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A kinetic model of a polyelectrolyte gel
undergoing phase separation

Giulia L. Celora, Matthew G. Hennessy, Andreas Münch, Barbara Wagner, Sarah L. Waters

Abstract

In this study we use non-equilibrium thermodynamics to systematically derive a phase-field
model of a polyelectrolyte gel coupled to a thermodynamically consistent model for the salt so-
lution surrounding the gel. The governing equations for the gel account for the free energy of
the internal interfaces which form upon phase separation, as well as finite elasticity and multi-
component transport. The fully time-dependent model describes the evolution of small changes
in the mobile ion concentrations and follows their impact on the large-scale solvent flux and the
emergence of long-time pattern formation in the gel. We observe a strong acceleration of the
evolution of the free surface when the volume phase transition sets in, as well as the triggering
of spinodal decomposition that leads to strong inhomogeneities in the lateral stresses, potentially
leading to experimentally visible patterns.

1 Introduction

A polyelectrolyte gel is a network of covalently cross-linked polyelectrolyte macromolecules that carry
fixed charges and/or ionizable groups and are immersed in a solvent. If placed in a salt solution, here-
after referred to as an ionic bath, polyelectrolyte gels can undergo chemical, electrical, and mechanical
interactions with the surrounding ionic bath, all of which can trigger structure formation in the gel. To
capture these interactions, we derive a thermodynamically consistent model for the polyelectrolyte gel
and the surrounding ionic bath. The governing equations in the gel and ionic bath are coupled together
via appropriate interfacial conditions.

Exchange of solvent and mobile ions between the ionic bath and the polyelectrolyte gel will drive the
system towards a new equilibrium. The transition to the new equilibrium typically involves a volume
phase transition in the form of swelling or collapse of the gel [47, 77], and has been widely discussed
both experimentally and theoretically [2, 10, 11, 18, 32, 49, 51, 67]. This process depends in a subtle
way on the concentration and valency of the salt in the solvent, the material properties of the macro-
molecules including the degree of fixed charge, and externally applied fields, such as temperature or
an electric field. When considering the transient evolution of the gel between the different equilibria,
phase separation can occur whereby regions of highly swollen and collapsed gel can co-exist in the
material. As shown experimentally by Tanaka et al. [47, 68], this can give rise to surface instabilities
which can transiently or permanently affect the gel morphology and its resulting properties. Moreover,
small changes in the salt concentration in the surrounding ionic bath can have dramatic effects on the
gel state and can result in discontinuous phase transitions connected with super-collapse [34, 39] or
re-entrant swelling [63]. Changes in the surrounding environment of the gel can also result in micro- or
nanophase separation [62, 69], or arrested phase separation and reverse Ostwald ripening [58, 59],
and these features play an important role in subcellular organelle formation [5, 66].
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While aspects of gel dynamics can be explored in the context of neutral hydrogels [17, 28, 31], models
for polyelectrolyte gels immersed in an ionic bath enable pattern formation phenomena that arise due
to local environmental parameters to be explored. Such phenomena have important biological func-
tions and medical applications [29, 42, 43]. In regenerative medicine, for example, polyelectrolyte gels
can be used as scaffolds for biological cells, and the resulting cell-seeded gels can be cultured to engi-
neer replacement biological tissues [43, 46, 52]. The local electromechanical environment experienced
by cells within these polyelectrolyte scaffolds can be controlled by the application of, for example, an
external electric field, so that these bio-active materials can be utilised to guide and direct cell be-
haviour. Polyelectrolyte gels are also used as model systems for fundamental biological phenomena,
including biological tissues such as cartilage and brain [20, 46], or as a model for bio-macromolecules
such as DNA, RNA [21, 57, 75]. Phase separation of environmentally sensitive polyelectrolyte gels is
also fundamental to the development of smart, responsive materials and sensors [6, 8, 29, 65].

To capture the underlying physics, which combines aspects of electrochemistry and condensed matter
physics, we use non-equilibrium thermodynamics and systematically derive a phase-field model of a
polyelectrolyte gel that accounts for the free energy of the internal interfaces which form upon phase
separation, as well as for finite elasticity. We also derive a thermodynamically consistent model for the
ionic bath. In contrast to the polyelectrolyte gel, the ionic bath does not have a well-defined reference
configuration, which leads to subtle differences when using our thermodynamic framework to obtain
constitutive relationships. The governing equations for the bath that we derive are similar to those ob-
tained for liquid electrolytes [14, 60] used in electrochemical storage systems such as batteries. Our
model accounts for multi-component transport (solvent and mobile ions) between the ionic bath and
gel. To account for the dissipation due to the relative motion of the solvent and ions we use a Stefan-
Maxwell approach to account for cross-diffusion. It is well-known that multi-component transport may
lead to anomalous diffusivities if the underlying theory assumes that diffusion of a species is solely
driven by the gradient of its chemical potential [41]. The Stefan–Maxwell approach [48, 64] correctly
captures the hydrodynamic drag between different components of the mixture by balancing the friction
forces between the different species [3]. While having been previously ignored for polyelectrolyte gels
[31], the recent work by Zhang et al. [76] has highlighted the role of cross-diffusion in modelling ef-
fects such as a temporary excess of salt entering the hydrogel during swelling, which is subsequently
rejected as the gel approaches its new equilibrium.

The governing equations for the polyelectrolyte gel and ionic bath must be coupled via the specification
of appropriate interfacial conditions for the double-layer that is established between the bath and the
gel. While Mori et al. [50] derived a coupled model for a polyelectrolyte gel in contact with a solvent
bath, they did not consider phase separation in the gel nor Stefan–Maxwell diffusion. In a companion
paper [27], we use matched asymptotic expansions to derive the corresponding electroneutral model
for the gel-bath system with consistent jump conditions to be imposed across the thin electric double
layer which forms at the gel-bath interface.

The model presented in this paper can thus capture the fully time-dependent hydrodynamics of the
ionic bath, and the mechanical interactions between the gel and the ionic bath. The model can be
exploited to determine how the fast dynamics of ion migration affects the much slower transport of
the solvent, which in turn provides mechanistic insights into the transient dynamics of the emerging
patterns within the gel en route to a new equilibrium state. This theoretical framework enables new
interpretations of experimental results as it can be used as a tool to discover and investigate the
phenomena of phase separation in polyelectrolyte gels.

In §2, we derive the model for the polyelectrolyte gel by formulating the conservation laws, constructing
the free energies, and using the approach by Gurtin [25, 26] to derive the constitutive equations via an
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energy imbalance inequality. The full model for the ionic bath is derived in §3 using a similar approach.
The interfacial conditions between the gel and ionic solutions are given in §4.

Some first insights into the potential of the model to predict the emergence of patterns in the gel as a
function salt concentration, the Flory-Huggins parameter χ and/or elastic modulus of the network of
polyelectrolyte macromolecules, are discussed in §5, where we explore numerically the dynamics of
swelling and collapse of a constrained gel. We use our model to resolve the transient dynamics of the
volume phase transition. Specifically, we show how the initial dynamics, governed by the flux of the
mobile ions, determines the long-time front propagation from the free interface that eventually leads
to the volume phase transition. In some cases, this transition is also accompanied by the emergence
of local collapsed states that arise due to spinodal decomposition ahead of the main transition front.
Interestingly, in the collapsed regions, the ion concentration is higher and corresponds to higher tensile
stresses, suggesting the emergence of patterns that may be observed in experiments. The numerical
results presented here are extended in a companion paper [7], where we also carry out a linear
stability analysis to capture the spinodal decomposition together with a phase-plane analysis to show
the existence of the transition fronts.

2 Model derivation for a polyelectrolyte gel

In this section we derive the governing equations describing the behaviour of a polyelectrolyte gel.
In §2.1 we describe the components of the polyelectrolyte gel, and introduce the reference (dry) and
current (swollen) configurations. In §2.2 we present the equations representing incompressibility of
the polyelectrolyte gel, conservation of mass of the mobile species, and conservation of momentum
of the gel. These are complemented with the definition of the electrostatic potential and Gauss’ law of
electrostatics for the electric displacement. The equations are presented in both the reference and the
current configurations. In §2.3 we construct the free energy of the system. We then apply the energy
imbalance inequality of Gurtin [26] to obtain thermodynamically consistent expressions for the state
equations (constitutive relationships) in terms of the previously specified free energy (§2.4). In §2.5 we
consider the rate of entropy production to determine relationships for the mass fluxes. Finally in §2.6
present the full model equations (conservation laws together with state equations) in the current state.

2.1 Kinematics

We consider the gel as a multi-phase material composed of a solid polymer network with fixed charges
and a solution consisting of solvent, such as water, and N freely moving ionic species (i.e. solutes),
see Figure 1. We assume all phases are intrinsically incompressible and isotropic. We note that the
solid phase volume encompasses the fixed charge volume. Throughout the model derivation, we use
subscripts n, s to denote the solid polymer network and solvent respectively, index i = 1, . . . , N to
denote the ionic species, and the index m ∈ {s, 1, . . . , N} to refer to the species that are mobile
relative to the network, i.e. both the solvent and solutes. For later convenience, we introduce the set
notation I = {1, . . . , N} and M = {s, 1, . . . , N}.
The motivation for this study is to understand the swelling behaviour of a polyelectrolyte gel in contact
with an ionic solution. By changing the solution conditions, such as the concentration of ions, the
polyelectrolyte gel will swell. To capture this, we consider the gel in an initially pre-swollen state in
contact with an ionic solution, and then change the solution conditions. As shown in Figure 2, this
configuration differs from the reference state which is stress free and is assumed to be the dry gel,
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Ionic
solution

Gel

Figure 1: Schematic representation of a polyelectrolyte gel in contact with an ionic solution. The gel is a three-phase material, composed of solid polymer
network with fixed changes, solvent, and freely moving ions. The polyelectrolyte gel is surrounded by an ionic solution consisting of solvent and freely
moving ions.

Figure 2: Sketch of the reference, initial and current state of the gel.

i.e. only solid phase present. As the gel deforms, the material element located at X (Lagrangian
coordinates) in the reference configuration BR is displaced to the point x (Eulerian coordinates) in the
current configuration B as shown in Figure 2. Such a transformation is described by the deformation
gradient tensor F = ∂x/∂X ; information about the change in volume during deformation is encoded
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in J = detF, while u = x −X is the displacement vector. As the gel deformation is determined
by the displacement of the solid phase, the solid phase velocity in the current configuration, vn, and
displacement are related, so that vn = u̇ where dots denote derivatives with respect to time in the
reference configuration, i.e. ∂/∂t|X u.

2.2 Conservation equations

As the solid phase is incompressible, any change in the volume during deformation is due to the
migration of solvent and solute molecules, whose nominal 1 concentrations are denoted by Cs and Ci
respectively (i ∈ I). This leads to the molecular incompressibility condition:

J = 1 +
∑
m∈M

νmCm, (2.1a)

where νm (m ∈M) is the characteristic molecular volume of each species in the solution.

Mass conservation for each mobile species in the reference configuration reads:

Ċm +∇R · Jm = 0, (2.1b)

where Jm is the nominal flux per unit area in the reference state and ∇R denotes the gradient with
respect to the Lagrangian coordinatesX .

When considering gels, inertial and gravitational effects are commonly neglected, so that the conser-
vation of momentum for the gel reads:

∇R · S = 0, (2.1c)

where S is the first Piola-Kirchoff tensor, which represents the stress state of the polyelectrolyte gel
in the reference configuration. The presence of free moving ions generates an electric field which is
denoted byE in the reference configuration. Introducing the electrostatic potential Φ, we have that:

E = −∇R Φ, (2.1d)

As in [29], we consider the gel to be a dielectric material2. Consequently, the presence of the electric
field generates an electric displacementH3, which must obey Gauss’ law of electrostatics:

∇R ·H = Q = e

(∑
i∈I

ziCi + zfCf

)
, (2.1e)

where Q is the local total charge, which accounts for both fixed and moving charges, e is the elemen-
tary charge, Cf is the nominal concentration of fixed charges and zi is the valence of the correspond-
ing charged species.

