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From optimal martingales to randomized dual optimal stopping
Denis Belomestny, John G. M. Schoenmakers

Abstract

In this article we study and classify optimal martingales in the dual formulation of optimal
stopping problems. In this respect we distinguish between weakly optimal and surely optimal
martingales. It is shown that the family of weakly optimal and surely optimal martingales may
be quite large. On the other hand it is shown that the Doob-martingale, that is, the martingale
part of the Snell envelope, is in a certain sense the most robust surely optimal martingale under
random perturbations. This new insight leads to a novel randomized dual martingale minimization
algorithm that doesn’t require nested simulation. As a main feature, in a possibly large family of
optimal martingales the algorithm efficiently selects a martingale that is as close as possible to the
Doob martingale. As a result, one obtains the dual upper bound for the optimal stopping problem
with low variance.

1 Introduction

The last decades have seen a huge development of numerical methods for solving optimal stopping
problems. Such problems became very prominent in the financial industry in the form of American
derivatives. For such derivatives one needs to evaluate the right of exercising (stopping) a certain cash-
flow (reward) process Z at some (stopping) time τ , up to some time horizon T . From a mathematical
point of view this evaluation comes down to solving an optimal stopping problem

Y ? = sup
stopping time τ≤T

E[ Zτ
reward at stopping

].

Typically the cash-flow Z depends on various underlying assets and/or interest rates and as such is
part of a high dimensional Markovian framework. Particularly for high dimensional stopping problems,
virtually all generic numerical solutions are Monte Carlo based. Most of the first numerical solution
approaches were of primal nature in the sense that the goal was to construct a “good” exercise policy
and to simulate a lower biased estimate of Y ?. In this respect we mention, for example, the well-known
regression methods by Longstaff & Schwartz [11], Tsiklis & Van Roy [14], and the stochastic mesh
approach by Broadie & Glasserman [5], and the stochastic policy improvement method by Kolodko &
Schoenmakers [10]. For further references we refer to the literature, for example [8] and the references
therein.

In this paper we focus on the dual approach developed by Rogers [12], and Haugh & Kogan [9], initi-
ated earlier by Davis & Karatzas [6]. In the dual method the stopping problem is solved by minimizing
over a set of martingales, rather than a set of stopping times,

Y ? = inf
M : martingale, M0=0

E

[
max
0≤s≤T

(Zs −Ms)

]
. (1.1)

A canonical minimizer of this dual problem is the martingale part, M? of the Doob(-Meyer) decompo-
sition of the Snell envelope

Y ?
t = sup

t≤stopping time τ≤T
EFt [Zτ ] ,
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which moreover has the nice property that

Y ?
0 = max

0≤s≤T
(Zs −M?

s ) almost surely. (1.2)

That is, if one would succeed in finding M?, the value of Y ? can be obtained from one trajectory of
Z −M? only.

Shortly after the development of the duality method in [12] and [9], various numerical approaches for
computing dual upper bounds for American options based on it appeared. May be one of the most
popular methods is the nested simulation approach by Andersen & Broadie [1], who essentially con-
struct an approximation to the Doob martingale of the Snell envelope via stopping times obtained by
the Longstaff & Schwartz method [11]. A few years later, a linear Monte Carlo method for dual up-
per bounds was proposed in [3]. In fact, as a common feature, both [1] and [3] aimed at constructing
(an approximation of) the Doob martingale of the Snell envelope via some approximative knowledge
of continuation functions obtained by the method of Longstaff & Schwartz or in another way. Instead
of relying on such information, the common goal in later studies [7], [13], [2], [4], was to minimize the
expectation functional in the dual representation (1.1) over a linear space of generic “elementary” mar-
tingales. Indeed, by parameterizing the martingale family in a linear way and replacing the expectation
in (1.1) by the sample mean over a large set of trajectories, the resulting minimization comes down
to solving a linear program. However, it was pointed out in [13] that in general there may exist martin-
gales that are “weakly” optimal in the sense that they minimize (1.1), but fail to have the “almost sure
property” (1.2). As a consequence, the estimator for the dual upper bound due to such martingales
may have high variance. Moreover, an example in [13] illustrates that a straightforward minimization of
the sample mean corresponding to (1.1) may end up with a martingale that is asymptotically optimal
in the sense of (1.1) but not surely optimal in the sense of (1.2), when the sample size tends to infinity.
As a remedy to this problem, in [2] variance penalization is proposed, whereas in [4] the sample mean
is replaced by the maximum over all trajectories.

In this paper we first extend the study of surely optimal martingales in [13] to the larger class of
weakly optimal martingales. As a principal contribution, we give a complete characterization of weakly
and surely optimal martingales and moreover consider the notion of randomized dual martingales. In
particular, it is shown that in general there may be a fullness of martingales that are optimal but not
surely optimal. In fact, straightforward minimization procedures based on the sample mean in (1.1) may
typically return martingales of this kind, even if the Doob martingale of the Snell envelope is contained
in the martingale family (as illustrated already in [13], though at a somewhat pathological example with
partially deterministic cash-flows). As another main contribution we will show that the Doob martingale
plays a distinguished role within the family of all optimal martingales. Namely, it will be shown that by
randomizing the arguments in the path-wise maximum for each trajectory in a particular way, any non-
Doob optimal martingale can be turned to a suboptimal one. More specifically, we will prove that there
exists a particular “optimal randomization” such that the Doob martingale, perturbed or randomized
with it, remains guaranteed (surely) optimal, while any other surely or weakly optimal martingale turns
to a suboptimal one. Of course, as a rule this “optimal randomization” is not directly known or available
in practical applications. But, it turns out that by just incorporating some simple randomization due
to uniform random variables, sample mean minimization may return a martingale that is closer to the
Doob-martingale than one obtained without randomization. We thus end up with a martingale with
low variance, which in turn guarantees that the corresponding upper bound based on (1.1) is tight
(see [2] and[13]). Compared to [4] and [2], the benefit of this new randomized dual approach is its
computational efficiency: From the experiments we conclude that it may be sufficient to add on for
each trajectory simple i.i.d. uniform random variables to (some of) the arguments of the maximum. An
extensive numerical analysis of the here presented randomized dual martingale approach will certainly
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Optimal martingales and randomized optimal stopping 3

be an interesting subsequent study but is considered beyond the scope of this article.

The structure of the paper is as follows. Section 2 carries out a systematic theoretical analysis of
optimal martingales. In Section 3 we deal with randomized optimal martingales and the effect of ran-
domizing the Doob-martingale. More technical proofs are given in Section 4 and some first numerical
examples are presented in Section 5.

2 Characterization of optimal martingales

Since practically any numerical approach to optimal stopping is based on a discrete exercise grid, we
will work within in a discrete time setup. That is, it is assumed that exercise (or stopping) is restricted
to a discrete set of exercise times t0 = 0, ..., tJ = T, for some time horizon T and some J ∈ N+.
For notational convenience we will further identify the exercise times tj with their index j, and thus
monitor the reward process Zj, at the “times” j = 0, ..., J.

Let (Ω,F ,P) be a filtered probability space with discrete filtration F = (Fj)j≥0. An optimal stopping
problem is a problem of stopping the reward process (Zj)j≥0 in such a way that the expected reward
is maximized. The value of the optimal stopping problem with horizon J at time j ∈ {0, . . . , J} is
given by

Y ?
j = ess supτ∈T [j,...,J ]EFj [Zτ ], (2.1)

provided that Z was not stopped before j. In (2.1), T [j, . . . , J ] is the set of F -stopping times taking
values in {j, . . . , J} and the process

(
Y ?
j

)
j≥0 is called the Snell envelope. It is well known that Y ?

is a supermartingale satisfying the backward dynamic programming equation (Bellman principle):

Y ?
j = max

(
Zj,EFj [Y

?
j+1]
)
, 0 ≤ j < J, Y ?

J = ZJ .

Along with a primal approach based on the representation (2.1), a dual method was proposed in [12]
and [9]. Below we give a short self contained recap while including the notions of weak and sure
optimality.

