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An existence result for a class of
nonlinear magnetorheological composites

Grigor Nika, Bogdan Vernescu

Abstract

We prove existence of a weak solution for a nonlinear, multi-physics, multi-scale problem of magnetorhe-
ological suspensions introduced in Nika & Vernescu (Z. Angew. Math. Phys., 71(1):1–19, ’20). The hybrid
model couples the Stokes’ equation with the quasi-static Maxwell’s equations through the Lorentz force and
the Maxwell stress tensor. The proof of existence is based on: i) the augmented variational formulation of
Maxwell’s equations, ii) the definition of a new function space for the magnetic induction and the proof of a
Poincaré type inequality, iii) the Altman-Shinbrot fixed point theorem when the magnetic Reynold’s number,
Rm, is small.

Introduction

The use of suspensions of rigid particles as smart materials is of great interest, as their rheological properties
can be reversibly changed by the interaction with a magnetic or electric field. The ability of magnetorheological
fluids [PV00], [Ver02], [Rab48] to modify their rheology from liquid to a semi-solid state under the presence of an
external magnetic field in a matter of milliseconds make them desirable in many industries [LFS01, dVKHA11].

The modelling of magnetorheological and electrorheological fluids has been mostly explored from thermo-
dynamically consistent, phenomenological point of view ([BD05, Ruz00, RR01]). While this approach is well
founded, it does not allow for explicit control of the material properties. The theory of periodic homogenization,
specifically designed to treat problems for multiscale heterogeneous materials, allows to derive the effective
properties of the aforementioned heterogeneous materials based on the properties of the constituents at the
microscale, allowing thus for the design of materials with specified properties [NC19], [ACN20].

The derivation of effective models of magnetorheological and electrorheological fluids using homogenization
has been carried out in [L8́5, LH88, PV00, Ver02]. The microscale problems used to derive the effective models
in these works were one-way coupled systems of Stokes or Navier-Stokes equations with quasi-static Maxwell’s
equations. In [NV20] a fully coupled model between Stokes’ equations and the quasi-static Maxwell’s equations
through the Lorentz force was used to derive a class of nonlinear magnetorheological composites. Numerical
results, for this model, showed that particle-chain microstructures have a non-linear contribution to the magne-
torheological effect. Furthermore, in [NVar] it was shown numerically that for particles of fixed volume fraction
there is a decrease in the strength of the magnetorheological effect as the surface-to-volume ratio increases.

In this work we prove existence of a weak solution to the model introduced in [NV20], describing the stationary
flow of rigid, magnetizable particles in a non-conducting fluid, distributed periodically with period ε under the
influence of a magnetic field. We use an augmented variational formulation that encapsulates the fact that the
magnetic induction does not possess a full weak derivative in L2, rather, due to the material properties, the
derivatives are split into a divergence part and a rotation part that respectively belong in L2. We also introduce
a new function space for the magnetic induction and prove a Poincare type inequality for this new space.

The proof of existence is based on the Altman-Shinbrot fixed point theorem [Alt57], [Shi64] and relies in the
augmented variational formulation of Maxwell’s equations when the magnetic Reynold’s number, Rm, is small.
In more traditional fixed point arguments like Leray-Schauder that was employed by Ladyzhenskaya to show
existence for the nonlinear stationary Navier-Stokes, require that the defined operator be completely continuous
which is a consequence of the Sobolev embedding of H1 into L2 for three dimensions. However, in our case
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G. Nika, B. Vernescu 2

this is not possible since the magnetic induction does not possess full weak derivatives. In contrast the Altman-
Shinbrot fixed point argument requires that the defined operator be continuous only in the weak topology of the
underlying space.

The article is organized as follows: In Section 1 we introduce the model describing the suspension in the two
component domain. Section 2 introduces the function spaces for the variational framework of the problem and
certain auxiliary results regarding embeddings and Poincaré’s inequality while in Section 3 we write down the
augmentned variational formulation and prove its equivalence to the strong form a.e. in the domain Ω. This is
done in Theorem 3.1. Moreover, we define the function spaceWε, where the magnetic induction belongs and
prove that it is a Hilbert space. Furthermore, we prove a Poincaré type inequality forWε in Theorem 2.1 using
the global div-curl lemma ([Tar79], [Mur78]). Section 4 is dedicated to the existence proof. The proof relies on
the Altman-Shinbrot fixed point theorem [Alt57], [Shi64] when Rm is small and the main result of this section is
stated in Theorem 4.2. Finally, Section 5 is devoted to concluding remarks and comments.