Equations (2.1a), (2.1b), (2.1c), (2.1d) and (2.1e) are the incompressibility condition, conservation of
mass and momentum, the definition of electric potential, and Gauss law of electrostatics, all written

1variable value in the reference configuration
2a material that does not conduct electricity but can be polarized in the presence of an electric field.
3the vector field that accounts for both the electric field and the polarization of the dielectric material.
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with respect to the reference configuration. Our goal is to derive a mathematical model for the poly-
electrolyte in the current configuration, to facilitate quantitative comparison with experimental data. We
move from governing equations in the reference state for the nominal quantities to the corresponding
equations in the current configuration as follows. Given a volume element dVR and its surface element
NdSR in the reference configuration, these are related to the analogous quantities dV and ndS in
the current configuration by the relations:

dV = JdVR, (2.2a)

ndS = JF−TNdSR, (2.2b)

whereN and n are respectively the normal unit vector to the surface elements dSR and dS respec-
tively, see Figure 2.

We define the concentration of mobile species in the current state to be cm = Cm/J . The incom-
pressibility condition (2.1a) in the current state then reads

J =
1

1−
∑

m∈M νmcm
. (2.2c)

The conservation of mass equations in the current state are given by (see Appendix A)

∂tcm +∇ · (cmvn) = −∇ · jm, (2.2d)

where∇ denotes the gradient, vn = ∂u/∂t + (vn · ∇)u is the network velocity, and jm is the flux
for the m-th species which is related to Jm by the following identity:

Jm = JF−1jm. (2.2e)

We define the velocity of the mobile species to be vm, and relate it to the flux jm as follows:

jm = cm (vm − vn) = cmv̄m, (2.2f)

where, for later convenience, we introduce the notation v̄m for the relative velocity of the m-th phase
with respect to the network velocity.

When considering conservation of momentum (2.1c), the counterpart to the first Piola-Kirchoff tensor
S in the current configuration is the Cauchy stress tensor T, which is related to S as follows:

T = J−1SFT . (2.2g)

Conservation of momentum in the current state is

∇ · T = 0. (2.2h)

Finally, by applying the following rules:

H = JF−1h, (2.2i)

E = FTe, (2.2j)

where h and e are respectively the electric displacement and field in the current configuration, equa-
tions (2.1d)-(2.1e) are now:

e = −∇Φ, (2.2k)

∇ · h =
Q

J
= e

(∑
i∈I

zici + zfcf

)
. (2.2l)
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In summary, the corresponding incompressibility condition, conservation of mass and momentum,
electrostatic potential definition and Gauss’ law of electrostatics in the current configuration are equa-
tions (2.2c), (2.2d), (2.2h), (2.2k) and (2.2l), where the network velocity is vn = ∂u/∂t+ (vn · ∇)u.
In §2.4, we determine how the constitutive relationships relate to the (as yet unspecified) free energy
of the system via the use of the energy imbalance inequality of Gurtin [25].

2.3 Free energy

Equations of state that are consistent with the second law of thermodynamics can be derived by
specifying the precise form of the free energy per unit volume in the reference configuration Ψ. We
assume that the free energy is composed of five contributions as follows

Ψ = Ψ1 + Ψ2 + Ψ3 + Ψ4 + Ψ5, (2.3)

corresponding to the energy of the electric field (Ψ1); the energy of the solvent and solutes not inter-
acting with each other or the solid phase (Ψ2); the mixing energy of the difference phases (Ψ3); the
interfacial energy between dissimilar phases (Ψ4); and the energy of the solid phase not interacting
with the solution (Ψ5), i.e. the elastic energy of the gel.

Assuming the polyelectrolyte gel to be an ideal and linear dielectric material, with constant permittivity
ε, the free energy of polarization is given by [15, 29]:

Ψ1 =
1

2εJ
HFT · FH . (2.4)

We assume that the permittivity is dominated by the permittivity of the solvent, with little contribution
from the network or mobile phases.

The second energy density Ψ2 has the standard form [17]:

Ψ2 =
∑
m∈M

µ0
mCm (2.5)

where µ0
m denotes the chemical potential of non interacting solvent and ion molecules.

When considering the mixing energy, a common assumption in the study of polyelectrolyte gels is that
the leading contribution to the enthalpy arises from the solvent due to the hydrophobic interaction with
the solid phase[35]. According to Flory-Huggins theory [22, 36] of mixtures, the mixing energy Ψ3 is
then given by:

Ψ3 = kBT

(
χCs

1 +
∑

j∈M νjCj
+
∑
m∈M

Cm ln
νmCm

1 +
∑

j∈M νjCj

)
, (2.6)

where kB is the Boltzmann’s constant, T is the temperature and χ is the Flory interaction parameter
(capturing the enthalpy of mixing the solvent and solid phase).

The effect of interfacial tension may be included by considering interfacial energy contributions. For
multiple phases, and assuming ideal interfaces [30], candidate interfacial energy contributions ex-
pressed in the current configurations include [23]

ψ4 =
∑
m∈n,M

Am |∇cm|2 or ψ4 =
∑

l,m ∈ n,M
l < m

Blm |cl∇cm − cm∇cl|2 , (2.7)
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where the Am and Blm are constants, where here we use ψ to denote the free energy per unit
volume of the current configuration. While our model formulation can accommodate contributions to
the interfacial energy arising from gradients in all concentrations, here we consider the case for dilute
ion concentrations, and assume that the interfacial energy contribution is dominated by gradients in
the solvent concentration only. In the current configuration, we consider the specific form of ψ4 to be

ψ4 =
γ

2
|∇cs|2 , (2.8)

where γ plays a role analogous to surface tension (see also [55]). This interfacial energy expressed in
the reference configuration is

Ψ4 =
γ

2J
GiJGiM

∂Cs
∂XJ

∂Cs
∂XM

+
γC2

s

2J3
GiJGiM

∂J

∂XJ

∂J

∂XM

− γCs
J2

GiJGiM
∂Cs
∂XJ

∂J

∂XM

, (2.9)

where G = F−T .

Finally, for the strain energy we consider the gel to be a hyperelastic neo-Hookean material:

Ψ5 =
G

2
(F : F− 3− 2 ln J) (2.10)

where G is the shear modulus of the material.

Have specified the precise form of the free energy Ψ, we now go on to determine the constitutive
relationships through consideration of the energy imbalance inequality of Gurtin [25, 26].

2.4 Energy imbalance inequality

As derived by Gurtin [25, 26] when considering an isothermal processes, the second law of thermo-
dynamics can be rewritten in terms of the Helmholtz free energy Ψ leading to the energy imbalance
inequality :

d

dt

{∫
VR

ΨdVR

}
≤ W(VR) +M(VR) (2.11)

where VR is an arbitrary control volume of the system in the reference configuration BR,W(VR) is
the rate at which the surrounding environment does work on VR andM(VR) is the rate of change of
energy associated with the addition of mass due to transport processes.

The termW(VR) is decomposed into two contributions, the rate of electrical, Wel(VR), and the rate
of mechanical,Wmec(VR), work. Following [16],Wel(VR) is defined as:

Wel(VR) = −
∫
SR

Φ Ḣ ·NdSR, (2.12)

where SR is the surface associated with the control volume VR, and N is the unit normal vector to
the surface SR.

To determine the rate of mechanical work,Wmec(VR), we follow Gurtin [25] and account for the pres-
ence of both macro-stresses S, and micro-stresses ξ, the latter of which arise due to the system
heterogeneity[44]. We assume that the micro-stresses originate from gradients in the concentration of
mobile species, i.e. solvent and ions. As the energy imbalance is formulated in the reference config-
uration BR, we replace cm by Cm/J , with associated micro-stresses, denoted ξm, m ∈ M and ξJ
respectively. The total rate of mechanical work Wmec(VR) then reads:

Wmec(VR) =

∫
SR

SN · u̇ dSR +
∑
m∈M

∫
SR

(ξm ·N ) Ċm dSR +

∫
SR

(ξJ ·N ) J̇ dSR. (2.13)
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The system exchanges mass due to the diffusion of each mobile species, soM(VR) is given by:

M(VR) =
∑
m∈M

−
∫
SR
µm Jm ·N dSR , (2.14)

where µm is the chemical potential associated with each species.

Since equation (2.11) must hold for arbitrary control volumes VR4, substituting equations (2.12), (2.13)
and (2.14) into the energy imbalance inequality (2.11), and applying the divergence theorem, we obtain
the following localized inequality:

Ψ̇ +
∑
i∈I

[eΦzi − µi −∇R · ξi] Ċi − (µs +∇R · ξs) Ċs −
(
S + J (∇R · ξJ)F−T

)
: Ḟ

−E · Ḣ − ξJ · ∇R J̇ −
∑
m∈M

ξm · ∇R Ċm +
∑
m∈M

∇R µm · Jm ≤ 0,
(2.15)

where additionally we have exploited equations (2.1b) and (2.1c). We account for the constraint im-
posed by the incompressibility condition (2.1a) by differentiating with respect to time to give∑

m∈M

νmĊm − JF−T : Ḟ = 0, (2.16)

and including the constraint (2.16) in (2.15) via a Lagrange multiplier p, where the multiplier p plays
the role of the mechanical pressure.

Following [1, 25], guided by equation (2.15) we consider the free energy to have the following depen-
dencies

Ψ = Ψ(F, Cm,∇R Cm,∇R J,H). (2.17)

We highlight that we have retained the dependence of Ψ on ∇RCm ,m ∈ M to make explicit the
relationship between the microstresses ξm and ∇RCm in the discussion that now follows. However,
in the specification of the forms of the constitutive relationships in §2.3, the subsequent analysis will
considerably simplify and we will retain only the microstresses ξs and ξJ . We also highlight that (2.17)
precludes any explicit dependence of the free energy on the mass fluxes Jm which are associated
with an irreversible process, since, as species move relative to each other, friction is generated and
energy is lost by the system.

Substituting (2.17) into (2.15), and including the constraint 2.16, we obtain the augmented form of the
energy imbalance inequality:

∑
m∈M

(
∂Ψ

∂∇RCm
− ξm

)
· ∇RĊm +

(
∂Ψ

∂Cs
− µs −∇R · ξs + pνs

)
Ċs+(

∂Ψ

∂H
−E

)
· Ḣ +

(
∂Ψ

∂∇RJ
− ξJ

)
· ∇RJ̇+

+
∑
i∈I

(
∂Ψ

∂Ci
+ eΦzi − µi −∇R · ξi + pνi

)
Ċi

+

(
∂Ψ

∂F
− S− pJF−T − J(∇R · ξ2)F−T

)
: Ḟ +

∑
m∈M

∇R µm · Jm ≤ 0,

(2.18)

4We assume the control volume is not at the boundary between the polyelectrolyte gel and surrounding ionic solution.
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Inequality (2.18) is linear in ∇RĊm, Ċm, ∇RJ̇ , Ḣ , Ḟ and ∇R µm, each of which can be chosen
independently at each point X and time t [25]. In particular, we can choose ∇R µm = 0 and vary
the other variables independently. The only way for the inequality (2.18) to be valid in all cases is to
assume that the brackets are identically zero. This gives the following state equations

ξm =
∂Ψ

∂∇RCm
, m ∈M, (2.19a)

ξJ =
∂Ψ

∂∇RJ
, (2.19b)

µs =
∂Ψ

∂Cs
−∇R · ξs + pνs, (2.19c)

µi =
∂Ψ

∂Ci
−∇R · ξi + eΦzi + pνi, i ∈ I (2.19d)

E =
∂Ψ

∂H
, (2.19e)

S =
∂Ψ

∂F
− pJF−T + J(∇R · ξ2)F−T . (2.19f)

The energy imbalance inequality (2.18) then reduces to:∑
m∈M

∇R µm · Jm ≤ 0. (2.20)

Having identified the general form of the state equations for the dependent variables associated with
the irreversible processes, in §2.5 we consider the irreversible process associated with mass transport
and determine the equations relating the mass fluxesJm and the chemical potential gradients∇R µm.

2.5 Derivation of transport laws

We consider dissipation only due to the diffusive transport of the mobile phases down gradients of
chemical potential. As experimental measurements to determine drag coefficients correspond to quan-
tities in the current configuration, we now revert to the current configuration. The analogy to the energy
imbalance inequality (2.20) is the current configuration is [45]:

σ = −
∑
m∈M

cm∇µm · v̄m ≥ 0, (2.21)

where σ is the rate of entropy production per unit volume of the current configuration B, and we have
exploited the relationship between the fluxes jm and the relative velocities of the mobile species v̄m
given in equation (2.2f).

