𝜃𝜇𝜏 ,𝐿 + 4)𝐴𝑘−1 +

(︀
𝜃2𝜇𝜏 ,𝐿 + 4𝜃𝜇,𝐿

)︀
𝐴2
𝑘−1 > 𝐴𝑘−1

√︁
𝜃2𝜇,𝐿 + 4𝜃𝜇,𝐿 ⇒

⇒ 𝐴𝑘 >
1

2

(︁
2 + 𝜃𝜇𝜏 ,𝐿 +

√︁
𝜃2𝜇𝜏 ,𝐿 + 4𝜃𝜇𝜏 ,𝐿

)︁
𝐴𝑘−1 =

=

(︂
1 +

1

2
𝜃𝜇𝜏 ,𝐿 +

1

2

√︁
𝜃2𝜇𝜏 ,𝐿 + 4𝜃𝜇𝜏 ,𝐿

)︂
𝐴𝑘−1 ⇒

⇒ 𝐴𝑘 >
1

𝐿
𝜆𝑘𝜇𝜏 ,𝐿, 𝜆𝜇𝜏 ,𝐿 =

(︂
1 +

1

2
𝜃𝜇𝜏 ,𝐿 +

1

2

√︁
𝜃2𝜇𝜏 ,𝐿 + 4𝜃𝜇𝜏 ,𝐿

)︂
.
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Corollary 5.1.

𝜆𝜇𝜏 ,𝐿 >

(︂
1 +

1

2

√︀
𝜃𝜇𝜏 ,𝐿

)︂2

=

(︂
1 +

√︀
𝜃𝜇𝜏 ,𝐿 +

1

4
𝜃𝜇𝜏 ,𝐿

)︂
,(︂

1 +
1

2

√︀
𝜃𝜇𝜏 ,𝐿

)︂2

> 𝑒
1
2
𝜃𝜇𝜏 ,𝐿 .

Claim 5. If 𝜇 ̸= 0 ∀𝑘 ∈ N the following inequality holds:

𝑘∑︁
𝑗=0

𝐴𝑗

𝐴𝑘
6 1 +

√︃
𝐿

𝜇𝜏
.

Proof. According to the previous designations:

𝜆𝜇𝜏 ,𝐿 =

(︂
1 +

1

2
𝜃𝜇𝜏 ,𝐿 +

1

2

√︁
𝜃2𝜇𝜏 ,𝐿 + 4𝜃𝜇𝜏 ,𝐿

)︂
, 𝜃𝜇𝜏 ,𝐿 =

𝜇𝜏
𝐿
.

Using previous claim we can reduce this amount exponentially.

𝑘∑︁
𝑗=0

𝐴𝑗

𝐴𝑘
6

𝑘∑︁
𝑗=0

𝜆−𝑗𝜇𝜏 ,𝐿 =
𝜆𝑘+1
𝜇𝜏 ,𝐿

− 1

𝜆𝑘+1
𝜇𝜏 ,𝐿

− 𝜆𝑘𝜇𝜏 ,𝐿
6

𝜆𝜇𝜏 ,𝐿
𝜆𝜇𝜏 ,𝐿 − 1

6 1 +

√︃
𝐿

𝜇𝜏
.

Claim 6. If 𝜇 = 0 then:

𝐴𝑘 >
(𝑘 + 1)2

4𝐿
.

Proof. If 𝜇 = 0 then 𝐴𝑘 = 𝐿𝛼2
𝑘 and solving quadratic equation we get:

𝛼𝑘 =
1 +

√︁
1 + 4𝐿2𝛼2

𝑘−1

2𝐿
.

Then by induction it is easy to get that:

𝛼𝑘 >
𝑘 + 1

2𝐿
⇒ 𝐴𝑘 = 𝐿𝑎2𝑘 >

(𝑘 + 1)2

2𝐿
.

Claim 7. If 𝜇 = 0 we have:
𝑘∑︁
𝑗=0

𝐴𝑗

𝐴𝑘
6 𝑘.
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Proof. The proof follows from the simple calculations:

𝑘∑︁
𝑗=0

𝐴𝑗

𝐴𝑘
6

𝑘∑︁
𝑗=0

𝑎2𝑗

𝑎2𝑘
6
𝑘𝛼2

𝑘−1

𝛼2
𝑘

=
𝑘𝛼2

𝑘−1

( 1
2𝐿

+
√︁

1
4𝐿2 + 𝛼2

𝑘−1)
2
6 𝑘.

Lemma 5.2. ∀𝑘 > 1 the following inequality holds:

𝜓𝑘(𝑧𝑘) > 𝜓𝑘−1(𝑧𝑘−1) +
1 + 𝜇𝜏𝐴𝑘−1

2
‖𝑧𝑘 − 𝑧𝑘−1‖22+

+ 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩ +

𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑘‖22

)︁
.

Proof. From the definition of the 𝜓𝑘−1 function, it has a minimum at the point 𝑧𝑘−1, then:

⟨∇𝜓𝑘−1(𝑧𝑘−1), 𝑧𝑘 − 𝑧𝑘−1⟩ > 0, ∇𝜓𝑘−1(𝑧𝑘−1) = (𝑧𝑘−1 − 𝑥̃0) +

+
𝑘−1∑︁
𝑗=0

𝛼𝑗

(︁
∇̃𝑓 (𝑥̃𝑗) + 𝜇𝜏 (𝑧𝑘−1 − 𝑥̃𝑗)

)︁
⇒

⇒ 𝜓𝑘(𝑧𝑘) = 𝜓𝑘−1(𝑧𝑘) + 𝛼𝑘

(︁
𝑓 (𝑥̃𝑘) + ⟨∇̃𝑓 (𝑥̃𝑘) , 𝑧𝑘 − 𝑥̃𝑘⟩ +

𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑘‖22

)︁
=

=
1

2
‖𝑧𝑘 − 𝑥̃0‖22 +

𝑘−1∑︁
𝑗=0

𝛼𝑗

(︁
𝑓 (𝑥̃𝑗) + ⟨∇̃𝑓 (𝑥̃𝑗) , 𝑧𝑘 − 𝑥̃𝑗⟩ +

𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑗‖22

)︁
+

+ 𝛼𝑘

(︁
𝑓 (𝑥̃𝑘) + ⟨∇̃𝑓 (𝑥̃𝑘) , 𝑧𝑘 − 𝑥̃𝑘⟩

)︁
+
𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑘‖22.

