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On the Darwin–Howie–Whelan equations for
the scattering of fast electrons described

by the Schrödinger equation
Thomas Koprucki, Anieza Maltsi, Alexander Mielke

Abstract

The Darwin-Howie-Whelan equations are commonly used to describe and simulate the scat-
tering of fast electrons in transmission electron microscopy. They are a system of infinitely many
envelope functions, derived from the Schrödinger equation. However, for the simulation of images
only a finite set of envelope functions is used, leading to a system of ordinary differential equa-
tions in thickness direction of the specimen. We study the mathematical structure of this system
and provide error estimates to evaluate the accuracy of special approximations, like the two-beam
and the systematic-row approximation.

1 Introduction

The Darwin–Howie–Whelan (DHW) equations, which are often simply called Howie–Whelan equa-
tions (cf. [Jam90, Sec. 2.3.2] or [Kir20, Sec. 6.3]), are widely used for the numerical simulation of
transmission-electron microscopy (TEM) images, e.g. see [Nie19] for the software package pyTEM or
[ScS93, WuS19] for the software CUFOUR. They describe the propagation of electron beams through
crystals and can be applied to semiconductor nanostructures, see [De 03, PH∗18, MN∗19, MN∗20].
They provide a theoretical basis that allows one to construct suitable experimental set ups for obtain-
ing microscopy data on the one hand, and can be used to analyze measured data in more details
on the other hand. The origins of this model go back to Darwin in [Dar14] with major generalizations
by Howie and Whelan in [HoW61]. Moreover, the DHW equations are closely related to the approach
based on the Bethe potentials used in [WaD16].

Currently, many quantitative methods emerge for applications in TEM [Nie19, WuS19], holography
[LJ∗14, JL∗14], scanning electron microscopy [PS∗18, Pas19], electron backscatter diffraction [WT∗07,
ZhD20], and electron channelling contrast imaging [PH∗18], where quantitative evaluations of mi-
crographs are compared to simulation results to replace former qualitative observations by rigorous
measurements of embedded structures in crystals. For that reason it is essential to evaluate the ac-
curacy and the validity regime of the chosen modeling schemes and simulation tools. In electron mi-
croscopy this includes the heuristic approaches to select the relevant beams in multi-beam approaches
[WT∗07, Nie19, WuS19]. The present work is devoted to the theory behind the DHW equations and
thus provides mathematical arguments and refinements for the beam-selection problem.

The DHW equations can be derived from the time-dependent Schrödinger equation for the wave func-
tion ψ(t, x) of the electrons:

i~
∂ψ(t, x)

∂t
= − ~2

2m
∆ψ(t, x)− qVC(x)ψ(t, x), (1.1)
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Figure 1.1: The incoming wave
with wave vector k0 enters the
specimen, is partially transmit-
ted, and generates waves with
nearby wave vectors k0+g.

such that |ψ(t, x)|2 denotes the probability density of the electrons. Here x denotes the position in the
specimen, VC is a periodic potential describing the electronic properties of the crystal,m = m0γ, with
γ the relativistic mass ratio and m0 the electron rest mass, ~ Planck’s constant and q the elementary
charge. Using ψ(t, x) = e−i4π2 ~

2m
|k0|2tΨ(x) we obtain the static Schrödinger equation

∆Ψ(x) + (2π|k0|)2Ψ(x) = −4π2U(x)Ψ(x), (1.2)

where k0 is the wave vector of the incoming beam and U is the reduced electrostatic potential defined
as U(x) = 2mq

~2 VC(x). The periodicity lattice of the crystal and its potential U is denoted by Λ and its
dual lattice by Λ∗.