The theory of linear non-equilibrium thermodynamics states that, for systems sufficiently close to equi-
librium, the dissipation rate σ is a quadratic function of the relative velocities [56]:

σ =
∑
m∈M

∑
β∈M

`mβv̄β · v̄m, (2.22)

where `mβ are phenomenological coefficients, chosen to satisfy the Onsager reciprocal relations[54],
which in the absence of magnetic effects reads `mβ = `βm so that the matrix of phenomenological co-
efficients ` = [`mβ] is positive semi-definite. Equations (2.21) and (2.22) then imply that the chemical
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potential gradients are a linear combination of the relative velocities:

−cm∇µm =
∑
β∈M

`mβv̄β. (2.23)

The phenomenological coefficients can be related to drag coefficients, commonly used in mixture
theory [71, 72], by rewriting (2.23) in terms of the relative velocities between the different species:

−cs∇µs =
∑
i∈I

fsi (v̄s − v̄i) + fsnv̄s, (2.24)

−cj∇µj =
∑

i∈I ,i 6=j

fji (v̄j − v̄i) + fjs(v̄j − v̄s) + fjnv̄j, j ∈ I (2.25)

where fab are the drag coefficients capturing the interaction between the solvent, ionic species and
the polymer network. We note that Onsager reciprocal relations require that fmb = fbm. Here we have
accounted for multi-component transport using the Stefan–Maxwell approach [48, 64] which correctly
captures the hydrodynamic drag between different components of the mixture by balancing the friction
forces between the different species [3].

A common assumption in mixture theory is that the solute-solute drag can be neglected so that fij = 0
for i, j ∈ I [38, 71]. The remaining drag coefficients are defined by:

fsn =
νscs
k
, fjs =

kBTcj
D0
j

, fjs + fjn =
kBTcj
Dj

, (2.26)

where k is related to the permeability of the solvent in the network, D0
j is the diffusion coefficient of

the solute in pure solution, while Dj is the diffusion coefficient of the solute in the gel. For this choice
of drag coefficients, the matrix ` is:

` =

[
d −f s
−fTs ds

]
, f s =

f1s
...
fNs

 , ds =
∑
i

fsi + fsn (2.27)

where ` is a symmetric diagonally dominant matrix with positive diagonal entries and hence positive
semi-definite in line with Onsager reciprocal relations.

Using (2.24)-(2.26), together with (2.2f) the expressions for the fluxes jm in terms of the chemical
potential gradients are:

js = csv̄s = −csK
νs

(
∇µs +

∑
i∈I

Di
D0
i

ci
cs
∇µi

)
, (2.28)

ji = civ̄i = −Dici
kBT
∇µi+

Dici
D0
i cs
js i ∈ I, (2.29)

where the coefficient K is defined to be

1

K
=

1

k
+
∑
i∈I

kBT

νsD0
i

(
1− Di
D0
i

)
ci
cs
. (2.30)

Here K represents the Darcy hydraulic permeability (over dynamic viscosity) of the gel to the solvent
and ionic species, whilst k represented the Darcy hydraulic permeability (over dynamic viscosity) to
pure solvent.
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2.6 The full polyelectrolyte gel model

We now present the full polyelectrolyte gel model in the current configuration. The system of governing
equations in the reference configuration is given in Appendix B. We start by using the specific form of
the free energy to determine the constitutive equations, and we discuss their physical interpretation
in §2.6.1. In §2.6.2 we then collect these equations together with the conservation of mass and mo-
mentum equations, definition of electric potential and Gauss’ law of electrostatics to describe the full
polyelectrolyte gel model in the current configuration.

2.6.1 State equations for prescribed free energy

Substituting the precise form of the free energy Ψ, given in §2.3, into equations (2.19), we obtain the
state equations in the reference configuration (see Appendix B). Their form simplifies when expressed
in terms of the current configuration. We stress that we now reduce the dependence of the free energy
on multiple interfacial energies, and consider only the contributions arising from gradients in the solvent
concentration.

The expressions for the microstresses (equations 2.19a,b)are given by

ξs = F−1∇ cs, (2.31a)

ξn = −csF−1∇ cs, (2.31b)

These expressions will be utilised in determining the expressions for the solvent chemical potential µs
and the Cauchy stress T in the analysis that follows.

The chemical potential for the solvent (equation 2.19c) is given by

µs = µ0
s + νs(p+ Πs) + µGs , (2.32)

where µ0
s is the reference value for the solvent chemical potential, and the mechanical pressure p, os-

motic pressure Πs and µGs are the contributions to the chemical potential arising from the mechanical
stress, mixing and solvent concentration gradient respectively, with Πs and µGs defined as follows

Πs =
kBT

νs

[
χ(1− νscs)

J
+ ln(νscs) + 1−

∑
m∈M

νscm

]
, (2.33a)

µGs = −γ∇2cs, (2.33b)

and J =

(
1−

∑
m∈M

νmcm

)−1

.

Similarly, the electrochemical potential for the ionic species (equation (2.19d) is given by

µi = µ0
i + νi(p+ Πi) + zieΦ, i ∈ I (2.34)

where µ0
i is the reference value for the ionic chemical potential, the mechanical pressure p and the

osmotic pressure Πi characterise the contributions to the electrochemical potential arising from the
mechanical stress and mixing; Πi is defined by

Πi =
kBT

νi

[
−χcsνi

J
+ ln(νici) + 1−

∑
m∈M

νicm

]
, i ∈ I. (2.35)
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Having the form of the solvent chemical potential (2.33a) and ionic species electrochemical potential
(2.35) then enables us to determine the solvent and ionic species fluxes, given by (2.28) and (2.29).
The multiple dependences of the (electro)chemical potentials on the mobile species concentrations,
the gradient of the solvent concentration, the mechanical pressure and the electrostatic potential,
as well as the deformation of the gel, means that the solvent and ionic species fluxes are complex
expressions. However, as we have shown for the neutral hydrogel [28], it is straightforward to show how
these fluxes recover more familiar forms in simplifying limits. Neglecting for now terms due to interfacial
energies and the electric field we can consider the following two sublimits. Firstly, we consider νsCs →
∞, which corresponds to the limit of large number of solvent molecules. In the current configuration
this corresponds to νscs = φs → 1, and νici = φi → 0 where φm, m ∈M are the volume fractions
of the mobile species in the current configuration. Retaining leading order terms, we find that

js = −csk∇p. (2.36)

Darcy’s law is usually written in the form vs − vn = −k∇p, where k is the hydraulic conductivity of
the solvent in the network. The latter has be experimentally estimated (see e.g. [17] and discussion in
[2, 28]) and it is found to have the form:

k(J) =
Dsνs
kBT

Jθ. (2.37)

where θ is a positive constant. Secondly, we can consider the limit of small number of molecules of
mobile species, νmCm → 0, m ∈ M, so that in the current configuration φm → 0, m ∈ M, and
J → 1. Retaining leading order terms as φm → 0, and given that k → Dsνs/(kBT ), we find that

js = −Ds

(
∇cs +

∑
i∈I

Di
D0
i

∇ci

)
, (2.38)

so that we recover Fick’s law of diffusion (first term) and osmotic flux of solvent due to gradients in
ionic concentrations (second term). Similar expressions can be found for the flux of ionic species in
this limit.

We find the relationship between the electric field and displacement to be

e =
1

ε
h , (2.39)

capturing the standard relationship between electric field and displacement for a linear, homogeneous,
isotropic dielectric with instantaneous response to changes in the electric field.

Finally, the Cauchy stress tensor is expressed as follows

T = −pI + TK + TM + Te, (2.40a)

TK = γ

[(
|∇cs|2

2
+ cs∇2cs

)
I−∇cs ⊗∇cs

]
, (2.40b)

TM = ε

[
∇Φ⊗∇Φ− 1

2
|∇Φ|2I

]
, (2.40c)

Te =
G

J
(B− I) . (2.40d)

In determining the Cauchy stress T in (2.40a) we used the expression for the microstress ξn given by
(2.31b). The first term in (2.40a) is the isotropic stress induced by the pressure, while the second term
is the elastic stress of the network. The Korteweg (2.40b) TK and Maxwell (2.40c) TM stress tensors
are the stresses generated within the gel due to the formation of internal interfaces (i.e., gradients of
the solvent concentration) and the presence of the electric field, respectively.
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2.6.2 Full model summary

For ease of reference, we present now the complete model in the current configuration. The conser-
vation equations in the current configuration are given in 2.2 by equations (2.2c), (2.2d), (2.2h), (2.2k)
and (2.2l). We use (2.39) to combine equations (2.2k) and (2.2l) via the elimination of the electric field.

The full polyelectrolyte gel model in the current configuration is then given by

J =

(
1−

∑
m

νmcm

)−1

, (2.41a)

∂tcs +∇ · (csvn) = −∇ · js, (2.41b)

∂tci +∇ · (civn) = −∇ · ji, i ∈ I (2.41c)

∇ · T = 0, (2.41d)

−ε∇2Φ = e

(∑
i∈I

zici + zfcf

)
(2.41e)

where

js = −csK(cs, ci, J)

(
∇µs +

∑
i∈I

Di
D0
i

ci
cs
∇µi

)
, (2.41f)

ji = −Dici
kBT
∇µi +

Dici
D0
i cs
js, i ∈ I (2.41g)

together with the state equations

µs = µ0
s + νsp+ kBT

[
χ(1− νscs)

J
+ ln(νscs) + 1−

∑
m∈M

νscm

]
− γ∇2cs, (2.41h)

µi = µ0
i + νip+ zieΦ + kBT

[
−χνics

J
+ ln(νici) + 1−

∑
m∈M

νicm

]
, i ∈ I (2.41i)

T = −pI + TK + TM + Te, (2.41j)

TK = γ

[(
|∇cs|2

2
+ cs∇2cs

)
I−∇cs ⊗∇cs

]
, (2.41k)

TM = ε

[
∇Φ⊗∇Φ− 1

2
|∇Φ|2I

]
, (2.41l)

Te =
G

J
(B− I) . (2.41m)

where vn = ∂u/∂t+ (vn · ∇)u, K is defined by Equations (2.30) and (2.37).

3 Model derivation of an ionic bath

Having derived the model for the polyelectrolyte gel, we now derive the governing equations for flow
in the ionic bath adjacent to the gel, following the approach we adopted for the polyelectrolyte gel.
The bath is considered as a two phase isotropic mixture with solvent and solute molecules, where the
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latter are considered to be ionic charges. As the bath has no solid component, we do not have a nat-
ural reference configuration. For this reason, the model is derived directly in the current configuration,
as standard in the field of mixture theory [4]. The notation for variables in the current configuration
that are common to both the polyelectrolyte gel and ionic bath, e.g. the ionic concentrations, remains
the same. We start by presenting the general model set up in §3.1, together with the kinematic rela-
tionships. In §3.2 we state the conservation laws for each component of the mixture, as well as the
mixture as a whole. The constitutive properties of the system are specified in §3.3 via the definition
of the Helmholtz free energy. The governing and state equations of the system are then derived by
using thermodynamics arguments in §3.4. We conclude with a summary of the full model in §3.5, and
discuss how our model links to previously proposed models.

3.1 Kinematics

As shown in Figure 1, the ionic bath consists of the solvent and the N freely moving ionic species.
Following the same convention as for the gel derivation, we use the subscript s to denote the solvent,
and the index i = 1, . . . , N to denote the ionic species.

We introduce the tensor F to describe the deformation of a volume of mixture J = detF, and the cor-
responding velocity gradient tensor L defined as L = ḞF−1. The tensor L is commonly decomposed
into its symmetric (D) and skew symmetric (W) parts, i.e. L = D + W, defined as:

D =
L + LT

2
, W =

L− LT

2
, (3.1)

where D is their new rate of deformation tensor and W is the vorticity or spin tensor.

3.2 Conservation equations

We denote the concentration of the m-th species in the solution (m ∈ M) by cm, and its velocity by
vm. Conservation of mass for each species is given by Equation (A.3):

∂cm
∂t

+∇ · (cmvm) = 0, m ∈M. (3.2a)

Next we have the no-void condition:

1 =
∑
m∈M

νmcm. (3.2b)

As in §2.2, we decompose the total flux of the m-th species into an advective component that is
carried with the deformation and a diffusive component which represents transport down gradients in
chemical potential. This will facilitate the imposition of interfacial conditions, e.g. continuity of chemical
potential, in §4. We highlight that here the deformation is now determined by the velocity of the mixture
v, defined as

v =
∑
m∈M

νmcmvm, (3.2c)

and the flux of the m-th species relative to the mixture velocity is defined as qm = cm (vm − v).
Equation (3.2a) is then:

∂cm
∂t

+∇ · (cmv) = −∇ · qm, m ∈M. (3.2d)
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Using the definition of mixture velocity (3.2c), together with the no-void condition (3.2b) we have that
the fluxes must satisfy: ∑

m∈M

νmqm = 0. (3.2e)

Thus in place of vm we now use v and qm, m ∈M.