From (25) and the above we obtain:

𝜓𝑘(𝑧𝑘) >
1

2
‖𝑧𝑘−1 − 𝑥̃0‖22 + ⟨𝑧𝑘−1 − 𝑥̃0, 𝑧𝑘 − 𝑧𝑘−1⟩ +

1

2
‖𝑧𝑘−1 − 𝑧𝑘‖22+

+
𝑘−1∑︁
𝑗=0

𝛼𝑗

(︁
𝑓(𝑥̃𝑗) + ⟨∇̃𝑓(𝑥̃𝑗), 𝑧𝑘 − 𝑥̃𝑗⟩ +

𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑗‖22

)︁
+

+ 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩ +

𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑘‖22

)︁
=

=
𝑘−1∑︁
𝑗=0

𝛼𝑗

(︁
⟨∇̃𝑓(𝑥̃𝑗) + 𝜇𝜏 (𝑧𝑘−1 − 𝑥̃𝑗), 𝑧𝑘−1 − 𝑧𝑘⟩

)︁
+

+
𝑘−1∑︁
𝑗=0

𝛼𝑗

(︁
𝑓(𝑥̃𝑗) + ⟨∇̃𝑓(𝑥̃𝑗), 𝑧𝑘 − 𝑥̃𝑗⟩ +

𝜇

2
‖𝑧𝑘 − 𝑥̃𝑗‖22

)︁
+

+ 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩ +

𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑘‖22

)︁
+

1

2
‖𝑧𝑘−1 − 𝑥̃0‖22 +

1

2
‖𝑧𝑘−1 − 𝑧𝑘‖22.

Using the linearity of the dot product, we split the sum by two and apply to:

𝜇𝜏 ⟨𝑧𝑘−1 − 𝑥̃𝑗, 𝑧𝑘−1 − 𝑧𝑘⟩.
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Equality from (25), and finally get:

𝜓𝑘(𝑧𝑘) >
1

2
‖𝑧𝑘−1 − 𝑥̃0‖22 +

1 + 𝜇𝜏𝐴𝑘−1

2
‖𝑧𝑘−1 − 𝑧𝑘‖22+

+
𝑘−1∑︁
𝑗=0

𝛼𝑗

(︁
𝑓(𝑥̃𝑗) + ⟨∇̃𝑓(𝑥̃𝑗), 𝑧𝑘−1 − 𝑥̃𝑗⟩ +

𝜇𝜏
2
‖𝑧𝑘−1 − 𝑥̃𝑗‖22

)︁
+

+ 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩ +

𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑘‖22

)︁
=

= 𝜓𝑘−1(𝑧𝑘−1) +
1 + 𝜇𝜏𝐴𝑘−1

2
‖𝑧𝑘 − 𝑧𝑘−1‖22+

+ 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩ +

𝜇𝜏
2
‖𝑧𝑘 − 𝑥̃𝑘‖22

)︁
.

Remark 1.

In the case 𝜇 = 0, we obtain a corollary from the strongly convexity of functions 𝜓𝑘 and their definition,
that is:

𝜓𝑘(𝑧𝑘) = 𝜓𝑘−1(𝑧𝑘) + 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩

)︁
⇒

𝜓𝑘(𝑧𝑘) > 𝜓𝑘−1(𝑧𝑘−1) +
1

2
‖𝑧𝑘 − 𝑧𝑘−1‖22 + 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩

)︁
.

6 Main results

Here we will describe some results based on the previously presented lemmas and statements.

6.1 Additive noise and main theorems.

Theorem 6.1. ∀𝑘 ∈ N the following inequality holds:

𝐴𝑘𝑓(𝑥𝑘) 6 𝜓𝑘(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑘.

Proof. Base, 𝑘 = 0:

𝑓(𝑥0) 6 𝑓(𝑥̃0) + ⟨∇̃𝑓(𝑥̃0), 𝑥0 − 𝑥̃0⟩ +
𝐿

2
‖𝑥0 − 𝑥̃0‖22 + 𝛿2 6

6 𝐿𝜓0(𝑧0) −
𝐿𝜇

2
‖𝑧0 − 𝑥̃0‖22 + 𝛿2 6 𝐿𝜓0(𝑧0) + 𝛿2.

Induction step:

𝐴𝑘𝑓(𝑥𝑘) − 𝐴𝑘−1𝛿1‖𝑥𝑘−1 − 𝑥̃𝑘‖2 6

6 𝐴𝑘

(︂
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑥𝑘 − 𝑥̃𝑘⟩ +

𝐿

2
‖𝑥𝑘 − 𝑥̃𝑘‖22 + 𝛿2

)︂
− 𝐴𝑘−1𝛿1‖𝑥𝑘−1 − 𝑥̃𝑘‖2.
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Using equations (25) we obtain:

𝐴𝑘𝑓(𝑥𝑘) − 𝐴𝑘−1𝛿1‖𝑥𝑘−1 − 𝑥̃𝑘‖2 6

6 𝐴𝑘−1

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑥𝑘−1 − 𝑥̃𝑘⟩

)︁
+ 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩

)︁
+

+
(1 + 𝜇1𝐴𝑘−1)

2
‖𝑧𝑘 − 𝑧𝑘−1‖22 + 𝐴𝑘𝛿2 − 𝐴𝑘−1𝛿1‖𝑥𝑘−1 − 𝑥̃𝑘‖2 6

6 𝐴𝑘−1𝑓(𝑥𝑘−1) + 𝛼𝑘(𝑓(𝑥̃𝑘)⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩+

+
1 + 𝜇1𝐴𝑘−1

2
‖𝑧𝑘 − 𝑧𝑘−1‖22 + 𝐴𝑘𝛿2.