We decompose the spatial variable x into the transversal part y orthogonal to the thickness vari-
able z ∈ [0, z∗], where z = 0 is the side where the monochromatic electron beam ψ(t, x) =

ei(−4π2 ~
2m
|k0|2t+2πk0·x) with wave vector k0 enters, and z = z∗ is the side where the scattered beam

exits the specimen, see Figure 1.1. The so-called “column approximation” restricts the focus to solu-
tions of (1.2) that are exactly periodic in y and are slow modulations in z of a periodic profile in z.
Hence, we seek solutions in the form

Ψ(x) =
∑
g∈Λ∗

ψg(z) ei 2πk0·x ei 2πg·x, (1.3)

where Λ∗ ⊂ Rd denotes the dual lattice and ψg is the slowly varying envelope function of the beams
in the directions of the wave vector g ∈ Λ∗. Note that now g = 0 corresponds to the main incoming
beam. Inserting (1.3) into (1.2) and dropping the term d2

dz2
ψg one obtains the DHW equations for

infinitely many beams (see Section 2 for more details on the modeling):

ρg
π

d

dz
ψg(z) = i

(
σgψg(z) +

∑
h∈Λ∗

Ug−hψh(z)
)
, ψg(0) = δ0,g, for g ∈ Λ∗ (1.4)

where ρg = (k0+g) · ν and σg = |k0|2 − |k0+g|2,

where ν = (0, ..., 0, 1)> is the normal to the crystal surface and where Ug are the Fourier coefficients
of the periodic potential U , i.e. U(x) =

∑
g∈Λ∗ Uge

i2πg·x.

In fact, to make (1.4) equivalent to the full static Schrödinger equation (1.2) one has to add the sec-
ond derivatives with respect to z, namely 1

4π2
d2

dz2
ψg(z). Dropping these terms constitutes the DHW

equations, which are solved as an initial-value problem with the simple initial condition ψg(0) = δ0,g

(Kronecker symbol) for the incoming beam, and
(
ψg(z∗)

)
g∈Λ∗ describes all exiting beams. In contrast,

the full second-order equations would need a careful setup of transmission and reflection conditions
at z = 0 and z = z∗, and then are able to account for the backscattering of electrons. We refer to
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On the Darwin–Howie–Whelan equations 3

[vDy76] and our Remark 2.1 for the justification of this approximation for electrons with high energy
that are typical for TEM.

Most often, the DHW equations are stated in the form that the equation for ψg is divided by ρg/π, and
then it features the important excitation error sg := σg/(2ρg). However, the mathematical structure
can be seen better in the form (1.4): the right-hand side is given by the imaginary unit i multiplied by a
Hermitian operator under our standard assumption that U is a real potential, i.e. U−g = U g. This will
be crucial for the subsequent analysis based on the associated Hamiltonian structure.

In the physical literature, the DHW equations are formally stated as a system for infinitely many beam
amplitudes ψg with g running through the whole dual lattice Λ∗. For the numerical solution one has
to select a finite set G ⊂ Λ∗ of relevant beams, e.g. the classical two-beam approximation, see
Section 4.3. To our knowledge there is no systematic discussion about the accuracy of approximations
depending on the choice of G. The main goal of this paper is to provide mathematical guidelines for
optimal choices that are justified by exact error estimates.

First, we observe that (1.4) for all g ∈ Λ∗ is probably ill-posed, in particular, because of ρg chang-
ing sign and, even worse, becoming 0 or arbitrarily close to 0. It is clear that neglecting the term

1
4π2

d2

dz2
ψg(z) cannot be justified for such g’s. Hence, one should realize that the DHW equations (1.4)

is only useful for g where ρg is close to ρ0 = k0 · ν > 0, see Section 2.2. But the main questions of
beam selection remain:
•What does “close” mean?
• How many and which beams are needed to obtain a reliable approximation for the

solution of the Schrödinger equation, in particular for high-energy electron beams?

We approach these questions by systematically investigating the dependence of the solutions ψG =
(ψg)g∈G on the chosen subset G of the dual lattice Λ∗ for which we solve (1.4). More precisely, for
G ⊂ Λ∗ we define DHWG to be the set of equations

ρg
π

d

dz
ψg(z) = i

(
σgψg(z) +

∑
h∈G

Ug−hψh(z)
)
, ψg(0) = δ0,g, g ∈ G. (1.5)

We will shortly write this in vector-matrix form

R
.
ψ(z) = i

(
Σ+U

)
ψ(z), ψ(0) = (δ0,g)g∈Λ∗ , ψ = (ψg)g∈G. (1.6)

For γ ∈ ]0, 1[ and M > 0, we define two important classes of admissible beam sets by

Gγ :=
{
g ∈ Λ∗

∣∣ ρg ≥ γρ0

}
and GM :=

{
g ∈ Λ∗

∣∣ |g| ≤M
}
,

such that always 0 ∈ GM ∩Gγ and ρg > 0 for g ∈ Gγ . Throughout we will only consider the case
of such M > 0 that GM ⊂ Gγ for some γ > 0.