LetM be the set of martingalesM adapted toF withM0 = 0. By using the Doob’s optimal sampling
theorem one observes that

Y ?
j ≤ EFj

[
max
j≤r≤J

(Zr −Mr +Mj)

]
, j = 0, . . . , J, (2.2)

for any M ∈ M. We will say that a martingale M is weakly optimal, or just optimal, at j, for some
j = 0, ..., J, if

Y ?
j = EFj

[
max
j≤r≤J

(Zr −Mr +Mj)

]
. (2.3)

The set of all martingales (weakly) optimal at j will be denoted by M◦,j. The set of martingales
optimal at j for all j = 0, . . . , J, is denoted byM◦. We say that a martingale M is surely optimal at
j, for some j = 0, ..., J, if

Y ?
j = max

j≤r≤J
(Zr −Mr +Mj) almost surely. (2.4)

The set of all surely optimal martingales at j will be denoted by M◦◦,j. The set of surely optimal
martingales at j for all j = 0, . . . , J, is denoted byM◦◦. Note that, obviously,M◦◦ ⊂M◦ ⊂M.
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Now there always exists at least one surely optimal martingale, the so-called Doob-martingale coming
from the Doob decomposition of the Snell envelope (Y ?

j )j≥0. Indeed, consider the Doob decomposi-
tion of Y ?, that is,

Y ?
j = Y ?

0 +M?
j − A?j , (2.5)

where M? is a martingale with M?
0 = 0, and A? is predictable with A?0 = 0. It follows immediately

that

M?
j =

j∑
l=1

(Y ?
l − EFl−1

[Y ?
l ]), A?j =

j∑
l=1

(Y ?
l−1 − EFl−1

[Y ?
l ]), (2.6)

and so A? is non-decreasing due to the fact that Y ? is a supermartingale. One thus has by (2.5) on
the one hand

max
j≤r≤J

(Zr −M?
r +M?

j ) = Y ?
j + max

j≤r≤J
(Zr − Y ?

r + A?j − A?r) ≤ Y ?
j

and due to (2.2) on the other hand

EFj

[
max
j≤r≤J

(Zr −M?
r +M?

j )

]
≥ Y ?

j .

Thus, it follows that (2.4) holds for arbitrary j, hence M? ∈ M◦◦. Furthermore we have the following
properties of the sets (M◦,j) and (M◦◦,j).

Proposition 2.1. The setsM◦,j andM◦◦,j for j = 0, ..., J,M◦, andM◦◦ are convex.

As an immediate consequence of Proposition 2.1; if there exist more than one weakly (respectively
surely) optimal martingale, then there exist infinitely many weakly (respectively surely) optimal martin-
gales.

Proposition 2.2. It holds that M ∈M◦,j for some 0 ≤ j ≤ J, if and only if for any optimal stopping
time τ ?j ≥ j satisfying

Y ?
j = sup

τ≥j
EFj [Zτ ] = EFj [Zτ?j ],

one has that
max
j≤r≤J

(Zr −Mr) = Zτ?j −Mτ?j
.

Proof. Let τ ?j ≥ j be an optimal stopping time. Suppose that M ∈ M◦,j. On the one hand, one
trivially has

max
j≤r≤J

(Zr −Mr)−
(
Zτ?j −Mτ?j

)
≥ 0

and on the other, since M ∈M◦,j (see (2.3)),

EFj

[
max
j≤r≤J

(Zr −Mr)−
(
Zτ?j −Mτ?j

)]
= Y ?

j −Mj −
(
Y ?
j −Mj

)
= 0, hence

max
j≤r≤J

(Zr −Mr) = Zτ?j −Mτ?j
almost surely. (2.7)

The converse follows from (2.7) by taking conditional Fj-expectations.
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It will be shown below that the class of the optimal martingales M◦ may be considerably large. In
fact, any such martingale can be seen as a perturbation of the Doob martingale (M?

j ). For this, let us
introduce some further notation and define τ 0 := 0− with 0− < 0 by convention and let, for l ≥ 1, τ l

be the first optimal stopping time strictly after τ l−1. That is, if τ l−1 < J, we define recursively

τ l = inf
{
τ l−1 < i ≤ J : Zi ≥ EFi

[
Y ?
i+1

]}
,

where Y ?
J+1 := 0. There so will be a last number, lJ say, with τ lJ = J. Further, the family (τ ?i )i≥0

defined by
τ ?i = τ l for τ l−1 < i ≤ τ l, l ≥ 1, (2.8)

is a consistent optimal stopping family in the sense that Y ?
j = EFj [Zτ?j ] and that τ ?i > i implies τ ?i

= τ ?i+1.

The next lemma provides a corner stone for an explicit structural characterization of (weakly) optimal
martingales.

Lemma 2.3. M ∈M◦ if and only ifM is an adapted martingale withM0 = 0 such that the identities

(i) max
τ l−1<r≤τ l

(Zr −Mr) = Zτ l −Mτ l if l ≥ 1,

(ii) max
τ l−1≤r≤τ l

(Zr −Mr) = Zτ l−1 −Mτ l−1 if l > 1

hold.

The following lemma anticipates sufficient conditions for a martingale M to be optimal, that is, to be a
member ofM◦.

Lemma 2.4. Let (Si)0≤i≤J be an adapted sequence with S0 = 0 and consider the “shifted” Doob
martingale

Mi = M?
i − Si, 0 ≤ i ≤ J.

Let li ≥ 1 be the unique number such that τ li−1 < i ≤ τ li for any 0 ≤ i ≤ J. If S satisfies for all
0 ≤ i ≤ J,

max
τ li−1<r≤i

(Zr − Y ?
r + Sr − Si) ≤ 0 (2.9)

Zτ li−1 − EF
τli−1

[
Y ?
τ li−1+1

]
+ Sτ li−1 − Si ≥ 0, (2.10)

for τ li−1 < i ≤ τ li and li > 1, then M satisfies the identities (i)-(ii) in Lemma 2.3.

Corollary 2.5. Let us represent an (arbitrary) adapted S with S0 = 0 by

Si+1 = Si + ζi+1, 0 ≤ i < J, (2.11)

where each ζi+1 is a Fi+1-measurable random variable. Then the conditions (2.9) and (2.10) are
equivalent to the following ones.

(i) On the Fi-measurable event
{
τ li−1 < i < τ li

}
it holds that

ζi+1 ≥ max
τ li−1<r≤i

(Zr − Y ?
r + Sr − Si) and (2.12)

ζi+1 ≤ Zτ li−1 − EF
τli−1

[
Y ?
τ li−1+1

]
+ Sτ li−1 − Si for li > 1; (2.13)
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(ii) On
{
τ li = i

}
one has that

ζi+1 ≤ Zi − EFi
[
Y ?
i+1

]
. (2.14)

Proof. Indeed, take j such that
{
τ lj−1 < j ≤ τ lj

}
, lj ≥ 1. If j − 1 > τ lj−1 then lj−1 = lj and

(2.12) and (2.13) imply with i = j − 1 via (2.11),

0 ≥ max
τ lj−1<r≤j−1

(Zr − Y ?
r + Sr − Sj) and

0 ≤ Zτ lj−1 − EF
τ
lj−1

[
Y ?

τ lj−1+1

]
+ Sτ lj−1 − Sj for lj > 1,

respectively, which in turn imply (2.9) (note that Zj − Y ?
j ≤ 0) and (2.10), respectively. Further if

j − 1 ≯ τ lj−1 we have to distinguish between j = 0 ∧ l0 = 1 and j = τ lj−1 + 1 ∧ lj > 1. In both
cases (2.9) is trivially fulfilled, while (2.10) is void in the first case, and in the second case it reads,

0 ≤ Zτ lj−1 − EF
τ
lj−1

[Y ?

τ lj−1+1
] + Sτ lj−1 − Sτ lj−1+1, lj > 1,

which is implied by (2.11) and (2.14) for i = j − 1 = τ li = τ lj−1 = τ lj−1. The converse direction,
that is from (2.9) and (2.10) to (2.12), (2.13), (2.14), goes similarly and is left to the reader.

Corollary 2.6. By Corollary 2.5 there always exists an adapted process S satisfying (2.12), (2.13),
(2.14) with Ei [ζi+1] = 0 for 0 ≤ i < J due to (2.9) and (2.10). Hence, there exist martingales S that
satisfy Lemma 2.4. By Lemma 2.3, for any such martingale S, M = M? − S ∈ M◦, that is, M is
the optimal martingale.

Interestingly, the converse to Corollary 2.6 is also true and we so have the following characterization
theorem.

Theorem 2.7. It holds that M ∈ M◦ if and only if M = M? − S, where S is a martingale with
S0 = 0 that satisfies (2.9) and (2.10) in Lemma 2.4.