Using the induction hypothesis, we obtain:

𝐴𝑘𝑓(𝑥𝑘) − 𝐴𝑘−1𝛿1‖𝑥𝑘−1 − 𝑥̃𝑘‖2 6 𝜓𝑘−1(𝑧𝑘−1) + 𝛿2

𝑘−1∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑘−1+

+
1 + 𝜇1𝐴𝑘−1

2
‖𝑧𝑘 − 𝑧𝑘−1‖22 + 𝛼𝑘

(︁
𝑓(𝑥̃𝑘) + ⟨∇̃𝑓(𝑥̃𝑘), 𝑧𝑘 − 𝑥̃𝑘⟩

)︁
+ 𝐴𝑘𝛿2.

Using lemma 5.2 we can get:

𝐴𝑘𝑓(𝑥𝑘) 6 𝐴𝑘−1𝛿1‖𝑥𝑘−1 − 𝑥̃𝑘‖2 + 𝜓𝑘(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑘−1 =

= 𝜓𝑘(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑘−1 + 𝛼𝑘‖𝑥̃𝑘 − 𝑧𝑘−1‖2 6

6 𝜓𝑘(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑘−1 + 𝛼𝑘 (‖𝑧𝑘−1 − 𝑥*‖2 + ‖𝑥̃𝑘 − 𝑥*‖2) 𝛿1 6

6 𝜓𝑘(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑘−1 + 2𝛼𝑘𝑅̃ ⇒

⇒ 𝐴𝑘𝑓(𝑥𝑘) 6 𝜓(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑘.

Remark 2.

We should note that this inequality is true both in the case of 𝜇 ̸= 0 and in the case of 𝜇 = 0.

Theorem 6.2. If 𝜇 ̸= 0 ∀𝑘 ∈ N the following inequality holds:

𝐴𝑘𝑓(𝑥𝑘) 6 𝜓𝑘(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗 + 𝛿3

𝑘−1∑︁
𝑗=0

𝐴𝑗.

The proof repeats verbatim theorem 6.1, except for claim 2, replaced by claim 3.

Theorem 6.3. If 𝛿1 = 𝛿2 = 𝛿3 = 0 then 𝑅̃ = 𝑅.
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Proof. Using theorem 6.1 we get 𝐴𝑘𝑓(𝑥𝑘) 6 𝜓𝑘(𝑧𝑘) then:

1

2
‖𝑧𝑘 − 𝑥*‖22 =

1

2
‖𝑧𝑘 − 𝑥*‖22 + 𝐴𝑘𝑓(𝑥𝑘) − 𝐴𝑘𝑓(𝑥𝑘) 6

6 𝜓𝑘(𝑧𝑘) +
1

2
‖𝑧𝑘 − 𝑥*‖22 − 𝐴𝑘𝑓(𝑥𝑘) 6

𝑘∑︁
𝑗=0

𝛼𝑗(𝑓(𝑥̃𝑗) + ⟨∇𝑓(𝑥̃𝑘), 𝑥
* − 𝑥̃𝑘⟩+

+
𝜇

2
‖𝑥* − 𝑥𝑘‖22) +

1

2
‖𝑥* − 𝑥̃0‖22 6 𝐴𝑘𝑓(𝑥𝑘) − 𝐴𝑘𝑓(𝑥𝑘) +

1

2
‖𝑥0 − 𝑥*‖22 =

1

2
𝑅2.

We now prove bound for the sequence 𝑥𝑘, similarly for 𝑥̃𝑘. We prove by induction, so assume fairness
for 𝑘 − 1, base is obvious.

‖𝑥𝑘 − 𝑥*‖22 = ‖𝐴𝑘−1

𝐴𝑘
(𝑥𝑘−1 − 𝑥*) +

𝛼𝑘
𝐴𝑘

(𝑧𝑘 − 𝑥*)‖22 6

6
𝐴𝑘−1

𝐴𝑘
‖𝑥𝑘−1 − 𝑥*‖22 +

𝛼𝑘
𝐴𝑘

‖𝑧𝑘 − 𝑥*‖22 = 𝑅2.

Theorem 6.4 (convergence in function). Both inequalities take place with 𝜇 ̸= 0

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6 𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

𝐿
𝑁

)︂
+

(︃
1 +

√︃
𝐿

𝜇1

)︃
𝛿2 + 3𝑅̃𝛿1,

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6 𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

2𝐿
𝑁

)︂
+

(︃
1 +

√︃
𝐿

𝜇2

)︃
𝛿2 +

(︃
1 +

√︃
𝐿

𝜇2

)︃
𝛿3.

Proof. Using, all of the above is easy to show what is required, the proof of both convergence is
the same with the replacement of theorem 6.1 by theorem 6.2 and replacement claim 2 by claim 3,
therefore, we present only the proof of the first inequality.

𝐴𝑁𝑓(𝑥𝑁) 6 𝜓𝑁(𝑧𝑁) + 𝛿2

𝑁∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑁 6
1

2
‖𝑥* − 𝑥̃0‖22+

+ 𝛿2

𝑁∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑁 +
𝑁∑︁
𝑗=0

𝛼𝑘(𝑓(𝑥̃𝑗) + ⟨∇̃𝑓(𝑥̃𝑗), 𝑥
* − 𝑥̃𝑗⟩ +

𝜇1

2
‖𝑥* − 𝑥𝑖‖22) 6

6 𝛿2

𝑁∑︁
𝑗=0

𝐴𝑗 + 2𝑅̃𝛿1𝐴𝑁 +
𝑁∑︁
𝑗=0

𝛼𝑘(𝑅̃𝛿1 + 𝑓(𝑥*)) +
1

2
𝑅2 =

= 𝛿2

𝑁∑︁
𝑗=0

𝐴𝑗 + 3𝑅̃𝛿1𝐴𝑁 + 𝐴𝑁𝑓(𝑥*) +
1

2
𝑅2 ⇐⇒

⇐⇒ 𝑓(𝑥𝑁) − 𝑓(𝑥*) 6 𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

𝐿
𝑁

)︂
+

(︃
1 +

√︃
𝐿

𝜇1

)︃
𝛿2 + 3𝑅̃𝛿1.