We first show in Proposition 3.1 that for each G ⊂ Gγ the system DHWG has a unique solution
ψG : R→ H(G), where H(G) is the Hilbert space generated by the scalar product〈

ψ,ϕ
〉
G

:=
∑
g∈G

ρgψgϕg and the norm ‖ψ‖G :=
〈
ψ,ψ

〉1/2

G
.

In Section 3.3 we will show that the influence of the exact choice of the set G is not important if we
stay inside Gγ and if we have enough modes around g = 0. More precisely, for two sets G(1) and
G(2) satisfying GM ⊂ G(j) ⊂ Gγ the unique solutions ψ(j) can be compared on GM as follows:∥∥ψ(1)(z)|GM −ψ(2)(z)|GM

∥∥
GM ≤ ĈU eκ̂|z|−α̂M ‖ψ(0)‖G for all z ∈ R . (1.7)
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The coefficients κ̂ and α̂ can also be given explicitly, see Corollary 3.7. For this estimate, we use the
fundamental assumption that the Fourier coefficients Ug of the scattering potential U decay exponen-
tially:

|Ug| ≤ CU e−αU|g| for all g ∈ Λ∗. (1.8)

Hence, we see that scattering allows the energy to travel from the transmitted beam g = 0 to the
diffracted beams linearly with respect to the distance |z|. Note that we interpret equation (1.6) as
an autonomous Hamiltonian system, such that estimates like (1.7) hold for all z ∈ R. However, to
evaluate realistic errors for a specimen we restrict to z ∈ [0, z∗], see e.g. (1.9). In particular, (1.7)
provides a good bound on [0, z∗] as long as z∗ is much smaller than α̂M/κ̂.

In a second step we are able to reduce the set G even further by restricting g into a neighborhood of
the Ewald sphere

SEw :=
{
g ∈ Rd

∣∣ |k0|2 − |k0+g|2 = 0
}
.

Indeed, in TEM the incoming beam with wave vector k0 is chosen exactly in such a way that the
intersection of the Ewald sphere SEw with the dual lattice Λ∗ contains, in addition to the transmitted
beam g = 0, a special number of other points.

From the energetic point of view it is important to observe that the modulus |sg| = |σg|/(2ρg) of
the excitation errors for wave vectors g not close to the Ewald sphere are much bigger than |Ug|/ρg.
To exploit this, we use the classical norm and energy conservation for the linear Hamiltonian system
(1.6), namely ‖ψ(z)‖G = ‖ψ(0)‖G and ‖R−1(Σ+U)ψ(z)‖G = ‖R−1(Σ+U)ψ(0)‖G together
with the estimate

‖R−1Σψ(z)‖2
G ≤ 2‖R−1(Σ+U)ψ(z)‖2

G + 2‖R−1Uψ(z)‖2
G.

Since ‖R−1(Σ+U)ψ(0)‖G is controlled by the initial valueψ(0) = δ = (δ0,g) and ‖R−1Uψ(z)‖2
G ≤

‖ψ(z)‖2
G, we obtain a good bound on

∑
g∈G ρg|sgψg(z)|2 in terms of the initial data. This allows us

to quantify the smallness of the amplitudes |ψg(z)| if the excitation error |sg| lies above a cut-off value
s̃∗, see Section 3.4.

With this, we provide an error bound for the so-called Laue-zone approximation ψLOLZ (cf. Section
4.2), where we choose M ∼ |k0|1/2 to approximate a spherical cap of the Ewald sphere, which has
the height of one dual lattice spacing. For the cut-off s̃∗ one can choose a constant that is proportional
to the spacing of the dual lattice. The final error bound compares the solutions ψγ and ψLOLZ of
DHWGγ and DHWGLOLZ

, respectively, on the interval z ∈ [0, z∗]:

‖ψLOLZ(z)−ψγ(z)|GLOLZ
‖GLOLZ

≤ N1

( 1

|α∗k0|2
+
α∗C

2
U

|k0|2
z∗

)
‖δ‖G . (1.9)

Here N1 is a computable, dimensionless constant, and α∗ is the lattice constant of Λ. The first error
term arises from the restriction of Gγ to GM , and it is small for high energies, i.e. |α∗k0| � 1. The
second error term arises from the restriction to the neighborhood of the Ewald sphere and has the
form

α∗
`scatt

z∗
`scatt

with global scattering length `scatt =
|k0|
CU

.