Recalling that the material derivative is defined as follows:

Dcm
Dt

=
∂cm
∂t

+ v · ∇cm, m ∈M, (3.2f)

equation (3.2d) takes the simple form:

Dcm
Dt

+ cm (I : L) = −∇ · qm, m ∈M (3.2g)

where we have used the identity
∇ · v = tr(L) = I : L (3.2h)

and the definition of the velocity gradient tensor introduced in §3.1. By multiplying (3.2d) by νm, sum-
ming over m, and using (3.2b) and (3.2e), we find that the mixture velocity is divergence free:

∇ · v = 0. (3.2i)

Neglecting the inertia of the mixture (so that viscous effects dominate inertial effects corresponding
to low Reynolds number of the mixture), and assuming that the bath is not subject to external forces,
conservation of momentum for the mixture is:

∇ · T = 0, (3.2j)

where T is the stress tensor. Following [9, 24], we assume it to be symmetric, which implies balance
of internal and external angular momentum. For a more detailed discussion, we refer to [24].

Finally, the relationship between the electric field e and electrostatic potential Φ, and Gauss’ law of
electrostatics for the electric displacement h are analogous to those for the gel (2.2k)-(2.2l) with the
charge density q given by:

q =
∑
i∈I

ezici. (3.3)

3.3 Free energy

The Helmholtz free energy per unit volume of the mixture (note that in §2.3 the free energies were per
unit volume in the reference configuration) is denoted by ψ = ψ(x, t), and has three contributions:

ψ = ψ1 + ψ2 + ψ3, (3.4)

corresponding to the energy of the electric field (ψ1); the energy of solvent and solutes not interacting
with each other (ψ2); and the energy associated with mixing the different component of the mixture
(ψ3). Note that we have here neglected the interfacial energy as we do not anticipate sharp interfaces
and phase separation occurring in the ionic bath. Having discussed the forms of these free energies
in detail in §2.3, here we give the specific forms of each contribution. The first energy ψ1 is

ψ1 =
1

2ε
h · h, (3.5a)
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where ε is the permittivity of the mixture. As for the polyelectrolyte gel, the permittivity is dominated
by that of the solvent, with little contribution from the mobile phases. For this reason, we consider the
permittivity of the both the polyelectrolyte gel and ionic bath to be equal.

The energy density ψ2 is instead given by:

ψ2 =
∑
m∈M

µ0
mcm, (3.5b)

with µ0
m as defined in §2.3. Finally the mixing energy of the solvent and ions ψ3 reads:

ψ3 = kBT
∑
m∈M

cm ln (cmνm) . (3.5c)

3.4 Energy imbalance inequality

Considering a control volume in the current configuration V(t), the energy imbalance inequality (2.11)
is now:

d

dt

{∫
V(t)

ψ dv

}
≤ W(V(t)) +M(V(t)). (3.6)

This inequality must hold for all motions which satisfy the no-void (3.2b) and incompressibility (3.2i)
constraints. However, since these two constraints are algebraically equivalent, it is sufficient to impose
only one of them when using the energy imbalance inequality to derive constitutive relationships for the
mixture. We choose to enforce the no-void condition (3.2b) via a Lagrange multiplier. This approach
allows the composition variables cm to be treated as independent and does not require the incom-
pressibility constraint∇·v = I : L = 0 to be enforced during the calculations. Alternative derivations
which do enforce the incompressibility constraint, rather than the no-void constraint, can be found
in, e.g., [40]. Thus, by using Reynolds’ transport theorem and exploiting the relationship (3.2h), the
energy imbalance inequality (3.6) can be written as:∫

V(t)

Dψ

Dt
+ ψ (I : L) dv ≤ W(V(t)) +M(V(t)). (3.7)

The rate of mass transport M is analogous to that for the gel, i.e. Equation (2.14), accounting for
the relationships between the current and reference states given by the identities (2.2a)-(2.2b). We
therefore obtain:

M(V(t)) =
∑
m∈M

−
∫
S(t)

µm qm · nda =
∑
m∈M

−
∫
V(t)

∇ · (µm qm) dv (3.8a)

where µm is the chemical potential associated with each species in the solution. Similarly, we can
derive the rate of electrical and mechanical from (2.12)-(2.13) respectively by moving to the current
state (see Appendix C for details of the derivation of equations (3.8b) and (3.8c)):

Wel(V(t)) = −
∫
S(t)

Φ

(
Dh

Dt
+ h (I : L)− Lh

)
· nda

=

∫
V(t)

(
e
Dh

Dt
+ [(e · h) I− e⊗ h− Φ (∇ · h) I] : L− Φ

Dq

Dt

)
dv, (3.8b)

Wmec(V(t)) =

∫
S(t)

Tn · vdA =

∫
V(t)

T : Ldv. (3.8c)
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Given the definitions (3.8) and following the same steps as in Section 2.4, we rewrite (3.7) as:

Dψ

Dt
− eDh

Dt
+
∑
i∈I

[Φezi − µi + νiλ]
Dci
Dt

+ (νsλ− µs)
Dcs
Dt

+

(
−T− (e · h)I + Φ(∇ · h)I + e⊗ h+

(
ψ −

∑
m∈M

µmcm

)
I

)
: L +

∑
m∈M

∇µm · qm ≤ 0

(3.9)
where we have introduced the Lagrange multiplier λ to account for the no-void condition (3.2b). From
§3.3, the free energy ψ takes the form ψ = ψ(cm,h), and inequality (3.9) becomes:(

∂ψ

∂h
− e
)
Dh

Dt
+
∑
i∈I

[
Φezi − µi + νiλ+

∂ψ

∂ci

]
Dci
Dt

+

(
νsλ− µs +

∂ψ

∂cs

)
Dcs
Dt

+

(
−T− (e · h)I + Φ(∇ · h)I + e⊗ h+

(
ψ −

∑
m∈M

µmcm

)
I

)
: L +

∑
m∈M

∇µm · qm ≤ 0.

(3.10)

In the gel, the viscosity of the fluid is captured in the permeability term, i.e. via dissipation due to the
motion of the solvent with respect to the gel. In the bath, this needs to be accounted for explicitly and
we therefore decompose the stress tensor as the sum of an equilibrium and viscous contribution:

T = Tequi + Tv. (3.11)

where Tequi is defined as:

Tequi = −(e · h)I + Φ(∇ · h)I + e⊗ h+

(
ψ −

∑
m∈M

µmcm

)
I. (3.12a)

Similarly to the gel, inequality 3.10 is linear in Dh/Dt, Dcm/Dt, m ∈ M, each of which can be
chosen independently at each point x and time t. For the energy imbalance inequality to be always
satisfied, we must have that:

µs =
∂ψ

∂cs
+ νsλ, (3.12b)

µi =
∂ψ

∂ci
+ eΦzi + νiλ, i ∈ I (3.12c)

e =
∂ψ

∂h
. (3.12d)

The energy imbalance (3.10) then reduces to:

−Tv : L +
∑
m∈M

∇µm · qm ≤ 0. (3.13)

where Tv and ∇µm play the role of thermodynamics forces, while L and qm are the corresponding
thermodynamics fluxes. In the following section, we consider the irreversible processes associated
with mass transport and viscous dissipation, and determine the equations relating the mass fluxes qm
to the chemical potential gradients ∇µm, and the viscous stress tensor Tv to the velocity gradient
tensor L.
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3.4.1 Governing equations

Given the symmetry of the stress tensor T and the fact that Tequi is symmetric, we must have that
Tv is symmetric. We then have that T : W = 0, so that L = D + W can be substituted by D
in (3.13). Utilising the definition of the mixture velocity, i.e. equation (3.2c), together we the relationship
qm = cm(vm − v), equation (3.13) can be rewritten as:

−Tv : D +
∑
m∈M

cm

(
∇µm −

∑
β∈M

cβνm∇µβ

)
· vm ≤ 0. (3.14)

Again assuming that we are in the regime of linear non-equilibrium thermodynamics (see §2.5), and
considering the additional constraint imposed by Curie’s law5, we arrive at the following set of force-flux
relations:

Tv = 2η

(
D− 1

3
(I : D)I

)
+ κ(I : D)I, (3.15)

−cm

(
∇µm −

∑
β∈M

νmcβ∇µβ

)
=
∑
k∈M

`kmvk, m ∈M (3.16)

where the matrix of phenomenological coefficients ` = [`ij] must again be symmetric and semi-
positive definite, while η and κ are positive constants representing the shear viscosity for the mixture
and the dilatational viscosity respectively. Note that the latter will not actually play a role as the isotropic
component of Tv will vanish upon strongly imposing the incompressibility condition (3.2i).

As before (see §2.5), we can recover the Stefan–Maxwell type of diffusion [48, 64] by relating the phe-
nomenological coefficients hij to the drag coefficients commonly used in mixture theory, by rewriting
equation (3.16) in terms of the relative velocities between the different phases:

−cm

(
∇µm −

∑
β∈M

νmcβ∇µβ

)
=

∑
k∈M\{m}

fkm (vm − vk) ,m ∈M. (3.17)

As we did in the gel case, we again consider the drag between ions to be negligible, while fsi = fis
are defined as in (2.26), so that:

−ci

(
∇µi −

∑
β∈M

νicβ∇µβ

)
= fsi (vi − vs) , i ∈ I (3.18a)

−cs

(
∇µs −

∑
β∈M

νscβ∇µβ

)
=
∑
i∈I

fis (vs − vi) . (3.18b)

Analogously to the result in §2.5, for this choice of the fluxes, we have that the matrix ` has the same
structure as in Eq. (2.27) by setting fmn = 0 for all m ∈ M. Therefore ` is still a symmetric and
diagonally dominated matrix and hence positive semi-definite.

Note that the system (3.18) is under-determined (their sum is indeed identically zero). This is to be
expected as the velocities are not independent of each other but need to satisfy (3.2e). We can there-
fore use (3.18a) to determine the ionic velocities in terms of vs, where the latter is defined by (3.2e).

5Macroscopic causes can not have more elements of symmetry than the effect they cause (i.e. there can not be any
coupling between thermodynamics variable of a different tensorial nature)
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We therefore obtain:

vi = − D
0
i

kBT

(
∇µi −

∑
β∈M

νicβ∇µβ

)
+ vs, i ∈ I. (3.19)

Simply subtracting the mixture velocity and multiplying by the ionic concentration ci we get:

qi = −D
0
i ci

kBT

(
∇µi −

∑
β∈M

νicβ∇µβ

)
+
ci
cs
qs, (3.20a)

qs = −
∑
i∈I

νi
νs
qi, (3.20b)

where (3.20b) is obtained by simply readjusting the terms in (3.2e).

3.4.2 State Equations

Using the definition of the Helmholtz free energy given in §3.3, the constitutive laws (3.12) are as
follows:

µs = µ0
s + νsp+ kBT

[
ln (νscs) + 1−

∑
m∈M

νscm

]
, (3.21a)

µi = µ0
i + νip+ kBT

[
ln (νici) + 1−

∑
m∈M

νicm

]
+ zieΦ, i ∈ I. (3.21b)

As before, µs is the chemical potential for the solvent and has contributions arising from the mechanical
pressure p and mixing. Similarly, µi is the electrochemical potential for the ionic species, with the
mechanical pressure, mixing and electrostatic potential all contributing. The relationship between the
electric field and displacement is again given by

h = εe. (3.22)

Finally, the tensor Tequi is found to be

Tequi = −pI + TM , (3.23)

where

TM = ε

[
∇Φ⊗∇Φ− |∇Φ|2

2
I

]
, (3.24)

is the Maxwell stress tensor (see §2.6.1) due to the presence of the electric field, and the pressure p
is defined as:

p = λ+ kBT
∑
m∈M

cm, (3.25)

and we have used the following identity:

ψ −
∑
m

cmµm = −λ− kBT
∑
m

cm − Φ∇ · h+
|h|2

2ε
. (3.26)
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3.5 The full ionic bath model

The complete model for the bath is given by the following conservation laws presented in Section 3.2:

∂tci +∇ · (civ) = −∇ · qi, i ∈ I, (3.27a)

∇ · T = 0, (3.27b)

−ε∇2Φ = e
∑
i∈I

zici, (3.27c)

where the fluxes are defined by:

qi = −D
0
i ci

kBT

(
∇µi −

∑
β∈M

νicβ∇µβ

)
+
ci
cs
qs, (3.27d)

qs = −
∑
i∈I

νiqi
νs

, (3.27e)

and the mixture velocity v satisfies the standard incompressibility condition:

∇ · v = 0. (3.27f)

Note that we do not need to account for the governing equation for the solvent concentration cs, as
this is computed using the no-void condition (3.2b):

cs =
1−

∑
i∈I νici

νs
. (3.27g)

The model is then completed by specifying the state equations:

µs = µ0
s + νsp+ kBT

[
ln(νscs) + 1−

∑
m∈M

νscm

]
, (3.27h)

µi = µ0
i + νip+ zieΦ + kBT

[
ln(νici) + 1−

∑
m∈M

νicm

]
, (3.27i)

T = −pI + TM + Tv, (3.27j)

TM = ε

[
∇Φ⊗∇Φ− |∇Φ|2

2
I

]
, (3.27k)

Tv = η
(
∇v +∇vT

)
, (3.27l)

and proper initial conditions for the concentration of ions ci. The viscous stress tensor (3.27l) has been
simplified from (3.15) by making use of the tensorial form of the incompressibility condition (3.27f),
which reads I : D = 0.