Remark 3.
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If 𝜇 = 0 we can get analogue of the first convergence, repeating the proof using claims 6, 7

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6
4𝐿𝑅2

𝑁2
+ 3𝑅̃𝛿1 +𝑁𝛿2.

Remark 4.

Suppose 𝜇 = 0, then consider the auxiliary problem:

𝑓𝜇(𝑥) = 𝑓(𝑥) +
𝜇

2
‖𝑥− 𝑥̃0‖22 → min

𝑥∈𝑄
,

∇𝑓𝜇(𝑥) = ∇𝑓(𝑥) + 𝜇(𝑥− 𝑥̃0),

∇̃𝑓𝜇(𝑥) = ∇̃𝑓(𝑥) + 𝜇(𝑥− 𝑥̃0),

‖∇̃𝑓𝜇(𝑥) −∇𝑓𝜇(𝑥)‖2 = ‖∇̃𝑓(𝑥) −∇𝑓(𝑥)‖2 6 𝛿.

The resulting function will satisfy the condition that the gradient is Lipschitz, that is ∀𝑥, 𝑦 ∈ 𝑄:

‖∇𝑓𝜇(𝑥) −∇𝑓𝜇(𝑦)‖22 = ‖(∇𝑓(𝑥) −∇𝑓(𝑦)) + 𝜇(𝑥− 𝑦)‖2 6
6 ‖(∇𝑓(𝑥) −∇𝑓(𝑦)‖2 + 𝜇‖𝑥− 𝑦‖2 6

6 𝐿𝑓‖𝑥− 𝑦‖2 + 𝜇‖𝑥− 𝑦‖2 6 (𝐿𝑓 + 𝜇)‖𝑥− 𝑦‖2.

We will assume, that 𝜇 < 1. That is, we can let 𝐿𝜇 = 2(𝐿𝑓 + 1) = 𝐿 + 2 > 𝐿𝑓𝜇 . The resulting
function will already be strongly convex, which means that the second model is applicable to it 𝜏 = 2.
Using theorem 6.4 we can get the following inequality:

𝑥*𝜇 = argmin
𝑥∈𝑄

𝑓𝜇(𝑥),

𝑅𝜇 = ‖𝑥*𝜇 − 𝑥̃0‖2,

𝑓𝜇(𝑥𝑘) − 𝑓𝜇(𝑥*𝜇) 6
𝐿𝜇𝑅2

𝜇

2𝜆𝑘𝜇
2
,2𝐿𝜇

+

(︃
1 +

√︃
2𝐿+ 4

𝜇

)︃
(𝛿2 + 𝛿3) ⇒

𝑓𝜇(𝑥𝑘) − 𝑓𝜇(𝑥*𝜇) 6 𝐿𝑅2
𝜇 exp

(︂
−1

2

√︂
𝜇

2(𝐿+ 2)
𝑘

)︂
+

(︃
1 +

√︃
2𝐿+ 4

𝜇

)︃(︂
1

𝐿
+

1

𝜇

)︂
𝛿2,

𝑓𝜇(𝑥*𝜇) 6 𝑓(𝑥*) +
𝜇

2
𝑅2.

Then we can get convergence rate for not regularized function:

𝑓(𝑥𝑘) − 𝑓(𝑥*) 6 𝑓𝜇(𝑥𝑘) − 𝑓(𝑥*) 6 𝑓𝜇(𝑥𝑘) − 𝑓(𝑥*𝜇) +
𝜇

2
𝑅2 6

6 𝐿𝑅2
𝜇 exp

(︂
−1

2

√︂
𝜇

2(𝐿+ 2)
𝑘

)︂
+

+

(︃
1 +

√︃
2𝐿+ 4

𝜇

)︃(︂
1

𝐿
+

1

𝜇

)︂
𝛿2 +

𝜇

2
𝑅2.

Using strong convexity of the function 𝑓𝜇 we get:

𝑓(𝑥*) +
𝜇

2
𝑅2
𝜇 6 𝑓(𝑥*𝜇) +

𝜇

2
𝑅2
𝜇 = 𝑓𝜇(𝑥*𝜇) 6 𝑓𝜇(𝑥*) = 𝑓(𝑥*) +

𝜇

2
𝑅2 ⇒

𝑅𝜇 6 𝑅.
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Finally we get convergence:

𝑓(𝑥𝑘) − 𝑓(𝑥*) 6 𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

2(𝐿+ 2)
𝑘

)︂
+

+

(︃
1 +

√︃
2𝐿+ 4

𝜇

)︃(︂
1

𝐿
+

1

𝜇

)︂
𝛿2 +

𝜇

2
𝑅2.

We choose value for parameter 𝜇 in the remark 9.

Remark 5.

If we consider the problem in the first model 𝜏 = 1, the case 𝜇 = 0 and assume that ‖𝑥*‖2 6 𝑅*. Then
we choose a starting point for the 𝑆𝑇𝑀 algorithm in a ball of radius 𝑅*, specifically put 𝑥𝑠𝑡𝑎𝑟𝑡 = 0.

𝑅 = ‖𝑥* − 𝑥̃0‖2 6 𝑅*.

Let us formulate a stopping rule for the this model (∀𝜁 > 0).

𝑓(𝑥𝑘) − 𝑓(𝑥*) 6 𝑘𝛿2 +𝑅*𝛿1 + 𝛿1

𝑘∑︁
𝑗=1

𝛼𝑗
𝐴𝑘

‖𝑥̃𝑗 − 𝑧𝑗−1‖2 + 𝜁.

Lemma 6.5 (Bound for 𝑅̃). Before the stopping criterion is satisfied, the following inequality holds:

𝑅̃ 6 𝑅.