Since we always have z∗ ≈ `scatt we see that the error is small if the scattering length `scatt is much
bigger than the lattice constant α∗, which is indeed the case in TEM experiments with specimens of
about 100 atomic layer thickness.

A similar error analysis is then done for the two-beam approximation and the systematic-row approxi-
mation, see Sections 4.3 and 4.4. Finally, Section 5 presents numerical simulations that underpin the
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On the Darwin–Howie–Whelan equations 5

Figure 1.2: TEM images of lens-shaped InAs quantum dots embedded in a GaAs matrix: (a) Experi-
mental dark field of (040) beam and the corresponding image from a DHW simulation. (b) Experimental
dark field of (004) beam and the corresponding image from a DHW simulation. Yellow areas indicate
the same areas in experimental and simulated images. Adapted by permission from Springer Nature:
Optical and Quantum Electronics, [MN∗20, Fig. 6], c© 2020.

quality of the error bounds and thus provide a justification of the numerics done when solving the DHW
equations as in [Nie19].

The authors are not aware of any mathematical analysis for beam-like, high-energy solutions of the
static Schrödinger equation. There is a large body of works on the semiclassical limit of the time-
dependent Schrödinger equation iε∂tψ = −ε2∆ψ + V (1

ε
x)ψ with a periodic potential (cf. [HST01,

BEP04, JMS11]) that are related in spirit. There, |k| is of order 1/ε � 1 such that ε|k| ≈ 1 is a
different regime as our case α∗|k0| � 1. Moreover, there initial-value problem for the time-dependent
Schrödinger equations are studied assuming smooth envelope functions, while we are concerned with
static scattering-type solutions of a Helmholtz-type Schrödinger equation.

We close this introduction with some remarks concerning the usage of the DHW equations in TEM
imaging of objects embedded in crystals, such as quantum dots. There, the crystal structure changes
slightly because of the different properties of the embedded materials. In the simplest case one as-
sumes that the crystal lattice stays intact, but the potential U is no longer exactly periodic but varies
on a larger length scale. Nevertheless one can assume that electron beams can propagate vertically
through the crystal, i.e. the column approximation holds. As the embedded material has different chem-
ical composition the potential remains locally periodic, but on a mesoscale depends on the thickness
variable z ∈ [0, z∗] as well as the horizontal variables y1 and y2. Using the column approximation the
latter variables are considered as parameters that are used for scanning the probe pixel by pixel. The
associated DHW equations then take the form

R
d

dz
ψ = i

(
Σ + U(y1, y2, z)

)
ψ, ψ(0) = δ.

Typically, the objective aperture of the microscope selects only a single beam ĝ 6= 0 (e.g. g = (0, 4, 0)
in [MN∗20]), and its exit intensity Iĝ(y1, y2) := |ψĝ(z∗; y1, y2)|2 is recorded in dependence of the
horizontal position (y1, y2). The analysis of the (y1, y2)-dependence goes beyond of this work and will
be addressed in future research. In general, the term “bright-field image” is used, when the undiffracted
beam related to ĝ = 0 is included in the aperture. The term “dark-field” is used for images, where only
one diffracted beam ĝ 6= 0 forms the image. In Figure 1.2 we see two dark-field TEM images of InAs
quantum dots, for the (040) beam and the (004) beam, and the corresponding simulated images, all
taken from [MN∗20].

The methods developed here for the DHW equations address more generally the question of beam se-
lection for electron waves in crystals, which is also important for calculations based on the Bloch wave
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expansion [WaD16] or electron backscatter diffraction [WT∗07]. In particular, our methods provide
mathematical error estimates that allow us to understand and refine beam selection scheme in situa-
tions where the classical two-beam approach is not sufficient, see [VML17, MN∗19, WuS19, MN∗20].
The problem of beam selection will be even more important because of the recent trend to use lower
acceleration voltages, see e.g. [Pas19, PH∗18], where |k0| is smaller and scattering into more beams
occurs naturally. This is also why we try to make all estimates as explicit as possible in their depen-
dence on the data such as |k0|, CU, and αU (cf. (1.8)).