The proofs of Lemmas 2.3-2.4 and Theorem 2.7 are given in Section 4. In fact, Theorem 2.7 reveals
that, besides the Doob martingale, there generally exists a large set of optimal martingales M ∈
M◦. From Theorem 2.7 we also obtain a characterization of the surely optimal martingales which is
essentially the older result in [13], Thm. 6 (see Section 4 for the proof).

Corollary 2.8. It holds that M ∈M◦◦ if and only if M = M?−S with S represented by (2.11) with
all EFi [ζi+1] = 0, ζi+1 satisfying (2.14) for i = τ li , and ζi+1 = 0 for τ li−1 < i < τ li , li ≥ 1.

In applications of dual optimal stopping, hence dual martingale minimization, it is usually enough to
find martingalesM that are “close to” surely optimal ones, merely at some specific point in time i, that
is, M ∈M◦◦,i. Naturally, sinceM◦,i ⊃M◦, we may expect that in general the family of undesirable
(not surely) optimal martingales at a specific time may be even much larger than the family M◦

characterized by Theorem 2.7. A characterization ofM◦,i andM◦◦,i is given by the next theorem,
where we take i = 0 without loss of generality. The proof is given in Section 4.

Theorem 2.9. The following statements hold.

(i) M = M? − S ∈M◦,0 for some martingale S represented by (2.11), if and only if

max
0≤r<j

(Zr − Y ∗r − Sj + Sr) ≤ 0 for 0 ≤ j ≤ τ ? and (2.15)

Sj − Sτ? ≤ Y ?
j − Zj + A∗j for τ ? < j ≤ J, (2.16)

where A∗j = 0 (see (2.5)) for all 0 ≤ j ≤ τ ?.
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(ii) M = M? − S ∈M◦◦,0, if and only if

Sj = 0 for 0 ≤ j ≤ τ ?, (2.17)

Sj ≤ Y ?
j − Zj + A∗j for τ ? < j ≤ J. (2.18)

After dropping the nonnegative term Y ?
j − Zj in the right-hand-sides of (2.16) and (2.18) we may

obtain tractable sufficient conditions for a martingale to be optimal or surely optimal at a single date,
respectively. In the spirit of Corollary 2.5 they may be formulated in the following way.

Corollary 2.10. Let M = M? − S for some martingale S represented by (2.11), then

(i) M ∈M◦,0 if

ζj ≥ max
0≤r<j

(Zr − Y ∗r − Sj−1 + Sr) for 1 ≤ j ≤ τ ? and

ζj ≤ A∗j + Sτ? − Sj−1 for τ ? < j ≤ J, (2.19)

(ii) M ∈M◦◦,0 if ζj = 0 for 0 ≤ j ≤ τ ?, and

ζj ≤ A∗j − Sj−1 for τ ? < j ≤ J. (2.20)

In particular, the right-hand-sides in (2.19) and (2.20) are Fj−1-measurable.

Remark 2.11. While the class of optimal martingales M◦,0 may be quite large in general, it is still
possible that it is just a singleton (containing the Doob martingale only). For example, let the cash-
flow Z ≥ 0 be a martingale itself, then it is easy to see that the only optimal martingale (at 0) is
M = M? = Z − Z0 (the proof is left as an easy exercise).

3 Randomized dual martingale representations

Let (Ω0,B) be some auxiliary measurable space that is “rich enough”. Let us consider random vari-
ables on Ω̃ := Ω×Ω0 that are measurable with respect to the σ-field F̃ := σ {F ×B : F ∈ F , B ∈ B} .
While abusing notation a bit, F and Fj are identified with σ {F × Ω0 : F ∈ F} ⊂ F̃ and

σ {F × Ω0 : F ∈ Fj} ⊂ F̃ , respectively. Let further P be the given “primary” measure on (Ω,F),

and P̃ be an extension of P to (Ω̃, F̃) in the sense that

P̃ (Ω0 × F ) = P (F ) for all F ∈ F .

In particular, ifX : Ω̃→ R isF -measurable, then {(ω, ω0) : X (ω, ω0) ≤ x} = {(ω, ω0) : ω ∈ Fx}
for some Fx ∈ F , that is, X does not depend on ω0. We now introduce randomized or “pseudo” mar-
tingales as random perturbations ofF -adapted martingales of the form (2.11). Let (ηj)j≥0 be random

variables on (Ω̃, F̃ , P̃) such that ẼF [ηj] = 0 for j = 0, . . . , J. Then

M̃j := Mj − ηj = M?
j − Sj − ηj (3.1)

is said to be a pseudo martingale. As such, M̃ is not anF -martingale but ẼF [M̃ ] is. The results below
on pseudo-martingales provide the key motivation for randomized dual optimal stopping. All proofs in
this section are deferred to Section 4.
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Proposition 3.1. For any M̃ of the form (3.1) one has the upper estimate

Ẽ
[

max
0≤j≤J

(Zj − M̃j)
]
≥ Y ?

0 . (3.2)

If S = 0, that is,
M̃j = M?

j − ηj (3.3)

and the random perturbations (ηj) satisfy in addition

ηj ≤ Y ?
j − Zj + A?j , P̃− a.s. j = 0, . . . , J, (3.4)

with (A?j) defined in (2.5), then one has the almost sure identity

Y ?
0 = max

0≤j≤J
(Zj − M̃j) P̃-a.s. (3.5)

Moreover, for the first optimal stopping time τ ? := τ ?0 (see (2.8)) one must have that ητ? = 0 a.s., and
if τ ? is strict in the sense that

Y ?
τ? − EFτ?

[
Y ?
τ?+1

]
> 0,

then j = τ ? is the only time j where ηj = 0.

Due to the following theorem, any (weakly or surely) optimal non Doob martingale turns to a non
optimal one in the sense that

Ẽ
[

max
0≤j≤J

(Zj − M̃j)
]
> Y ?

0 (3.6)

after a particular “optimal” randomization.

Theorem 3.2. Suppose that M ∈ M◦,0 and let (ηj) be a sequence of random variables as in
Proposition 3.1, given by

ηj = ξj
(
Y ?
j − Zj + A?j

)
, 0 ≤ j ≤ J, (3.7)

where the (ξj) are assumed to be i.i.d. distributed on (−∞, 1], independent of F with Ẽ [ξj] = 0.
It is further assumed that the r.v. (ξj) have a joint continuous density p supported on (−∞, 1] with
p(1) > 0. As such the randomizers (3.7) satisfy (3.4), and Proposition 3.1 thus provides an upper

bound (3.2) due to the pseudo martingale M̃ = M − η. Now, for the randomized martingale M̃ one
has (3.6) if M 6= M? with positive probability.

The following corollary states that an optimally randomized non Doob martingale inM◦,0, which is
thus suboptimal in the sense of (3.6) due to the previous theorem, cannot have zero variance. The
proof relies on Theorem 3.2.

Corollary 3.3. LetM ∈M◦,0, (ηj) as in Theorem 3.2, and M̃ = M−η. Then Var
(
max0≤j≤J(Zj−

M̃j)
)

= 0 if and only if M = M?.

Discussion

Proposition 3.1 provides us with a remarkable freedom of perturbing the Doob martingale randomly
while (3.5) remains true. The bottom line of Theorem 3.2 is that randomization under condition (3.4)
of an optimal, or even surely optimal, but non-Doob martingale results in a non optimal (pseudo)
martingale, while any randomization of the Doob martingale under (3.4) remains a surely optimal
pseudo martingale. This is an important feature, since in this way martingale candidates that are
optimal but not equal to the (surely optimal) Doob martingale can be sorted out by randomization.
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4 Proofs

4.1 Proof of Lemma 2.1

It is enough to show the convexity of M◦,j and M◦◦,j for any j. For any M,M ′ ∈ M◦,j and
θ ∈ (0, 1) one has

EFj

[
max
j≤r≤J

(Zr − (θMr + (1− θ)M ′
r)) + θMj + (1− θ)M ′

j

]
= E

[
max
j≤r≤J

(
θ (Zr −Mr +Mj) + (1− θ)

(
Zr −M ′

r +M ′
j

))]
≤ θE

[
max
j≤r≤J

(Zr −Mr +Mj)

]
+ (1− θ)E

[
max
j≤r≤J

(
Zr −M ′

r +M ′
j

)]
= Y ?

j

while by (2.2),

EFj

[
max
j≤r≤J

(
Zr − (θMr + (1− θ)M ′

r) + θMj + (1− θ)M ′
j

)]
≥ Y ?

j .