Notation

Throughout the paper we will make use of the following notation:

- In addition to the standard Sobolev space H1(Ω) we define the following spaces:

H1
Γ0

(Ω) =
{
w ∈ H1(Ω) | w

∣∣
Γ0

= 0 on Γ0

}
,

H(div; Ω) =
{
www ∈ L2(Ω) | divwww ∈ L2(Ω)

}
,

H(curl; Ω) =
{
www ∈ L2(Ω) | curlwww ∈ L2(Ω;Rd)

}
,

where the div and curl operators are understood in the sense of distributions andw∣∣Γ0
is the usual trace

operator. Naturally, the above spaces are Hilbert spaces when they are equipped with their corresponding
graph norms. Moreover, we will make use of fractional Sobolev spaces defined e.g. in [LM72].

- χΩ(xxx) is the indicator function over some set Ω such that,

χΩ(xxx) =

{
1 if xxx ∈ Ω,

0 otherwise .
(0.1)

- Throughout the article we employ the Einstein summation notation of repeated indices while the expres-
sions “mesänd “mesd−1ßtand for the Lebesgue measure and for the d− 1 surface measure.

1 The model

Assume Ω is an open, bounded, multiply connected subset of Rd, d = 2 or 3 lying in vacuum. Let Y =
[−1/2, 1/2)d be the unit cube in Rd, and Zd be the set of all d–dimensional vectors with integer components.
For every positive ε, let N(ε) be the set of all points ` ∈ Zd such that ε(` + Y ) is strictly included in Ω and
denote by |N(ε)| their total number. Let Y1 be the closure of an open, connected set with sufficiently smooth
boundary S, compactly included in Y and Y2 := Y \Y 1. For every ε > 0 and ` ∈ N(ε) we consider the set
Y `
i ε ⊂⊂ ε(` + Y ), where Y `

i ε = ε(` + Yi) for i = 1, 2. The set Y `
1 ε represents one of the rigid particles

suspended in the fluid, and Sε` = ε(`+ S) denotes its surface (see Fig. 1).

We now define the following subsets of Ω : Ω1ε =
⋃

`∈N(ε)

Y `
1 ε, Ω2ε = Ω\Ω1ε. Here, Ω1ε is the domain

occupied by the rigid particles and Ω2ε the domain occupied by the ambient surrounding fluid of viscosity ν ≡
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An existence result for a class of nonlinear MR composites 3

1. We denote by Γ := ∂Ω the boundary of Ω. By Γ0 we denote the exterior component of Γ and by Sε` ,
` = 1, · · · , N(ε) the remaining finite number of components. The vectorsnnn andnnnε indicate the unit normal on
Γ0 and the unit normal to S`ε respectively with both unit normals pointing outwards. Moreover, by J·K we indicate
the jump discontinuity between the fluid and the rigid part.

RdΩ

Γ0

Γ0

ε

ε

ε Y

Figure 1: Schematic of the periodic suspension of rigid magnetizable particles in a non-conducting, non-
magnetizable fluid. The periodic cell ε Y contains a potential geometric realization of a magnetizible, spherical,
rigid particles in a chain structure.

The magnetorheological problem considered in [NV20] after non-dimensionalizing and assuming that the flow
is at low Reynolds numbers was the following,

−div (σε) = 000 in Ω2ε,

σε = 2 e(vvvε)− pεI in Ω2ε,

div (vvvε) = 0 in Ω2ε,

e(vvvε) = 0 in Ω1ε,

(1.1)

div (BBBε) = 0 in Ω,

curl (µ̂εBBBε) = Rm vvv
ε × BBBεχΩ1ε in Ω.

(1.2)
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G. Nika, B. Vernescu 4

with compatibility conditions,

div (Rm vvv
ε × BBBε χΩ1ε) = 0 in Ω, 〈Rm vvv

ε × BBBε ·nnnε | 1〉H1/2(Sε`),H
1/2(Sε`)

= 0, (1.3)

and interface and exterior boundary conditions,

JvvvεK = 000 on Sε` , vvv
ε = 000, BBBε ·nnn = ccc ·nnn on Γ0. (1.4)

When the MR fluid is submitted to a magnetic field, the rigid particles are subjected to a force that makes them
behave like a dipole aligned in the direction of the magnetic field. This force can be written in the form,

FFF ε := −1

2
|HHHε|2∇µε,

where | · | represents the standard Euclidean norm. The force can be written in terms of the Maxwell stress,

τ εij = µ̂εBε
i B

ε
j −

1

2
µ̂εBε

k B
ε
k δij , (1.5)

asFFF ε = div (τ ε)−BBBε×curl (µ̂εBBBε). Since the magnetic permeability is considered constant in each phase,
it follows that the force is zero in each phase. Therefore, we deduce that

div (τ ε) =

{
0 if xxx ∈ Ω2ε,

BBBε × curl (µ̂εBBBε) if xxx ∈ Ω1ε.
(1.6)

Lastly, we remark that unlike the viscous stress σε, the Maxwell stress is present in the entire domain Ω. Hence,
we can write the balance of forces and torques in each particle as,

0 =

∫
Sε`

σεnnnε ds+ α

∫
Sε`

Jτ εnnnεK ds− α
∫
T ε`

BBBε × curl (µ̂εBBBε) dxxx,

0 =

∫
Sε`

σεnnnε × (xxx− xxx`c) ds+ α

∫
Sε`

Jτ εnnnεK× (xxx− xxx`c) ds

− α
∫
T ε`

(BBBε × curl (µ̂εBBBε))× (xxx− xxx`c) dxxx.