2 The modeling

2.1 Derivation of the DHW equations

Transmission electron microscopy uses high-energy electron beams, which can be described by the
relativistic wave equation for an electron in an electrostatic field, see [De 03]:

∆Ψ(x) + (2π|k0|)2Ψ(x) = −4π2U(x)Ψ(x), (2.1)

where k0 is the wave vector of the incoming beam, and U is the reduced electrostatic potential. The
modulus of the wave vector is related to the (relativistic) wave length by |k0| = 1/λ0. The wave length
λ0 is obtained from the acceleration voltage E via

λ0 = ~
/√

2m0qE
(
1+ qE

2m0c20

)
,

where ~ is the Planck’s constant, m0 is the electron rest mass, q is the elementary charge, and c0 is
the speed of light. The reduced electrostatic potential is given by

U(x) =
2m0q

~2
γ VC(x) with the relativistic mass ratio γ = 1 +

qE

m0c2
0

. (2.2)

Here VC is the (possibly complex) electrostatic potential such that the reduced potential U has the
unit m−2. The table in Figure 2.1 shows typical values for the wave vector k0 and the mass ratio γ for
different values of the acceleration voltage E.

The periodicity of the potential U is given by the (primal) lattice Λ ⊂ Rd via U(x+r) = U(x) for all
x ∈ Rd and all lattice vectors r ∈ Λ. The dual lattice is

Λ∗ :=
{
g ∈ Rd

∣∣ g · r ∈ Z for all r ∈ Λ
}
.

With this, we are able to write U by its Fourier expansion U(x) =
∑

g∈Λ∗ ei 2πg·x Ug.

The solution Ψ of the Schrödinger equation is assumed to have an envelope form given by a plane
wave ei 2πk0·x times a slowly varying function Ψ̃, where k0 is the wave vector for the incoming electron
beam. Throughout the paper, we decompose x ∈ Rd into a in-plane component y ∈ Rd−1 and a
transversal component z ∈ R, i.e. after rotating the coordinate axis we have x = (y, z). To comply
with physicists convention, the z direction is orientated roughly parallel to the electron beam, while the
outwards normal to the specimen at the exit plane z = z∗ denoted by ν, is assumed to be

ν := (0, . . . , 0, 1)>.

We emphasize that the lattices Λ and Λ∗ are not necessarily aligned with one of the directions ν or
k0, but we always assume k0 · ν > 0, see Figure 1.1.
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In accordance with the experimental setup of TEM we are looking for solutions that are slow modula-
tions in the transversal direction z of a periodic Bloch-type function Ψ̃ =

∑
g∈Λ∗ ψge

2πig·x times the

carrier wave ei 2πk0·x (multi-beam approach). More precisely, we seek solutions in the form

Ψ(x) = Ψ(y, z) =
∑
g∈Λ∗

ψg(z) ei 2πk0·x ei 2πg·x, where x = (y, z). (2.3)

From a physics point of view, this multi-beam ansatz represents the diffraction of the incoming beam
ψ0 in different discrete directions g, given by the dual lattice. The use of an objective aperture in TEM
allows for restricting the set of transmitted beams forming the image in the microscope. Bright field
and dark field imaging allows us to access the specific components ψg of the multi-beam ansatz.

Using the Fourier expansion of U we see that Ψ given in (2.3) solves the Schrödinger equation (2.1)
if and only if the following system of ODEs is satisfied:

∂2
zψg(z) + i4πρg∂zψg(z) + 4π2σgψg(z) = −4π2

∑
h∈Λ∗

Ug−hψh(z) for g ∈ Λ∗,

where ρg := (k0+g) · ν and σg := |k0|2 − |k0+g|2 = −|g|2−2k0 · g.
(2.4)

Recalling ν = (0, .., 1)>, we see that ρg is positive for g ≈ 0, while σg changes sign in balls around
g = 0.

