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High order discretization methods for spatial-dependent SIR
models

Bálint Takács, Yiannis Hadjimichael

Abstract

In this paper, an SIR model with spatial dependence is studied and results regarding its sta-
bility and numerical approximation are presented. We consider a generalization of the original
Kermack and McKendrick model in which the size of the populations differs in space. The use of
local spatial dependence yields a system of integro-differential equations. The uniqueness and
qualitative properties of the continuous model are analyzed. Furthermore, different choices of
spatial and temporal discretizations are employed, and step-size restrictions for population con-
servation, positivity, and monotonicity preservation of the discrete model are investigated. We
provide sufficient conditions under which high order numerical schemes preserve the discrete
properties of the model. Computational experiments verify the convergence and accuracy of the
numerical methods.

1 Introduction

During the millenia of the history of mankind, many epidemics have ravaged the population. Since
the plague of Athens in 430 BC described by historian Thucydides (one of the earliest description of
such epidemics), researchers tried to model and describe the outbreak of illnesses. More recently, the
outbreak of COVID-19 pandemic revealed the importance of epidemic research and the development
of models to describe the public health impact of major virus diseases.

Nowadays many of the models used in science are derived from the original ideas of Kermack and
McKendrick [26] in 1927, who constructed a compartment model to study the process of epidemic
propagation. In their model the population is split into three classes: S being the group of healthy
individuals, who are susceptible to infection; I is the compartment of the ill species, who can infect
other individuals; and R being the class of recovered or immune individuals.

The original model of Kermack and McKendrick took into account constant rates of change and ne-
glected any natural deaths and births or vaccination. In this work, we also consider constant rates of
change and moreover we include a term, c S(t), that describes immunization effects through vaccina-
tion. The SIR model takes the form

d

dt
S(t) = −aS(t)I(t)− c S(t),

d

dt
I(t) = aS(t)I(t)− b I(t),

d

dt
R(t) = b I(t) + c S(t),

(1.1)

where the positive constant parameters a, b and c respectively correspond to the rate of infection,
recovery and vaccination.
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B. Takács, Y. Hadjimichael 2

Since the introduction of the model (1.1) in 1927, numerous extensions were constructed to describe
biological processes more efficiently and realistically. A natural extension is to take into account the
heterogeneity of our domain in a way that we examine not only the change of the populations in time,
but also we observe the spatial movements. Kendall introduced such models that transformed the
system of ordinary differential equations (1.1) into a system of partial differential equations [24, 25].

The time-dependent functions in (1.1) represent the number of individuals in each class, but contain
no information about their spatial distribution. Instead, one can replace these concentration functions
with spatial-dependent functions describing the density of healthy, infectious and recovered species
over some domain in Rd [35]. In this paper we consider a bounded domain in R2, hence the system
(1.1) is recast as 

∂

∂t
S(t, x, y) = −aS(t, x, y)I(t, x, y)− c S(t, x, y),

∂

∂t
I(t, x, y) = aS(t, x, y)I(t, x, y)− b I(t, x, y),

∂

∂t
R(t, x, y) = b I(t, x, y) + c S(t, x, y).

(1.2)

However, the model (1.2) is still insufficient as it does not allow the disease to spread in the domain
but only accounts for a point-wise infection. Spatial points do not interact with each other but infect
species only at their location. In order to allow a realistic propagation of the infection, we assume
that an infected individual can spread the disease on susceptible species in a certain area around its
location. Let us define a non-negative function

G(x, y, r, θ) =

{
g1(r)g2(θ), if

(
x̄(r, θ), ȳ(r, θ)

)
∈ Bδ

(
x, y
)
,

0, otherwise,
(1.3)

that describes the effect of a single point (x, y) in a δ-radius neighborhood Bδ

(
x, y
)
, and set

x̄(r, θ) = x + r cos(θ) and ȳ(r, θ) = y + r sin(θ). The function G(x, y, r, θ) demonstrates how
healthy individuals at points (x̄(r, θ), ȳ(r, θ)) are infected by the center point (x, y), where r ∈ [0, δ]
is the distance from the center and θ ∈ [0, 2π) is the angle. We assume that the right-hand-side of
(1.3) is separable. The effect of the point (x, y) depending on the distance from the center is described
by g1(r); a decreasing, non-negative function that is equal to zero for values r ≥ δ (since there is no
effect outside Bδ

(
x, y
)
). Function g2(θ) characterizes the part of the effect depending on the angle,

i.e., the direction in which the center is compared to point (x̄(r, θ), ȳ(r, θ)). The case of constant
function g2(θ) is widely studied in [12] and [13], while such a non-constant function may be useful in
the case of modeling the spread of diseases in a forest with a constant wind blowing in one direction
which was described in [35]. In both cases it is supposed that the function is periodic in the sense that
g2(0) = limθ→2π g2(θ).

The nonlinear terms of the right-hand side of (1.2) describe the interaction of susceptible and infected
species. We can now utilize (1.3) and replace the density of infected species in these nonlinear terms
by ∫ δ

0

∫ 2π

0

G(x, y, r, θ)I
(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr,

where we used the fact that G(x, y, r, θ) = 0 outside the ball Bδ

(
x, y
)
. Therefore, the model (1.2)
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can be expressed as a system of integro-differential equations

∂S(t, x, y)

∂t
= −S(t, x, y)

∫ δ

0

∫ 2π

0

g1(r)g2(θ)I
(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr − cS(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)

∫ δ

0

∫ 2π

0

g1(r)g2(θ)I
(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr − bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y).

(1.4)

1.1 Outline and scope of the paper

The aim of this paper is twofold. First, in section 2 we analyze the stability of the continuous model
(1.4) and prove that a unique solution exists under some Lipschitz continuity and boundedness as-
sumptions. Secondly, in sections 3 and 4 we seek numerical schemes that approximate the solution
of (1.4) and maintain its qualitative properties.

We verify that the analytic solution satisfies biologically reasonable properties; however, as shown in
section 2.1 the solution can be only expressed implicitly in terms of S, I , and R and thus it is not
directly applicable. A numerical approximation is presented in section 2.2 that provably satisfies the
solution’s properties. The first order accuracy of this approximation motivates the search for suitable
high order numerical methods that preserve a discrete analogue of the properties of the continuous
model. In section 3 we use cubature formulas to reduce the integro-differential system (1.4) to an ODE
system. We study the accuracy of different cubatures and interpolation techniques for approximating
the multiple integrals in (1.4). Furthermore, the employment of time integration methods yields an
algebraic system to solve numerically. Section 4 shows that a time-step restriction is sufficient and
necessary such that the forward Euler method maintains the stability properties of the ODE system.
We prove that high order strong-stability-preserving (SSP) Runge–Kutta methods can be used under
appropriate restrictions; thus, we can obtain a high order stable scheme both in space and time. Finally
in section 5 we demonstrate the theoretical results by conducting numerical experiments.

2 Stability of the analytic solution

Analytic results for deterministic reaction epidemic models have been studied by several authors, see
for example, [25, 4, 36]. Such models lie in the larger class of reaction-diffusion problems and therefore
one can obtain theoretical results by studying the more general problem. We prove the uniqueness of
the solution for system (1.4) by following the work of Capasso and Fortunato [6].

We consider the following semilinear autonomous evolution problem

∂u

∂t
(t) = −Au(t) + F (u(t)),

u0 = u(0) ∈ D(A),
(2.1)

where A is a self-adjoint and positive-definite operator in a real Hilbert space E with domain D(A).
Define λ0 = inf σ(A), where σ(A) denotes the spectrum ofA. Let us chooseE := L2(Ω)×L2(Ω),
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where Ω is a bounded domain in R2, with a norm ‖·‖ defined by∥∥∥∥∥
(
u1

u2

)∥∥∥∥∥ :=
(
‖u1‖2

L2 + ‖u2‖2
L2

) 1
2 . (2.2)

Here u = (u1, u2)ᵀ ∈ C1
(
[0, tf), D(A)

)
, for some final time tf. We also equip D(A) with the norm

‖u‖A = ‖Au‖ , u ∈ D(A).

Note that it is sufficient to consider only the first two equations in (1.4), sinceR(t, x, y) can be obtained
by using that the sum S(t, x, y) + I(t, x, y) + R(t, x, y) is constant in time for every point (x, y).
Hence, in view of problem (1.4), the linear operator A is defined as

A

(
u1

u2

)
:=

(
c 0
0 b

)(
u1

u2

)
, (2.3)

and D(A) = E. Because b and c are positive constants, it is easy to see that A is a self-adjoint and
positive-definite operator. Similarly, F (u) consists of the nonlinear terms, and is defined as

F

(
u1

u2

)
:=

(
−u1F(u2)

u1F(u2)

)
. (2.4)

The function F : L2(Ω)→ L2(Ω) contains the integral part of (1.4) and is given by

F(t, x, y) := F
(
I(t, x, y)

)
=

∫ δ

0

∫ 2π

0

g1(r)g2(θ)I
(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr, (2.5)

where I(t, x, y) can be viewed as the map I(t, x, y) : [0, tf) 7−→ It(x, y) ∈ L2(Ω).