Similarly, for any M,M ′ ∈M◦◦,j and θ ∈ (0, 1) we have

max
j≤r≤J

(
Zr −

(
θMr + (1− θ)M ′

r + θMj + (1− θ)M ′
j

))
= max

j≤r≤J

(
θ (Zr −Mr +Mj) + (1− θ)

(
Zr −M ′

r +M ′
j

))
≤ θ max

j≤r≤J
(Zr −Mr +Mj) + (1− θ) max

0≤r≤J

(
Zr −M ′

r +M ′
j

)
= Y ?

j

while by (2.2),

EFj

[
max
j≤r≤J

(
Zr − (θMr + (1− θ)M ′

r) + θMj + (1− θ)M ′
j

)]
≥ Y ?

j .

In both cases the sandwich property completes.

4.2 Proof of Lemma 2.3

Suppose that M is a martingale with M0 = 0 such that Lemma 2.3-(i) and (ii) hold. Then (ii) implies
for q ≥ 1 that

Zτ1 −Mτ1 ≥ Zτ2 −Mτ2 ≥ ... ≥ Zτq −Mτq (4.1)

Now take 0 ≤ i ≤ J arbitrarily, and let qi ≥ 1 be such that τ qi−1 < i ≤ τ qi (Note that qi is unique
and Fi measurable). Then due to Lemma 2.3-(i) and (4.1),

max
i≤r≤J

(Zr −Mr) = max

(
max
i≤r≤τqi

(Zr −Mr),max
q>qi

max
τq−1<r≤τq

(Zr −Mr)

)
= max

(
Zτqi −Mτqi ,max

q>qi
(Zτq −Mτq)

)
= max (Zτqi −Mτqi , Zτqi+1 −Mτqi+1) = Zτqi −Mτqi .
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On the other hand, one has τ ?i = τ qi (see (2.8)). Thus, by Proposition 2.2, M ∈ M◦,i and hence
M ∈M◦ since i was taken arbitrarily.

Conversely, suppose that M ∈M◦. So for any 0 ≤ i ≤ J,

max
i≤r≤J

(Zr −Mr) = Zτ?i −Mτ?i

by Proposition 2.2. For l = 1 one thus has

max
τ0<r≤J

(Zr −Mr) = max
0≤r≤J

(Zr −Mr) = Zτ?0 −Mτ?0
= Zτ1 −Mτ1

and for l > 1 it holds that

max
τ l−1<r≤J

(Zr −Mr) =
J−1∑
k=0

1{τ l−1=k} max
k+1≤r≤J

(Zr −Mr)

=
J−1∑
k=0

1{τ l−1=k}

(
Zτ?k+1

−Mτ?k+1

)
=

J−1∑
k=0

1{τ l−1=k} (Zτ l −Mτ l) = Zτ l −Mτ l .

That is, (i) is shown. Next, for any l > 1 it holds

max
τ l−1≤r≤J

(Zr −Mr) =
L∑
k=0

1{τ l−1=k} max
k≤r≤J

(Zr −Mr)

=
L∑
k=0

1{τ l−1=k}
(
Zτ?k −Mτ?k

)
= Zτ?

τl−1
−Mτ?

τl−1
= Zτ l−1 −Mτ l−1

which implies (ii).

4.3 Proof of Lemma 2.4

Assume that S is adapted with S0 = 0 and that S satisfies (2.9) and (2.10). For l > 1 and τ l−1 <
r ≤ τ l we may write,

Zr −Mr = Zr −M?
r + Sr (4.2)

= Zr −M?
τ l−1 +M?

τ l−1 −M?
r + Sr

= Zr −M?
τ l−1 + Sr −

r∑
k=τ l−1+1

(
Y ?
k − EFk−1

[Y ?
k ]
)

= Zr −M?
τ l−1 + Sr

−
r∑

k=τ l−1+1

Y ?
k +

r−1∑
k=τ l−1+1

EFk
[
Y ?
k+1

]
+ EF

τl−1

[
Y ?
τ l−1+1

]
= Zr − Y ?

r −M?
τ l−1 + EF

τl−1

[
Y ?
τ l−1+1

]
+ Sr.
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By taking r = τ l in (4.2) and using Zτ l = Y ?
τ l

we then get

Zτ l −Mτ l = −M?
τ l−1 + EF

τl−1

[
Y ?
τ l−1+1

]
+ Sτ l

and thus
Zr −Mr = Zτ l −Mτ l + Zr − Y ?

r + Sr − Sτ l , τ l−1 < r ≤ τ l.

So from (2.9) we obtain with i = τ l, li − 1 = l − 1,

Zr −Mr ≤ Zτ l −Mτ l for τ l−1 < r ≤ τ l,

i.e. Lemma 2.3-(i) for l > 1. If l = 1 and τ 1 = 0, Lemma 2.3-(i) is trivially fulfilled. So let us consider
l = 1 and τ 1 > 0. Analogously, we then may write for τ 0 = 0− < 0 < r ≤ τ 1,

Zr −Mr = Zr −M?
r + Sr = Zr + Sr −

r∑
k=1

(
Y ?
k − EFk−1

[Y ?
k ]
)

= Zr + Sr −
r∑

k=1

Y ?
k +

r−1∑
k=1

EFk
[
Y ?
k+1

]
+ EF

τl−1

[
Y ?
τ l−1+1

]
= Zr − Y ?

r + EF0 [Y ?
1 ] + Sr. (4.3)

It is easy to see that (4.3) is also valid for r = 0, due to our assumption τ 1 > 0. Thus, for l = 1 and
taking r = τ 1 > 0, we get from (4.3),

Zτ1 −Mτ1 = EF0 [Y ?
1 ] + Sτ1 ,

whence (4.3) implies for τ 0 = 0− < r ≤ τ 1

Zr −Mr = Zr − Y ?
r + Zτ1 −Mτ1 ≤ Zτ1 −Mτ1 ,

that is Lemma 2.3-(i) holds also for l = 1.

Let us now consider (ii) and take l > 1. Now for τ l−1 < r ≤ τ l (4.2) implies with M?
τ l−1 =

Sτ l−1 +Mτ l−1 ,

Zr −Mr = Zτ l−1 −Mτ l−1 + Zr − Y ?
r + EF

τl−1

[
Y ?
τ l−1+1

]
− Zτ l−1 + Sr − Sτ l−1 . (4.4)

Hence, since always Zr ≤ Y ?
r , (2.10) implies for τ l−1 < r ≤ τ l,

Zr −Mr ≤ Zτ l−1 −Mτ l−1 , τ l−1 < r ≤ τ l, (4.5)

i.e. Lemma 2.3-(ii) is proved.

4.4 Proof of Theorem 2.7

If M = M? − S , where S is a martingale with S0 = 0 that satisfies (2.9) and (2.10) in Lemma 2.4
then M ∈M◦ due to Corollary 2.6.

Let us now consider the converse and assume that M = M? − S ∈ M◦ with M0 = S0 = 0.
Then S is adapted and may be written in the form (2.11) where the ζi+1 are Fi+1-measurable and
EFi [ζi+1] = 0 for 0 ≤ i < J. Since M ∈M◦ Lemma 2.3-(i) implies that for l ≥ 1,

max
τ l−1<r≤τ l

(Zr − Zτ l +M?
τ l −M

?
r + Sr − Sτ l) = 0, hence

max
τ l−1<r≤τ l

(Zr − Y ∗r + Sr − Sτ l) = 0 (4.6)
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since for each r with τ l−1 < r ≤ τ l one has Zτ l −M?
τ l

+M?
r = Zτ?r −M?

τ?r
+M?

r = Y ∗r because

M? ∈ M◦◦. We now show for any i with τ l−1 < i ≤ τ l that (2.9) holds with li = l by backward
induction. For i = τ li it follows from (4.6). Now suppose that for some i with τ li−1 < i < i+ 1 ≤ τ li

it holds that
1{τ li+1−1<i+1≤τ li+1} max

τ li+1−1<r≤i+1
(Zr − Y ∗r + Sr − Si+1) ≤ 0. (4.7)

One has by construction

max
τ li−1<r≤i

(Zr − Y ∗r + Sr − Si) = ζi+1 + max
τ li−1<r≤i

(Zr − Y ∗r + Sr − Si+1).