Next we can use the fact that the variation in z is small such that ∂2
zψ is much smaller than typical

values of ∂zψg. Thus, following the standard practice in TEM (see Remark 2.1 for the justification), we
will neglect the second derivative and are left with an infinite system of first-order ordinary differential
equations, called Darwin–Howie-Whelan (DHW) equation, see e.g. [vDy76, Eqn. (2.2.1)] or [MN∗19,

Eqn. (1)]. To simplify notations, we use the shorthand
.
ψg(z) = ∂zψg(z) = d

dz
ψg(z) and find for the

vector ψ = (ψg)g∈Λ∗ the system

R
.
ψ = i

(
Σ + U

)
ψ, where

R = diag
(ρg
π

)
g∈Λ∗ , Σ = diag(σg)g∈Λ∗ , Uψ =

(∑
h∈Λ∗ Ug−hψh

)
g∈Λ∗

(2.5)

Denoting by δ := (δ0,g)g∈Λ∗ (Kronecker symbol) the incoming beam, the solution ψ of the DHW
equations can be written formally as ψ(z) = eiR−1(Σ+U)zδ.

The following structural assumptions will be fundamental for the analysis:

∀ g ∈ Λ∗ : ρg ∈ R, σg ∈ R, U−g = U g. (2.6)

Hence, the operator U is not only a simple convolution, but it is additionally Hermitian with respect
to the standard complex scalar product. The latter is crucial for our later analysis. (Sometimes the
Hermitian symmetry of (Ug−h)g,h∈Λ∗ is broken by adding terms to model further effects like absorption
or radiation. As our approach does not cover this case, we will not address this point in the present
work.)

We emphasize that system (2.5) has a good structure because it keeps the symmetries related to
self-adjointness of the Schrödinger equation. However, as is done in the physical literature it is often
useful, e.g. for computational reasons, to write the system as an explicit first-order equation in the form

.
ψ = i

(
2πS+W)ψ with S = diag(sg)g∈Λ∗ and (Wψ)g =

∑
h∈Λ∗

Wg,h ψh, (2.7)

where sg = σg/(2ρg) and Wg,h = πUg−h/ρg.
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The coefficients sg are called excitation errors and play a central role in TEM. They drive the phase of
ψg(z) ∈ C and can be interpreted as modulational wave numbers.

The division by the diagonal operator R = diag(ρg/π) destroys two important properties of the
operator U. The scattering operator W is not described by a simple convolution anymore nor is it
Hermitian. A serious problem occurs because the factor ρg = (k0+g) · ν may become very small
or even exactly 0. This happens for g such that k0+g has no component in z-direction, i.e. the wave
travels orthogonal to ν. Such waves are not relevant in TEM, and next we explain below how g is
restricted to exclude this case.

2.2 Restriction to relevant wave vectors

The fundamental observation is that the DHW equations for all g ∈ Λ∗ is not really what is intended.
The equation was derived with the aim to understand the behavior of ψg for g close to g = 0, be-
cause in high-energy for reasonably thick specimens the diffraction remains small, i.e. we should only
consider g with |g| � |k0|.

Moreover, the assumption that the second derivative ∂2
zψg =

..
ψg can be dropped in comparison to

the other terms ρg
.
ψg, σgψg, and (Uψ)g is only justified if the excitation error sg = σg/(2ρg) are

small compared to 1. Indeed, if U is small with respect to |k0|, which will be one of our standing
assumptions, then ignoring the term with the second derivative in the left-hand side of

1

4πρg

..
ψg + i

.
ψg + 2πsgψ = − π

ρg
(Uψ)g

leads to the explicit homogeneous solution ψg(z) = ei2πsgz. The term with the second derivative with
respect to z is small relative to the other terms only if

∣∣ 1

4πρg

..
ψg
∣∣ =

πs2
g

|ρg|
� |

.
ψg|+ |2πsgψg| = 4π|sg|
⇐⇒ |sg| � |ρg| ⇐⇒ |σg| � |ρg|2.