The main result of this section is Theorem 2.1 stating that a unique solution of system (1.4) exists.
Theorem 2.1 considers the system (2.1) as a generalization of (1.4) and its proof relies on the fact that
the function F in (2.4) is Lipschitz-continuous and bounded in ‖·‖A. Therefore, we define the following
conditions [6]:

(A1) F is locally Lipschitz-continuous from D(A) to D(A), i.e.,

‖F (u)− F (v)‖A ≤ ζ(d) ‖u− v‖A

for all u, v ∈ D(A) such that d ≥ 0, and ‖u‖A ≤ d, ‖v‖A ≤ d.

(A2) F is bounded, i.e., there exists ν ≥ 0, and γ ≥ 0 such that

‖F (u)‖A ≤ ν ‖u‖1+γ
A , ∀u ∈ D(A).

We also denote by µ(Ω) the Lebesgue measure of Ω, and let

κ1 = max
r∈(0,δ)

{g1(r)}, κ2 = max
θ∈[0,2π)

{g2(θ)},

and ψ = max{b, c}/min{b2, c2}.
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Theorem 2.1. Consider the problem (1.4) and assume that conditions (A1) and (A2) hold. Then, a
unique strong solution solution of system (1.4) exists on some interval [0, tf). Moreover, if any initial
condition u0 belongs in the set

K =

{
u ∈ E

∣∣∣ ‖u‖A < min{b, c}√
2ψ κ1 κ2 µ(Ω)

}
,

then the zero solution is the unique equilibrium solution of (1.4).

The proof of Theorem 2.1 is a direct consequence of two main results by Capasso and Fortunato [6].
For clarity, we state these two theorems below.

Theorem 2.2. [6, Theorem 1.1] If assumption (A1) holds, a unique strong solution inD(A) of problem
(2.1) exists in some interval [0, tf).

Theorem 2.3. [6, Theorem 1.3] Let us assume that (A1) and (A2) hold. Then for any u0 ∈ K̃ a global
strong solution in D(A), u(t), of (2.1) exists. Moreover the zero solution is asymptotically stable in
K̃ . Here

K̃ =

{ {
u ∈ D(A)

∣∣ ‖u‖A < (λ0/ν)1/γ
}
, if γ > 0,

D(A), if γ = 0 and λ0 > ν.

In the rest of this section we show that the function F , as defined in (2.4), satisfies conditions (A1)
and (A2). First, to prove that (A2) holds, we make use of some auxiliary lemmas; their proofs appear
in Appendix A.

Lemma 2.1. Let matrix A defined by (2.3), where b and c are positive constants. The norms ‖·‖ and
‖·‖A are equivalent, i.e.,

‖u‖ ≤ 1

min{b, c}
‖u‖A , and ‖u‖A ≤ max{b, c} ‖u‖ .

Lemma 2.2. Let F be given by (2.5). Then, we have that ‖F(u)‖L2 ≤ νF ‖u‖L2 , where
νF = κ1 κ2 µ(Ω).

Corollary 2.1. Consider F given by (2.4). Then, the condition (A2) holds with ν =
√

2ψ κ1 κ2 µ(Ω)
and γ = 1.

Proof. Because of Lemma 2.1, it is enough to prove

‖F (u)‖ ≤ ν̃ ‖u‖2 , (2.6)

since from the norm equivalence we get

‖F (u)‖A ≤ max{c, b} ‖F (u)‖ ≤ max{b, c}ν̃ ‖u‖2 ≤ max{b, c}
min{b2, c2}

ν̃ ‖u‖2
A = ψν̃ ‖u‖2

A .

Now, to prove inequality (2.6) consider that

‖F (u)‖ =

∥∥∥∥∥
(
−u1F(u2)

u1F(u2)

)∥∥∥∥∥ = (‖u1F(u2)‖2
L2 + ‖u1F(u2)‖2

L2)
1/2

≤
√

2 ‖u1‖L2 ‖F(u2)‖L2 .
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Observe that Lemma 2.2 can be used to bound ‖F(u2)‖L2 from above, yielding

‖F (u)‖ ≤
√

2 νF ‖u1‖L2 ‖u2‖L2 ,

where νF is defined in Lemma 2.2. Finally, we have that

‖u1‖L2 ‖u2‖L2 ≤ ‖u1‖2
L2 + ‖u2‖2

L2 = ‖u‖2 ,

and thus inequality (2.6) holds with ν̃ =
√

2 νF =
√

2κ1 κ2 µ(Ω).

We now proceed to show that condition (A1) holds. The following lemma facilitates Lemma 2.4 and its
proof can be found in Appendix A.

Lemma 2.3. The inequality

‖F(u)−F(v)‖L2 ≤ CF ‖u− v‖L2

holds, where F is given by (2.5) and CF = κ1 κ2 µ(Ω).

Lemma 2.4. Consider F given by (2.4). Then, the condition (A1) holds with

ζ(d) =
√

2ψ κ1 κ2 µ(Ω) d.

Proof. Because of Lemma 2.1, it is enough to prove

‖F (u)− F (v)‖ ≤ ν̄ ‖u− v‖ . (2.7)

If (2.7) holds, then

‖F (u)− F (v)‖A ≤ max{b, c} ‖F (u)− F (v)‖
≤ max{b, c}ν̄ ‖u− v‖

≤ max{b, c}
min{b, c}

ν̄ ‖u− v‖A .

To show that inequality (2.7) holds, first consider that

‖F (u)− F (v)‖ =

∥∥∥∥∥
(
−u1F(u2) + v1F(v2)

u1F(u2)− v1F(v2)

)∥∥∥∥∥ ≤ √2 ‖u1F(u2)− v1F(v2)‖L2 .

We can further bound the right-hand-side of the above inequality, yielding

‖u1F(u2)− v1F(v2)‖2
L2 = ‖u1F(u2)− v1F(u2) + v1F(u2)− v1F(v2)‖2

L2

≤ ‖u1F(u2)− v1F(u2)‖2
L2 + ‖v1F(u2)− v1F(v2)‖2

L2

= ‖F(u2)‖2
L2 ‖u1 − v1‖2

L2 + ‖F(u2)−F(v2)‖2
L2 ‖v1‖2

L2 .

Then, by Lemma 2.2 we have

‖F(u2)‖2
L2 ‖u1 − v1‖2

L2 ≤ ν2
F ‖u2‖2

L2 ‖u1 − v1‖2
L2 ,

and also from Lemma 2.3 we get

‖F(u2)−F(v2)‖2
L2 ‖v1‖2

L2 ≤ C2
F ‖u2 − v2‖2

L2 ‖v1‖2
L2 . (2.8)
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Assume there exists d ≥ 0, such that ‖u‖A ≤ d and ‖v‖A ≤ d. Then, by definition of norm (2.2) we
have that ‖v1‖L2 ≤ d̃ and ‖u2‖L2 ≤ d̃, where d̃ = d/min{b, c}. Putting all together, we get

‖F (u)− F (v)‖ ≤
√

2 ‖u1F(u2)− v1F(v2)‖L2

≤
√

2 d̃
(
ν2
F ‖u1 − v1‖2

L2 + C2
F ‖u2 − v2‖2

L2

)1/2

≤
√

2 d̃ κ1 κ2 µ(Ω) ‖u− v‖ ,

where we have used that νF = CF = κ1 κ2 µ(Ω). Hence, the inequality (2.7) holds with
ν̄ =

(√
2/min{b, c}

)
κ1 κ2 µ(Ω) d. Therefore, condition (A1) also holds with Lipschitz constant

ζ(d) = ν d =
√

2ψ κ1 κ2 µ(Ω) d.

Corollary 2.1 and Lemma 2.4 show that function (2.4) satisfies conditions (A1) and (A2). We know from
Corollary 2.1 that γ = 1, so the set K̃ in Theorem 2.3 can be computed by using that D(A) = E
and (

λ0

ν

)1/γ

=
min{b, c}√

2ψ κ1 κ2 µ(Ω)
,

where b and c are the diagonal elements of matrix A in (2.3), λ0 = inf σ(A), and ψ, κ1, κ2 are as
defined before. Finally, it is evident that Theorem 2.1 follows from Theorems 2.2 and 2.3.

2.1 Qualitative behavior of the model

When deriving a mathematical model to describe the spread of an epidemic in both space and time, it is
essential that the real-life processes are being represented as accurately as possible. More precisely,
numerical discretizations applied to such models should preserve the qualitative properties of the
original epidemic model.

The first, and perhaps most natural property is that the number of each species is non-negative at
every time and point of the domain. Next, assuming that the births and natural deaths are the same
(vital dynamics have no effect on the process), the total number of species of all classes should be
conserved. Another property concerns the number of susceptible species. Since an individual gets to
the recovered class after the infection, the number of susceptibles cannot increase in time. Similarly,
the number of recovered species cannot decrease in time. These properties can be expressed as
follows:

C1: The densities X(t, x, y), X ∈ {S, I, R}, are non-negative at every point (x, y) ∈ Ω.

C2: The sum S(t, x, y)+I(t, x, y)+R(t, x, y) is constant in time for all points (x, y) ∈ Ω, namely∫
Ω

(
S(t, x, y) + I(t, x, y) +R(t, x, y)

)
dx dy = const., ∀t.

C3: Function S(t, x, y) is non-increasing in time at every (x, y) ∈ Ω.

C4: Function R(t, x, y) is increasing in time at every (x, y) ∈ Ω.