Proof. Note, that from ‖𝑧𝑘 − 𝑥*‖2 6 𝑅 we get ‖𝑥𝑘 − 𝑥*‖2 6 𝑅, ‖𝑥̃𝑘 − 𝑥*‖2 6 𝑅 similarly to
theorem 6.3. But it’s worth noting that to estimate ‖𝑥̃𝑘 − 𝑥*‖2, only inequalities are required for all
𝑗 6 𝑘 − 1.

‖𝑥̃𝑘 − 𝑥*‖2 = ‖𝐴𝑘−1

𝐴𝑘
(𝑥𝑘−1 − 𝑥*) +

𝛼𝑘
𝐴𝑘

(𝑧𝑘−1 − 𝑥*)‖2 6

6
𝐴𝑘−1

𝐴𝑘
‖𝑥𝑘−1 − 𝑥*‖2 +

𝛼𝑘
𝐴𝑘

‖𝑧𝑘−1 − 𝑥*‖2 6 𝑅.

An analysis of the proof of theorem 6.2 gives a stronger convergence:

𝐴𝑘𝑓(𝑥𝑘) 6 𝜓𝑘(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗 + 𝛿1

𝑘∑︁
𝑗=1

𝛼𝑗‖𝑥̃𝑗 − 𝑧𝑗−1‖22.
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Then, using the convexity of the function 𝜓𝑘 we get:

𝐴𝑘𝑓(𝑥𝑘) +
1

2
‖𝑧𝑘 − 𝑥*‖22 6

1

2
‖𝑧𝑘 − 𝑥*‖2 + 𝜓𝑘(𝑧𝑘) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗+

+ 𝛿1

𝑘∑︁
𝑗=1

𝛼𝑗‖𝑥̃𝑗 − 𝑧𝑗−1‖2 6 𝜓𝑘(𝑥
*) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗+

+ 𝛿1

𝑘∑︁
𝑗=1

𝛼𝑗‖𝑥̃𝑗 − 𝑧𝑗−1‖2 6
1

2
𝑅2 + 𝐴𝑘𝑓(𝑥*) + 𝛿2

𝑘∑︁
𝑗=0

𝐴𝑗+

+ 𝛿1

𝑘∑︁
𝑗=1

𝛼𝑗‖𝑥̃𝑗 − 𝑧𝑗−1‖2 + 𝛿1

𝑘∑︁
𝑗=0

𝛼𝑗‖𝑧𝑘 − 𝑥*‖2 ⇒
1

2
(𝑅2 − ‖𝑧𝑘 − 𝑥*‖2) >

> 𝐴𝑘

(︃
(𝑓(𝑥𝑘) − 𝑓(𝑥*)) −

(︃
𝑘𝛿2 + 𝛿1

𝑘∑︁
𝑗=1

𝛼𝑗
𝐴𝑘

‖𝑥̃𝑗 − 𝑧𝑗−1‖2 +𝑅*𝛿1 + 𝜁

)︃)︃
> 0.

Therefore, when the stopping criterion is met, we will receive the estimate:

𝑓(𝑥𝑘) − 𝑓(𝑥*) 6 𝑘𝛿2 + 𝛿1𝑅* + 𝛿1

𝑘∑︁
𝑗=0

𝛼𝑗‖𝑥̃𝑗 − 𝑧𝑗−1‖2 + 𝜁.

From remark 3 we get an estimate of the number of iterations:

𝑁𝑠𝑡𝑜𝑝 > 2

√︃
𝐿𝑅2

𝜁
.

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6
4𝐿𝑅2

𝑁2
+𝑁𝛿2 +𝑅*𝛿1 + 𝛿1

𝑁∑︁
𝑗=1

𝛼𝑗
𝐴𝑁

‖𝑥̃𝑗 − 𝑧𝑗−1‖2 6

6 𝑁𝛿2 +𝑅*𝛿1 + 𝛿1

𝑁∑︁
𝑗=1

‖𝑥̃𝑗 − 𝑧𝑗−1‖2 + 𝜁 ⇒ 4𝐿𝑅2

𝑁2
6 𝜁 ⇔ 𝑁2 >

4𝐿𝑅2

𝜁
.

Summing up, we obtain the following theorem:

Theorem 6.6. For model 𝜏 = 1 with 𝜇 = 0, using stopping rule:

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6 𝑁𝛿2 +𝑅*𝛿1 + 𝛿1

𝑁∑︁
𝑗=1

𝛼𝑗
𝐴𝑁

‖𝑥̃𝑗 − 𝑧𝑗−1‖2 + 𝜁.

We can guarantee, that:
𝑅̃ 6 𝑅.

And the criterion is reached after:

𝑁𝑠𝑡𝑜𝑝 =

[︃
2

√︃
𝐿𝑅2

𝜁

]︃
+ 1.
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6.2 Relative noise.

Recall that we denote:
𝐿 = 2𝐿𝑓 .

Where 𝐿𝑓 – Lipschitz constant of ∇𝑓 . From theorem 6.2 and similar to theorem 6.4 reasoning we get:

𝑓(𝑥𝑘) − 𝑓(𝑥*) 6
𝑅2

𝐴𝑘
+

3

2

𝑘−1∑︁
𝑗=0

𝐴𝑗𝛼
2‖∇𝑓(𝑥𝑘)‖22
𝐴𝑘𝜇

+
3𝛼2‖∇𝑓(𝑥𝑘)‖22

2𝜇
,

∆𝑘 = 𝑓(𝑥𝑘) − 𝑓(𝑥*),

∆𝑘 6
𝑅2

𝐴𝑘
+

3

2

𝑘−1∑︁
𝑗=0

𝐴𝑗𝛼
2‖∇𝑓(𝑥𝑗)‖22
𝐴𝑘𝜇

+
3𝛼2

2𝜇
‖∇𝑓(𝑥𝑘)‖22.

We define:

𝜃 =
3𝐿𝛼2

2𝜇(1 − 3𝐿𝛼2

2𝜇
)
,

𝜆 =
𝑅2

1 − 3𝐿𝛼2

2𝜇

.