To better understand the phenomena that are driving the flow in the system, we can rearrange the
governing equations to show how the flux of the ionic species depends on gradients of the ionic
concentration and electrostatic potential. We use (3.27b) and (3.27j)-(3.27l) to obtain the following
expression for the pressure gradient:

∇p = η∇2v + ε∇Φ∇2Φ = η∇2v −
∑
i∈I

ecizi∇Φ. (3.28)
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Equations (3.27h)-(3.27i) are then be used to derive the following relationship between the gradients
of the chemical potentials: ∑

m∈M

cm∇µm = η∇2v. (3.29)

Using (3.28). and (3.29) the ionic species flux is then:

qi = −D
0
i ci

kBT

(
kBT

ci
∇ci −

∑
m∈M

kBTνi∇cm + ezi

(
1− νi

zi

∑
β∈I

zβcβ

)
∇Φ

)
+
ci
cs
qs, i ∈ I.

(3.30)

If we consider the case in which all reference volume νm are identically equal to ν and the well known
electro-neutral limit, i.e.

∑
i∈I zici = 0, then the above equation simplifies to:

qi = −D0
i

 ∇ci︸︷︷︸
Fickian diffusion

+
ezici
kBT
∇Φ︸ ︷︷ ︸

Nernst-Planck diffusion

+
ci
cs
qs︸︷︷︸

advection

, i ∈ I (3.31)

and we recover the classic Nernst-Planck equation with an additional advection contribution due to the
cross diffusion of the mixture components.

4 Interfacial conditions

The behaviour of the polyelectrolyte gel and ionic bath domains are coupled together via specification
of interfacial boundary conditions.

We denote the position of the interface in the current configuration by Γ, while [·]+− denotes the jump
in the value of a variable across the interface where − and + stand for the limit approaching from the
gel and the bath domain respectively. The local velocity of the interface vΓ is equivalent to the normal
component of the network velocity vn. Thus the kinematic boundary condition reads:

vΓ = (vn · n)n, (4.1a)

where n = n(x, t) is the normal vector to the interface. Consequently, imposing the conservation of
mass across the interface and using a pillbox argument gives

[cm (vm − vΓ) · n]+− = 0. (4.1b)

Conservation of momentum leads to the continuity of the normal component of the stress tensor:

[T · n]+− = 0. (4.1c)

Assuming that there are no surface dipoles or charges on the gel-ionic bath interface we also have
continuity of the electrical potential and the displacement field; both follow from pillbox arguments
applied to Maxwell’s laws.

[Φ]+− = 0, (4.1d)

[−ε∇Φ · n]+− = 0. (4.1e)
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Figure 3: Sketch of a gel swelling in a ionic bath with constraints.

We also impose continuity of the chemical potential:

[µm]+− = 0. (4.1f)

Furthermore, we impose conditions of no interaction of the solvent with the interface:

∇cs|Γ− · n = 0. (4.1g)

This additional condition becomes necessary (only) on the gel side due to the higher derivative contri-
butions for the concentration of the solvent to the chemical potential in (2.41h).

The governing equations for the gel and ionic bath, together with the coupling conditions given here
at the interface, are then complemented with appropriate conditions at domain boundaries. In the
following section §5 we now apply the framework to a specific example: a 1D Cartesian geometry.

5 Pattern formation and dynamic fluctuations

We now illustrate the classes of behaviour captured by our model. We consider the constrained col-
lapse (or swelling) of a polyelectrolyte gel with three mobile species: the solvent and two ionic species:
c+ and c−, with opposite charges, z+ and z−, respectively. We model the experimental scenario in
which the concentration of ionic species in the ionic solution is controlled by adding salt or pure solvent.
We assume all species have the same characteristic molecular volume ν, i.e. νs = ν+ = ν− ≡ ν
[73]. We specifically consider the case of the constrained swelling and collapse of a gel that is attached
to a substrate at z = 0 at one end, while at z = h(t) the gel is in contact with the ionic bath as shown
in Figure 3.

For illustrative purposes, we consider the one-dimensional scenario, in which the polyelectrolyte gel
undergoes uni-axial deformation due to the uptake or release of solvent. All velocities and fluxes have
components in the z direction only, and the dependent variables are functions of z and time t only.
This reduction corresponds to the following experimental scenarios [12]. Firstly, that the gel and ionic
bath are free to slide along the side walls, corresponding to zero normal component of the network and
mixture velocities, and zero tangential stress. Secondly, that the side walls are sufficiently far apart that
the influence of the side walls is not felt in the bulk of the polyelectrolyte-ionic bath solution system,
the behaviour is one dimensional.

To simplify our analysis, we consider the electroneutral limit, which is justified by the smallness of the
Debye length Ld, i.e. the length scale at which the electric field can induce charge separation, relative
to size of the gel and the bath (see Table 1). We first discuss the homogeneous equilibrium states
obtained when all temporal and spatial derivatives, as well as all fluxes and velocities, are set to zero.
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(We highlight that these equilibrium states are naturally electroneutral.) We discuss the dependence of
the bifurcation structure of the system on the material and experimental control parameters. We then
consider the one-dimensional time-dependent system. We consider the system to be in a pre-swollen
state, or ’initial state’ (see Fig. 2), and examine the system dynamics as we change the concentration
of ionic species in the ionic bath, illustrating how the system transitions between equilibria. Our one-
dimensional dynamic simulations predict the formation of a moving depletion fronts in the process of
volume phase transition. Furthermore, by varying the salt concentration in the ionic bath, localised
phase separated structures emerge within the polyelectrolyte gel and evolve in time and space.

5.1 Reduction to a one-dimensional electroneutral model

In the one-dimensional scenario, the velocity and flux vectors take the form v = vez, where ez is a
unit vector in the direction of swelling. Moreover, the deformation tensor F and the stress tensor T in
the polyelectrolyte gel are respectively:

F =

λ0 0 0
0 λ0 0
0 0 λ(z, t)

 , T =

T`(z, t) 0 0
0 T`(z, t) 0
0 0 T (z, t)

 , (5.1)

where λ0 is a fixed stretch of the network in the x and y directions, and λ(z, t) is the axial stretch,
while T`(z, t) is the lateral stress in the x and y direction while T (z, t) is the stress in the axial
direction.

As discussed in the companion paper [27], the electroneutral limit allows us to neglect the left hand-
sides of Equation (2.41e) and (3.27c). In the one-dimensional setting considered here, the resulting
equalities

z−c− = zfcf + z+c+, z < h(t), (5.2a)

z−c− = z+c+, z > h(t), (5.2b)

for the gel and bath models, respectively, can be used to eliminate one of the ionic concentrations
in each of the domains, e.g. c− can be uniquely defined in terms of the co-ions c+. In addition, the
Maxwell contribution to the stress tensor TM in Equations (2.40) can be neglected in the gel.

The electroneutrality relationships (5.2) hold everywhere in the bulk of the gel and bath, but break down
near the interface between the two where a small layer, known as Debye layer, develops. Resolving
this ‘inner layer’ via perturbation expansion, starting from the interfacial conditions outlined in §4, we
obtain the following conditions at the free interface z = h(t) (see [27] for derivation details):

∂zcs(h(t)−, t) = 0, (5.3a)

T (h(t)−, t) = 0, (5.3b)

µs(h(t)−, t) = µs(h(t)+, t), (5.3c)

µ±(h(t)−, t) = µ±(h(t)+, t). (5.3d)

At the substrate boundary z = 0 we assume that the gel is attached, and impose

vn = 0. (5.4a)

Additionally, as the boundary is impermeable we impose the no-flux condition,

jm = 0, m ∈M. (5.4b)
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Table 1: Physical parameters used in the full dimensional model (2.41) and characteristics length scale of the problem.

Meaning Typical value(s)

kB Boltzmann constant 1.38× 10−23 JK−1

T Temperature 298K

e Elementary charge 1.602× 10−19 C

ε
Absolute permittivity (same for pure
water and gel)

7× 10−10 Fm−1

ν Volume per molecule of mobile species 10−28 m3 ([74])

D0
i Diffusivity of mobile ions in pure solvent 10−9 m2 s−1 ([61])

Di Diffusivity of mobile ions in gel Di = D0
i

k
Hydraulic permeability of solvent in the network (θ
positive constant, here θ = 0 as in [28])

Ds
kBT

φ−θn

Ds Diffusivity of the solvent in the gel Ds = 0.1Di
χ Flory-Huggins Parameter 0.1− 2.5

Cf Concentration of fixed charges in the dry
gel

νCf ∼ 0.01− 0.5

G shear modulus 10kPa-100kPa

L Typical length of a gel 0.001-0.01 m

Ld
Characteristic length scale of the Debye
layer Ld =

√
εkBTν

e2
∼ 10−10 m

Li Characteristic width of diffuse interfaces Li =

√
γ

kBTν

γ Interface stiffness parameter chosen so that Ld � Li < L
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To close the system we also impose the “no-preference” condition (4.1g):

∂cs
∂z

= 0. (5.4c)

Finally, we specify far-field conditions for the bath as follows

ci → ci0 s.t.
∑
i=+,−

zic
i
0 = 0, (5.5a)

Φ→ 0, p→ 0. (5.5b)

These represent electroneutrality far away from the interface, no external electric field and constant
(e.g. atmospheric) pressure, with the constants chosen to be zero in both cases.

Considering the far-field boundary conditions, equation (5.5a), we consider the scenario in which we
control the far field concentration of the ions and impose c(b)

+ → c0.

5.2 Homogeneous equilibrium solutions

We now investigate the homogeneous steady states of the system, and set all the temporal and spatial
derivatives, as well as all the fluxes and velocities in (2.41) and (3.27), to zero. We introduce super-
scripts (g) and (b) to distinguish variables is the gel and bath, respectively, denoting the homogeneous

solutions by (c
(g,b)
s , c

(g,b)
+ , c

(g,b)
− ,Φ(g,b), p(g,b), T (g,b)).

The homogeneous steady states all satisfy the condition of electro-neutrality (see equations (2.41e)
and (3.27c)). In the bath we find p(b) ≡ 0, T (b) ≡ 0, Φ(b) ≡ 0, c(b)

+ ≡ c0 and c(b)
− ≡ z+c0/z−. It

is straightforward to determine expressions for stress and chemical potential in the gel and bath (see
Appendix D). Imposing continuity of chemical potentials and normal stress at the interface, we obtain
the following system of non-linear equations in terms of the three unknowns c(g)

s , c(g)
+ and λ, which

depend on the parameters G, αf , ζ = z−/z+, νc0, λ0 and χ as follows.

G (λ2 − 1)

λ2
0λ

+ ln

(
νc

(g)
s

1− (1− ζ−1) νc0

)
+
χ(1− c(g)

s ν) + 1

λ2
0λ

= 0, (5.6a)

(
c

(g)
+

)1−ζ
− κ1−ζ +

αf
λ2

0λ

(
c

(g)
+

)−ζ
= 0, (5.6b)

λ2
0λ−

(
1− ν

(
c(g)
s + c

(g)
+ −

κ1−ζ

ζ

(
c

(g)
+

)ζ))−1

= 0, (5.6c)

where

κ = κ(c(g)
s , λ; νc0, λ0, ζ) = exp

(
χ

λ2
0λ

)[
νc0c

(g)
s

1− (1− ζ−1) νc0

]
, (5.7)

the parameter αf = zfνCf/z+ measures the number of fixed charges per molecule (relative to the
valences of the fixed to mobile species) and G is a dimensionless parameter corresponding to a scaled
shear modulus, G = Gν/(kBT ). Having determined c(g)

s , c(g)
+ and λ, it is straightforward to compute

p(g), T (g),Φ(g) and c(g)
− (see Appendix D). Note that Equations (5.6b) is derived from a generalisation
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of the standard Donnan equilibrium [13, 37] to our specific problem (see Eq. (D.4a) in Appendix D),
where we have an additional exponential contribution in (5.7) due to the mixing energy.