(2.8)

From now on, it will be essential that we restrict the DHW equations to a subset G part of the dual
lattice Λ∗. Two classes of subsets will be used for technical reasons and exact mathematical estimates,
namely

Gγ :=
{
g ∈ Λ∗

∣∣ ρg ≥ γρ0

}
and GM := BM(0) ∩ Λ∗ =

{
g ∈ Λ∗

∣∣ |g| ≤M
}
. (2.9)

Throughout we will assume γ ∈ ]0, 1[ such that recalling ρ0 = k0 · ν > 0 we see that Gγ lies above
the hyperplane ρg = (k0+g) · ν = 0 and that 0 ∈ Gγ because of γ ≤ 1. While Gγ depends
on k0 and contains infinitely many points, the set GM is finite and independent of k0. However, we
will always assume GM ⊂ Gγ for some γ > 0, then the possible values of M range from 0 to
m̂(γ, k0) ≈ (1−γ)|k0|.
From now on, we will use the shorthand “DHWG” to denote the DHW equation, where the choice of
wave vectors g is restricted to G, while all other ψh are ignored, i.e. we set ψh ≡ 0 for h 6∈ G:

DHWG: i
ρg
π

.
ψg + σgψg = −

∑
h∈G

Ug−hψh for g ∈ G. (2.10)
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On the Darwin–Howie–Whelan equations 9

We will write this equation also in the compact form

RG

.
ψ = i

(
ΣG + UG

)
ψ for ψ = (ψg)g∈G.

However, whenever possible without creating confusion we will drop the subscript G and simply write
R, Σ, and U. Throughout we will assume that 0 ∈ G ⊂ Gγ ⊂ Λ∗ for some γ ∈ ]0, 1[. Our estimates
below will show that the difference in solutions for different sets G(1) and G(2) will be negligible as
long as (i) they both contain a big ball BM(0) ∩ Λ∗ around g = 0, (ii) they are both contained in Gγ

for some γ ∈ ]0, 1[, and (iii) as long as z∗ is not too big, see Corollary 3.7.

Remark 2.1 (Justification of dropping ∂2
zψg) In [vDy76] the full equation (2.4) including the second-

order derivative with respect to z is abstractly written as

1

4π2

..
ψ + iR

.
ψ + (Σ+U)ψ = 0, ψ = (ψg)g∈G

such that the general solution can be written as the sum

ψ(z) = eM1zC1 + eM2zC2, where
1

4π2
M2

j + iRMj + (Σ+U)I = 0

with matrices Mj and vectors Cj . Unfortunately the set G ⊂ Λ∗ of considered wave vectors is not
specified. The boundary conditions are derived in [vDy76, Sec. 2.4] from the free equations for z < 0
and z > z∗ (i.e. U = 0) such that

ψ(0) = δ +ψreflect,
1

2π2

.
ψ(0) + iRψ(0) = iRδ +

(
iR+2S′

)
ψreflect,

ψ(z∗) = ψtransm,
1

2π2

.
ψ(z∗) + iRψ(z∗) =

(
iR+2S

)
ψtransm.

where S and S′ are suitable scattering matrices. It is then shown that ψ(z) differs from ψDHW(z) =
eiR−1(Σ+U)zδ only by an amount that is proportional to 1/|k0|, which can be neglected in most exper-
imentally relevant cases.

3 Mathematical estimates

There are two main reasons that explain why it is possible to replace the infinite system (2.7) by a finite-
dimensional one. First, the incoming beam uses only very few modes, usually exactly one. This means
that the initial condition ψ(0) is strongly localized in the wave-vector space near g = 0. Secondly, as
we will explain in the application section (see Section 5), we may assume that the scattering kernel
Ug−h decays exponentially in the distance |g−h|. Thus, in Section 3.2 we will show that the solution
ψ(z) remains localized on Λ∗ around the initial beams for all z ∈ [0, z∗]. Thus, we can show that
cutting away modes with |g| > M , we obtain an error that decays like e−λM with λ > 0.

The first result concerns the preservation of a specific quadratic form that can be used as a norm if we
restrict the system to a region in Λ∗ where ρg > 0. An additional reduction of the number of relevant
modes is discussed in Section 3.4. It concerns averaging effects that occur by large excitation errors
sg = σg/(2ρg). The set

SEw :=
{
g ∈ Rd

∣∣ |k0+g|2 = |k0|2
}
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Maltsi et al. 10

is called the Ewald sphere after [Ewa21]. For wave vectors g ∈ Λ∗ lying on or near SEw the excitation
error sg is 0 or small, respectively. The condition sg = 0 means that the Bragg condition for diffraction
holds.