DOI 10.20347/WIAS.PREPRINT.2805 Berlin 2021
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As in the previous section, instead of proving the preservation of properties C1–C4 for the particular
model (1.4), we can establish theoretical results for a more general system of equations. First, we
state the following lemma, whose proof can be found in Appendix A.

Lemma 2.5. The solution of (1.4) depends continuously on the right hand side of the system of
equations.

Let us now define the operator Jx,y(t) : [0, tf]→ L2(Ω) as

Jx,y(t) :=
{
I(t, x̄, ȳ) | (x̄, ȳ) ∈ Bδ

(
x, y
)}
,

consisting of the infectious densities at points (x̄, ȳ) lying in the δ-radius ball centered at point (x, y)
at time t. The next theorem considers a generalization of system (1.4) and shows that its solution
satisfies properties C1–C4.

Theorem 2.4. Consider the following system of equations

∂S(t, x, y)

∂t
= −S(t, x, y)H

(
Jx,y(t)

)
− c S(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)H

(
Jx,y(t)

)
− b I(t, x, y),

∂R(t, x, y)

∂t
= b I(t, x, y),

(2.9)

whereH is a continuous functional mapping operators Jx,y(t) toR. Suppose thatH is non-negative in
the sense that if φ(t) = φt ∈ L2(Ω) and φt(x, y) ≥ 0, ∀(x, y) ∈ Ω, t ∈ [0, tf], thenH(φt) ≥ 0 for
all t ∈ [0, tf. Also, suppose that the initial conditions of the system are non-negative, i.e.X(0, x, y) ≥
0, ∀(x, y) ∈ Ω, X ∈ {S, I, R}. In such case, the properties C1–C4 hold without any restriction on
the time interval t ∈ [0, tf].

Proof. The proof consists of two parts: first we prove the required properties for a modified version of
(2.9), and then by using Lemma 2.5 we derive the statement of the theorem.

Consider the modified version of (2.9)

∂Sε(t, x, y)

∂t
= −Sε(t, x, y)H

(
Jx,y,ε(t)

)
− c Sε(t, x, y),

∂Iε(t, x, y)

∂t
= Sε(t, x, y)H

(
Jx,y,ε(t)

)
− b Iε(t, x, y) + ε,

∂Rε(t, x, y)

∂t
= b Iε(t, x, y),

(2.10)

where ε : R→ R is a constant positive function, and Jx,y,ε(t) is defined as

Jx,y,ε(t) :=
{
Iε(t, x̄, ȳ) | (x̄, ȳ) ∈ Bδ

(
x, y
)}
.

We also suppose that the initial conditions assigned to the equation are all non-negative. First, we
would like to prove the non-negativity of Iε(t, x, y) by contradiction. Assume that the function takes
negative values for some time t at some point (x, y) ∈ Ω. Let us define by t0 the last moment in time
for which Iε(t, x, y) takes non-negative values, i.e.,

t0 := inf{t | ∃(x, y) ∈ Ω : Iε(t, x, y) < 0}.
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By our assumptions, this t0 exists because Iε is continuous and the initial conditions are not negative,
i.e., Iε(0, x, y) ≥ 0. Because of the continuity of Iε and the definition of t0, there is a point (x0, y0)
for which Iε(t0, x0, y0) = 0, and

∂Iε(t0, x0, y0)

∂t
≤ 0. (2.11)

We know that all the values of Iε at t0 inside Bδ

(
x0, y0

)
are non-negative by the definition of t0, and

H is a non-negative operator in the sense defined before, so H
(
Jx0,y0,ε(t0)

)
≥ 0 also holds.

However, if we observe the second equation in (2.10) at point (t0, x0, y0), we can see that the term
−b Iε(t0, x0, y0) is zero, so the term Sε(t0, x0, y0)H

(
Jx0,y0,ε(t0)

)
must be negative for condition

(2.11) to hold (since ε is positive). We have already concluded that H
(
Jx0,y0,ε(t0)

)
≥ 0, so we need

that Sε(t0, x0, y0) < 0.

Now dividing the first equation of (2.10) by Sε and integrating it with respect to time t from 0 to t0,
yields

log (Sε(t0, x, y))− log (Sε(0, x, y)) = −
∫ t0

0

H
(
Jx,y,ε(t)

)
dt− ct0.

By reformulating, we get for (x, y) = (x0, y0) that

Sε(t0, x0, y0) = Sε(0, x0, y0) exp

(
−
∫ t0

0

H
(
Jx0,y0,ε(t)

)
dt− ct0

)
. (2.12)

Therefore Sε(t0, x0, y0) is non-negative, so we get a contradiction.

As a result, Iε(t, x, y) ≥ 0 for every t ∈ [0, tf] and (x, y) ∈ Ω. Consequently, since Rε(0, x, y)
is non-negative, we get that Rε(t, x, y) is a non-decreasing and a non-negative function. Note also
that the calculations resulting in the formula (2.12) are also true for any time t and point (x, y) ∈
Ω, meaning that Sε is also non-negative, and since H

(
Jx,y,ε(t)

)
is non-negative, we also get the

non-increasing property from the first equation of (2.9). Hence, we proved that the solution of (2.10)
satisfies C1–C4.

Finally, we also know that because of continuous dependence by Lemma 2.5,

lim
ε→0

Xε(t, x, y)
∣∣
t∈[0,tf] −X(t, x, y)

∣∣
t∈[0,tf]

= 0

holds for every X ∈ {S, I, R}. Therefore, properties C1–C4 are also satisfied by the solution of
system (2.9).

Note that in the previous theorem it might happen that the functional Jx,y(t) does not depend on all
of the values of function I(t, x̄, ȳ) for (x̄, ȳ) ∈ Bδ

(
x, y
)

but only on some of them. This special case
will be useful in section 3 (see Remark 3.1).

Due to the complicated form of the equations in (1.4) one can suspect that no analytic solution can
be derived for this system. Because of this, we are going to use numerical methods to approximate
the solution of these equations. However, the analytic solution of the original SIR model (1.1) has
been described in the papers by Harko et al. [22] and Miller [29, 30]. Thus, we can get similar results
applying their observations to our modified model (1.4). The analytic solution of system (1.4) can be
written as 

S(t, x, y) = S(0, x, y)e−φ(t,x,y)−ct,

I(t, x, y) = M0(x, y)− S(t, x, y)−R(t, x, y),

R(t, x, y) = R(0, x, y) + b

∫ t

0

I(s, x, y) ds+ c

∫ t

0

S(s, x, y) ds,

(2.13)
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where we use the notations

M0(x, y) := S(0, x, y) + I(0, x, y) +R(0, x, y),

φ(t, x, y) :=

∫ t

0

F
(
I(s, x, y)

)
ds,

and F is given by (2.5).

It is evident that in (2.13), the values of the functions at a given time t∗ can only be computed if the
values in the interval [0, t∗) are known. Consequently, these formulas are not useful in practice, since
(2.13) is an implicit system in the solutions S(t, x, y), I(t, x, y) and R(t, x, y). Later (see Table 5.2
in section 5.2), an approximation of the solution of (2.13) will be compared to the numerical solution of
first-order forward Euler scheme.

Since the values of the functions in (2.13) cannot be calculated directly, numerical methods are needed
to approximate them. We can take two possible paths:

1 approximate the values of φ(t, x, y) by numerical integration; or

2 approximate the solution of the original equation (1.4) by a numerical method.

The first approach is discussed in section 2.2, while the rest of the paper considers the second case.
We focus on the order and convergence rate of our numerical methods, and ensure that qualitative
properties C1–C4 of the analytic solution are preserved by the numerical method. For that, a discrete
analogue of conditions C1–C4 is required; see section 4.

2.2 Numerical approximation of the integral solution

As noted before, if we would like to use the solution (2.13) then we have to approximate the involved
integrals. This can be achieved by partitioning the time interval [0, tf] into uniform spaced sections by
using a constant time step τ . With this approach, the integrals can be approximated by a left Riemann
sum, and thus consider the values of densitiesX(t, x, y),X ∈ {S, I, R}, at the left endpoint of each
section. Therefore, for any integer 1 ≤ n ≤ N such that tf = τN , the integral of X(t, x, y) can be
approximated by ∫ nτ

0

X(s, x, y) ds ≈ τ

n−1∑
k=0

X(kτ, x, y).

An important observation is that the integral equations (2.13) can be rewritten in a recursive form
S
(
nτ, x, y

)
= S((n− 1)τ, x, y) exp

(
−
∫ nτ

(n−1)τ

F
(
I(s, x, y)

)
ds− cτ

)
,

R
(
nτ, x, y

)
= R((n− 1)τ, x, y) + b

∫ nτ

(n−1)τ

I(s, x, y) ds+ c

∫ nτ

(n−1)τ

S(s, x, y) ds,

I (nτ, x, y) = M0(x, y)− S(nτ, x, y)−R(nτ, x, y).

(2.14)

Let Xn(x, y) ≈ X (nτ, x, y), X ∈ {S, I, R}, and define Fn := F(In). Using the approximations

τFn−1 ≈
∫ nτ

(n−1)τ

F
(
I(s, x, y)

)
ds, τIn−1 ≈

∫ nτ

(n−1)τ

I(s, x, y) ds,
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High order discretizations for spatial-dependent SIR models 11

and choosing to approximate
∫ nτ

(n−1)τ
S(s, x, y) ds by τSn we get an approximating scheme for

(2.13), given by 
Sn = Sn−1e−τF

n−1−cτ ,

Rn = Rn−1 + bτIn−1 + cτSn,

In = (Sn−1 + In−1 +Rn−1)− Sn −Rn.