To further reduce the parameter space, we assume z+ = −z−, so that ζ = −1. Equation (5.6b) can
then be solved explicitly:

c
(g)
+ = − αf

2λ2
0λ

+

√(
αf

2λ2
0λ

)2

+
c2

0(c
(g)
s )2ν2

(1− 2c0ν)2 exp

(
2
χ

λ2
0λ

)
, (5.8)

and we can rewrite the system (5.6) in terms of the two unknowns c(g)
s and λ:

0 = Gλ
2 − 1

λ2
0λ

+ ln
νc

(g)
s

1− 2νc0

+
χ(1− c(g)

s ν) + 1

λλ2
0

, (5.9a)

λλ2
0 − 1

λλ2
0

= νc(g)
s + 2

√√√√( αf
2λλ2

0

)2

+

(
νc0νc

(g)
s

1− 2c0ν

)2

exp

(
2χ

λ2
0λ

)
. (5.9b)

Equations (5.9) reveal that the behaviour of the system depends on five (dimensionless) parameters
αf , G, λ0, χ and νc0. The first two are material parameters. The third reflects a fixed pre-stretch of the
network in the x and y directions (see equation (5.1)) and is determined by the experimental setup.
While for a given experiment, αf , G, λ0 are fixed, the remaining two parameters can be controlled
during the experiment by altering environmental conditions as follows. The Flory-Huggins parameter
χ can be manipulated by increasing or lowering the temperature or by adding certain compounds to
the bath, such as acetone [53, 73], while the concentration of ions in the bath νc0 can be set to the
desired level by adding salt or pure solvent.

5.2.1 Results

In Figure 4 and 5, we investigate how the equilibrium stretch λ responds to changes of the envi-
ronment, for different gels and degrees of pre-stretch λ0, characterised by triples (G, αf , λ0). This
amounts to computing the equilibrium manifold defined in the space (νc0, χ, λ) for different choices
of (G, αf , λ0).

In general, we notice that for small χ (χ ∼ 0.5) the gel presents a single, swollen equilibrium i.e. with
a large value of λ that remains constant as the salt concentration is increased, see e.g. the blue line
for χ = 0.5 in Figure 4a. The degree of swelling λ decreases for larger G, corresponding to stiffer
gels (compare for example figures 4c and 4d). In contrast, for sufficiently large χ, the gel typically
stays in the dry state corresponding to small values of λ, for all salt concentrations (determined by
νc0). In Figure 4c, this behaviour is observed for values of χ larger than 0.95. For stiff gels (large G)
and small/or concentrations of fixed charges (small αf ), see Figs. 4a,b,d, values of χ between these
extremes show qualitatively the same behaviour with a flat line that shifts to smaller λ (less swollen
gels) as χ is increased.

However, for soft gels with high fixed charge concentrations (e.g. Figure 4c) the degree of swelling
for intermediate χ values decreases rapidly with increasing salt concentration (see for example the
χ = 0.85 contour). Moreover, for a range of lower salt concentrations (set by the value of νc0)
multiple solutions are possible. For example, for χ = 0.95, three solutions for λ exist over almost the
full range of νc0 considered in the Figure 4c. If we start with small νc0 on the swollen branch i.e. the
branch with the largest value of λ, and increase the salt concentration, the degree of swelling will first
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Figure 4: Series of equilibrium manifolds as defined by Equations (5.9) for a non pre-stretched (λ0 = 1) gel with different mechanical (G) and electrical
(αf ) properties. For the free parameters, i.e. (χ, νc0) we consider the domain [0.01, 2]× [10−6, 10−2.5].

decrease slowly, then more rapidly. At a critical bifurcation value of νc0 this upper branch joins with
the lower branch, and for values of νc0 beyond this bifurcation value, neither of these two branches
exist. At the bifurcation point, λ will drop down to the collapse branch, i.e. the branch with the lowest
λ value. Once on the collapse branch, the solution stays on the dry branch as the salt concentration
is decreased below its bifurcation value, and we observe typical hysteretic behaviour. For a given αf
we find multiple solutions for the stretch for values of G less than a critical value Gc.
This behaviour has been observed in the free swelling case [73]. In the constrained case considered
here we have the degree of pre-stretch, λ0, as an additional parameter. As the value of λ0 is increased
(compare Figure 4 and Figure 5), the range of G and αf where multiple solution branches are possible
increases. For a given αf , this corresponds to an increase in the critical value of Gc, below which
multiple solutions are obtained. Thus multiple solution branches and associated hysteretic behaviour
are possible for stiffer gels and for lower concentrations of the fixed charges.

Furthermore, by comparing the constrained and the free swelling case directly (see Appendix D.1 for
a more detailed discussion), it is possible to show that while in the absence of pre-stretch (λ0 = 1)
the appearance of multiple solution branches in the constrained case requires softer gels than in the
free swelling case, this behaviour can be reversed by considering larger values of λ0.

To see this, we compare (5.9) with the corresponding result for the free swelling case (the derivation
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Figure 5: Same as in Figure 4 but for a pre-stretch (λ0 = 5) gel.

of which is analogous to the constrained case [73]):

0 = G∗λ
∗2 − 1

λ∗3
+ ln

c
(g)
s ν

1− 2c0ν
+
χ(1− c(g)

s ν) + 1

λ∗3
(5.10a)

λ∗3 − 1

λ∗3
= νc(g)

s + 2

√√√√( αf

2λ∗3

)2

+

(
νc0νc

(g)
s

1− 2c0ν

)2

exp

(
2
χ

λ∗3

)
, (5.10b)

where G∗ and λ∗ correspond to the stiffness and stretch of the swelling gel. If we assume λ, λ∗ � 1
and drop the −1 in the numerator of the first term in (5.9a) and (5.10a), the solution can be mapped
from the constrained to the free case via

λ2
0λ = λ3

∗, Gλ2 = G∗λ2
∗, (5.11)

which implies that
G∗
G

=
λ∗4

λ0
4 . (5.12)

Suppose now we observe multiple solutions for the stretch in the freely swelling gel for values of G∗
less than a critical value G∗c . Then, for λ0 = 1, we observe that the corresponding critical value of
stiffness for the constrained gel is such that Gc < G∗c , and multiple solution branches for the stretch
appear at softer gel stiffnesses for the constrained case compared with the freely swelling case. If,
however, the pre-stretch is much larger so that Gc > G∗c , we obtain the opposite behaviour with
multiple solution branches observed in the constrained case for stiffer gels compared with the freely
swelling case. This agrees with observations in the literature [19, 33] that volume phase transitions
in compressed gels occur earlier, e.g. at lower values of the salt concentration, and vice-versa for
decompressed (stretched) gels.
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5.3 Swelling and collapse dynamics

In the following section §5.3, we present time-dependent simulations of the 1D model, and illustrate
how the system transitions between the equilibrium states identified in §5.2. In the analysis that follows,
we assume no pre-stretch (i.e. λ0 = 1). As in §5.2, we again assume the ionic salt to be monovalent,
i.e. z+ = −z− = 1. Further assuming that the bath is very large (so that small changes in ion
concentration due to ion exchange with the gel can be neglected), we see that the bath maintains its
equilibrium state, characterised by constant ionic concentrations, c(b)

+ = c
(b)
− = c0 (see §5.2).

We non-dimensionalise the system as follows

µ∗m =
µm − µ0

m

kBT
, φm = νcm, φf = νcf , Φ∗ =

Φe

kBT
, (5.13)

T∗ =
T

G
, z∗ =

z

L
, t∗ =

t

τ
, (5.14)

p∗ =
p

G
, j∗m =

νL

Ds
jm, τ =

L2

Ds
, (5.15)

so as to focus on the length scale of the gel L and the time scale of the solvent diffusion τ . The
resulting dimensionless system of governing equations, together with the boundary and interfacial
conditions, are presented in §2 of Celora et al. [7]. In addition to the dimensionless material parameters
highlighted in §5.2 (G and αf ), we now have two additional material parameters, fixed for a given
experimental scenario:

D∗± =
D±
Ds

, ω =

√
γ

νskBTL2
. (5.16)

where D∗± are the relative diffusivities of the ions with respect to the solvent and ω is given by the
ratio of the interfacial and the gel length scales (see respectively Li and L in Table 1). In the following
simulations we fix the value of these parameters to be D∗± = 10 and ω = 2.5× 10−2.

5.3.1 Results

We first consider the case of a volume phase transition discussed by Yu et al. [73], who observe good
agreement of their free swelling equilibrium solutions with the experiments by Ohmine and Tanaka [53].
In particular, their theory captures the parameter values for which a phase transition occurs. These
are, in our notation, 0.98 < χ < 1.55, G = 1.09× 10−3, 0.02 < αf < 0.1, 0 < c0ν < 0.06. The
parameter values in Figure 4 lie in this range, with a tendency towards softer gels or smaller values of
χ to compensate for the fact that in the constrained swelling scenarios, volume phase transitions are
shifted.

So far, almost all theoretical studies have focussed on equilibrium states. Similarly, experiments have
considered the final states as well as those aspects of the dynamics that are slowly evolving. Our
model allows us to investigate the whole transient from the very fast dynamics of waves of mobile
ions to the extremely slow motion of interfaces between phase-separated regions towards a new
equilibrium phase-separated pattern.

We now present some example on the complex dynamics that can be observed by changing the
concentration of ions in the bath. Perturbations of the environment the gel is in contact with induce
the evolution of the gel the system from one equilibrium state (either swollen or collapsed) shown
in Figure 4 to another (collapsed or swollen). As we show in what follow, such dynamics can be
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(g)
(h)

Figure 6: Swelling of a soft (G = 10−4) gel with highly fixed charge (αf = 0.1) in contact with an ionic bath of varying ion concentration. The gel is
initially in equilibrium with the bath and νc0(0−) = 0.05; at time t = 0 the concentration of ions in the bath is decreased to νc0(t∞) = 10−2.75.
(a) Equilibrium curve for the gel at a fixed χ = 0.95. We highlight the initial and the final solvent fraction in the gel and the bistability region (shaded in
red). (b-f) Sequence of snapshots for the distribution of solvent and co-ions volume fraction in the gel at different times and the evolution of the gel size
h(t). The spatial variable Z is also rescaled so as to be mapped to a fixed domain, i.e. Z = z/h(t). (g) Evolution of the volume fraction of solvent at
the two boundary of the gel, i.e. z = 0 and z = h(t). (h) Phase-plane analysis of the evolution of the gel state at the interface, i.e. z = h(t). Here the
curves Fs and F+ are computed with νc0 = νc0(t∞).

accompanied by phase separation that nucleates at the free surface and forms an interface between
solvent-rich and solvent-poor phase that then propagates through the gel.

We start by rearranging (5.8)-(5.9) to define our homogeneous equilibrium curves as:

Fs(φs, φ+) = Gλ(φs, φ+)2 − 1

λ(φs, φ+)
+ ln

φs
1− 2νc0

+
χ(1− φs) + 1

λ(φs, φ+)
, (5.17a)

F+(φs, φ+) = −

√(
αf

2λ(φs, φ+)

)2

+
c2

0(φs)2ν2

(1− 2c0ν)2 exp

(
2

χ

λ(φs, φ+)

)
+

αf
2λ(φs, φ+)

+ φ+,

(5.17b)
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where the stretch is defined by the no void condition:

λ(φ+, φs) =
1 + αf

1− 2φ+ − φs
. (5.17c)

Note that Fs can also be defined in terms of the chemical potentials of the solvent, as kBTν−1Fs =
µ

(g)
s − µ(b)

s − µGs , where we recall µGs being the contribution of the interfacial energy to the chemical
potential of the solvent in the bath.

Homogeneous equilibria then occur when Fs = F+ = 0. As shown in Figure 6, we allow the gel to
swell by decreasing the concentration of ions in the bath. In Figure 6a we show the homogeneous
equilibrium solvent volume fraction in the gel (for fixed χ,G and αf ) corresponding to Fs = F+ = 0.
There is an interval of values for νc0 for which system is bi-stable. We choose our initial state to be on
the right hand (νc0(0−) = 0.05) side of this region.

