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Abstract 

We give an account of the Pinsker bound describing the exact asymptotics of 
the minimax risk in a class of non parametric smoothing problems. The parame~er 
spaces are Sobolev classes or ellipsoids, and the loss is of squared L2-type. The 
result from 1980 turned out to be a major step in the theory of nonparametric 
function estimation. 

Consider observation of a Gaussian white noise model 

dy(t) = f (t)dt -t n-1!2a dW(t), t E (0, 1] (1) 

where dW ( t) is the derivative of standard Brownian motion and n -+ oo and a is fixed. 
Assume the function f is in a function class E, defined as follows. Let 11·112 be the Lr 
norm on [O, 1], and let J(m) be the generalized derivative of f in the sense that f (m-l) 

is absolutely continuous. The periodic Sobolev class W2(M) is the class of functions 
on [O, 1] which satisfy llJ(m) II~ ::; M and where periodic boundary conditions hold: 
Dk f (0) =Dk f (1), k = 0, ... , m -1. Let J be an estimator off based on observations 

of the process y(t), t E [O, 1] and consider a loss llJ - f 11:. Consider the minimax risk 
over all estimators: 

Rn(E) = iJ:!fsupEn,/ llJ- Jll 2
. 

f f E~ 2 
(2) 

Pinsker's theorem [44] says that for E = W2(M) 

lim n2m/(2m+l) Rn (E) = ( (]' / 7r )2m/(2m+l) Ml/(2m+l) pm 
n-+oo 

(3) 

where 
p = m . (2m + 1)1/(2m+l) 

( ) 

2m/(2m+l) 

m (m + 1) (4) 

is the Pinsker constant (in the narrow sense). The importance of that results is that 
it provides the exact asymptotic behaviour of the minimax risk, i. e. not only the 
"optimal rate of convergence for estimators" n-2m/(2m+i), but also the "optimal con-
stant" , i.e. the right hand side of (3). The rate n-2m/(2m+i} for the convergence 
Rn(W2(M)) -+ 0 had been established before by Ibragimov and Khasminskii ([35], 
chap. VII). Pinsker's bound represents a breakthrough ill non parametric estimation 
theory, by allowing comparison of estimators on the level of constants r.ather than just 
comparing rates of convergence. In parametric theory, such constants are given in the 
form of" Fisher's bound for asymptotic variances" and its modern version (the Hajek-
LeCam asymptotic minimax theorem). Consider e. g. the case where f is constant: 

E = { f : f = {) 1, '192 
::; M} . 

Then estimating f with the above loss means just estimating {) with squared loss, and 
from general parametric estimati.on theory 

lim .n Rn(E) = a 2 

n-+oo 
(5) 
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Here the rate is n-1 and the constant is a 2 . Thus, Pinsker's bound (3) can be seen as 
an analog of Fisher's bound for an ill-posed (non-y'n"..:consistent) function estimation 
problem. 

The ellipsoid framework for sequence data 

Actually Pinsker's result [44] was developed in a more general framework of a parameter 
space given as an ellipsoid. Consider countably many observations 

y j = e j + € ~j, i = i, 2, . . . ( 6) 

where ~i are i.i.d. N(O, a 2), E > 0 is the noise size, and the sequence e = (Oi) is in l2 . 

Consider a parameter space 

e = { o : f, a;OJ :::; M} 
J=l 

(7) 

·where a = ( ai) is a sequence of nonnegative numbers, ai --+ oo, i. e. e is an ellipsoid 
in l2 . Consider the problem of estimating the parameter 8 with a loss given by the 
squared norm in l2 . A linear filter is a sequence c = ( Cj) E l2 such that 0 :::; Cj :::; 1 for 
all j. For such a c, a linear filtering estimate of B is given by {Jc = ( CjYi). Pinsker's 
result is obtained by looking at the minimax estimator within this class: define 

RL,e(8) = inf sup Ee,e ll{Jc - 011
2 

• (8) 
c eee G 

Along with this minimax risk over a restricted class of estimators, consider the risk 
over arbitrary estimators (analogous to 2) 

Re(e) = il!f sup Ee,e lle - 011
2 

. (9) e eee G 

In this framework, Pinker's result takes the following remarkable form (notation a rv b 
means a= b(l + o(l))): if RL,e(8)/E2 --+ oo then 

Re(e) rv RL,e(e), €--+ 0. (10) 

In words, the minimax linear filtering estimate is asymptotically minimax among all 
estimators. The asymptotics of RL,e(8) can often be found as regards rates and con-
stants, and then gives rise to results like (3), ( 4). The minimax linear filter is easy 
to calculate in the above framework. For any {Jc we have by the usual bias-variance 
decomposition 

2 00 00 

En,e llec - ollz = I)1 - Cj) 28} + €
2 Le]= Le(c, 8), 

2 j=l j=l 

(11) 

say. Set 0(2) = ( 8]); then Le ( c, 8) is concave in 8(2) and convex in c, and 8(2 ) varies in 
a compact, convex subset of l2 if 8 E e while c varies in a closed convex subset of l2 . 