(2.15a)

(2.15b)

(2.15c)

Note that in this case, the order of the equations in (2.15) is important as estimates at time tn = nτ
are used to update the rest of solution’s components.

Theorem 2.5. Consider the solution Xn(x, y), X ∈ {S, I, R} of scheme (2.15) on the time interval
[0, tf], where 1 ≤ n ≤ N . Let N be the total number of steps such that tf = τN , where τ denotes
the time step. If the step-size restriction 0 < τ ≤ 1/b holds, then the solution of (2.15) satisfies
properties C1–C4 at times tn = nτ , 1 ≤ n ≤ N .

Proof. We prove the theorem by induction. Consider the system (2.15) at an arbitrary step n and
assume that the properties C1–C4 hold for the first n − 1 steps. First, it is easy to see that the
conservation property C2 is satisfied by (2.15c). Moreover, by assumption Sn−1, In−1, and Rn−1 are
non-negative and hence by definition Fn−1 is also non-negative. As a result, e−τ(Fn−1+c) < 1, and
therefore Sn is non-negative and monotonically decreasing. Similarly, the right hand side terms of
(2.15b) are also non-negative, thusRn is non-negative and monotonically increasing. To show that In

is non-negative, we substitute (2.15a) and (2.15b) into (2.15c) to get

In = Sn−1
(

1− (1 + cτ)e−τ(Fn−1+c)
)

+ In−1 (1− bτ) .

We have by assumption that Sn−1 and In−1 are non-negative; therefore if

1− (1 + cτ)e−τ(Fn−1+c) ≥ 0 and 1− bτ ≥ 0,

then In is non-negative. Note that x− ln(1 + x) ≥ 0 for any real number x > −1. Since c ≥ 0 and
Fn−1 is non-negative we then have τFn−1 + cτ − ln(1 + cτ) ≥ 0. Rearranging the inequality gives

ln

(
1

1 + cτ

)
≥ −τ(Fn + c),

hence 1 − (1 + cτ)e−τ(Fn+c) ≥ 0 for any τ > 0. As a result, the sufficient condition for In to
remain non-negative is 0 < τ ≤ 1/b. Note that by using the same arguments as above we can
show that conditions C1–C4 hold at the first step, i.e., n = 1, provided that the initial conditions are
non-negative. This completes the proof.

Remark 2.1. Using left Riemann sums to approximate the integrals in (2.14) results in local errors of
orderO(τ 2). Therefore, the solution of (2.14) can only be first order accurate.

In the next two sections, we discretize (1.4) by first using a numerical approximation of the integral on
the right hand side of the system, and then applying a time integration method. This approach results
in numerical schemes that are high order accurate, both in space and time.
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3 Spatial discretization

It is evident that the key element of the numerical solution of problem (1.4) is the approximation of
F(t, x, y). This can be done in two different ways. The first approach is to approximate the function
I(t, x̄(r, θ), ȳ(r, θ)) by a Taylor expansion, and then proceed further. This method is studied in [12]
and [13], but is not efficient in the case of non-constant function g2(θ) as shown in [35]. The other ap-
proach is to use a combination of interpolation and numerical integration (by using cubature formulas)
to obtain an approximation of F(t, x, y).

We consider two-dimensional cubature formulas on the disc of radius δ with positive coefficients.
Denote byQ(x, y) the set of cubature nodes in the disk Bδ

(
x, y
)

parametrized by polar coordinates
(see [35]), i.e.,

Q(x, y) :=
{

(xij, yij) =
(
x+ ri cos(θj), y + ri sin(θj)

)
∈ Bδ

(
x, y
)
, i ∈ I, j ∈ J

}
,

where ri denotes the distance from center point (x, y), θj is the angle, and I and J are the set of
indices of cubature nodes. Using numerical integration, we get the system

∂S(t, x, y)

∂t
= −S(t, x, y)T

(
t,Q(x, y)

)
− cS(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)T

(
t,Q(x, y)

)
− bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y),

(3.1)

where

T
(
t,Q(x, y)

)
=

∑
(xij ,yij)∈Q(x,y)

wi,jg1(ri)g2(θj)I
(
t, x+ ri cos(θj), y + ri sin(θj)

)
,

and wi,j > 0 are the weights of the cubature formula.

Remark 3.1. Note that Theorem 2.4 can be applied to system (3.1); hence, the properties C1–C4

hold without any restrictions for the analytic solution of this system. Moreover, it can be easily shown
that T (t,Q(x, y)) satisfies properties (A1) and (A2), by following the proofs of Lemma 2.2 and
Lemma 2.3. As a result system (3.1) admits a unique strong solution.

3.1 The semi-discretized system

Now we would like to solve (3.1) numerically. The first step is to discretize the problem in space. Let
us suppose that we would like to solve our problem on a rectangle-shaped domain, namely Ω :=
[0,L1]× [0,L2]. For our numerical solutions we will discretize this domain by using a spatial grid

G := {(xk, yl) ∈ Ω | 1 ≤ k ≤ P1, 1 ≤ l ≤ P2} ,
which consists of P1 × P2 points with spatial step sizes h1 and h2, and approximate the continuous
solutions by a vector of the values at the grid points. After this semi-discretization, we get the following
set of equations 

dSk,l(t)

dt
= −Sk,l(t)Tk,l

(
t,Q(xk, yl)

)
− cSk,l(t),

dIk,l(t)

dt
= Sk,l(t)Tk,l

(
t,Q(xk, yl)

)
− bIk,l(t),

dRk,l(t)

dt
= bIk,l(t) + cSk,l(t),

(3.2)
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High order discretizations for spatial-dependent SIR models 13

where Xk,l(t), X ∈ {S, I, R}, denotes the approximation of the function at gridpoint (xk, yl). The
approximation of F(·, xk, yl) is denoted by Tk,l(t,Q(xk, yl)) and defined as

Tk,l
(
t,Q(xk, yl)

)
:=

∑
(x̄k,ȳl)∈Q(xk,yl)

wi,jg1(ri)g2(θj)Ĩ(t, x̄k, ȳl), (3.3)

where x̄k = xk + ri cos(θj) and ȳl = yl + ri sin(θj). Note that the points (x̄k, ȳl) might not be
included in G; in such case there are no Ik,l values assigned to them. Because of this, we approximate
I(t, x̄k, ȳl) by a using positivity preserving interpolation (e.g. bilinear interpolation) with the nearest
known Ik,l values and positive coefficients. This is the reason why Ĩ is used in (3.3) instead of I .

Theorem 3.1. A unique strong solution for system (3.2) exists, for which propertiesC1–C4 hold locally
at a given point (xk, yl).

Proof. The proof of existence and uniqueness comes from the Lipschitz continuity and boundness
of the right hand side, which can be proved similarly as in Corollary 2.1 and Lemma 2.4. Properties
C1–C4 can be proved in a similar manner as in Theorem 2.4.

The next theorem characterizes the accuracy of interpolation and cubature techniques of system (3.2).

Theorem 3.2. Suppose that a cubature rule approximates the integral (2.5) to order p, i.e.,

‖F(I(t, x, y))− T (t,Q(x, y))‖L2 = O(δp), (3.4)

where δ is the radius of the disk in which the integration takes place. Let us suppose that the (positivity
preserving) spatial interpolation Ĩ approximates the values of I to order q, i.e.,∥∥∥I(t, x, y)− Ĩ(t, x, y)

∥∥∥
L2

= O(hq), (3.5)

where h = min{h1, h2} is the minimum of the spatial step sizes. Then if ũ is the solution of (1.4)
evaluated at the grid points of G and ṽ is the solution of (3.2), it follows that

‖ũ− ṽ‖L2 = O(δp) +O(hq).

Proof. We proceed in the following way: prove that if w is the solution of (3.1) evaluated at the grid
points of G, then

‖ũ− w‖L2 = O(δp) and ‖w − ṽ‖L2 = O(hq) (3.6)

hold. It is easy to see that the theorem follows from the above statement.

We prove both estimates by applying the formula of constant variations. Hence, the solutions ũ and ṽ
can be respectively expressed as

ũ(t) = S(t)ũ0 +

∫ t

0

S(t− s)F (s) ds, and ṽ(t) = S(t)ũ0 +

∫ t

0

S(t− s)FT (s) ds,

where {S(t), t ∈ [0,∞)} is the analytic semigroup associated with −A in (2.3) [14, p. 101], and
F (s) := F (u(s)) is given by (2.4). We also use the notationFT (s) := FT (I(s, ·, ·)), where FT is the
operator that maps Ĩ(s, ., .) to TG(s) := (Tk,l(s,Q(xk, yl)))(xk,yl)∈G , i.e., FT (Ĩ(s, ·, ·)) = TG(s).
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By using the assumption (3.4) and applying the formula of constant variations on the solution w of
system (3.1), we get

w(t) = S(t)ũ0 +

∫ t

0

S(t− s) (F (s) +O(δp)) ds.

Then, it follows that

‖ũ− w‖L2 =

∥∥∥∥∫ t

0

S(t− s)O(δp) ds

∥∥∥∥
L2

= O(δp).