Hence, since
{
τ li−1 < i < τ li

}
=
{
τ li−1 < i

}
∩
{
τ li−1 < i+ 1 ≤ τ li

}
with

{
τ li−1 < i

}
∈ Fi

and
{
τ li−1 < i+ 1 ≤ τ l

}
∈ Fi (!), EFi [ζi+1] = 0, li = li+1, and taking Fi-conditional expecta-

tions,

1{τ li−1<i<τ li} max
τ l−1<r≤i

(Zr − Y ∗r + Sr − Si)

= 1{τ li−1<i}EFi
[

max
τ li−1<r≤i

(Zr − Y ∗r + Sr − Si+1)1{τ li−1<i+1≤τ li}

]
≤ 1{τ li−1<i}EFi

[
max

τ li+1−1<r≤i+1
(Zr − Y ∗r + Sr − Si+1)1{τ li+1−1<i+1≤τ li+1}

]
≤ 0,

using the induction hypothesis (4.7). In view of (4.6) it follows that (2.9) holds for τ li−1 < i ≤ τ li .

Next, on the other hand, M ∈M◦ implies by Lemma 2.3-(ii) that for any fixed l > 1,

max
τ l−1≤r≤τ l

(Zr −M?
r + Sr) = Zτ l−1 −M?

τ l−1 + Sτ l−1 , hence

max
τ l−1<r≤τ l

(Zr − Zτ l−1 +M?
τ l−1 −M?

r + Sr − Sτ l−1) = 0. (4.8)

Suppose that τ l−1 < i ≤ τ l and hence li = l. Then (4.8) implies by (2.11) after a few manipulations,

Zi − Zτ li−1 +M?
τ li−1 −M?

i + Si − Sτ li−1

= ζτ li−1+1 + EF
τli−1

[
Y ?
τ li−1+1

]
− Zτ li−1 + Zi − Y ?

i

+
i−1∑

r=τ li−1+1

ζr+1 +
i−1∑

r=τ li−1+1

EFr
[
Y ?
r+1

]
−

i−1∑
r=τ li−1+1

Y ?
r ≤ 0

with the usual convention
∑p−1

r=p := 0. Thus, either the last three sums are zero due to i = τ li−1 + 1,

or we may use that Y ?
r = EFr

[
Y ?
r+1

]
for τ li−1 < r < i. We thus get for τ l−1 < i ≤ τ l,

ζτ li−1+1 + Eτ li−1

[
Y ?
τ li−1+1

]
− Zτ li−1 + Zi − Y ?

i + Si − Sτ li−1+1 ≤ 0. (4.9)

In particular, due to Zτ l = Y ?
τ l
, for i = τ l this gives

ζτ li−1+1 + EF
τli−1

[
Y ?
τ li−1+1

]
− Zτ li−1 + Sτ li − Sτ li−1+1 ≤ 0. (4.10)

Let us now show that (2.10) holds for τ li−1 < i ≤ τ li and li > 1 by backward induction. For i = τ li

it follows from (4.10) by ζτ li−1+1 − Sτ li−1+1 = −Sτ li−1 that

Zτ li−1 − EF
τli−1

[
Y ?
τ li−1+1

]
+ Sτ li−1 − Sτ li ≥ 0
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that is (2.10) for i = τ li . Now suppose that for some i with τ li−1 < i < i+ 1 ≤ τ li it holds that

1{τ li+1−1<i+1≤τ li+1}
(
Zτ li+1−1 − EF

τ
li+1−1

[
Y ?
τ li+1−1+1

]
+ Sτ li+1−1 − Si+1

)
≥ 0.

One thus has by construction

Zτ li−1 − EF
τli−1

[
Y ?
τ li−1+1

]
+ Sτ li−1 − Si

= Zτ li−1 − EF
τli−1

[
Y ?
τ li−1+1

]
+ Sτ li−1 − Si+1 + ζ−i+1.

It then follows similarly by taking Fi-conditional expectations that

1{τ li−1<i<τ li}
(
Zτ li−1 − EF

τli−1

[
Y ?
τ li−1+1

]
+ Sτ li−1 − Si

)
= 1{τ li−1<i<τ li}

× EFi

[(
Zτ li+1−1 − EF

τ
li+1−1

[
Y ?
τ li+1−1+1

]
+ Sτ li+1−1 − Si+1

)
1{τ li+1−1<i+1≤τ li+1}

]
≥ 0

by the induction hypothesis (note again that li+1 = li). Thus, (2.10) holds for τ li−1 < i ≤ τ li and so
(2.10) is proved. We thus conclude that S is a martingale that satisfies (2.9) and (2.10). The theorem
is proved.

4.5 Proof of Corollary 2.8

Suppose that M = M? − S ∈ M◦◦ for some martingale S represented by (2.11). Since M ∈
M◦◦ ⊂M◦, Theorem 2.7 implies (via Corollary 2.5) that the ζi+1 satisfy (2.14) for i = τ li . Further,
for any 0 ≤ i ≤ J one has

Y ?
i = max

i≤r≤J
(Zr −Mr +Mi) = max

i≤r≤J
(Zr −M?

r +M?
i + Sr − Si)

≤ Zτ?i −M
?
τ?i

+M?
i + Sτ?i − Si = Y ?

i + Sτ?i − Si

since M? ∈M◦◦. So
Sτ?i − Si ≥ 0 while EFi

[
Sτ?i − Si

]
= 0,

by Doob’s sampling theorem. Hence, by the sandwich property, Sτ?i − Si = 0 for all 0 ≤ i ≤ J. This
implies for any i with τ l−1 < i < τ l that

ζi+1 = Si+1 − Si = Sτ?i+1
− Sτ?i = 0

due to τ ?i = τ ?i+1 = τ l.

Conversely, if the ζi+1 satisfy (2.14) for i = τ li and further ζi+1 = 0 for any i with τ li−1 < i <
τ li = τ ?i , they also trivially satisfy (2.13) and (2.12), and so one has M ∈ M◦ by Theorem 2.7 (via
Corollary 2.5). Furthermore it follows that Sτ?i = Si for any i with τ li−1 < i < τ li = τ ?i , so by
Proposition 2.2

max
i≤r≤J

(Zr −Mr) = Zτ?i −Mτ?i
= Zτ?i −M

?
τ?i

+ Sτ?i
= Y ?

i −M?
i + Sτ?i = Y ?

i −Mi + Sτ?i − Si
= Y ?

i −Mi.

Hence, M ∈M◦◦,i and so M ∈M◦◦ since i was arbitrary.
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4.6 Proof of Theorem 2.9

(i): Due to Proposition 2.2, M ∈M◦,0 if and only if

0 = max
0≤r≤J

(Zr −Mr − Zτ? +Mτ?)

with τ ? := τ ?0 , which is equivalent with

max
0≤r<τ?

(Zr −Mr − Zτ? +Mτ?) ≤ 0 and (4.11)

max
τ?<r≤J

(Zr −Mr − Zτ? +Mτ?) ≤ 0. (4.12)

Since τ ? = τ ?r for 0 ≤ r < τ ?, (4.11) reads

max
0≤r<τ?

(
Zr −M?

r − Zτ?r +M∗
τ?r
− Sτ?r + Sr

)
= max

0≤r<τ?

(
Zr − Y ∗r − Sτ?r + Sr

)
= max

0≤r<τ?
(Zr − Y ∗r − Sτ? + Sr) ≤ 0 (4.13)

which in turn is equivalent with (2.15). Indeed, suppose that (4.13) holds. Then (2.15) clearly holds for
j = τ ?. Now assume that (2.15) holds for 0 < j ≤ τ ?. Then, by backward induction,

max
0≤r<j−1

(Zr − Y ∗r − Sj−1 + Sr) = max
0≤r<j−1

(Zr − Y ∗r − Sj + Sr) + ζj ≤ ζj

By next taking Fj−1-conditional expectations we get (2.15) for j − 1. For the converse, just take j =
τ ? in (2.15). We next consider (4.12), which may be written as

max
τ?<r≤J

(Zr −M∗
r +M∗

τ? − Zτ? − Sτ? + Sr) ≤ 0

Using the Doob decomposition of the Snell envelope (2.5), A∗τ? = 0, and that Y ?
τ? = Zτ? , this is

equivalent with (2.16).

(ii): Suppose that M ∈M◦◦,0. One has that M = M? − S ∈M◦◦,0, if and only if

0 = max
0≤r≤J

(Zr −Mr − Y ∗0 ) = max
0≤r≤J

(Zr −M∗
r + Sr − Y ∗0 ) .

Since Zτ? −M∗
τ? = Y ∗0 a.s., this implies Sτ? ≤ 0 a.s., and so by EF0 [Sτ? ] = 0, that Sτ? = 0 by the

sandwich property. Now note that S̃j = Sj∧τ? , j = 0, ..., J, is also a martingale with S̃J = 0 a.s. Let
us write (assuming that J ≥ 1)

0 = S̃J =
J∑
j=1

S̃j − S̃j−1 = S̃J − S̃J−1 +
J−1∑
j=1

S̃j − S̃j−1.