From inequality:
‖∇𝑓(𝑥𝑘)‖22 6 𝐿 (𝑓(𝑥𝑘) − 𝑓(𝑥*)) .

We obtain:

∆𝑘 6
𝜆

𝐴𝑘
+ 𝜃

𝑘−1∑︁
𝑗=0

𝐴𝑗
𝐴𝑘

∆𝑗.

In these designations by induction we can obtain:

Claim 8.

∆𝑘 6
(1 + 𝜃)𝑘−1

𝐴𝑘
𝜆+ 𝜃

𝐴0 (1 + 𝜃)𝑘−1

𝐴𝑘
∆0.

Proof. Base, 𝑘 = 1 is obvious. Induction step:

∆𝑘 6
𝜆

𝐴𝑘
+ 𝜃

𝑘−1∑︁
𝑗=0

𝐴𝑗
𝐴𝑘

∆𝑗 6

6
𝜆

𝐴𝑘
+

𝑘−1∑︁
𝑗=0

(︂
𝐴𝑗
𝐴𝑘

(1 + 𝜃)𝑗−1

𝐴𝑘
𝜆+ 𝜃

𝐴0(1 + 𝜃)𝑗−1

𝐴𝑘
∆0

)︂
+
𝐴0

𝐴𝑘
∆0 6

6
𝜆

𝐴𝑘
+

𝑘−2∑︁
𝑗=0

(︂
𝜆(1 + 𝜃)𝑗

𝐴𝑘
+ 𝜃

𝐴0(1 + 𝜃)𝑗

𝐴𝑘
∆0

)︂
+
𝐴0

𝐴𝑘
∆0 =

=
(1 + 𝜃)𝑘−1

𝐴𝑘
𝜆+ 𝜃

𝐴0 (1 + 𝜃)𝑘−1

𝐴𝑘
∆0.
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That is we can formulate the following inequality:

𝑓(𝑥𝑘) − 𝑓(𝑥*) 6
𝜆(1 + 𝜃)𝑘

𝐴𝑘
+ 𝜃

𝐴0(1 + 𝜃)𝑘

𝐴𝑘
(𝑓(𝑥0) − 𝑓(𝑥*)) .

Using corollary 5.1 we can estimate:

𝐴𝑘 >

(︂
1 +

√︂
𝜇

2𝐿

)︂𝑘
𝐴0. (26)

We will choose an alpha such that:

1 + 𝜃

𝐴𝑘
6

1

1 + 1
3
√
2

√︀
𝜇
𝐿

.

Using (26) and definition of 𝜃 we obtain, that we should choose 𝛼 from:

𝛼 6

⎯⎸⎸⎷ 1

1
2
√
2

(︁
𝐿
𝜇

)︁ 3
2

+ 2𝐿
𝜇

𝛼 = 𝑂

(︂(︁𝜇
𝐿

)︁ 3
4

)︂ (27)

From simple inequality:

1 +
1

3
√

2

√︂
𝜇

𝐿
> exp

(︂
1

6
√

2

√︂
𝜇

𝐿

)︂
.

We get the following theorem:

Theorem 6.7. If in the model described in (3) in the strongly convex case we can chose 𝛼 according
to (27) we obtain:

𝑓(𝑥𝑘) − 𝑓(𝑥*) 6

(︂
𝐿𝑅2

1 − 𝛼2
+

3𝐿𝛼2

2𝜇(1 − 𝛼2)
(𝑓(𝑥0) − 𝑓(𝑥*))

)︂
exp

(︂
− 1

6
√

2

√︂
𝜇

𝐿

)︂
.

Corollary 6.8. Under the conditions of the theorem, we obtain convergence in the argument:

‖𝑥𝑘 − 𝑥*‖22 6 𝑅2

(︂
2𝐿

𝜇(1 − 𝛼2)
+

3𝐿2𝛼2

4𝜇2(1 − 𝛼2)

)︂
exp

(︂
− 1

6
√

2

√︂
𝜇

𝐿

)︂
.

Proof. This is a direct consequence of the inequalities:

𝑓(𝑥𝑘) − 𝑓(𝑥*) 6
𝐿

4
‖𝑥𝑘 − 𝑥*‖22

𝑓(𝑥𝑘) − 𝑓(𝑥*),>
𝜇

2
‖𝑥𝑘 − 𝑥*‖22.
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7 Conclusions and observations

Remark 6.

Using Theorem 6.3 and assume, that 𝑄 – compact set we can we can denote 𝑅 as diam(𝑄) instead
of ‖𝑥0 − 𝑥*‖2, then we can also bound 𝑅̃ 6 𝑅 and this will simplify bounds in theorem 6.4.

Remark 7.

With the same assumption 𝜇 ̸= 0 we obtain a comparison of the two convergences in the Theorem 6.4.
Recall that:

𝛿1 = 𝛿, 𝛿2 =
𝛿2

𝐿
, 𝛿3 =

𝛿2

𝜇
.

So if

𝛿 <
3𝑅̃

1+
√︁

𝐿
𝜇

𝜇
+

√︁
𝐿
𝜇
(
√
2−1)

𝐿

.

Then the accumulation of noise in the model corresponding to 𝜏 = 2, that described in (3) is less than
in model 𝜏 = 1, described in (2).

Remark 8.

If we use model 𝜏 = 2, described in theorem 6.4 one can set the desired accuracy of the solution.

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6 𝜀.

Then we get from theorem 6.4 that:

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6 𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

2𝐿
𝑁

)︂
+

(︃
1 +

√︃
𝐿

𝜇2

)︃
𝛿2 +

(︃
1 +

√︃
𝐿

𝜇2

)︃
𝛿3,

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6 𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

2𝐿
𝑁

)︂
+

(︃
𝐿+ 𝜇√︀
𝜇3𝐿

(
√

2 + 1)

)︃
𝛿2.