Hence 
RL,e(8) = inf sup Le(c, 8) =sup in~ Le(c, 8) 

c eee eee c 
(12) 
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and there is a saddle point ( c;, e;). This saddle point is found as follows (see e. g. 
Belitser and Levit [1]. Observe that there exists a unique solution µf. of 

(where x+ = x V 0). Then 

(13) 

and e; has components E2 (µ;1aj 112 -1)+ for ai > 0, 0 otherwise. Thus the asymptotics 
of RL,e(8) = Le( c;, e;) is made explicit in its dependence upon a, M and €. The 
principal case is that ai rv ( 7rj) 2m, j --+ oo, where a calculation yields 

RL,e(8) rv €-4m/(2m+l) (M/7r2m)l/{2m+l) Pm 

with Pm from (4). This coincides with (3) for€= n-112a. 

(14) 

THE MODEL (1) WITH PARAMETER SPACE W2(M) AS A SPECIAL CASE. Consider 
the trigonometric orthonormal basisinL2 (0, 1): put cp1 (t) = 1, cp2k(t) = 2-1/ 2 cos(27rkt), 
cp2k+i(t) = 2-1/ 2 sin(27rkt) for k 2:: 1. The model (1) can be mapped canonically to 
a sequence model (6) via Yi = J 'Pi(t)dy(t). Then the components of the signal are 
ei = J 'Pi(t)fj(t)dt, i. e. the Fourier coefficients off, and it is known that 

By Parseval's identity we also have 11!11~ = l1Bll~2 , so that the loss functions coincide. 
Then Rn(W2m(M)) from (2) coincides with Re(8) from (9) for € = n-1!2 a and for an 
ellipsoid 8 = 8(a, M) given by ai = (7rj)2m for even j, ai = (7r(j - 1))2m for uneven 
j. Thus the asymptotics is ai rv ( 7rj) 2m for j --+ oo as above. 

Estimating a bounded normal mean 

Consider the following variant of the model (6), (7): we observe 

Yi = Bi + ~i, j = 1, .. ., n ( 16) 

and the problem is to estimate the n-dimensional paramet~r e = ( ej) with normed 
squared Euclidean loss n-1 11·112

. The parameter space is 8 = {B : n-1 llBll 2 
:::; M}. 

(Strictly speaking this is not a special case of (6), (7), but can be transformed via 
e = n-112e into an extended ellipsoid model where € = n-1/ 2 and a is allowed to 
depend on n, and a1 = 1, j :::; n, ai = oo for j > n). Let Rn(8) be the minimax risk 
over all estimators. 
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UPPER ASYMPTOTIC BOUND. Consider the linear filter Cj = M/(M + 1), j = 1, ... 'n. 
Then from (11) we obtain 

2 n 

En,on- 1 llec - ell = n-1 L((1/(M+1)2)eJ + M2 /(M + 1)2
) ~ M/(M + 1). 

j=l 

LOWER ASYMPTOTIC BOUND. Note that we need only consider estimators {J with 

values in 8, i. e. such that n-1 11011
2 
~ M. Let Qn be a prior distribution Qn on R" 

(not necessarily concentrated on 8) and let rn(Qn) be the associated Bayes risk. Then 

R,.(8) > Tn(Qn) - s~p L En,en-1 llB - 011
2 

Qn(dO) 

> r n( Qn) - 2M Qn(8c) - 2 (! n-2 11011 4 Qn( dO)) 
112 

QY2 (8c). 

Take Qn such that ei are i.i.d. N(O, 52 M) for some 5 < 1. Then 

n 

Qn(ec) = Pr(n-1 Le;> M) --+ 0 (17) 
j=l 

from the law of large numbers, and 

A standard reasoning for Gaussian priors yields 

n 

r(Qn) = n-1 L(52 M/(1+52 M)) = 52 M/(1+52 M). 
j=l 

Letting 5 / 1 we obtain 

lim inf Rn(8) ~ M/(M + 1). 
n 

D 

In this simple model the Pinsker bound Rn(8) rv M/(M + 1), n--+ oo is the result of 
a dimension asymptotics effect when estimating a bounded normal mean in Euclidean 
space. A connection with Stein estimation in this setting is discussed by Beran [3). 