(1.7)

Here vvvε represents the fluid velocity field, pε the pressure, e(vvvε) the strain rate,nnnε the unit normal to Sε` ,nnn is the
unit normal to Γ0,BBBε is the magnetic induction and it is related to the magnetic fieldHHHε byBBBε = µεHHHε, where
0 < µε is the magnetic permeability of the material and µ̂ε = (µε)−1, xxx`c is the center of mass of the rigid
particle T ε` , α is the Alfven number, and Rm is the magnetic Reynolds number. Moreover, ccc ·nnn is a transmission
condition on the outer boundary indicating that a magnetic field ccc exterior to the domain Ω is present. Finally,
we remark that condition e(vvvε) = 0 in Ω1ε means that vvvε = VVV `,ε + ωωω`,ε × (xxx − xxx`c) in Ω1ε where VVV `,ε is a
constant translational velocity and ωωωε,` is a constant rotational velocity for each particle.

2 Function spaces and auxiliary results

We begin with a collection of results proved in [GLN] regarding a non-homogeneous domain containing sub-
domains of i.e. different piece-wise constant magnetic permeability, say, µi, i = 1, . . . , κ, where κ is the
number of subdomains. These domains occur naturally in problems of electromagnetism (see Fig. 2).
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An existence result for a class of nonlinear MR composites 5

O1

O2O3

Γ1

Γ2

Γ0

Figure 2: A schematic of a non-homogeneous domain. Namely, a finite multiply connect region O containing
two sub-regions. The open setO is defined asO := O1 ∪ O2 ∪ O3 ∪ Γ1 ∪ Γ2

.

Proposition 2.1. LetO ⊂ Rd be any open, bounded, multiply connected set with boundary Γ := ∂O of class
C2. The exterior boundary will be denoted by Γ0 and by Γj , j = 1, . . . , κ− 1, the other components of Γ.

Define Y to be the Hilbert space of vector fields,

Y :=
{
vvv ∈ L2(O;Rd) | divvvv ∈ L2(O), curl(µ̂ vvv) ∈ L2(O;Rd), vvv ·nnn ∈ H1/2(Γ0)

}
, (2.1)

for the norm,

‖vvv‖Y := ‖vvv‖L2(O;Rd) + ‖divvvv‖L2(O) + ‖curl(µ̂ vvv)‖L2(O;Rd) + ‖vvv ·nnn‖H1/2(Γ0) , (2.2)

then for all vvv ∈ Y we have, vvv∣∣Oi ∈ H1(Oi;Rd) for i = 1, . . . , κ where vvv∣∣Oi is the restriction of vvv to Oi,

0 < µ = µ̂−1 is constant inOi and ∥∥∥∥vvv∣∣Oi
∥∥∥∥
H1(Oi;Rd)

≤ COi ‖vvv‖Y . (2.3)

Proof. Let vvv ∈ Y and define π ∈ H1(O) as the solution to the following Neumann problem,

div(µ∇π) = divvvv inO,
Jµ∂nπK = 0 on Γj , j = 1, . . . , κ− 1,

µ ∂nπ = vvv ·nnn on Γ0.

(2.4)

Take uuu = vvv − µ∇π and note that divuuu = 0 in O, curl (µ̂uuu) = curl (µ̂ vvv) ∈ L2(O;Rd), and uuu · nnn = 0 on
Γ0. Then uuu∣∣Oi ∈ H1(Oi;Rd) by [DL72, Theorem 6.2, page 355].

It remains to prove that π∣∣Oi ∈ H2(Oi) and inequality (2.3). This is the result of [LU68, Chap. 3, Sec. 16, Eq.

16.12, pg. 212]. For a sketch of the proof in this particular case one can also consult [GLN].

Lemma 2.1. Let vvv ∈ {www ∈ H(div, O) | div vvv = 0 inO} and define YΓ0 =
{
www ∈ Y | vvv · nnn = 0 on Γ0

}
,

Y0
Γ0

=
{
www ∈ YΓ0 | div vvv = 0 inO

}
. There exists a vector potentialwww ∈ Y0

Γ0
such that

curl(µ̂www) = vvv, ‖ µ̂www‖Y0
Γ0

≤ c ‖vvv‖L2(O;Rd) , (2.5)

DOI 10.20347/WIAS.PREPRINT.2804 Berlin 2021



G. Nika, B. Vernescu 6

where c := c(O). Moreover, there exists ξ ∈ (3, 6] such that

µ̂www ∈ Lξ(O;Rd) and ‖µ̂www‖Lξ(O;Rd) ≤ c ‖vvv‖L2(O;Rd) . (2.6)

Proof. This is [Dru, Prop. 2.2].