That is we can get estimates for 𝛿 value and number of steps 𝑁 :(︃
𝐿+ 𝜇√︀
𝜇3𝐿

(
√

2 + 1)

)︃
𝛿2 6

𝜀

2
,

𝛿 6
√
𝜀

√︃√
2 + 1

2

√︃
𝐿+ 𝜇√︀
𝜇3𝐿

,

𝛿 = 𝑂

(︃
√
𝜀

(𝐿+ 𝜇)
1
2

(𝜇3𝐿)
1
4

)︃
;

𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

2𝐿
𝑁

)︂
6
𝜀

2
,

𝑁 > 2

√︃
2𝐿

𝜇

(︀
ln 2𝐿𝑅2 + ln 𝜀−1

)︀
,

𝑁 = 𝑂

(︃√︃
𝐿

𝜇
ln
𝐿𝑅2

𝜀

)︃
.
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Remark 9.

Using remark 4 and previous remark 8, we can found similar bounds. Remind that:

𝑓(𝑥𝑁) − 𝑓(𝑥*) 6 𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

2(𝐿+ 2)
𝑁

)︂
+

+

(︃
1 +

√︃
2𝐿+ 4

𝜇

)︃(︂
1

𝐿
+

1

𝜇

)︂
𝛿2 +

𝜇

2
𝑅2.

However we should value of the parameter 𝜇. We will let:

𝜇 =
2

3

𝜀

𝑅2
.

Using inequality:

𝛿2

(︃
1 +

√︃
2𝐿+ 4

𝜇

)︃(︂
𝜇+ 𝐿

𝜇𝐿

)︂
6
𝜀

3
.

And the selected value of the parameter mu we get required value of error 𝛿:

𝛿 6

(︂
2

243

)︂ 1
4 1√︀

1 +
√

2𝐿+ 4
𝑅− 3

2 𝜀
5
4 ,

𝛿 = 𝑂
(︁
𝐿− 1

4𝑅− 3
2 𝜀

5
4

)︁
.

Similarly, get an estimate of the number of steps:

𝐿𝑅2 exp

(︂
−1

2

√︂
𝜇

2(𝐿+ 2)
𝑁

)︂
6
𝜀

3
,

𝑁 >
√

12𝐿+ 24𝑅 ln 2𝐿𝑅2 + 2
√

2𝐿+ 4
1√
𝜀

ln
1

𝜀
,

𝑁 = 𝑂

(︃√︂
𝐿

𝜀
ln
𝐿𝑅2

𝜀

)︃
.

Remark 10.

Using remark 5 and theorem 6.6 we can apply it to problem:

𝐴𝑥 = 𝑏,

𝐴 ∈ GL𝑛(R).

Solving such a problem is equivalent to solving the convex optimization problem:

𝑓(𝑥) =
1

2
‖𝐴𝑥− 𝑏‖22 → min,

∇𝑓(𝑥) = 𝐴𝑇 (𝐴𝑥− 𝑏) .

We will assume similarly the estimate of the norm 𝑥*:

‖𝑥*‖2 6 𝑅*.
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Let the original problem be solved with an 𝜀1 accuracy in the sense:

‖𝐴𝑥− 𝑏‖2 6 𝜀1,

𝑓(𝑥) − 𝑓(𝑥*) =
1

2
‖𝐴𝑥− 𝑏‖22 6 𝜀,

𝜀 =
1

2
𝜀21.

When the algorithm stops, we get the convergence:

𝑓(𝑥𝑁𝑠𝑡𝑜𝑝) − 𝑓(𝑥*) 6 𝑁𝛿2 + 3𝛿1𝑅*,

𝑁𝑠𝑡𝑜𝑝 =

[︃
2

√︃
𝐿𝑅2

𝜁

]︃
+ 1.

Then we choose 𝛿, 𝜁 from the following conditions:⎧⎪⎪⎨⎪⎪⎩
𝜁 6 𝜀

3
,

𝛿 6
(︁

𝐿
1
4

6
√
3𝑅

)︁
𝜀

3
4 ,

𝛿 6 𝜀 1
9𝑅*

.

For example, we can let:

𝛿 = C𝑅,𝑅*,𝐿𝜀,

C𝑅,𝑅*,𝐿 = min

{︃
𝐿

1
4

6
√

3𝑅
,

1

9𝑅*

}︃
.

Then the number of steps required is expressed as:

𝑁𝜀 =

[︃
2

√︂
3𝐿𝑅2

𝜀

]︃
+ 1.

Accordingly, the estimate required for solving the problem of linear equations:

𝑁𝜀1 =

[︃
2

√
3𝐿𝑅2

𝜀1

]︃
+ 1.

Remark 11.

The work considered a model of additive noise in equation (20), similar to [41], that is we can consider
that:

∇̃𝑓(𝑥) = ∇𝑓(𝑥) + 𝑟𝑥,

‖𝑟𝑥‖2 6 𝛿.

Similarly to this work, a stopping criterion was proposed for the 𝑆𝑇𝑀 algorithm, as was proposed for
gradient descent.

𝑥𝑘+1 = 𝑥𝑘 −
1

𝐿
∇𝑓(𝑥𝑘).
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Note that in the same noise model, the convergence estimate in both considered cases will be:

𝑗𝑁 = argmin
16𝑘6𝑁

𝑓 (𝑥𝑘) ,

𝑦𝑁 = 𝑥𝑗𝑁 ,

𝑓(𝑦𝑁) − 𝑓(𝑥*) = 𝑂

(︂
𝐿𝑅2

𝑁
+
𝛿2

𝐿
+ 𝑅̃𝛿

)︂
,

𝑓(𝑦𝑁) − 𝑓(𝑥*) = 𝑂

(︂
𝐿𝑅2 exp

(︁
−𝜇
𝐿
𝑁
)︁

+
𝛿2

𝐿
+ 𝑅̃𝛿

)︂
.

𝑓(𝑦𝑁) − 𝑓(𝑥*) = 𝑂

(︂
𝐿𝑅2 exp

(︁
− 𝜇

2𝐿

)︁
+
𝛿2

𝐿
+
𝛿2

𝜇

)︂
,

𝑅̃ = max
𝑘6𝑁

‖𝑥𝑘 − 𝑥*‖2.