For the second estimate in (3.6) we use the assumption (3.5), and consequently the fact that

w(t) = S(t)ũ0 +

∫ t

0

S(t− s)(FT (s) +O(hq)) ds.

Thus,

‖w − ṽ‖L2 =

∥∥∥∥∫ t

0

S(t− s)O(hq) ds

∥∥∥∥
L2

= O(hq),

which gives the second estimate. Using the triangle inequality completes the proof of the theorem.

A natural question arises: what is the best type of cubature and interpolation for solving the system
(3.2)? In the rest of the section we describe two numerical integration procedures and also discuss
suitable interpolation techniques.

3.1.1 Elhay–Kautsky cubature

One can use a direct cubature rule on the general disk, see for example [34, 9]. In such case the
integral of a function f(x, y) over the disk with radius δ can be approximated by

Q(f) = πδ2

Nr·Nθ∑
i=1

wif(xi, yi) = πδ2

Nr∑
i=1

Nθ∑
j=1

w̃if
(
ri cos(θj), ri sin(θj)

)
, (3.7)

where Nr is the number of radial nodes, Nθ is the number of equally spaced angles, and wi and w̃i
are weights in the [0, 1] interval. We use Nθ = 2Nr to have a cubature rule that is equally powerful
in both r and θ. The weights and cubature nodes are calculated by a modification of the Elhay–
Kautsky Legendre quadrature method [23, 11, 28]. The top panel of Figure 3.1 shows the distribution
of cubature nodes for Nr ∈ {3, 6, 12}. The Elhay–Kautsky cubature results in nodes that are evenly
spaced in the θ direction.

3.1.2 Gauss–Legendre quadrature

Alternatively, we can transform the disk into a square, and then use a one-dimensional Gauss-
Legendre rule to approximate the integral. First, we transform the disk with radius δ to the rectangle
[0, δ]× [0, 2π] in the r − θ plane. Next, the rectangle [0, δ]× [0, 2π] is mapped to [0, 1]× [0, 1] on
the ξ − η plane by using the linear transformation

r = δξ, θ = 2πη,
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that has a Jacobian 2πδ. Using these transformations, the original integral∫ δ

0

∫ 2π

0

f
(
r cos(θ), r sin(θ)

)
r dθ dr

takes the form ∫ 1

0

∫ 1

0

f
(
δξ cos(2πη), δξ sin(2πη)

)
δξ 2πδ dη dξ. (3.8)

There are several approaches for computing multiple integrals based on numerical integration of one-
dimensional integrals. In this paper, we use the Gauss–Legendre quadrature rule on the unit interval
[37]; other options include generalized Gaussian quadrature rules as described in [27]. The integral
(3.8) can be approximated by

Q(f) =

Nξ∑
i=1

Nη∑
j=1

wiwj2πδ
2ξif

(
δξi cos(2πηj), δξi sin(2πηj)

)
=

Nξ·Nη∑
m=1

w̃mf(xm, ym), (3.9)

where ξi and ηi are the ith cubature nodes corresponding to the Gauss–Legendre quadrature with
weightswi. The number of cubature nodes in the ξ and η direction are denoted byNξ andNη, respec-
tively, and we let xm = δξi cos(2πηj), ym = δξi sin(2πηj) and w̃m = wiwj2πδ

2ξi. The distribution
of the cubature nodes in the unit disk is not uniform as with the Elhay–Kautsky cubature and can be
seen in the bottom panel of Figure 3.1. For a fair comparison we useNη = 2Nξ. Experimental results
reveal that the Elhay–Kautsky cubature (3.7) performs better in cases the interpolated function f(x, y)
is a bivariate polynomial, whereas the Gauss–Legendre quadrature (3.9) or the generalized Gaussian
quadrature rule (see [27]) when f(x, y) is an arbitrary nonlinear function.

In order to determine which cubature rule performs better for the system (3.2), we perform a con-
vergence test by applying the cubature formulas (3.7) and (3.9) to the function g1(r)g2(θ)I0(r, θ)r,
where

g1(r) = 100(−r + δ, g2(θ) = sin(θ) + 1,

and

I0(r, θ) =
100

2πσ2
exp

(
− r2

2σ2

)
is a Gaussian distribution with deviation σ and centered at zero. This resembles the initial conditions
for I at the origin, as we will use later in section 5. The exact solution of the integral over a disk of
radius δ is given by∫ δ

0

∫ 2π

0

g1(r)g2(θ)I0 r dθ dr = 5000

(
2δ −

√
2π σ erf

(
δ√
2σ

))
, (3.10)

where erf(x) is the Gauss error function [3, 21]. Figure 3.2 shows the convergence of the two cubature
rules over the disk of radius δ, as δ goes to zero (σ = 1/10). We observe that the Gauss–Legendre
quadrature (3.9) gives much smaller errors (close to machine precision) when more than 12 × 24
nodes are used, compared to the Elhay–Kautsky cubature (3.7) which is third-order accurate. The
performance of the cubature formulas depends also on the choice and accuracy of interpolation. As
mentioned before, bilinear interpolation can be used since it preserves the non-negativity of the in-
terpolant. One possibility is to use higher order interpolations, like cubic or spline, but in these cases
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the preservation of the required properties cannot be guaranteed. However, numerical experiments
show that piecewise cubic spline interpolation results in a positive interpolant for sufficiently fine spa-
tial grid. A better choice is the use of a shape-preserving interpolation, to ensure that negative values
are not generated and the interpolant of I(t, x̄k, ȳl) in (3.3) is bounded by maxk,l{Sk,l + Ik,l +Rk,l}
for every point (xk, yl). This can be accomplished by a monotone interpolation that uses piecewise
cubic Hermite interpolating polynomials [10, 15]. In MATLAB (version R2020b) the relevant function
is called pchip but is only available for one-dimensional problems. Extensions to bivariate shape-
preserving interpolation have been studied in [7, 8, 16]; however, this topic goes beyond the purposes
of this paper. Another choice is the modified Akima piecewise cubic Hermite interpolation, makima.
Numerical experiments demonstrate good performance as it avoids overshoots when more than two
consecutive nodes are constant [1, 2], and hence preserves non-negativity in areas where I(t, x̄k, ȳl)
is close to zero.

4 Time integration methods

The next step is to use time integration methods to solve the system of ordinary differential equations
(3.2). First we study sufficient and necessary time-step restrictions such that the forward Euler method
satisfies a discrete analogue of properties C1–C4, denoted below by D1–D4. Then, we discuss how
high order SSP Runge–Kutta methods can be applied to (3.2).
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Figure 3.1: Top panel : The distribution of cubature nodes (Nr ×Nθ) in the unit disk using the Elhay–
Kautsky cubature rule. Bottom panel : The distribution of cubature nodes (Nξ × Nη) in the unit disk
using the Gauss–Legendre quadrature rule.
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(a) Elhay–Kautsky cubature (3.7)
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(b) Gauss–Legendre quadrature (3.9)

Figure 3.2: Numerical integration errors of cubature formulas (3.7) and (3.9) applied to the integral in
(3.10). The colored curves correspond to different choices of cubature nodes in the δ-radius disk.

Let Xn = {Xn
k,l}, X ∈ {S, I, R}, be the numerical approximation of Xk,l(tn) for all 1 ≤ k ≤ P1 ,

1 ≤ l ≤ P2, and 0 ≤ n ≤ N , where N is the total number of steps. The numerical solution should
satisfy the following properties:

D1: The densities {Xn
k,l}, X ∈ {S, I, R}, are non-negative for every 1 ≤ k ≤ P1 , 1 ≤ l ≤ P2,

and for all 0 ≤ n ≤ N .

D2: The sum Snk,l + Ink,l + Rn
k,l is constant for all 0 ≤ n ≤ N and for every 1 ≤ k ≤ P1 ,

1 ≤ l ≤ P2.

D3: The density Snk,l is non-increasing, i.e., Snk,l ≤ Sn−1
k,l for every 1 ≤ k ≤ P1 , 1 ≤ l ≤ P2, and

for all 1 ≤ n ≤ N .

D4: The density Rn
k,l is non-decreasing i.e., Rn

k,l ≥ Rn−1
k,l for every 1 ≤ k ≤ P1 , 1 ≤ l ≤ P2, and

for all 1 ≤ n ≤ N .

4.1 Explicit Euler scheme and qualitative properties

Let us apply the explicit Euler method to the system (3.2) on the interval [0, tf], and choose an adaptive
time step τn > 0 such that tn = tn−1 + τn, n ≥ 1. After the full discretization we get the set of
algebraic equations 

Sn = Sn−1 − τnSn−1 ◦ T n−1 − cτnSn−1,

In = In−1 + τnS
n−1 ◦ T n−1 − bτnIn−1,

Rn = Rn−1 + bτnI
n−1 + cτnS

n−1.

(4.1a)

(4.1b)

(4.1c)

Here, the operator ◦ denotes the element-by-element or Hadamard product of matrices.

Now we examine the bounds of time step τn such that the method (4.1) gives solutions which are
qualitatively adequate and satisfy conditions D1–D4.

Theorem 4.1. Consider the numerical solution (4.1) obtained by forward Euler method applied to
(3.2) with non-negative initial data. Then, the solution satisfies property D2 without any step-size
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restrictions. Moreover, properties D1, D3 and D4 hold if the time step satisfies

τn ≤ min

{
1

maxk,l{T n−1
k,l }+ c

,
1

b

}
, (4.2)

where

T n−1
k,l =

∑
(x̄k,ȳl)∈Q(xk,yl)

wi,jg1(ri)g2(θj)Ĩ
n−1(x̄k, ȳl) (4.3)

is an approximation of (3.3) at point (xk, yl) ∈ G.