Proposition 2.2. The spaceY is embedded intoLq(O,Rd) for q ∈ [1, 2d/(d− 2)] with the embedding being
continuous.

Proof. This is [GLN, Prop. 3.4] which is an extension result of [Dru, Prop. 2.6 (2)] when the normal trace on Γ0

belongs in H1/2(Γ0).

Proposition 2.3. Define a new norm on Y by

[vvv]Y := ‖divvvv‖L2(O) + ‖curl (µ̂ vvv)‖L2(O;Rd) + ‖vvv ·nnn‖H1/2(Γ0) , (2.7)

then Y is also a Hilbert space with norm [·]Y .

Proof. It is evident that if vvv = 000 then [vvv]Y = 0. For the other direction we have, [vvv]Y = 0 implies that
curl (µ̂ vvv) = 000 in Ω. Hence, vvv can be written as, vvv = −µ∇θ. Thus, we get that θ satisfies the following elliptic
problem,

−div (µ∇θ) = 0 inO,
µ∇θ ·nnn = 0 on Γ0.

(2.8)

The above problem has a unique solution, θ = 0 (if we fix constants) and the result follows. We remark that Y
is complete which follows by similar arguments used to show the completeness of the classical H(div;O) or
H(curl;O) spaces (see [Tem84]).

Theorem 2.1 (Poincaré type inequality for (Y, [·]Y)). There exists a constant, c := c(O), such that

‖www‖L2(O;Rd) ≤ c [www]Y , (2.9)

for allwww ∈ Y .

Proof. We proceed by contradiction. If (2.9) is false then there exists a sequencewwwn ∈ Y , such that

‖wwwn‖L2(O;Rd) > n [wwwn]Y for all n ∈ N. (2.10)

We can suppose that ‖wwwn‖L2(O;Rd) = 1. Then as n→∞ and up to a, non-relabeled, subsequence we have:

wwwn ⇀www in H(div;O), µ̂wwwn ⇀ µ̂www in H(curl;O), (2.11)

divwwwn → 0 in L2(O), curl (µ̂wwwn)→ 0 in L2(O;Rd), wwwn ·nnn→ 0 in H1/2(Γ0). (2.12)

Decompose µ̂wwwn using Helmholtz decomposition as µ̂wwwn = ∇ pn+curlfffn. Denote by gggn := curlfffn, then
gggn ∈ L2(O;Rd), divgggn = 0, curlgggn ∈ L2(O;Rd), and gggn · nnn = 0 on Γ0 in the sense of distributions. By
theorem, [FT78, Prop. 1.4, pg. 41] or [DL72, Thm 6.1, pg. 354] gggn ∈ H1(O;Rd) and is bounded uniformly. By
the compact embedding of H1 into L2, gggn → ggg in L2(O;Rd) or curlfffn → curlfff in L2(O;Rd). Hence, if
µ̂0 := mini µ̂i denotes the the smallest of the µ̂i, we have
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0 < µ̂0 ≤
∫
O
µ̂wwwn ·wwwn dxxx

=

∫
O
∇ pn ·wwwn dxxx+

∫
O

curlfffn ·wwwn dxxx

=

∫
Γ0

pnwwwn ·nnnds−
∫
O
qn · divwwwn dxxx+

∫
O

curlfffn ·wwwn dxxx.

(2.13)

Since pn remains bounded in H1(O), curlfffn → curlfff in L2(O;Rd), and using (2.11) and (2.12) we can
pass to the limit as n → ∞. Noting further from (2.12) that the curl fff = 000 in O we obtain that 0 < µ̂0 = 0,
which is a contradiction.

Sometimes this is referred to as the global div-curl lemma (see [Sch18]).

Corollary 2.1. The norms ‖·‖Y and [·]Y are equivalent norms on Y

Proof. It is a consequence of Theorem 2.1.

3 Augmented variational formulation

3.1 Assumptions

We frame the magnetorheological model (1.1)–(1.2) under the following general Assumptions (A).

� We assume Ω is a bounded, multiply connected domain such that mesd−1(Γ) > 0 and mesd−1(Sε`) >
0 for ` = 1, . . . , N(ε).

� Γ0 and Sε` are surfaces of class C2, Sεp ∩ Sεq = ∅ for p, q ∈ Nε with p 6= q, and Γ0 ∩ Sε` = ∅ for every
` ∈ Nε.