At time t the concentration in the bath is decreased so as to drive the gel to a highly swollen state just
at the left of the bistable region (as shown in the magnification of the curves Fs = 0 and F+ = 0 in
Figure 6h, the curves only intersect once and there is only one steady state for the chosen value of
νc+

0 = 10−2.75). The dynamics of the transition between the two steady states is shown in Figure 6(b-
f), which shows a sequence of snapshots for the distribution of solvent and mobile ions in the gel, and
the evolution of the gel size h(t). Note that the spatial variable is rescaled so that results are mapped
onto a fixed domain Z = z/h(t). Initially the solvent diffuses into the gel and the concentration of
both solvent and ions is fairly uniform (see the light and dark blue line in Figure 6g approaching as
t → 104). However, at a later time, near the boundary with the bath, a highly-swollen region forms,
hence driving the formation of a front which later propagates in the gel (see Fig. 6d). The front divides
two homogeneous states. As analysed in more detail in [7], the solvent (and ionic) volume fraction
ahead of the front (from z = 0 to the front location) φ(1)

s (φ(1)
+ ) and behind the front (from the location

of the front to z = 1) φ(2)
s (φ(2)

+ ) are determined by a Maxwell condition for the co-existence of the

two phases. Since the volume fraction of solvent prior to phase separation is greater than φ(1)
s , there

is an initial back-flow of solvent from the bulk to the free boundary of the gel (see light blue curve in
Figure 6g). When looking at the time evolution of the gel size h(t), we can clearly identify the time at
which phase separation occurs as it corresponds to a sharp increase in the rate at which h(t) grows.
Such behaviour resembles that observed for neutral gels [28], where phase separation was induced
by forcing solvent in the gel. In this case the separation occurs naturally by tuning the concentration of
ions in the bath.

To better understand the different time scales in the model, we also focus on a single point in the gel
and follow its evolution in the (φs, φ+) phase plane in Figure Fig. 6h. Starting from the red-star, due to
the quick diffusion of the ions in the gel, the system is quickly driven to the manifold F+(φs, φ+) = 0
along which the dynamics is slow. Subsequently the system start moving towards the next equilibrium
state (identified by the orange star). However in doing so the system has to cross the region where
the two equilibrium curves (the light and dark green lines in Figure 6h) get close to each other. In
this regime, the contribution of the interfacial energy µGs plays a key role in equilibrating the chemical
potential in the bath and in the gel which appears to approach a steady state with φs ∼ 0.7 (t =
8604, light green dot) . However as the solution flattens, the contribution of the interfacial energy µGs
decreases up to the point at which this is not sufficient to equilibrate the chemical potential in the bath.
At this stage, the system is quickly driven towards its actual homogeneous steady state solution (blue
dot in the plane). In doing so the trajectory slightly departs from the light green curve and another
quick fast-transition drives the gel to the new, highly swollen steady state.

Another scenario that we can investigate with our phase-field approach is microphase separation. This
has been investigated widely in particular through experiments [18, 47], where they have observed
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Figure 7: Spinodal decomposition in the bulk of the gel and front propagation induced by perturbing the environmental condition. The gel is initially in
equilibrium with the bath (νc0 = 10−4) with χ = 1.75. At time t = 0 the concentration of ions in the bath is increased to νc0 = 5 × 10−2 while
also χ is increased to χ = 2.4. The other parameters are set to: G = 10−3, αf = 0.25. As in 6 we have rescaled the spatial variable Z = z/h(t).

the initial formation small localised regions of concentrated phases, that eventually develop into a
continuous phase with the swollen gel in the minority phase. While previous theoretical studies, for
example by Wu et al. [69] concern the equilibrium states and their stability in a 1D, as well as in
higher dimensions [70], we can now use our approach to investigate the formation an inhalation of
such microphases and look at how this impact the overall dynamics of the gel. As shown in Figure 7,
by changing the environmental conditions the gel is exposed to, we can induce phase separation at
the free interface, as well as spinodal decomposition in the bulk of the gel. In the simulations shown in
Figure 7, the gel is initially in homogeneous equilibrium with ge bath G = 10−3, αf = 0.25, χ = 1.75
and νc0 = 10−4. At time t = 0, the ionic concentration in the bath is increased to νc0 = 5 × 10−2

and also χ is increased to χ = 2.4. Perturbations of the highly swollen region of the gel form localised
collapsed phases. These coarsen, first quickly, then more slowly as the front propagates into the gel.
As spinodal decomposition first onsets in the bulk, the gel partially swells (see Fig. 7f). Subsequently,
as the collapsed regions continue to coarsen and front propagates into the gel, the latter collapses.

Interesting but possibly difficult to observed is the higher ion concentration in the localised collapsed
phases. As we explain in detail in a 1D companion paper, depending on the parameter setting, various
combinations of these scenarios can occur on the route to collapse. For comparison, the parameters
have been chosen to be in line with the results presented by Wu et al. [69].

Spinodal decomposition can also occur, even if more rarely, in the case of a swelling experiment. When
fine tuning the value of the parameters, as in Figure 8, it is indeed possible to drive the gel to its highly
swollen equilibrium state. In doing so, we enter the instability region of the gel (see [7] for more details)
thus driving the formation of spikes behind the gel in the less swollen region. We can further compute
the lateral stresses experienced by the gel, here given in dimensional units by:

T`(t, z) = G

[
φ2
n − 1

φn
+
ω2

G
(∂zφs)

2

]
, (5.18)

recalling that, in the electro-neutral limit the Maxwell stress tensor contribution is negligible.

Interestingly, as shown in Figure 9, we note that the bulk of the gel is initially poorly compressed
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Figure 8: (a) Sections of the manifold in Figure 4c for χ = 0.8 (green) and χ = 0.95 (orange line, note that we only show th swollen branch). Starting
from a swollen gel (green square in (a)), we are able to drive instabilities in the bulk by increasing χ (from 0.8 to 0.9) and decreasing the concentration of
ions in the bath (from 5× 10−2 to 10−5). The dynamics of spinodal decomposition is illustrated in Figure (b-e). Note that the simulation are interrupted
prior to reaching the new equilibrium. The values of G and αf are as in Figure 4c.

Figure 9: Time evolution and spatial distribution of the lateral stresses in the gel for simulations in Figure 8.

compared to the highly swollen region ahead of the front (near Z ∼ 1). The initiation of spinodal
decomposition rapidly increases the compressive stress experienced by the bulk of the gel, which
might drive the formation of surface instabilities as the one observe by Matsuo and Tanaka [47]. The
region of high compressive stresses are alternated by smaller region experiencing stabilising tensile
stresses corresponding to the through of the spikes in the gel. The non trivial distribution of the stresses
suggest the emergence of more complex pattern that can be investigated by considering a full 2D or
3D geometry.

6 Conclusions and outlook

In this study we have derived a fully time dependent, coupled phase-field model for a polyelectrolyte
gel surrounded by an ionic bath. The governing equations for the gel and ionic bath are coupled via
consistent jump conditions across the electric double-layer, for which we present an asymptotic anal-
ysis in the companion paper [27]. Our derivation is based on linear non-equilibrium thermodynamics
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and accounts for multi-component transport of ions and solvent, via a Stefan-Maxwell approach for
the flow into and out of an ionic bath. In addition to the non-linear elasticity of the gel, we also account
for the free energy of internal interfaces associated with phase separation to capture the transient dy-
namics of patterns that form during gel swelling and collapse. The resulting comprehensive model for
a polyelectrolyte gel in an ionic bath allows investigation into the emerging patterns and their dynamics
resulting from the interplay of the underlying physics interacting on multiple time and spatial scales. In
particular, we can exploit the model to probe and predict the impact of small environmental changes
or stimuli on the structural transitions of the polyelectrolyte gel.

In a first set of investigations we formulate the boundary value problem corresponding to constraining
the gel in a one-dimensional setting. We derive the equilibrium manifolds and their bifurcations as a
function of the shear modulus of the gel, the concentration of fixed charges of the polyelectrolyte and
the Flory-Huggins interaction parameter, and discuss the impact of an applied stretch and changes
in the salt concentration in the bath on the bifurcations of the system and the existence of multiple
solution branches. Additionally, we present some dynamical simulations of the one-dimensional model
reduction, where we resolve the transient dynamics of the gel collapse/swelling. Small changes in
salt concentration sets off an initial fast wave in ion concentration that triggers a depletion front which
then propagates into the swollen bulk from the free surface where the collapsed phase first appears.
Besides resolving this first fast dynamics, our model also allows to describe scenarios for other (slower)
salt diffusion regimes and their impact on phase transitions within the gel.

We have further shown that the front propagation can be accompanied with micro- or nanophase sepa-
ration in the bulk of the gel. Interestingly, we reveal increased ion concentration in the locally collapsed
regions. While these initial dynamics may be difficult to experimentally observe, our simulations show
that these regions quickly coarsen and give rise to regions of high tensile stresses corresponding to
the collapsed phases alternated by regions experiencing compressive forces. We note that in higher
dimensions this alternation of tensile and compressive stresses may give rise to instabilities leading
to complex patterns as previously observed in experiments, see for example in Tanaka [67].

A more comprehensive analysis of the 1D scenario is presented in the companion paper [7], where we
present a stability and phase-plane analysis, to predict, describe and understand the formation of the
patterns observed. Even though we are able to identify the signatures of the dynamics that give rise
to pattern formation in a polyelectrolyte gel, our numerical and analytical results are currently in 1D
only, which limits their experimental replication, given the intrinsic 3D nature of the mechanical stress
experienced by the gel. Higher dimensional extensions are part of our ongoing research.

We have also shown that unlike simple hydrogels, by increasing the Flory-Huggins parameter, the gel
can be driven to a higher swollen state by changing accordingly also the concentration of ions in the
bath. As shown in Figure 8, when properly setting the parameters, this can lead to the development
of instabilities in the bulk of a swelling gel. However, while parameter regimes for which spinodal
decomposition occur in a collapsing gel can be easily identified, our preliminary results suggest that
this occurrence in a one-dimensional swelling experiment may be difficult to observe. The initial onset
of instabilities may drive the system into the region of attraction of the collapsed steady state (see
discussion in §5.2), hence inverting the behaviour of the gel from swelling to collapsing. This intriguing
behaviour suggests the lower branch of the bifurcation to be energetically more stable. We postpone
a more rigorous analysis into the intricate balance of the physical mechanisms that are driving these
transitions to future work.

Finally, we point out that the framework we have developed, that fully resolves the dynamics of poly-
electrolyte gels, paves the way for new emerging fields. For example new scenarios, such as the
potential impact of shear flow on the gel can now be investigated, since now we can capture the
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hydrodynamics of the ionic bath accounting for its mechanical interactions with the gel.

A Conservation of mass equation in current configuration

Here we derive the conservation of mass equation in the current configuration, starting from the cor-
responding equation in the reference configuration (2.1b).

The integral form of (2.1b) is given by

d

dt

∫
VR
CmdVR = −

∫
SR
Jm ·NdSR, (A.1)

where VR is an arbitrary control volume in the reference configuration, SR is the associated surface
area with outward unit normal vectorN . This integral form can be converted to the current configura-
tion using the relations (2.2), together with Reynolds transport theorem, to give

d

dt

∫
V(t)

(
∂cm
∂t

+∇ · (cmvn
)
dV = −

∫
S(t)

jm · ndS, (A.2)

where cm = Cm/J and jm = J−1FJm are the concentration and the flux in the current con-
figuration, respectively. Here ∇ denotes the gradient with respect to the current state, and vn =
∂u/∂t+ (vn · ∇)u is the network velocity in the current state.

The local balance law in Eulerian coordinates then gives the standard mass conservation law used in
the theory of mixtures

∂cm
∂t

+∇ · (cmvn + jm) = 0. (A.3)

B Polyelectrolyte gel equations in the reference configuration

The main text gives the governing equations for the polyelectrolyte gel in the current configuration as
this largely simplifies the form of the stresses. For completeness, here we present the corresponding
governing equations in the reference configuration.