Despite the fact that in the work [17], a slightly different model was considered, namely (𝛿, 𝐿) and
(𝛿, 𝐿, 𝜇) oracle (equation 3.1 Definition 1 in [17]) similar orders of convergence were obtained, that
is theorem 6.4 and relevant remark 3. Namely, function satisfies the (𝛿, 𝐿, 𝜇) model at point 𝑥 ∈ 𝑄
means, that exists functions 𝑓𝛿(𝑥) and 𝜓𝛿(𝑥, 𝑦), such that:

∀𝑦 ∈ 𝑄

𝜇

2
‖𝑥− 𝑦‖22 6 𝑓(𝑥) − 𝑓𝛿(𝑦) − 𝜓𝛿(𝑥, 𝑦) 6

𝐿

2
‖𝑥− 𝑦‖22 + 𝛿.

Similarly to papers [47], [17], the results also hold in the case of an unbounded set 𝑄(result in [47] is on
the page 26, obtained for fast adaptive gradient method page 13). Stopping criteria are also formulated,
which give an estimate on 𝑅̃ for a non-compact 𝑄, remind that:

𝑅̃ = max
06𝑘6𝑁

{‖𝑥𝑘 − 𝑥*‖2, ‖𝑥̃𝑘 − 𝑥*‖2, ‖𝑧𝑘 − 𝑥*‖2}.

We also note that a similar models of (𝛿,∆, 𝐿) and (𝛿,∆, 𝐿, 𝜇) oracle was considered in the work
[48]. Moreover, the function satisfies (𝛿,∆, 𝐿, 𝜇)–model

𝑓(𝑦) 6 𝑓𝛿 + 𝜓(𝑦, 𝑥) + ∆‖𝑥− 𝑦‖ + 𝛿 + 𝐿𝑉 (𝑦, 𝑥),

𝑓𝛿 + 𝜓(𝑥*, 𝑥) + 𝜇𝑉 (𝑦, 𝑥) 6 𝑓(𝑥*),

𝑓(𝑥) − 𝛿 6 𝑓𝛿(𝑥) 6 𝑓(𝑥),

𝜓(𝑥, 𝑥) = 0.

Here 𝑉 (𝑥, 𝑦) – Bregman divergence. At the same time, an adaptive analogue of STM was considered.
As well as similar estimations for a 𝛿 and number of steps 𝑁 , following [17] (page 24, remarks 11 –
14 ), namely there are remarks 8, 9, 10. Also considered an example of using regularization to obtain
convergence in the model 𝜏 = 1, for the case 𝜇 = 0.
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8 Numerical experiments

For testing 𝑆𝑇𝑀 for degenerate problems, the function described in [37] on page 69, that is:

𝑓(𝑥) =
𝐿

8

(︃
𝑥21 +

𝑘−1∑︁
𝑗=0

(𝑥𝑗 − 𝑥𝑗+1)
2 + 𝑥2𝑘

)︃
− 𝐿

4
𝑥1,

𝑥* =

(︂
1 − 1

𝑘 + 1
, . . . , 1 − 𝑘

𝑘 + 1
, 0, . . . , 0

)︂𝑇
,

1 6 𝑘 6 dim𝑥.

These two plots reflect the convergence of the method at the first 50 000 and 10 000 iterations,
respectively, at different 𝛿.

Figure 2: First test – first 50 000 steps.
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Figure 3: First test – first 10 000 steps.

Let’s also consider a drawing with two types of noise.

Figure 4: Second test – relative and additive types of noises comparison.
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To compare the convergence of a degenerate problem with different 𝛼 parameters in the case of relative
noise, consider the following graph.

Figure 5: Third test – relative noise with different values of 𝛼 for 𝜇 = 0.

The last figure shows that for 𝛼 6 0.71 the convergence of the method does not deteriorate, but we
can assume the existence of such a threshold value 𝛼* ≈ 0.71, that at large of 𝛼 values the method
diverges.

Also for testing on strongly convex functions, an analogue of the finite-dimensional Nesterov function
was used from [37] on page 78, that is:

𝑓(𝑥) =
𝜇 (𝜒− 1)

8

(︃
𝑥21 +

𝑛−1∑︁
𝑗=1

(𝑥𝑗 − 𝑥𝑗+1)
2 − 2𝑥1

)︃
+
𝜇

2
‖𝑥‖22,

𝜒 =
𝐿

𝜇
,

∇𝑓(𝑥) =

(︂
𝜇 (𝜒− 1)

4
𝐴+ 𝜇𝐸

)︂
𝑥− 𝜇 (𝜒− 1)

4
𝑒1,

𝑒1 = (1, 0, . . . , 0 )𝑇 ,

where 𝐸 – identity operator, A is the matrix defined as:

2 −1 0 . . . . . . 0

−1 2 −1 0 . . . 0
...

...
...

. . . . . .
...

0 . . . 0 −1 2 −1

0 . . . . . . 0 −1 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Then minimum 𝑓 , 𝑥*, can be found from systems of linear equations.

Let us consider the graphs of the residuals for different parameters of the delta additive noise.

Figure 6: Fourth test – 𝛿 ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

Figure 7: Fifth test – mean of 30 tests, level of approximation and required number of steps.

The last plot confirms theorem 6.4 and remark 8. Similarly to the degenerate case, consider the behavior
of the method for different parameters 𝛼.
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Figure 8: Sixth test – relative noise with different values of 𝛼 for 𝜇 > 0.

Note that in the strongly convex case, we obtain a property similar to the degenerate case: for 𝛼 values
less than a certain threshold value 𝛼*, from the figure we can assume a value of 0.71, the convergence
of the method does not deteriorate, and for large 𝛼 values, the method diverges.

Figure 9: Seventh test – relative noise with different values of 𝛼 for other 𝐿 and 𝜇.
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Figure 9 shows, that The figure shows that changing the parameters 𝐿 and 𝜇, the value of the
assumed threshold 𝛼* does not change much. We also note that such threshold values turned out to
be approximately equal for the degenerate and strongly convex problem.
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