� The magnetic permeability of the magnetorheological fluid, µε, is assumed be a piece-wise constant
function with values µε(xxx) = µ1 if xxx ∈ Ω1ε and µε(xxx) = µ2 if xxx ∈ Ω2ε with 0 < µ2 < µ1 < +∞.

3.2 Variational formulation

To properly establish a weak solution to the system of equations (1.1), (1.2), (1.3), (1.4), and (1.7) we need
appropriate variational formulations and function spaces. We begin by defining the following function spaces,

Vε =
{
vvv ∈ H1

Γ0
(Ω;Rd) | div (vvv) = 0 in Ω, e(vvv) = 0 ∈ Ω1ε

}
. (3.1)

It is clear that Vε is a closed subspace of H1
Γ0

(Ω;Rd) and thus a Hilbert space with the induced H1
Γ0

(Ω;Rd)
inner product which by Korn’s inequality is equivalent to

(vvv | φφφ)Vε =

∫
Ω2ε

2 e(vvv) : e(φφφ) dxxx. (3.2)

The corresponding norm will be denoted by ‖·‖Vε . Furthermore, we define the function space,

Wε =
{
www ∈ L2(Ω;Rd) | divwww ∈ L2(Ω), curl(µ̂εwww) ∈ L2(Ω;Rd),www ·nnn ∈ H1/2(Γ0)

}
, (3.3)
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equipped with the inner product,

(hhh | ψψψ)Wε =

∫
Ω

div (hhh) div (ψψψ) dxxx+

∫
Ω

curl (µ̂εhhh) · curl (µ̂εψψψ) dxxx+

∫
Γ0

(hhh ·nnn)(ψψψ ·nnn)ds, (3.4)

while the corresponding norm will be denoted by [·]Wε . It is evident that (Wε, [·]Wε) is a Hilbert space from
Proposition 2.3, sinceWε is the Hilbert space Y with µ̂ := µ̂ε andO is now the domain Ω.

The variational formulation of (1.1), (1.2), (1.3), (1.4) and (1.7) is written in two steps. First, we write down the
variational formulation of the Stokes’ equations and the Maxwell equations separately and then add the resulting
variational problems. The variational formulation of the Stokes’ equation reads: Find uuuε ∈ Vε such that,

(uuuε | φφφ)Vε + α

∫
Ω2ε

τ ε : e(φ) dxxx = 000 for all φφφ ∈ Vε. (3.5)

For the quasi-static Maxwell’s equations, we consider an augmented variational formulation inWε [Jr05]. Find
BBBε ∈ Wε such that

α

Rm
(BBBε | ψψψ)Wε = α

∫
Ω1ε

uuuε ×BBBε · curl (ψψψ) dxxx+
α

Rm

∫
Γ0

(ccc ·nnn)(ψψψ ·nnn) ds, (3.6)

for allψψψ ∈ Wε.

Hence, the variational formulation of (1.1), (1.2), (1.3), (1.4) and (1.7) reads: Find (uuuε,BBBε) ∈ Vε ×Wε such
that

(uuuε | φφφ)Vε +
α

Rm
(BBBε | ψψψ)Wε =− α

∫
Ω2ε

τ ε : e(φφφ) dxxx+ α

∫
Ω1ε

uuuε ×BBBε · curl (ψψψ) dxxx

+
α

Rm

∫
Γ0

(ccc ·nnn)(ψψψ ·nnn) ds for all (φφφ,ψψψ) ∈ Vε ×Wε.

(3.7)

Theorem 3.1. The pair (vvvε,BBBε) satisfies (1.1), (1.2), (1.3), (1.4) and (1.7) if and only if it is a weak solution to
(3.7).

Proof. It is clear that if (vvvε,BBBε) satisfies (1.1), (1.2), (1.3), (1.4) and (1.7) then it is a solution to (3.7). To see
this, multiply the Stokes’ equations by a test function in φφφ ∈ Vε and carry out the varational formulation as in
[Tem84], [GMV14], [NV16, Appendix]. For Maxwell’s equations multiply the divergence part by α

Rm
divψψψ, the

rotational part by α
Rm

curlψψψ, and the exterior boundary condition by α
Rm

ψψψ ·nnn, respectively.