Background: Bayes-minimax problems 

In the model (16) Rn(8), RL,n(8)' and rn(Q) are .the minimax risk, the minimax risk 
among linear filters and the Bayes risk, respectively. Let us consider the case n = 1; 
for this we omit the subscript n. Thus we look at the univariate problem of estimating 
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8 from data y having distribution N ( 8, 1), with quadratic loss and parameter space 
6 = { 8 : 82 ~ M}. A linear estimator ec is given byec = cy where c is a real number. 
Its risk is 

Ee(ec - 8) 2 = (1 - c) 2B2 + c2 = L(c, 8), 

say. For given 8, the best linear estimator is given by c(82 ) = 82 /(82 + 1), c(82 ) is a 
linear filter, and the risk is 82 /(82 + 1). In view of the minimax theorem (12), Bc(M) is 
minimax among linear estimators and 

RL(e) = M/(M + 1). 

Note that ec(e2
) has another interpretation as a Bayes estimator: for a prior distribution 

Q on 8 having EQ82 = o- 2 , not necessarily concentrated on e, the mixed risk is again 

Hence ec(u2
) is the Bayesian-among-linear estimator for Q, with risk o-2 /(o-2 + 1). This 

estimator is actually Bayesian if Q = Nu2 = N(O, o-2 ). Hence 

r(NM) = M/(M + 1) = RL(G). 

Moreover, Donoho and Johnstone [4] establish the following: 

sup r(Q)=r(NM)· (18) 
Eq82'$_M 

Thus RL(G) is also the solution of a Bayes-minimax problem: it is a least favorable 
Bayes risk over Q: EQ82 ~ M. Consider now the model (16) for general n; it is obvious 
by reasons of symmetry that again 

and that for any Q we have rn(Q®n) = r(Q). Since RL,n(G) ~ Rn(G), the minimax 
risk Rn ( e) is bracketed 

sup rn(Q) ~ Rn(G) ~ sup rn(Q®n). 
suppQC8 Eq82'$.M 

This gives the basic heuristics for the validity of the Pinsker bound. Distributions Q®n 
with EQ82 < M do not have support in 6 in general, but as n __, oo they tend to 
be concentrated on e ( cp. the law of large numbers (17) ), so that asymptotically the 
upp·er and lower brackets coincide. 
The special role of Gaussian priors in the symmetric setting (16) is determined by 
(18); in the general "oblique" ellipsoid case (6) product priors with non-identical com-
ponents are appropriate. The proof in [44] employs also non-Gaussian components, 
in dependence on the size of ai. Bayes-minimax problems in relation to the Pinsker 
bound are discussed by Heckman and Woodroofe [34], Donoho, MacGibbon and Liu 
[6], and Donoho and Johnstone [4]. 
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RENORMALIZATION AND CONTINUOUS MINIMAX PROBLEM. Let us sketch a derivation 
of the asymptotics (14) by a renormalization technique. Suppose that ai = (nj) 2m and 
consider linear filters Cj = c(hj), where c: [O, oo) r--7 [O, l] is a "filter function" (assumed 
Riemann integrable) and his a bandwidth parameter, tending to 0 for E--+ 0. Consider 
also a Gaussian prior measure N(O, a}) for ei where O'j = M7r- 2mh2m+IO'(jh) for a 
(continuous) function O' : [O, oo) r--7 JR, fulfilling 

1"" x2ma2(x)dx :::; 1. (19) 

Then the restriction O' E 8 is asymptotically satisfied since 
00 00 

M > L ajO'J = Mh L(jh)2m0'_2 (jh) 
j=l j=l 

~ M 1"" x2ma2(x)dx, h ~ 0. 

A choice h = (E27r2m /M) 11(2m+i) and a similar reasoning for the functional Lf.(c, O') 
gives 

LE ( c, (]') rv €4m/(2m+l) ( M / 7r2m) 1/(2m+l) Lo ( c, O') (20) 
where 

Lo(c, a) = 1"" (1 - c(x))2a2(x)dx + 1"" c2(x)dx. 