That is, S̃J − S̃J−1 is FJ−1-measurable with EFJ−1

[
S̃J − S̃J−1

]
= 0, so S̃J − S̃J−1 = 0 and

thus S̃J−1 = 0 a.s. By proceeding backwards in the same way we see that S̃j − S̃j−1 = 0 for all
1 ≤ j ≤ J, which implies

S̃j − S̃j−1 =

j∧τ?∑
r=1

ζr −
(j−1)∧τ?∑
r=1

ζr = 1{τ?≥j}ζj = 0,
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whence Sj = 0 for 0 ≤ j ≤ τ ?, i.e. (2.17). SinceM◦◦,0 ⊂ M◦,0 (2.18) follows from (2.16) with
Sτ? = 0. Conversely, if (2.17) and (2.18) hold, then

max
0≤r≤J

(Zr −M∗
r + Sr − Y ∗0 ) = max

0≤r≤τ?
(Zr −M∗

r − Y ∗0 ) ∨ max
τ?<r≤J

(Zr −M∗
r + Sr − Y ∗0 )

= 0 ∨ max
τ?<r≤J

(Zr −M∗
r + Sr − Y ∗0 )

and due to (2.18), for each τ ? < r ≤ J

Zr −M∗
r + Sr − Y ∗0 ≤ Y ?

r −M∗
r + A∗r − Y ∗0 = 0

by (2.5). That is max0≤r≤J(Zr −Mr) = Y ∗0 and so M ∈M◦◦,0.

4.7 Proof of Proposition 3.1

It holds that

Ẽ

[
max
0≤j≤J

(
Zj − M̃j

)]
= ẼẼF

[
max
0≤j≤J

(
Zj −M?

j + Sj + ηj
)]

≥ Ẽ

[
max
0≤j≤J

(
Zj −M?

j + Sj + ẼF [ηj]
)]

= E

[
max
0≤j≤J

(
Zj −M?

j + Sj
)]
≥ Y ?

0 ,

by duality, hence (3.2). Further, if S = 0 and (3.4) applies, we may write

Zj − M̃j = Zj −M?
j + ηj

= Zj −
(
Y ?
j + A?j − Y ?

0

)
+ ηj

= Y ?
0 + Zj − Y ?

j − A?j + ηj ≤ Y ?
0 (4.14)

Then (3.5) follows by (3.2) and the sandwich property.

As for the last statement: If τ ? = 0 one has Z0 = Y ?
0 andA?0 = 0 by definition, hence in (3.4) η0 ≤ 0

a.s., which implies η0 = 0. If τ ? > 0 one has Zτ? = Y ?
τ? and A?j −A?j−1 = Y ?

j−1−EFj−1

[
Y ?
j

]
= 0

for j = 1, ..., τ ?, hence A?τ? = 0 and so ητ? ≤ 0 due to (3.4), implying ητ? = 0. If τ ? is strictly
optimal, that is A?τ?+1 = A?τ?+1 − A?τ? = Y ?

τ? − EFτ?
[
Y ?
τ?+1

]
> 0, one has

Y ?
j − Zj + A?j > 0 for all j 6= τ ?

since always Y ?
j ≥ Zj and A?j ≥ 0, Y ?

j > Zj for 0 ≤ j < τ ?, and A?j ≥ A?τ?+1 for j > τ ?

(remember that A is nondecreasing).

4.8 Proof of Theorem 3.2

Let M = M? − S ∈M◦,0, let (ηj) be as stated, and let us assume that

Ẽ
[

max
0≤j≤J

(Zj − M̃j)
]

= Y ?
0 . (4.15)
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We then have to show that M = M?. By using (2.5) we may write

max
0≤j≤J

(
Zj − M̃j

)
= max

0≤j≤J

(
Zj −M?

j + Sj + ηj
)

= Y ?
0 + max

0≤j≤J

(
Sj + ηj + Zj − Y ?

j − A?j
)
.

By (4.15) we must have

Ẽ

[
max
0≤j≤J

(
Sj + ηj + Zj − Y ?

j − A?j
)]

= 0. (4.16)

We observe that

max
0≤j≤J

(
Sj + ηj + Zj − Y ?

j − A?j
)
≥ Sτ? + ητ? + Zτ? − Y ?

τ? − A?τ? = Sτ? ,

using ητ? = 0 due to Proposition 3.1. By Doob’s sampling theorem, Ẽ [Sτ? ] = 0 and so (4.16) implies
by the sandwich property,

max
0≤j≤J

(
Sj − Sτ? + ηj + Zj − Y ?

j − A?j
)

= 0, a.s., whence

ηj ≤ Sτ? − Sj + Y ?
j − Zj + A?j a.s. for all 0 ≤ j ≤ J. (4.17)

Let us fix some 0 ≤ j ≤ J and assume that P(0 ≤ j < τ ?) > 0. Due to (3.7) we thus have that,

ξj1{0≤j<τ?} ≤
(

1 +
Sτ? − Sj

Y ?
j − Zj + A?j

)
1{0≤j<τ?} almost surely. (4.18)

(note that A?j ≥ 0 and Y ?
j > Zj for 0 ≤ j < τ ?). Since M ∈ M◦,0, 0 ≤ j < τ ? implies by (2.15)

Sτ? − Sj ≥ Zj − Y ?
j . Now assume that for some ε > 0 but small enough, the set

Cεj := {0 ≤ j < τ ?} ∩
{

0 > −ε(Y ?
j − Zj + A?j) > Sτ? − Sj ≥ Zj − Y ?

j

}
has positive probability. Since on Cεj one has

1−
Y ?
j − Zj

Y ?
j − Zj + A?j

≤ 1 +
Sτ? − Sj

Y ?
j − Zj + A?j

< 1− ε

we then obtain a contradiction with (4.18), because P̃(ξj > 1− ε) > 0. Thus for any ε > 0, we must
have that P(Cεj) = 0. This in turn implies that

1{0≤j<τ?} (Sτ? − Sj) ≥ 0 a.s.

However, the Fj-conditional expectation of the left-hand-side is zero (Doob’s sampling theorem).
Hence,

1{0≤j<τ?}Sτ? = 1{0≤j<τ?}Sj a.s.

by the sandwich property. Since j was arbitrary, this obviously implies that

Sj = 0 for 0 ≤ j ≤ τ ?. (4.19)

Let us next assume that for some 0 ≤ j ≤ J, P(τ ? < j ≤ J) > 0. We then have due to (3.7) and
(4.17),

ξj1{τ?<j≤J} ≤
(

1 +
Sτ? − Sj

Y ?
j − Zj + A?j

)
1{τ?<j≤J} almost surely. (4.20)
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For τ ? < j ≤ J, (2.16) implies that Sτ?−Sj ≥Zj−Y ?
j −A?j , where it is noted thatZj−Y ?

j −A?j < 0
due to Zj ≤ Yj and A?τ?+1 > 0. Similarly, we next assume that for some ε > 0 the set

Dεj := {τ ? < j ≤ J} ∩
{

0 > −ε(Y ?
j − Zj + A?j) > Sτ? − Sj ≥ Zj − Y ?

j − A?j
}

has positive probability. Then on Dεj on has

0 ≤ 1 +
Sτ? − Sj

Y ?
j − Zj + A?j

< 1− ε,

which gives a contradiction with (4.20) however because P̃(ξj > 1− ε) > 0. We so conclude that

1{τ?<j≤J} (Sτ? − Sj) ≥ 0 a.s.

and by taking the Fj-conditional expectation again, that Sτ? = Sj for τ ? ≤ j ≤ J. We had already
(4.19), and therefore we finally conclude that S = 0, hence M = M?.

4.9 Proof of Corollary 3.3

If M = M? one has Var
(

max0≤j≤J(Zj − M̃j)
)

= 0 due to Proposition 3.1. Let us now take

M ∈ M◦,0 with M 6= M? and assume that Var
(

max0≤j≤J(Zj − M̃j)
)

= 0. From here we will

derive a contradiction. As in the proof of Theorem 3.2 we write

max
0≤j≤J

(Zj − M̃j) = Y ?
0 + max

0≤j≤J
(Sj + ηj + Zj − Y ?

j − A?j), whence

Var

(
max
0≤j≤J

(Zj − M̃j)

)
= Var

(
max
0≤j≤J

(Sj + ηj + Zj − Y ?
j − A?j)

)
= 0. (4.21)

Now, M 6= M? implies by Theorem 3.2 that

Ẽ

[
max
0≤j≤J

(Sj + ηj + Zj − Y ?
j − A?j)

]
> 0. (4.22)

That is, due to (4.21) and (4.22), there exists a constant c > 0 such that

max
0≤j≤J

(Sj + ηj + Zj − Y ?
j − A?j) = c > 0.