For the other direction we have: Take (φφφ,000) as a test function in (3.7) and obtain the variational formulation of
Stokes’ equation (3.5) from which we can recover Stokes’ equation, boundary conditions, and balance of forces
and torques in the distributional sense as usual (see [Tem84], [GMV14]). On the other hand if we take (000,ψψψ) as
a test function in (3.7) we obtain (3.6). In order to recover Maxwell’s equations we need to introduce appropriate
test functions on each domain Ω1ε and Ω2ε. To this end if we let ζδ : Rd → [0, 1] be a smooth cut-off function
defined by

ζδ(xxx) =

{
1 if d(xxx,Γ0) < δ,

0 if d(xxx,Γ0) > 2 δ,
(3.8)

where δ is chosen in a way that the inner most neighbourhood does not intersect the rigid particles. Following
[Lad14], define ddd(xxx) := (c2x3, c3x1, c1x2) where the vector field ccc = (c1, c2, c3) is the constant vector field
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An existence result for a class of nonlinear MR composites 9

from the outer transmission condition on the boundary Γ0. Set aaaδ(xxx) := curl
(
ζδ(xxx)ddd(xxx)

)
then aaaδ(xxx) is a

divergence free vector field that is zero in the domain Ωδ := {xxx ∈ Ω | d(xxx,Γ0) < 2δ} and equals ccc in the δ
neighbourhood of Γ0.

Moreover, by Proposition 2.1 we have thatBBBε ∈ H1(Ωiε), i = 1, 2 and by the classical Sobolev embedding
of H1 into Lq for 1 ≤ q < 2d/(d− 2) we have that BBBε ∈ L4(Ω;Rd). Likewise, for vvvε, namely, vvvε ∈
L4(Ω;Rd). Thus, Rmvvv

ε×BBBεχΩ1ε ∈ L2(Ω;Rd) by the Cauchy–Schwartz inequality. Using (1.3) we also have
that div(Rmvvv

ε ×BBBεχΩ1ε) = 0 in Ω. Therefore, Rmvvv
ε ×BBBεχΩ1ε ∈ {vvv ∈ H(div,Ω) | divvvv = 0 in Ω}. By

Lemma 2.1 there exists awww ∈ Y0
Γ0

such that,

curl(µ̂εwww) = Rmvvv
ε ×BBBεχΩ1ε . (3.9)

Settingψψψ := BBBε −www − aaaδ ∈ Wε we reduce (3.6) to the following,

∫
Ω

divBBBε div(BBBε −www − aaaδ) dxxx

+

∫
Ω

(curl (µ̂εBBBε)− Rmvvv
ε ×BBBεχΩ1ε) · curl (µ̂ε (BBBε −www − aaaδ)) dxxx

+

∫
Γ0

((BBBε − ccc) ·nnn)((BBBε −www − aaaδ) ·nnn)ds = 0

(3.10)

Using the properties of the vector fieldswww and aaaδ we obtain:

∫
Ω
|divBBBε|2 dxxx+

∫
Ω
|curl (µ̂εBBBε)− Rmvvv

ε ×BBBεχΩ1ε |
2 dxxx+

∫
Γ0

|(BBBε − ccc) ·nnn|2 ds = 0 (3.11)

Since the expression above is a sum of squares that is equal to zero, each integral must be equal to zero and
the claim follows.

4 Existence of a weak solution via the Altman-Shinbrot fixed point theorem

4.1 M. Shinbrot’s fixed point argument

To prove existence we employ the fixed point argument of Altman-Shinbrot [Shi64], [Alt57]. For the readers
convenience, we recall the main theorem and corollaries of M. Shinbrot’s fixed point argument whose proofs
can be found in [Shi64].

In what follows, H denotes a real or complex Hilbert space, and Sr and Br will denote the sphere and the
closed unit ball of radius r centered at zero:

Sr = {x ∈ H | ‖x‖H = r} , Br = {x ∈ H | ‖x‖H ≤ r} .

Theorem 4.1. Let H be an operator on the separable Hilbert spaceH, continuous in the weak topology onH.
If there is a positive constant r such that

<(Hx, x) ≤ ‖x‖2H for all x ∈ Br, (4.1)

then H has a fixed point in Br.
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Corollary 4.1. Let G be an operator on the separable Hilbert spaceH, continuous in the weak topology onH.
Let y be an element ofH. Let y be an element ofH. If there exists a positive r such that either,

<(Gx− y, x) ≥ 0 for all x ∈ Sr,
or

<(Gx− y, x) ≤ 0 for all x ∈ Sr,
then y is in the range of G.

Corollary 4.2. Let G be an operator on the separable Hilbert spaceH, continuous in the weak topology onH.
Let y be an element ofH. Then, zero is in the range of G if (Gx, x) is of one sign on some sphere Sr.

4.2 Existence

For all uuuε,BBBε,φφφ,ψψψ we define the following expressionQ by,

Q[(uuuε,BBBε); (φφφ,ψψψ)] := −α
∫

Ω2ε

µ̂2BBB
ε ⊗BBBε : e(φφφ) dxxx+ α

∫
Ω1ε

uuuε ×BBBε · curl (µ̂1ψψψ) dxxx. (4.2)

We can immediately see that by combining the results of Proposition 2.1 and Theorem 2.1 with classical Sobolev
embedding theorems of Lq, q ∈ [1, 2d/(d− 2)) into H1 we obtain,

|Q[(uuuε,BBBε); (φφφ,ψψψ)]| ≤ c |||(uuuε,BBBε)|||2 |||(φφφ,ψψψ)||| , (4.3)

where |||(−, ·)||| := ‖−‖Vε + α
Rm

[·]Wε and c is a generic constant depending on Ωiε, α, µ̂i for i = 1, 2.