Proof. The proof is similar to the one of [35, Theorem 2]. We prove the statement by induction on the
number of steps.

First, assume that the propertiesD1–D4 hold up to step n−1; we will prove that they also hold true for
step n. Property D2 can be easily verified by adding all equations in (4.1). To show the monotonicity
and non-negativity of Sn, consider (4.1a) at point (xk, yl) ∈ G

Snk,l =
(
1− τn(T n−1

k,l + c)
)
Sn−1
k,l .

By our assumption In−1
k,l ≥ 0, and a positivity-preserving interpolation guarantees that the interpolated

values Ĩn−1(x̄k, ȳl) = Ĩn−1
(
xk+ri cos(θj), yl+ri sin(θj)

)
are non-negative. Therefore, by (4.3) we

get T n−1
k,l ≥ 0 for each 1 ≤ k ≤ P1 , 1 ≤ l ≤ P2 since the weights wi,j are positive, and functions

g1 and g2 are non-negative. As a result, τn(T n−1
k,l + c) ≥ 0 and thus Snk,l ≤ Sn−1

k,l . Moreover, if

τn ≤ 1/(T n−1
k,l + c) then Snk,l remains non-negative. Equation (4.1b) yields

Ink,l = (1− bτn)In−1
k,l + τnS

n−1
k,l T

n−1
k,l ,

and hence In is non-negative if τn ≤ 1/b. Finally from (4.1c) we have

Rn
k,l = Rn−1

k,l + bτnI
n−1
k,l + cτnS

n−1
k,l ,

therefore Rn is non-negative and Rn ≥ Rn−1. Putting all together we conclude that properties D1–
D4 are satisfied if the time step is bounded by (4.2). By using the above argument it can be shown
that D1–D4 also hold at the first step, n = 1, if the initial data are non-negative and the time step
satisfies (4.2).

A drawback of the time-step restriction (4.2) is that it depends on the solution at the previous step. This
has important complications for higher order methods as we will see in section 4.2. For any multistage
method the adaptive time step bound (4.2) depends not only on the previous solution, but also on the
internal stage approximations. Consequently, an adaptive time-step restriction based on (4.2) cannot
be the same for all stages of a Runge–Kutta method; instead it needs to be recalculated at every stage
to guarantee that conditions D1–D4 hold. Therefore, such bound has no practical use because it is
prone to rejected steps and will likely tend to zero.

A remedy is to use a constant time step that is less strict than (4.2), but still guarantee that τ ≤
1/(T n−1

k,l + c) holds for all 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 and at every step n. At a given point

(xk, yl) ∈ G the weights and cubature nodes in Bδ

(
xk, yl

)
are the same regardless of the location
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of (xk, yl) in the domain. Therefore, we can find an upper bound for each element of the matrix T n−1

in (4.3). Let

T̂ :=
∑

(x̄k,ȳl)∈Q(xk,yl)

wi,jg1(ri)g2(θj)m̃, (4.4)

where

m̃ = max
(xk,yl)∈G

{S(0, xk, yl) + I(0, xk, yl) +R(0, xk, yl)} . (4.5)

Since T n−1
k,l ≤ T̂ for all 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 then if

τ̂ := min

{
1

T̂ + c
,
1

b

}
, (4.6)

the condition

τ̂ ≤ min

{
1

maxk,l{T n−1
k,l }+ c

,
1

b

}
holds at every step n. Moreover, T̂ ≤ w̃ κ2m̃N , where

κ = max{κ1, κ2} = max

{
max
r∈(0,δ)

{g1(r)}, max
θ∈[0,2π)

{g2(θ)}
}
,

w̃ = maxi,j{wi,j}, and N is the number of the cubature nodes in Q(xk, yl). Hence, the time step
(4.6) is larger than the rather pessimistic time step

τ̃ := min

{
1

w̃ κ2m̃N + c
,
1

b

}
, (4.7)

proposed in [35, Theorem 2]. Numerical experiments show that τ̂ is very close to the theoretical
bound in (4.2), and thus a relatively small increase of time step beyond the bound (4.6) may produce
qualitatively bad solutions which violate one of the conditions D1–D4 (see section 5.1).

4.2 SSP Runge–Kutta methods

Forward Euler method is only first-order accurate; hence, we would like to obtain time-step restrictions
for higher order Runge–Kutta methods. Note that the spatial discretizations discussed in section 3
can be chosen so that errors from cubature formulas and interpolation are very small; therefore, it is
substantial to have a high-order accurate time integration method.

Consider a Runge–Kutta method in the Butcher form [5] with coefficients (aij) ∈ Rm×m and b ∈ Rm.
Let K be the matrix given by

K =

[
(aij) 0
bᵀ 0

]
,

and denote by I the (m+ 1)-dimensional identity matrix. If there exists r > 0 such that (I + rK) is
invertible, then the Runge–Kutta method can be expressed in the canonical Shu–Osher form

Q(i) = viQ
n−1 +

m∑
j=1

αij

(
Q(j) +

τ

r
F
(
Q(j)

))
, 1 ≤ i ≤ m+ 1,

Qn = Q(m+1),

(4.8)
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where the coefficient arrays (αij) and (vi) have non-negative components. Such methods are called
strong-stability preserving (SSP) Runge–Kutta methods and have been introduced by Shu as total-
variation diminishing (TVD) discretizations [31], and by Shu and Osher in relation to high order spatial
discretizations [33, 32]. The choice of parameter r gives rise to different Shu–Osher representations;
thus we denote the Shu–Osher coefficients of (4.8) by αr = (αij) and vr = (vi) to emphasize the
dependence on the parameter r. The Shu–Osher representation with the largest value of r such that
(I + rK)−1 exists and αr, vr have non-negative components is called optimal and attains the SSP
coefficient

C = max
{
r ≥ 0 | ∃ (I + rK)−1 and αr ≥ 0,vr ≥ 0

}
.

The interested reader may consult [17, 19, 20], as well as the monograph [18] and the references
within, for a throughout review of SSP methods.

We would like to investigate time-step restrictions such that the numerical solution obtained by applying
method (4.8) to the problem (3.2) satisfies properties D1–D4. The following theorem provides the
theoretical upper bound for the time step such that these properties are satisfied.

Theorem 4.2. Consider the numerical solution obtained by applying an explicit Runge–Kutta method
(4.8) with SSP coefficient C > 0 to the semi-discrete problem (3.2) with non-negative initial data. Then
property D2 holds without any time-step restrictions. Moreover, the properties D1, D3 and D4 hold if
the time step satisfies

τ ≤ Cmin

{
1

T̂ + c
,
1

b

}
, (4.9)

where T̂ is given by (4.4).

Proof. Consider an arbitrary stage i, 1 ≤ i ≤ m + 1, of a Runge–Kutta method (4.8) with non-
negative coefficients and SSP coefficient C > 0. Applying the method to (3.2) we get

S(i) = viS
n−1 +

i−1∑
j=1

αij

(
S(j) − τ

C
(
S(j) ◦ T (j) − cS(j)

))
, (4.10a)

I(i) = viI
n−1 +

i−1∑
j=1

αij

(
I(j) +

τ

C
(
S(j) ◦ T (j) − bI(j)

))
, (4.10b)

R(i) = viR
n−1 +

i−1∑
j=1

αij

(
R(j) +

τ

C
(
bI(j) + cS(j)

))
. (4.10c)

Since all Runge–Kutta methods preserve linear invariants the property D2, i.e.,

Sn + In +Rn = Sn−1 + In−1 +Rn−1, ∀n
is trivially satisfied.

The remainder of the proof deals with properties D1, D3 and D4. We show that all quantities
Sn, In, Rn remain non-negative, while Sn is non-increasing and Rn is increasing. From (4.10a) and
(4.10b) we have, respectively,

S(i) = viS
n−1 +

i−1∑
j=1

αijS
(j) ◦

(
1− τ

C
(
T (j) + c1

))
,

I(i) = viI
n−1 +

τ

r

i−1∑
j=1

αijS
(j) ◦ T (j) +

(
1− τ

r
b
) i−1∑
j=1

αijI
(j),
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where 1 is the P1 × P2 all-ones matrix.

By definition,

T
(i)
k,l =

∑
(x̄k,ȳl)∈Q(xk,yl)

wi,jg1(ri)g2(θj)Ĩ
(i)(x̄k, ȳl), 1 ≤ i ≤ m+ 1,

where Ĩ(i) are interpolated values. Since the initial data are non-negative and the chosen interpolation
is positivity-preserving, we have that S(1) = Sn−1, I(1) = In−1 and T (1) are all non-negative. If

0 ≤ 1− τ

r
b, and 0 ≤ 1− τ

C
(
T (j) + c1

)
for 1 ≤ j ≤ i− 1, (4.11)

then the explicit Runge–Kutta method inductively results in non-negative T (i), S(i), and I(i) for each
2 ≤ i ≤ m+ 1. Note that by (4.4), for every (xk, yl) ∈ G it holds that

T
(i)
k,l ≤ T̂ , 1 ≤ i ≤ m+ 1,

because Ĩ(i)(x̄k, ȳl) is an interpolated value of I(i)(x̄k, ȳl), and hence bounded by m̃ as given in
(4.5). Therefore,

T (i) ≤ T̂1, 1 ≤ i ≤ m+ 1. (4.12)

Moreover, the non-negativity of T (i) implies that

1− τ

C
(
T (i) + c1

)
≤ 1, 1 ≤ i ≤ m+ 1,

and thus (4.10a) yields

S(i) ≤ viS
n−1 +

i−s∑
j=1

αijS
(j).