Using (3.7) and the fact that always Y ?
j − Zj + A?j ≥ 0 and ξj ≤ 1, this implies

0 < c = max
0≤j≤J

(Sj + (ξj − 1) (Y ?
j − Zj + A?j)) ≤ max

0≤j≤J
(Sj). (4.23)

Consider the stopping time σ := inf{j ≥ 0 : Sj ≥ c}. Then, using S0 = 0 and (4.23), we must have
that 0 < σ ≤ J almost surely. Since S is a martingale, Doob’s sampling theorem then implies 0 =

S0 = E [Sσ] ≥ c, hence a contradiction. That is, the assumption Var
(

max0≤j≤J(Zj − M̃j)
)

= 0

was false.
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5 Numerical examples

5.1 Simple stylized numerical example

We first reconsider the stylized test example due to [13, Section 8], also considered in [4], where
J = 2, Z0 = 0, Z2 = 1, and Z1 = U is a random variable which uniformly distributed on the interval
[0, 2]. The optimal stopping time τ ∗ is thus given by

τ ∗ =

{
1, U ≥ 1,
2, U < 1.

and the optimal value is Y ?
0 = Emax(U , 1) = 5/4. Furthermore, it is easy to see that the Doob

martingale is given by

M?
0 = 0, M?

1 = M?
2 = max{U , 1} − 5

4
.

As an illustration of the theory developed in Sections 2-3, let us consider the linear span M (α) =
αM? as a pool of candidate martingales and randomize it according to (3.7). We thus consider the
objective function

Oθ(α) := Ẽ
[

max
0≤j≤2

(
Zj − αM?

j + θξj
(
Y ?
j − Zj + A?j

))]
, (5.1)

for some fixed θ ≥ 0, where (ξj) are i.i.d. random variables with uniform distribution on [−1, 1]. Note
that for this example Y ?

1 = max(U , 1), Y ?
2 = 1, and A?0 = A?1 = 0, A?2 = max{U , 1} − 1, is the

non-decreasing predictable process from the Doob decomposition. Moreover, it is possible to compute
(5.1) in closed form (though we omit detailed expressions which can be conveniently obtained by
Mathematica for instance). In Figure 1 (left panel) we have plotted (5.1) for θ = 0 and θ = 1, together
with the objective function

O1(α) := Ẽ
[

max
0≤j≤2

(
Zj − αM?

j + ξj
)]
,

due to a “naive” randomization, not based on knowledge of the factor Y ?
j −Zj +A?j . Also, in Figure 1

(right panel), the relative standard deviations
√

Var(·)/Y ?
0 of the corresponding random variables

Zθ(α) := max
0≤j≤2

(
Zj − αM?

j + θξj
(
Y ?
j − Zj + A?j

))
, θ = 0, 1, and

Z1(α) := max
0≤j≤2

(
Zj − αM?

j + ξj
)

are depicted as a function of α.

From [13, Section 8] we know that, and from the plot of O0(α) in Figure 1 (left panel) we see that,
M(α) ∈M◦

0 for α ∈ [−4, 8/3]. On the other hand, the right panel plot shows that Var(Z0(α)) may
be relatively large for α 6= 1, and that the Doob martingale (i.e. α = 1) is the only surely optimal one
in our parametric family. Moreover, the objective function due to the optimal randomization attains its
unique minimum at the Doob martingale, i.e. for α = 1. Further, the variance of the corresponding
optimally randomized estimator attains its unique minimum zero also at α = 1. Let us note that
these observations are anticipated by Theorem 3.2 and Corollary 3.3. The catch is that for each
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Figure 1: Left panel: objective functions O0(α) (no randomization), O1(α) (optimal randomization),
and O1 (“naive” randomization); right panel: relative deviations of Z0(α) (without randomization),
Z1(α) (optimal randomization), Z1(α) (“naive” randomization)

α 6= 1 the randomized M(α) fails to be optimal in the sense of (3.6). We also see that both the
optimal and the “naive” randomization render the minimization problem to be strictly convex. Moreover,
while the minimum due to the “naive” randomization lays significantly above the true solution, the
argument where the minimum is attained, α say, identifies nonetheless a martingale that virtually
coincides with the Doob optimal one. That is, α ≈ 1 and M(α) is optimal corresponding to variance
Var(Z0(α)) ≈ 0, which can be seen in the right panel.

5.2 Bermudan call in a Black-Scholes model

In order to exhibit the merits of randomization based on the theoretical results in this paper in a more
realistic case, we have constructed an example that contains all typical features of a real life Bermudan
option, but, is simple enough to be treated numerically in all respects on the other hand.

As in the previous example we take J = 2, and specify the (discounted) cash-flows Zj as functions
of the (discounted) stock prices Sj by

Z0 = 0, Z1 = (S1 − κ1)+, Z2 = (S2 − κ2)+ (5.2)

For S we take the Black-Scholes model

Sj = S0 exp(−1

2
σ2j + σWj), j = 0, 1, 2, (5.3)

where W1 ∼ N (0, 1) and W1,2 := W2 − W1 ∼ N (0, 1) , independent of W1. As such we
have a stylized example of a Bermudan call option under a Black-Scholes model with two (non-trivial)
exercise dates if κ2 > κ1 ≥ 0. Note that usually a Bermudan call is considered for a fixed strike and
a dividend paying stock, yielding a non-trivial optimal stopping time. Though increasing strikes here
look somewhat unusual, it is simple for presentation while, mathematically, the effect is the same as
for a dividend paying stock and a fixed strike. For the continuation function at j = 1 we thus have

C1(W1) = EW1

[(
S0 exp(−σ2 + σW2)− κ2

)+]
=

∫ (
S0 exp(−σ2 + σW1 + σz)− κ2

)+
φ(z)dz, (5.4)

where φ(z) = (2π)−1/2 exp(−z2/2) is the standard normal density. While abusing notation a bit
we will denote the cash-flows by Z1(W1) and Z2(W2) = Z2(W1,W1,2), respectively. For the (dis-
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counted) option value at j = 0 one thus has

Y ?
0 = E [max (Z1(W1), C1(W1))]

=

∫
max

((
S0 exp(−1

2
σ2 + σz)− κ1

)+

, C1(z)

)
φ(z)dz

Further we obviously have

Y ?
1 (W1) = max (Z1(W1), C1(W1)) and Y ?

2 (W2) = Z2(W2) = Z2(W1,W1,2).

The Doob martingale for this example is thus given by

M?
0 = 0, M?

1 = Y ?
1 (W1)− Y ?

0 , M?
2 −M?

1 = Z2(W1,W1,2)− C1(W1)

and the non-decreasing predictable component A? is given by

A?0 = A?1 = 0, A?2 = Y ?
1 (W1)− C1(W1).

For demonstration purposes we will quasi analytically compute the optimal randomization coefficient
in (3.7),

Y ? − Z + A? =


Y ?
0 j = 0,

(C1(W1)− Z1(W1))
+, j = 1,

(Z1(W1)− C1(W1))
+, j = 2.

by using a Black(-Scholes) type formula

C1(W1) = S0 exp(−1

2
σ2 + σW1)N

(
W1 +

1

σ
ln(S0/κ2)

)
− κ2N

(
W1 +

1

σ
ln(S0/κ2)− σ

)
,

and a numerical integration for obtaining the target value Y ?
0 . We now consider two martingale families.

(M-Sty) For any α = (α11, α12, α21, α22) we set

M sty
1 (α,W ) := α11 (Y ?

1 (W1)− Y ?
0 −W1) + α12W1 (5.5)

M sty
2 (α,W ) := M sty

1 (α,W ) + α21 (Z2(W1,W1,2)− C1(W1)−W1,2) + α22W1,2.

Note that M sty((1, 1, 1, 1),W ) = M?(W ).