Thus, we can write (3.7) as: Find (uuuε,BBBε) ∈ Vε ×Wε such that,

(uuuε | φφφ) +
α

Rm
(BBBε | ψψψ)−Q[(uuuε,BBBε); (φφφ,ψψψ)] =

∫
Ω

(ccc ·nnn)(φφφ ·nnn) ds, (4.4)

for all (φφφ,ψψψ) ∈ Vε ×Wε.

The Cauchy-Schwartz inequality and the definition of the norm α
Rm

[·]Wε make the right hand side of equation
(4.4) a bounded linear functional of (φφφ,ψψψ) ∈ Vε ×Wε. Using Riesz’s theorem, we can express the right hand
side of (4.4) as the scalar product of a well determined element (fff,ggg) ∈ Vε ×Wε by (φφφ,ψψψ).

Likewise, if we fix (uuuε,BBBε) ∈ Vε × Wε and take into account the estimate (4.3), we can write the left hand
side as a product of an element in Vε ×Wε, denoted by F(uuuε,BBBε) that depends nonlinearly on (uuuε,BBBε), by
(φφφ,ψψψ).

Therefore, we can re-write (4.4) using the operator F as,

(F(uuuε,BBBε); (φφφ,ψψψ)) = ((fff,ggg); (φφφ,ψψψ)), (4.5)

for all (φφφ,ψψψ) ∈ Vε ×Wε where,

(F(uuuε,BBBε); (φφφ,ψψψ)) := (uuuε | φφφ) +
α

Rm
(BBBε | ψψψ)−Q[(uuuε,BBBε); (φφφ,ψψψ)], (4.6)

and

((fff,ggg); (φφφ,ψψψ)) :=

∫
Ω

(ccc ·nnn)(φφφ ·nnn) ds. (4.7)

Hence, searching for a solution to (3.7) reduces to showing that at least one solution exists to the above nonlinear
operator equation.
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Lemma 4.1. The nonlinear operator F : (uuuε,BBBε) 7→ F(uuuε,BBBε) is continuous in the weak topology of the
product space Vε ×Wε.

Proof. Assume that (uuuεκ,BBB
ε
κ) is a weakly convergent sequence in Vε ×Wε to (uuuε,BBBε) as κ→ +∞ then,

|(F(uuuεκ − uuuε,BBBε
κ −BBBε); (ψψψ,ψψψ))|

=

∣∣∣∣(uuuεκ − uuuε | φφφ) +
α

Rm
(BBBε

κ −BBBε | ψψψ)−Q[(uuuεκ − uuu,BBBε
κ −BBB); (φφφ,ψψψ)]

∣∣∣∣ . (4.8)

By Hölder’s inequality and the embedding ofH1(Ωiε;Rd) intoLq(Ωiε;Rd), i = 1, 2 with 1 ≤ q < 2d/(d−2)
we have,

|Q[(uuuεκ − uuu,BBBε
κ −BBB); (φφφ,ψψψ)]|

≤ c ‖BBBε
κ −BBBε‖2L4(Ω1ε;Rd) ‖e(φφφ)‖L2(Ω2ε;Rd×d)

≤ c ‖uuuεκ − uuuε‖L4(Ω1ε;Rd) ‖BBB
ε
κ −BBBε‖L4(Ω1ε;Rd) ‖curl(µ̂1ψψψ)‖L2(Ω2ε;Rd) ,

(4.9)

for generic constant c := c(Ωiε, a,Rm, µ̂i), i = 1, 2. Moreover, since the above embedding of H1(Ωiε;Rd)
intoLq(Ωiε;Rd) is compact we can extract strongly κ convergent subsequences (not relabelled) inL4(Ωiε;Rd)
of uuuεκ andBBBε

κ to uuuε andBBBε, respectively.

Passing to the limit as κ→ +∞ in (4.8) we have,

lim
κ→+∞

(F(uuuεκ − uuuε,BBBε
κ −BBBε); (ψψψ,ψψψ)) = 0. (4.10)

Lemma 4.2. If the magnetic Reynolds number, Rm, is small then

(F(uuuε,BBBε); (uuuε,BBBε)) ≥ 1

2
|||(uuuε,BBBε)|||2 , (4.11)

for all (uuuε,BBBε) ∈ Vε ×Wε.