The saddle point problem (12) for each E is thus asymptotically expressed in terms of 
a fixed continuous problem. The solution is as follows, cf. Golubev [17]. There is a 
unique solution A* of the equation 

(21) 

Then the saddle point (c*, 0'2*) is given by 

(22) 

and the Pinsker constant Pm from ( 4) is the value of the game: 

Pm = Lo(c*, 0'
2*) = inf sup Lo(c, O'). 

c J x2mu2(x)d:i:~l 

The function c*(x) in (22) has sometimes been called the Pinsker filter (cp. c; in (13)). 
The continuous saddle point problem arises naturally in a continuous Gaussian white 
noise setting (1) and a parameter space described in terms of the continuous Fourier 
transform ( cf. Golubev [17]), e. g. a Sobolev class of functions on the whole real 
line. Using the basic structure of the above renormalization argument, it is easy to 
mimick the rigorous ·proof in the model (16) above for a proof of (3). The Gaussian 
prior distribution then should be taken for the saddle point function O'* with respect 
to a restriction J x2m0'2(x)dx::; 5 < 1; cf. [41] for details . 
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Statistical applications and further developments 

The result of Pinsker [44] for the signal in white noise model (1) or (6) gave rise to 
a multitude of results in related nonparametric curve estimation problems having a 
similar structure. · 

N ONPARAMETRIC DENSITY ESTIMATION. Efromovich and Pinsker [8] treated the case 
of observed i.i.d. random variables Yi, j = 1, ... , n with values in [O, 1] having a density 
f. This density is assumed to be in a set E which has an ellipsoid representation in 
terms of the Fourier basis (cp. (15)): 

E = { J : J = ~ ei'Pi, 81 = 1, ~ a;BJ ::0: M} ; 
then E+ = En{! : f(x) 2: 0, x E [O, 1]} is a set of densities .. Let .Rn(E+) be the 
minimax risk for the density problem defined analogously to (2) and let RL,e(8) be the 
minimax linear filtering risk (8) in a discrete white noise model with c = n-1/ 2 and 
ellipsoid given by coefficients ai where a1 = O; then under a condition ai /log j --+ oo 
for j --+ oo we have, similarly to ( 10) 

and in the main case of a periodic Sobolev class one obtains again (14). Indeed for 
a2k = a2k+l == (27rk )2m, k 2: 1 the class E+ above coincides with the set of densities in 
W;1 ( M). The proof relies essentially on a kind of uniform LAN property, individually 
for each Fourier coefficient ek = J f <.pk considered as a functional of f. Similar re-
sults were .obtained for spectral density estimation for an observed Gaussian stationary 
sequence, cf. Efromovich and Pinsker [7], Golubev [24], [25]. 

NONPARAMETRIC REGRESSION. Consider observations 

Yi == f ( ti) + (i, i ::= 1, ... , n (23) 

where (i are i. i. d. N(O, 1) , ti = i/n and f is a smooth function on [O, l]. The Sobolev 
class W2(M) is the class of functions on [O, 1] which satisfy llJ(m) II~ ::; M (without 
periodic boundary conditions). Consider a semi scalar product(!, g)n = l:~=l f(ti)g(ti) 
and the associated seminorm II! 11 2 n = (!, !)~12 , and define a minimax risk .Rn(E) as in 

, '2 

( 2) but for a "design loss" 11 j - f I I 2 n. Then in the case E = w;i ( M) the asym ptotics 
(3) obtains, cf. [41]. The key for 'this result is the representation of the model in 
the ellipsoid form (6}, (7). This can be achieved using the Demmler-Reinsch spline 
basis, which is an orthonormal set of functions <.pj,n, j = 1, ... , n with respect to (·, ·)n 
and which simultaneously diagonalizes the quadratic form (j(m), g(m)) (the expression 
(-, ·) denotes scalar product in L2 (0, 1)). The numbers ain = (cp)7·;), cp);)) represent 
the coefficients ai in (7). Then the analytic result is required that ajn rv (7rj) 2m with 
appropriate uniformity inn, so that again (14) can be inferred. The optimal estimator 
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of f then is of the linear filtering type in terms of the Demmler-Reinsch spline basis 
and the Pinsker filter c* from (22). 
Speckman [46] independently found this estimator as minimax linear and gave its risk 
asymptotics; he used the following setting. Call an estimator j off in (23) linear if it is 
linear in the n-dimensional data vector y; then J = Ay where A is a nonrandom linear 