(M-Hermite) Using that the (probabilistic) Hermite polynomials given by

Hek(x) = (−1)ke
x2

2

(
d

dx

)k
e−

x2

2 , k = 0, 1, 2, ...,

are orthogonal with respect to the standard Gaussian density we consider a martingale family

MH
1 (α,W ) =

K∑
k=1

α1,kHek(W1) (5.6)

MH
2 (α,W ) = MH

1 (α,W ) +
K∑
k=0

L∑
l=1

α2,k,lHek(W1)Hel(W1,2),

with obvious definition of α ∈ RK ⊕ R(K+1) × RL (note that He0 ≡ 1). Since our mere
goal is to exhibit the effect of randomization, for the examples below we restrict ourselves to the
choice K = L = 3.
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The parameters in (5.2) and (5.3) are taken to be such that with a medial probability optimal exercise
takes place at j = 1. In particular, we consider two cases specified with parameter sets

(Pa1): S0 = 2, σ2 =
1

3
, κ1 = 2, κ2 = 3, target value Y ?

0 = 0.164402,

(Pa2): S0 = 2, σ2 =
1

25
, κ1 = 2, κ2 =

5

2
, target value Y ?

0 = 0.496182,

respectively. From Figure 2 we see that the probability of optimal exercise at j = 1 is almost 50%
for (Pa1) and almost 30% for (Pa2). Let us visualize on the basis of martingale family (M-Sty) and
parameters (Pa1) the effects of randomization. Consider the objective function

Oθ(α) := Ẽ
[

max
0≤j≤2

(
Zj −M sty

j (α) + θξj
(
Y ?
j − Zj + A?j

))]
. (5.7)

where θ scales the randomization due to i.i.d. random variables (ξj), uniformly distributed on [−1, 1].
I.e., for θ = 0 there is no randomization and θ = 1 gives the optimal randomization. Now restrict
(5.7) to the sub domain α = (α1, α1, α2, α2) =: (α1, α2) (while slightly abusing notation), i.e.
α11 = α12 = α1 and α21 = α22 = α2. The function O0(α1, α2), i.e. (5.7) without randomization
is visualized in Figure 3, where expectations are computed quasi-analytically with Mathematica. From
this plot we see that the true value Y ?

0 = 0.164402 is attained on the line (α1, 1) for various α1

(i.e. not only in (1, 1)). On the other hand, O1(α1, α2) i.e. (5.7) with optimal randomization, has
a clear strict global minimum in (1, 1), see Figure 4. Let us have a closer look at the map α1 →
Oθ(α1, α1, 1, 1) for θ = 0 and θ = 1, respectively, and also at α1 → O0.16(α1, α1, 1, 1) due to the
“naive” randomization

O0.16(α1, 1) := Ẽ
[

max
0≤j≤2

(
Zj −M sty

j (α1, 1) + 0.16 ξj
)]
,

where the scale parameter θ = 0.16 is taken to be roughly the option value. (It turns out that the
choice of this scale factor is not critical for the location of the minimum.) In fact, the results, plotted in
Figure 5, tell there own tale. The second panel depicts the relative deviation of

Z0(α1, 1) := max
0≤j≤2

(
Zj −M sty

j (α1, 1)
)
.

In fact, similar comments as for the example in Section 5.1 apply. The “naive” randomization attains its
minimum at α1 = 0.9, which we red off from the tables that generated this figure. We thus have found
the martingale M sty(0.9, 1), which may be virtually considered surely optimal, as can be seen from
the variance plot (second panel). Analogue visualizations for the parameter set (Pa2) with analogue
conclusions may be given, though are omitted due to space restrictions.

Let us now pass on to a Monte Carlo setting, where we mimic the approach in real practice more
closely. Based on N simulated samples of the underlying asset model, i.e. S(n), n = 1, ..., N, we
consider the minimization

α̂θ := arg min
α

1

N

N∑
n=1

[
max
0≤j≤2

(
Z

(n)
j −M

(n)
j (α) + θξj

(
Y
?(n)
j − Z(n)

j + A
?(n)
j

))]
(5.8)

for θ = 0 (no randomization) and θ = 1 (optimal randomization), along with the minimization

α̂θnaive := arg min
α

1

N

N∑
n=1

[
max
0≤j≤2

(
Z

(n)
j −M

(n)
j (α) + θnaive

j ξj

)]
(5.9)

DOI 10.20347/WIAS.PREPRINT.2810 Berlin 2021



D. Belomestny, J.G.M. Schoenmakers 22

based on a “naive”randomization where the coefficients θnaive
j , j = 0, 1, 2 are pragmatically chosen.

In (5.8) and (5.9) M stands for a generic linearly structured martingale family, such as (5.5) and (5.6)
for example. The minimization problems (5.8) and (5.9) may be solved by linear programming (LP).
They may be transformed into a suitable form such that the (free) LP package in R can be applied.
This transformation procedure is straightforward and spelled out in [7] for example. In the latter paper
it is argued that the required computation time scales with N due to the sparse structure of the coef-
ficient matrix involved in the LP setup. However, taking advantage of this sparsity requires a special
treatment of the implementation of the linear program in connection with more advanced LP solvers
(as done in [7]). Since this paper is essentially on the theoretical justification of the randomized dual-
ity problem (along with the classification of optimal martingales), we consider an in-depth numerical
analysis beyond scope of this paper.

For both parameter sets (Pa1) and (Pa2), and both martingale families (5.5) and (5.6) with K = L =
3, we have carried out the LP optimization algorithm sketched above. We have taken N = 2000 and
for the “naive” randomization

θnaive
0 = 1.6 for (Pa1), θnaive

0 = 4.8 for (Pa2), and simply θnaive
1 = θnaive

2 = 0.

In the Table 1, for (Pa1), and Table 2, for (Pa2), we present for the minimizers α̂0, α̂1, α̂θnaive the in-
sample expectation m̂, the in-sample standard deviation σ̂/

√
N, and the path-wise maximum due to

a single trajectory σ̂, followed by the corresponding “true” values mtest, σtest/
√
N test, σtest, based on

a large “test” simulation of N test = 106 samples.

(Pa1) M sty MH

α̂0 α̂θnaive α̂1 α̂0 α̂θnaive α̂1

m̂ 0.16243 0.16399 0.16403 0.16268 0.16560 0.16696

σ̂/
√
N 0.00573 0.00036 0.00029 0.00574 0.00113 0.00118

σ̂ 0.25639 0.01608 0.01278 0.25676 0.05063 0.05293
mtest 0.16490 0.16445 0.16442 0.16709 0.16664 0.16685

σtest/
√
N test 0.00026 0.00001 0.00001 0.00026 0.00005 0.00005

σtest 0.26096 0.01460 0.01064 0.26439 0.05083 0.05153

Table 1: LP minimization results due to M sty and MH for (Pa1)

(Pa2) M sty MH

α̂0 α̂θnaive α̂1 α̂0 α̂θnaive α̂1

m̂ 0.48748 0.49471 0.49490 0.49329 0.50082 0.50546

σ̂/
√
N 0.02064 0.00201 0.00152 0.02076 0.00318 0.00308

σ̂ 0.92301 0.08981 0.06801 0.92852 0.14222 0.13762
mtest 0.49820 0.49639 0.49633 0.51079 0.50870 0.50912

σtest/
√
N test 0.00095 0.00009 0.00007 0.00097 0.00016 0.00015

σtest 0.95415 0.09038 0.06674 0.97272 0.16047 0.15103

Table 2: LP minimization results due to M sty and MH for (Pa2)

The results in tables Tables 1-2 show that even a simple (naive) randomization at j = 0 leads to a
substantial variance reduction (up to 10 times) not only on training samples but also on the test ones.
We think that for more structured examples and more complex families of martingales even more
pronounced variance reduction effect may be expected. For example, in general it might be better to
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take Wiener integrals, i.e. objects of the form
∫
α(t,Xt)dW, where α runs through some linear space

of basis functions, as building blocks for the martingale family. Also other types of randomization can
be used, for example one may take different distributions for the r.v. ξ. However all these issues will
be analyzed in a subsequent study.
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Figure 2: Cash-flow Z1 versus continuation value C1 as a function of W1 for (Pa1) (left) and (Pa2)
(right)

Figure 3: Object function for BS-Call (Pa1) without randomization as function of (α1, α2)
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Figure 4: Object function for BS-Call (Pa1) with optimal randomization as function of (α1, α2)
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Figure 5: Left panel: object functions of α1, with α2 = 1 fixed, for BS-Call (Pa1) without, optimal, and
“naive” randomization; right panel: relative deviation of Z0(α1, 1) (i.e. without randomization)
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