Proof. We prove the lemma in two steps. In step 1 we obtain an estimate of the magnetic induction in terms of
Rm using Proposition 2.2. In step 2. we obtain an estimate for Q. Combining both steps gives bounds on Rm

for the existence of solutions.

Step 1: We begin with a bound onBBBε in Lq(Ω;Rd) for q ∈ (1, 2d/(d− 2)]. By Proposition 2.2 we have that

‖BBBε‖Lq(Ω;Rd) ≤ c[BBB
ε]Wε

= c(‖curl(µ̂εBBBε)‖L2(Ω;Rd) + ‖BBBε ·nnn‖H1/2(Γ0))

≤ c(‖Rmuuu
ε ×BBBε‖L2(Ω1ε;Rd) + |ccc|mesd−1(Γ0)).

(4.12)

On the rigid particles the velocity takes the form uuuε = VVV `,ε + ωωω`,ε × (xxx − xxx`c), ` = 1, . . . , N(ε) with the
translational and rotational velocity VVV `,ε and ωωω`,ε, respectively, being constant. Additionally, the term |xxx − xxx`c|
is such that |xxx− xxx`c| < diam(T ε` ) < ε� 1. Hence,

c ‖Rmuuu
ε ×BBBε‖L2(Ω1ε;Rd) ≤ cεRm ‖BBBε‖L2(Ω1ε;Rd) ≤ cεRm ‖BBBε‖Lq(Ω;Rd) , (4.13)
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for q ∈ [2, 2d/(d− 2)].

Combining (4.12) and (4.13) we obtain the following Lq , q ∈ [2, 2d/(d− 2)], bound forBBBε,

‖BBBε‖Lq(Ω;Rd) ≤
c|ccc|mesd−1(Γ0)

1− cεRm
, (4.14)

if Rm < 1/cε.

Step 2: By Korn’s inequality, Hölder’s inequality, and (4.14) we can boundQ by,

|Q [(uuuε,BBBε); (uuuε,BBBε)]| ≤ c ‖BBBε‖L4(Ω2ε;Rd) ‖BBB
ε‖L4(Ω2ε;Rd) ‖e(uuu

ε)‖L2(Ω2ε;Rd×d)

≤ c ‖vvvε‖L4(Ω1ε;Rd) ‖BBB
ε‖L4(Ω1ε;Rd) ‖curl(µ̂εuuuε)‖L2(Ω1ε;Rd)

≤ c|ccc|mesd−1(Γ0)

1− cεRm
|||(uuuε,BBBε)|||2 .

(4.15)

Hence we obtain,

(F(uuuε,BBBε); (uuuε,BBBε)) = |||(uuuε,BBBε)|||2 − c|ccc|mesd−1(Γ0)

1− cεRm
|||(uuuε,BBBε)|||2 , (4.16)

if Rm > (1− 2 c |ccc|mesd−1(Γ0))/cε the result follows.

Theorem 4.2. Given the assumptions in Subsection 3.1, if the magnetic Reynolds number, Rm, is small then
problem (4.5) admits at least one weak solution.

Proof. According to [Shi64, Corollary 2] (see also [Fin65], [SP68]) if we can show that there exists a number r
such that

(F(uuuε,BBBε)− (fff,ggg); (uuuε,BBBε)) ≥ 0 for all (uuuε,BBBε) with |||(uuuε,BBBε)||| = r (4.17)

then equation (4.5) has at least one solution. Hence, by Lemma 4.2 we have,

(F(uuuε,BBBε)− (fff,ggg); (uuuε,BBBε)) = (F(uuuε,BBBε); (uuuε,BBBε))− ((fff,ggg); (uuuε,BBBε))

≥ 1

2
|||(uuuε,BBBε)|||2 − |||(fff,ggg)||| |||(uuuε,BBBε)|||

≥ 0,

(4.18)

if we select r = 2 |||(fff,ggg)|||.

5 Conclusions

We proved existence of a weak solution to coupled system of Stokes’ equations and quasi-static Maxwell’s
equations under moderate magnetic field strength using the Altman-Shinbrot fixed point theorem. The novelty
of the Altman-Shinbrot fixed point argument was that the operator constructed need only by continuous in the
weak topology of the underlying function space (and not completely continuous as is required by the fixed point
theorem of Leray-Schauder). This is useful due to the fact that the magnetic induction (or magnetic field) do not
possess full derivatives in L2 due to material inhomogeneities.

By and large, the existence result holds true when the magnetic Reynold’s number, Rm is small. The case of
Rm ≡ 0 can be thought off as a limit case of the above model. When Rm ≡ 0 the system becomes weakly
coupled and, existence and uniqueness follow by invoking the Lax-Milgram lemma once higher integrability of
the magnetic induction is established (for details one can consult [GLN]).
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[FT78] C. Foias and R. Temam. Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes
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