operator. The estimator J is minimax linear if it minimizes sup/EE En,f llJ - 111:,n 
among all linear estimators. In (8) only linear filtering estimates are admitted; it 
turns out that in the ellipsoid case the minima coincide ( cf. Pilz [43)). Thus another 
paraphrase of (10) is that the minimax linear estimator is asymptotically minimax 
among all estimators. 
The spectral asymptotics of differential quadratic forms like (j{m), f(m)) turns out to 
be crucial, since it governs the behaviour of the ellipsoid coefficients ai. If spectral 
values are calculated with respect to (!, !) rather than to (!, J)n (which corresponds 
to observations (1) with parameter space W2(M)) then the appropriate basis consists 
of eigenfunctions of a differential operator, cf. [28], sec. 5.1. The spectral asymptotics 
is known to be ai rv ( 7rj)2m. 'The spectral theory for differential operators allows to 
obtain the Pinsker bound for quite general Sobolev smoothness classes on domains of 
JR_k; for the periodic case on a hypercube domain cf. [40]. 

ASYMPTOTICALLY GAUSSIAN MODELS. The proof for the cases of density and spectral 
density estimation ([7], [8]) is based on the asymptotic Gaussianity of those models, in 
the problem of estimating one individual Fourier coefficient. Inspired by this, Golubev 
[21] formulated a general LAN type condition for a function estimation problem for 
the validity of the lower bound part of the Pinsker bound. The regression case (23) 
with nongaussian noise (i in (23) was treated in [28]; for random design regression cf. 
Efromovich [13]. 

ANALYTIC FUNCTIONS. The case of m-smooth functions where ai rv (7rj) 2m was 
treated as a standard example here, but another important case in the ellipsoid asymp-
totics is ai rv exp(f3j). Then (14) is replaced by 

RL,n(G) rv (t:2 logt:-1 ) 13-1. 

The exponential increase of ai corresponds to the case of analytic functions; cf. Gol-
u bev, Levit, Tsybakov [27]. Ibragimov and Khasminskii [36] obtained an exact risk 
asymptotics in a case where the functions are even smoother (entire functions of ex-
ponential type on the real line) and the rate is t:2 , even though the problem is still 
non parametric. 

ADAPTIVE ESTIMATION.' The minimax linear filtering estimate attaining the bound 
(10) depends on the ellipsoid via the set of coefficients a and M. A siginificant result of 
Efromovich and Pinsker [9] is that this attainment is possible even when a and M are 
not known, provided a varies in some large class of coefficients. TheEfromovich-Pinsker 

· algorithm of adaptive estimation ( cf. also Efromovich [10]) thus allows to attain the 
bound (3) for periodic Sobolev classes by an estimator which does not depend on the 
degree of smoothness m and on the bound M. This represented a considerable advance 
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in adaptive smoothing theory, improving respective rate of convergence results; for 
further developments and related theory cf. results in [19), [20), [29), [30], [24] and the 
discussion in [28]. 

OTHER CONSTANTS. Korostelev [39] obtained an analog of (3) when the squared Lr 
Joss 11·11~ is substituted by the sup-norm loss and the Sobolev function class W2(M) is 
replaced by a Holder class of smoothness m (a class where f satisfies a Holder condition 
with exponent m E (0, 1] uniformly on [O, l]). The rate in n then changes to include 
a logarithmic term and naturally the constant in (3) is another one; this Korostelev 
constant represents a further breakthrough and stimulated the search for constants in 
nonparametric function estimation. Tsybakov [47] was able to extend the realm of the 
Pinsker theory to loss functions l (11·II2) where l is monotone and possibly bounded. An 
analog of the Pinsker bound for nonparametric hypothesis testing was established by 
Ermakov [14]; cf. also Ingster [37]. 

BESOV BODIES AND WAVELET ESTIMATION. Above it was seen that the case of data 
(16) and parameter space 8 = { e : 2:~=1 BJ :::; M} is in some sense the simplest model 
where the Pinsker phenomenon (10) occurs. Donoho, MacGibbon and Liu [6] set out 
to investigate more general parameter spaces like 8 = { e : l:j=1 e1j :::; M} (p-bodies); 
further results were obtained by Donoho and Johnstone [4]. It was found that (10) 
occurs only for p = 2; linear estimators were found to be asymptotically nonoptimal 
for. p < 2, and threshold rules were described as nonlinear alternatives. The limitation 
of the Pinsker phenomenon to a Hilbertian setting thus became apparent; however 
this stimulated the development of nonlinear wavelet smoothing for function classes 
representable as Besov bodies (cf. Donoho and Johnstone [5]). 

REMARK. Several developments and facets of the theory have not been discussed here; 
these include applications in deterministic settings ([31], [32], [33]), inverse problems 
([15], [16]), design of experiments ([28], [22]), discontinuities at unknown points ([42]). 
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