J = 1 +
∑
m

νmCm, (B.1a)

∂tCs +∇R · J s = 0, (B.1b)

∂tCi +∇R · J i = 0, i ∈ I, (B.1c)

∇R · T = 0, (B.1d)

−ε∇2
RΦ = e

(∑
i∈I

ziCi + zfCf

)
, (B.1e)

where

J s = −KC−1

(
Cs∇Rµs +

∑
i

Di
D0
i

Ci∇Rµi

)
, (B.1f)

J i = − Di
kBT

CiC
−1∇Rµi +

Di
D0
i

Ci
Cs
J s, i ∈ I (B.1g)
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together with the state equations:

ξs = 2γ1 C
−1∇R Cs − γ3 C

−1∇R J, (B.1h)

ξJ = 2γ2 C
−1∇R J − γ3 C

−1∇R Cs, (B.1i)

µs = pvs + µ0
s −∇R · ξs +

∂γ1

∂Cs
GiJGiM

∂Cs
∂XJ

∂Cs
∂XM

+
∂γ2

∂Cs
GiJGiM

∂J

∂XJ

∂J

∂XM

− ∂γ3

∂Cs
GiJGiM

∂Cs
∂XJ

∂J

∂XM

+kBT

[
ln

(
Csvs
J

)
+ 1− Csνs

J
+
χ(J − Csνs)

J2
−
∑
i

Ciνs
J

]
,

(B.1j)

µi = pvi + µ0
i + eΦzi + kBT

[
ln

(
νiCi
J

)
+ 1−

∑
m=s,1,...,N

νiCs
J
− χCsνi

J2

]
, (B.1k)

S = −pJF−T + SK + SM + Se, (B.1l)

Se = G
(
F− F−T

)
, (B.1m)

SM = − 1

εJ

(
1

2
|FH|2I− (FH)⊗ (FH)

)
F−T , (B.1n)

SKF
T = J

∂γ1

∂J
GiJGiM

∂Cs
∂XJ

∂Cs
∂XM

− 2γ1(F−T∇RCs)⊗ (F−T∇RCs)

−J ∂γ3

∂J
GiJGiM

∂Cs
∂XJ

∂J

∂XM

I + 2γ3 Sym[(F−T∇RJ)⊗ (F−T∇RCs)]

+J
∂γ2

∂J
GiJGiM

∂J

∂XJ

∂J

∂XM

− 2γ2(F−T∇RJ)⊗ (F−T∇RJ)− J∇R · ξJ I,

(B.1o)

where γ1 = γ/(2J), γ2 = C2
sγ/(2J

3), γ3 = γCsJ
−2, Sym[·] denotes the symmetric part of a

tensor, C = FTF is the right Cauchy-Green deformation tensor and G = F−T . Note that in taking the
partial derivatives of γ1,2,3 with respect to Cs and J we consider the latter two to be independent.

To move to the formulation in the current state, we use the following identities:

∇R · ξs = γJ∇ ·
(
J−1∇cs

)
= γ∇2cs −

γ

J2
∇Cs∇J +

γCs
J3
|∇J |2 ,

(B.2a)

∇R · ξJ = −γJ∇ ·
(cs
J
∇cs

)
= −γcs|∇cs|2 − γ|∇cs|2 +

γCs
J3
∇Cs∇J −

γC2
s

J4
|∇J |2,

(B.2b)

Jγ∇cs ⊗∇cs = 2 (γ1∇Cs ⊗∇Cs − γ3Sym [∇Cs ⊗∇J ] + γ2∇J ⊗∇J) , (B.2c)

so that the chemical potential simplifies to:

µs = pvs + µ0
s − γ∇2cs + kBT

[
ln

(
Csvs
J

)
+ 1− Csνs

J

+
χ(J − Csνs)

J2
−
∑
i

Ciνs
J

]
,

(B.2d)
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and the tensor SK becomes

J−1SKF
T =

(
γcs|∇cs|2 +

γ

2
|∇cs|2

)
I− γ∇cs ⊗∇cs. (B.2e)

C Rate of mechanical and electrical work for ionic bath

Here we give additional details required to move between the first and second expressions for the
rate of electric work on a reference volume of the ionic bath in the current state (see equation (3.8b)).
Starting from the first line of equation (3.8b) we have

Wel(V(t)) = −
∫
S(t)

Φ

(
Dh

Dt
+ h (I : L)− Lh

)
· nda. (C.1a)

Application of the divergence theorem gives:

Wel(V(t)) = −
∫
V(t)

∇ ·
(

Φ

(
Dh

Dt
+ h (I : L)− Lh

))
dv (C.1b)

Using Equations (2.2k)-(2.2l) and the following identities:

∇ ·
(
Dh

Dt

)
= ∇ ·

(
∂h

∂t
+ (v · ∇)h

)
=
∂∇ · h
∂t

+
∑
j

∑
i

vi
∂2hj
∂xi∂xj

+
∑
j

∑
i

∂vi
∂xj

∂hj
∂xi

=
∂q

∂t
+
∑
i

vi
∂

∂xi
(∇ · h) +∇hT : L =

Dq

Dt
+∇hT : L

(C.1c)

eLh =
∑
i

ei
∑
j

Lijhj =
∑

(eihj)Lij = (e⊗ h) : L (C.1d)

div(Lh) =
∑
i

∂

∂xi

(∑
j

Lijhj

)
=
∑
i

∑
j

∂Lij
∂xi

hj +
∑
i

∑
j

∂hj
∂xi

Lij (C.1e)

=
∑
j

∂

∂xj
(
∑
i

∂νi
∂xi

)hj +∇hT : L =
∑
j

∂

∂xj
(I : L)hj︸ ︷︷ ︸
∇(I:L)·h

+∇hT : L (C.1f)

the equation reduces to:

Wel(V(t)) =

(
e
Dh

Dt
+ [e · hI− e⊗ h− Φ∇ · hI] : L− Φ

Dq

Dt

)
dv, (C.1g)

D Equilibrium solutions

We here compute the homogeneous steady states of a gel in equilibrium with an ionic solution, for the
case of two ionic species: c+ and c−, with opposite charges, z+ and z−, respectively.

In the following, we consider the ionic solution and the gel together, so we introduce superscripts (b)
and (g) to distinguish variables that correspond to these two systems, respectively. Starting from the
ionic bath, we set all the temporal and spatial derivatives, all fluxes and velocities in (3.27) to zero.
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Let us assume that we can control the far field concentration of the ions and impose c(b)
+ → c0. Then,

from the boundary conditions (5.5), we obtain that:

p(b) ≡ 0, (D.1a)

c
(b)
+ ≡ c0, (D.1b)

Φ(b) ≡ 0, (D.1c)

c
(b)
− ≡ −

z+

z−
c0. (D.1d)

Further assuming as in Yu et al. [73] that all species have the same characteristic molecular volume
ν, i.e. νs = ν+ = ν− ≡ ν, the other equilibrium variables in the bath are defined by:

T (b) ≡ 0, (D.1e)

µ(b)
s = µ0

s + kBT ln

(
1−

(
1− z+

z−

)
νc0

)
, (D.1f)

µ
(b)
+ = µ0

+ + kBT ln(νc0), (D.1g)

µ
(b)
− = µ0

− + kBT ln

(
−z+

z−
νc0

)
. (D.1h)

Analogously, we can also derive the set of algebraic equation for the homogeneous steady state in the
gel from the system (2.41),

T(b) = −p(g) +
G (λ2 − 1)

J
, (D.2a)

0 = zfcf + z+c
(g)
+ + z−c

(g)
− (D.2b)

µ(g)
s = p(g)ν + µ0

s + kBT

[
ln(c(g)

s ν) +
χ(1− c(g)

s ν) + 1

J

]
, (D.2c)

µ
(g)
± = p(g)ν + µ0

± + z±eΦ
(g) + kBT

[
ln(νc

(g)
± )− χc

(g)
s ν − 1

J

]
, (D.2d)

λ0λ
2 = J =

(
1− ν

(
c(g)
s + c

(g)
+ + c

(g)
−

))−1

. (D.2e)

Imposing now the boundary conditions at the free interface, we can connect Equations (D.1) and (D.2)
by imposing continuity of chemical potentials and of the stress tensor in the direction normal to the
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interface. This leads to:

−p(g)ν = kBT

ln

 νc
(g)
s

1−
(

1− z+
z−

)
νc0

+
χ(1− c(g)

s ν) + 1

J

 , (D.3a)

−p(g)ν = z+eΦ
(g) + kBT

[
ln
c

(g)
+

c0

− χc
(g)
s ν − 1

J

]
, (D.3b)

−p(g)ν = z−eΦ
(g) + kBT

[
ln

(
−z−c

(g)
−

z+c0

)
− χc

(g)
s ν − 1

J

]
, (D.3c)

−z−c(g)
− = zfcf + z+c

(g)
+ , (D.3d)

p(g) =
G (λ2 − 1)

λ2
0λ

, (D.3e)

λ2
0λ =

(
1− ν

(
c(g)
s + c

(g)
+ + c

(g)
−

))−1

. (D.3f)

Subtracting Equations (D.3b) and (D.3c), and subtracting (D.3a) from both (D.3b) and (D.3c), we obtain
the following relation between the electric potential Φ and the ionic concentrations:

c
(g)
− = −z+

z−
[κ]

1− z−
z+

(
c

(g)
+

) z−
z+ , (D.4a)

Φ(g) =
kBT

ez+

ln

(
κ

cgs

)
, (D.4b)

where

κ = κ

(
c(g)
s , λ; νc0, λ0,

z+

z−

)
= exp

(
χ

λ2
0λ

) νc0c
(g)
s

1−
(

1− z+
z−

)
νc0

 . (D.4c)

Note that Equations (D.4a) is a generalisation of the standard Donnan Equilibrium [13, 37] to our
specific problem, where the additional exponential contribution in (D.4c) due to the mixing energy as
to be considered. Using (D.4) to simplify the system (D.3), the latter reduces to:

G (λ2 − 1)

λ2
0λ

+ ln

(
νc

(g)
s

1− (1− ζ−1) νc0

)
+
χ(1− c(g)

s ν) + 1

λ2
0λ

= 0, (D.5a)

(
c

(g)
+

)1−ζ
− κ1−ζ +

αf
λ2

0λ

(
c

(g)
+

)−ζ
= 0, (D.5b)

λ2
0λ−

(
1− ν

(
c(g)
s + c

(g)
+ −

κ1−ζ

ζ

(
c

(g)
+

)ζ))−1

= 0. (D.5c)

where G is a positive non-dimensional parameter corresponding to a scaled version of shear modulus,
G = Gν/(kBT ), αf = zfνCf/z+ measures the number of fixed charges per molecule (relative to
the valences of the fixed to mobile species), and ζ = z−/z+. As discussed in the main text (see §5.2),
we can further simplify the above system by assuming z+ = z− to obtain Eq. (5.9).
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D.1 Free-Swelling.

For the free swelling case the deformation tensor F = λI so that B = λ2I. Similarly to (D.3) we obtain
here:

−pν = kBT

[
ln

νc
(g)
s

1− 2νc0

+
χ(1− c(g)

s ν)

J

]
, (D.6a)

−pν = ±e∆Φ + kBT

[
ln
c

(g)
±

c0

− χc
(g)
s ν

J

]
, (D.6b)

c
(g)
− = zfcf + c

(g)
+ , (D.6c)

p =
G (λ2 − 1) I

λ3
, (D.6d)

λ3 =
(

1− ν
(
c(g)
s + c

(g)
+ + c

(g)
−

))−1

, (D.6e)

together with the relationship between the electric potential and the ionic concentrations:

Φ =
kBT

2e
ln
c

(g)
−

c
(g)
+

. (D.7)

while the concentrations c+ and c− are given now by:

c
(g)
− =

c0c
(g)
s ν

1− 2c0ν
exp

(
e∆Φ

kBT
+
χ

J

)
, (D.8a)

c
(g)
+ =

c0csν

1− 2c0ν
exp

(
−e∆Φ

kBT
+
χ

J

)
. (D.8b)

which implies that:

c
(g)
+ c

(g)
− =

c2
0(c

(g)
s )2ν2

(1− 2c0ν)2 exp

(
2χ

J

)
. (D.9)

Combining the above with the electro-neutrality condition (D.2b), we can compute an expression for
the equilibrium value of the ionic concentrations:

c
(g)
± = ∓zfcf

2
+

√(zfcf
2

)2

+
c2

0(c
(g)
s )2ν2

(1− 2c0ν)2 exp
(

2
χ

J

)
, (D.10)

from which it can be seen that the equilibrium solution
(
c

(g)
s , λ

)
= (c∗s, λ

∗) is implicitly defined by the

system of algebraic equations:

0 = G∗λ
∗2 − 1

λ∗3
+ ln

c∗sν

1− 2c0ν
+
χ(1− c∗sν) + 1

λ∗3
(D.11a)

0 = νc∗s + 2

√(
αf

2λ∗3

)2

+
c2

0c
∗
s

2ν2

(1− 2c0ν)2 exp

(
2
χ

λ∗3

)
− λ∗3 − 1

λ∗3
, (D.11b)

where G∗ is the stiffness of the free swelling gel.
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