Consistency requires that vi +
∑i−1

j=1 αij = 1 for each 1 ≤ i ≤ m+ 1 and hence

S(i) ≤ (1−
i−1∑
j=1

αij)S
n−1 +

i−1∑
j=1

αijS
(j)

≤ Sn −
i−1∑
j=1

αij
(
Sn−1 − S(j)

)
.

(4.13)

Let 1 ≤ q ≤ m + 1 be the stage index such that S(i) ≤ S(q) for all 1 ≤ i ≤ m + 1. Then, taking
i = q in (4.13) yields

S(q) ≤ viS
n−1 +

i−1∑
j=1

αqjS
(q)

(
1−

i−1∑
j=1

αqj

)
S(q) ≤

(
1−

i−1∑
j=1

αqj

)
Sn−1

S(q) ≤ Sn−1.

Therefore, S(i) ≤ Sn−1 for all 1 ≤ i ≤ m+ 1. In particular for i = m+ 1 we have Sn = S(m+1) ≤
Sn−1.

Finally, the non-negativity of initial data, S(j) and I(j) implies that from (4.10c) we have R(i) ≥ Rn−1

for all 1 ≤ i ≤ m+ 1, and hence Rn = R(m+1) ≥ Rn−1.

Combining (4.11) and (4.12) we conclude that the step-size restriction (4.9) is sufficient for satisfying
properties D1–D4.
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5 Numerical experiments

In this section we confirm the results proved in the previous sections by using several numerical
experiments. Computational tests are defined in a bounded domain and thus the choice of boundary
conditions is important. Because we have no diffusion in our problem, we consider homogeneous
Dirichlet conditions and we assume that there is no susceptible population outside of our domain. This
means that we are going to assign a zero value to any point which lies outside of the rectangular
domain in which the problem is defined. In most cases the nodes of the cubatures rules (3.7) and (3.9)
do not belong to the spatial grid. Special attention must be given to the corners and boundaries of the
domain where cubature nodes, assigned to grid points near the boundary, lie outside of the domain. To
be able to handle solution estimates at corners and at the boundary of the domain, we use ghost cells
which are set to zero. This enables us to calculate the values corresponding to the cubature nodes
lying outside of the domain.

For the numerical experiments we are choosing the following functions. Let g1(r) be a linearly de-
creasing function, which takes its maximum at r = 0 and becomes zero at r = δ, i.e.,

g1(r) := a(−r + δ),

where a is the same parameter as in (1.1). Also, we are going to use a non-constant symmetrical
g2(θ) function given by

g2(θ) := β sin(θ + α) + β.

From now on, we are using the choices of α = 0 and β = 1, in other words assuming a northern wind
on the domain. In all numerical experiments - unless otherwise stated - we use the parameter values
a = 100, b = 0.05, c = 0.01, and δ = 0.05, with 30 grid points in each direction and 6×12 cubature
nodes. We also choose the tenth-stage, fourth-order SSP Runge–Kutta method (SSPRK104) for the
time integration.

The initial conditions resemble the eruption of a wildfire, i.e., having infected cases located in a
small area. For the infected species, we use a Gaussian distribution concentrated at the middle point
(L1/2,L2/2) of the domain Ω := [0,L1]× [0,L2], with standard deviation σ = min{L1,L2}/10.
The spatial step sizes are h1 = L1/(P1 − 1) and h2 = L2/(P2 − 1), where P1 and P2 are the
number of grid points in each direction. In all numerical tests we set L1 = L2 = 1. We assume that
the number of susceptibles is constant except the middle of the domain, and there are no recovered
species at the beginning. Therefore, for every 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 the initial conditions are
given by

I0
k,l =

1

2πσ2
exp

−1

2


h1(k − 1)− L1

2
σ


2

+

h2(l − 1)− L2

2
σ


2

 ,

S0
k,l =

1

2πσ2
− I0

k,l,

R0
k,l = 0.

First we would like to study the behavior of our numerical solution. Figure 5.1 depicts the numerical
solution at times t = 50 and t = 500. As we can see, the number of susceptibles is decreased, and
the number of infected moves towards the boundaries, while forming a wave. Both densities S and I
tend to zero, which confirms that the zero solution is indeed an asymptotically stable equilibrium for
the first two equations of (1.4), as it was proved in section 2.
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Figure 5.1: The number of susceptibles S (left), infected I (middle) and recovered R (right) at times
t = 50 (top panel) and t = 500 (bottom panel). The Gauss–Legendre quadrature (3.9) has been
used combined with the makima interpolation.

5.1 Comparison of the step size bounds for the Euler method

As we saw in section 4.1, the improved bound τ̂ (see (4.6)) is larger than the pessimistic bound τ̃
(see (4.7)), and thus closer to the best theoretically bound (4.2) that guarantees the preservation of
properties D1–D4. We would like to determine how close the bound τ̂ is to the adaptive step-size
restriction, and compare it with the pessimistic bound τ̃ . In Table 5.1 we have tested several different
values of a and δ, for which both the bounds τ̂ and τ̃ were computed. For comparison we calculated
the minimum of the adaptive step bound (4.2), denoted by τe. As we can see, varying the parameter
a and using the time-step bound τ̂ results in about 55% increase in efficiency and is much closer
to the theoretical bound for which the properties D1–D4 hold. By varying the parameter δ instead of
a, the time-step ratios remain similar and result in more than 70% difference between the improved
bound (4.6) and the time step (4.7). From Table 5.1 we conclude that in the case of a small increase
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a τ̃ τ̃/τe τ̂ τ̂ /τe τe

50 3.7458 0.4037 8.7682 0.9449 9.2792
100 1.9086 0.3923 4.5851 0.9424 4.8653
250 0.7723 0.3853 1.8859 0.9408 2.0046
500 0.3876 0.3857 0.9519 0.9470 1.0052

δ τ̃ τ̃/τe τ̂ τ̂ /τe τe

0.025 7.5188 0.3759 20.0 1.0 20.0
0.05 1.0060 0.2066 4.5802 0.9404 4.8703
0.075 0.3002 0.1959 1.4023 0.9151 1.5324
0.1 0.1269 0.2002 0.5964 0.9412 0.6337

Table 5.1: Step-size bounds τ̂ and τ̃ (see (4.6) and (4.7) respectively), and their comparison with
the adaptive bound τe (see (4.2)) for the forward Euler method for different values of a and δ. The
computation uses the Elhay–Kautsky cubature rule (3.9) compined with bilinear interpolation, and the
final time is tf = 100.

in the time step τ̂ , the forward Euler method continues to preserve the desired properties. However,
for values of τ bigger than (4.9), there is no guarantee that properties D1–D4 will be satisfied by a
high-order time integration method.

5.2 Convergence of the method

Since we cannot approximate the exact solution accurately, we are going to compute the numerical
errors for different methods by using a reference solution. To have a fair comparison the reference
solution is computed by using the same parameters and method, but with either a large number of
cubature nodes or a very small time step.

We first observe how well the different cubatures behave. As seen in section 3, using more nodes in
cubature (3.9) results in smaller errors, and also faster convergence. Numerical experiments show that
this is also the case for the system (3.2). The L2-norm errors for the different cubature formulas and
interpolations can be seen in Figure 5.2. It is clear that for a small number of cubature nodes there
is no remarkable difference between the interpolations, but for more cubature nodes makima and
spline interpolation perform better. Bilinear interpolation results in similar errors for both cubatures
(3.7) and (3.9). As it can be seen, makima and spline interpolation perform the same way for the
Elhay–Kautsky cubature (3.7) and smaller errors are observed with spline interpolation and Gauss–
Legendre cubature (3.9).

Equally important is the order of the different time integration methods. Table 5.2 shows that the
forward Euler method behaves similarly when compared to the first-order integral solution described
in section 2.2. Numerical experiments show that the higher order schemes work as expected, namely
that by using enough cubature nodes and grid points, a reasonably small error can be achieved with
the desired accuracy order. Table 5.3 shows the convergence rates for second-, third- and fourth-
order SSP Runge–Kutta methods when the Gauss–Legendre quadrature rule (3.9) is used with spline
interpolation. The numerical solution is computed at time tf = 50 using 30 grid points and 6 × 12
cubature nodes. We start with a reasonable time step 4.7, which is slightly below the minimum of the
adaptive bound (4.2) when forward Euler method is used, and then successively divide by 2. For the
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Figure 5.2: L2-norm errors using cubatures formulas (3.7) and (3.9) with n × 2n cubature nodes,
n ∈ {3, 4, 6, 9, 12} and different interpolations. The final time is tf = 50 and the reference solution
for each cubature rule and interpolation is computed by using 17× 34 cubature nodes.

τ FE IM

1.0000 3.58× 10−1 8.17× 10−1

0.5000 1.82× 10−1 0.98 4.75× 10−1 0.78
0.2500 8.92× 10−2 1.03 2.53× 10−1 0.91
0.1250 4.19× 10−2 1.09 1.24× 10−1 1.02
0.0625 1.80× 10−2 1.22 5.48× 10−2 1.18

Table 5.2: L2-norm errors and convergence rates of forward Euler method (FE) and the method (2.15),
denoted by“IM". The solution is computed at time tf = 50 with the Gauss–Legendre quadrature rule
(3.9) combined with spline interpolation.

reference solution we use a time step that is the half of the smallest time step in our computations. It is
evident that using higher order methods is better than solving the integral equation (2.13) numerically.
Moreover the fourth-order SSP Runge–Kutta method (SSPRK104) attends a six times larger time step
than lower order methods since it has an SSP coefficient C = 6.

6 Conclusions, further work

In this paper the SIR model for epidemic propagation is extended to include spatial dependence. The
existence and uniqueness of the continuous solution are proved, along with properties corresponding
to biological observations. For the numerical solution, different choices of cubature, interpolation and
time integration methods are studied. It is shown that for a sufficiently small time-step restriction, the
numerical solution preserves a discrete analogue of the properties of the original continuous system.
The step-size bound is improved compared to previous results. An adaptive step-size technique is
also suggested for the explicit Euler method, and we have determined step-size bounds for higher
order methods. Analytic results are confirmed by numerical experiments, while the errors of cubature
formulas and the order of accuracy of the time discretization methods are also discussed.
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τ SSPRK22 SSPRK33 SSPRK104

4.7000 3.35× 10−1 6.22× 10−2 8.99× 10−4

2.3500 1.07× 10−1 1.65 1.05× 10−2 2.57 6.46× 10−5 3.80
1.1750 3.03× 10−2 1.82 1.53× 10−3 2.78 4.31× 10−6 3.91
0.5875 8.01× 10−3 1.92 2.07× 10−4 2.89 2.78× 10−7 3.95
0.2938 1.97× 10−3 2.02 2.65× 10−5 2.96 1.76× 10−8 3.98
0.1469 4.01× 10−4 2.30 3.00× 10−6 3.14 1.04× 10−9 4.08

Table 5.3: L2-norm errors and convergence rates of high-order integration methods. The solution
is computed at time tf = 50 with the Gauss–Legendre quadrature rule (3.9) combined with spline
interpolation.

The work presented in this paper can be extended to diffusion spatial-dependent SIR systems, and
also include the effect of fractional diffusion. Results for the preservation of qualitative properties of
such system could be potentially obtained in a similar fashion as in the current manuscript. Moreover
the inclusion the births and natural deaths in the system and dropping the conservation property could
make the model more realistic. Several biological and epidemiological metrics, for instance, the basic
reproduction number, could be also estimated. It would be interesting to study the influence of such
modification in the behavior of the continuous and also the numerical solution.
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A Proofs of Lemmata in section 2

In this section we present the proofs of some technical lemmata that were omitted in the previous
sections.

Proof of Lemma 2.1. The proof simply follows from

‖u‖2 = c2 1

c2
‖u1‖2

L2 + b2 1

b2
‖u2‖2

L2 ≤ max

{
1

b2
,

1

c2

}(
c2 ‖u1‖2

L2 + b2 ‖u2‖2
L2

)
=

(
1

min{b, c}

)2

‖u‖2
A ,

and

‖u‖2
A = c2 ‖u1‖2

L2 + b2 ‖u2‖2
L2 ≤ max{b2, c2}(‖u1‖2

L2 + ‖u2‖2
L2) = max{b, c}2 ‖u‖2 .
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Proof of Lemma 2.2. We are going to derive an upper bound to the term

‖F(I)‖2
L2 =

∫
Ω

∣∣∣∣ ∫ δ

0

∫ 2π

0

g1(r)g2(θ)I
(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr

∣∣∣∣2dx dy

=

∫
Ω

∣∣∣∣ ∫
Bδ(x)

g1(r)g2(θ)I(t, x̃) dx̃

∣∣∣∣2dx,

where we used the notation x̃ :=
(
x̃(r, θ), ỹ(r, θ)

)
=
(
x + r cos(θ), y + r sin(θ)

)
, and Bδ(x) is

the ball with radius δ around x.

By the definition of g1 and g2, we have that

‖F(I)‖2
L2 =

∫
Ω

∣∣∣∣ ∫
Ω

g1(r)g2(θ)I(t, x̃) dx̃

∣∣∣∣2 dx.

We also know that g1 and g2 are bounded. Using the notations κ1 = maxr∈(0,δ){g1(r)} and κ2 =
maxθ∈[0,2π){g2(θ)}, yields

‖F(I)‖2
L2 ≤ κ2

1 κ
2
2

∫
Ω

∣∣∣∣ ∫
Ω

I(t, x̃) dx̃

∣∣∣∣2dx = κ2
1 κ

2
2

∫
Ω

∣∣∣∣ ∫
Ω

1 · I(t, x̃) dx̃

∣∣∣∣2dx

≤ κ2
1 κ

2
2

∫
Ω

∣∣∣∣∣∣
√∫

Ω

12 dx̃

√∫
Ω

(
I(t, x̃)

)2
dx̃

∣∣∣∣∣∣
2

dx

≤ κ2
1 κ

2
2 µ(Ω)

∫
Ω

∫
Ω

∣∣I(t, x̃)
∣∣2 dx̃ dx,

where we used the Cauchy–Schwarz inequality, and µ(Ω) is the Lebesgue measure of Ω. It holds that

∫
Ω

∫
Ω

∣∣I(t, x̃)
∣∣2 dx̃ dx =

∫
Ω

‖I‖2
L2 dx = µ(Ω) ‖I‖2

L2 .

Consequently,

‖F(I)‖L2 ≤ κ1 κ2 µ(Ω) ‖I‖L2 ,

and setting νF = κ1κ2 µ(Ω) we get the result of the theorem.

Proof of Lemma 2.3. We would like to bound the following expression:

‖F(I1)−F(I2)‖2
L2 =∫

Ω

∣∣∣∣ ∫ δ

0

∫ 2π

0

g1(r)g2(θ)
(
I1

(
t, x̄(r, θ), ȳ(r, θ)

)
− I2

(
t, x̄(r, θ), ȳ(r, θ)

))
r dθ dr

∣∣∣∣2 dx dy.
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We can proceed similarly as in the proof of Lemma 2.2:

‖F(I1)−F(I2)‖2
L2 =

∫
Ω

∣∣∣∣ ∫
Bδ(x)

g1(r)g2(θ)
(
I1(t, x̃)− I2(t, x̃)

)
dx̃

∣∣∣∣2dx

=

∫
Ω

∣∣∣∣ ∫
Ω

g1(r)g2(θ)
(
I1(t, x̃)− I2(t, x̃)

)
dx̃

∣∣∣∣2dx

≤ κ2
1 κ

2
2

∫
Ω

∣∣∣∣ ∫
Ω

(
I1(t, x̃)− I2(t, x̃)

)
dx̃

∣∣∣∣2dx

≤ κ2
1 κ

2
2 µ(Ω)

∫
Ω

∫
Ω

∣∣I1(t, x̃)− I2(t, x̃)
∣∣2 dx̃ dx

= κ2
1 κ

2
2 µ(Ω)

∫
Ω

‖I1 − I2‖2
L2 dx

= κ2
1 κ

2
2 µ(Ω)2 ‖I1 − I2‖2

L2 .

which completes the proof with CF = κ1 κ2 µ(Ω).

Proof of Lemma 2.5. The proof uses the method of variation of constants. Consider the nonhomoge-
neous semilinear equation

u′(t) = Au(t) + F (u(t)), (A.1)

where A is a linear bounded operator and F is Hölder continuous. Then, the solution corresponds of
the solution of the following integral equation:

u(t) = S(t)u0 +

∫ t

0

S(t− s)F (s)ds, (A.2)

where {S(t), t ∈ [0,∞)} is the analytic semigroup associated with the infinitesimal generatorA [14,
p. 101], and we use the notation F (s) := F (u(s)).

For the system (1.4) we use similar choices as in the beginning of this section, namely A is given by
(2.3) and

Fε

(
u1

u2

)
= F

(
u1

u2

)
+

(
0

ε

)
,

where F is given by (2.4) and ε� 1. Note that we do not consider the third equation of (1.4), since it
can be omitted as noted in section 2.

It is clear that A generates an analytic semigroup, and we also know that F is Lipschitz-continuous
because of Lemma 2.4; hence, the method of variation of constants is applicable. Consequently, if uε1
and uε2 are solutions of (A.2), then

‖uε1 − uε2‖ =

∥∥∥∥S(t)u0 +

∫ t

0

S(t− s)Fε1(s)ds− S(t)u0 −
∫ t

0

S(t− s)Fε2(s)ds
∥∥∥∥ .

Let ε̃i = (0, εi)
ᵀ, i = 1, 2, then

‖uε1 − uε2‖ =

∥∥∥∥∫ t

0

S(t− s)(F (s) + ε̃1 − F (s)− ε̃2)ds

∥∥∥∥ =

∥∥∥∥(ε̃1 − ε̃2)

∫ t

0

S(t− s)ds
∥∥∥∥ .

As both ε1 and ε2 tend to zero, then the above expression tends to zero too, and this completes the
proof.
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