However for g lying far way from SEw we have |sg| ≥ s∗ � 1, which leads to fast oscillations that
make the amplitudes of these modes small.

3.1 Conservation of norms

We now turn to the analysis of the DHW equations (2.10) for a subset G which may be a system of
finite or of infinitely many coupled linear ODEs. One major impact of restriction to G ⊂ Gγ lies in the
fact that all ρg are now positive. Thus, we can introduce the norm

‖ψ‖G :=
(∑
g∈G

ρg |ψg|2
)1/2

=
(〈
πRψ,ψ

〉)1/2

The square ‖ψ‖2
G can be related to the wave flux in the static Schrödinger equation, see Remark 3.2.

We define the Hilbert spaces

H(G) :=
{
A ∈ `2(G)

∣∣ ‖A‖G <∞
}

with scalar product
〈
A,B

〉
G

:=
∑
g∈G

ρg AgBg.

The following classical result states the existence and uniqueness of solutions for DHWG together
with the property that the associated evolution preserves the Hilbert-space norm as well as the energy
norm.

Proposition 3.1 (Existence, uniqueness, and conservation of norms) Assume that ρg and σg are
given as in (2.4) and that U = (Ug−h) satisfies U−g = U g and |Ug| ≤ CU < ∞. Then, DHWG

as given in (2.10) has for each ψ(0) ∈ H(G) a unique solution ψ ∈ C0(R;H(G)). Moreover, the
solution satisfies

‖ψ(z)‖2
G = ‖ψ(0)‖2

G and ‖Hψ(z)‖2
G = ‖Hψ(0)‖2

G for all z ∈ R. (3.1)

Proof. The result is a direct consequence of the standard theory of the generation of strongly contin-
uous, unitary groups eizH , where H = R−1(Σ+U) is self-adjoint on H(G) equipped with the scalar
product 〈·, ·〉G.

The following remark shows that the conservation of the norm ‖ψ‖G is not related to the classical
mass conservation in the Schrödinger equation but should be interpreted as a wave-flux conservation,
which is only approximately true in the Schrödinger equation, but becomes exact under the DHW
approximation, i.e. by ignoring the term involving d2

dz2
ψg in (1.4).

Remark 3.2 (Wave flux in the static Schrödinger equation) For general solutionsψ(t, x) of the time-
dependent Schrödinger equation 1.1 we can introduce the probability density %(t, x) = |ψ(t, x)|2 and
obtain the conservation law

∂%

∂t
+ div J = −2q

~
Im(VC)% with J =

~
m

Im
(
ψ∇ψ

)
∈ Rd,
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On the Darwin–Howie–Whelan equations 11

where J is called electron-flux vector, see e.g. [De 03, p.125]. Because of our assumption (2.6) we
have Im(VC) ≡ 0, such that for solutions Ψ of the static Schrödinger equation the electron flux
satisfies div J ≡ 0.

Moreover, by column approximation (1.3) Ψ(x) = Ψ(y, z) is exactly periodic in y = (y1, ..., yd−1)
and a slowly varying periodic function in z. We denote byP = P ′y×[0, a0] ⊂ Rd the periodicity cell of
the crystal, where a0 is the lattice constant. Choosing z1, z2 ∈ [0, z∗] and recalling ν = (0, ..., 0, 1)>,
the divergence theorem gives

0 =

∫ z2

z1

∫
(0,z)+P

div Jdx dz =

∫ z2

z1

∫
(0,z)+∂P

J · n̂da dz

=

∫ z2

z1

(∫
Py×{z+a0}

J · ν da−
∫
Py×{z}

J · ν da
)

dz =

∫
(0,z2)+P

J · ν dx−
∫

(0,z1)+P
J · ν dx.

Thus, we conclude that the wave flux WF(z) is independent of z ∈ [0, z∗], where

WF(z) :=

∫
(0,z)+P

J · ν dx =
~
m

∫
(0,z)+P

Im
(
Ψ
∂

∂z
Ψ
)

dx.

Inserting the Fourier expansion (1.3) into Im
(
Ψ ∂
∂z

Ψ
)

we find that

m

~
WF(z) =

∫
(0,z)+P

Im
(
Ψ(y, ẑ)

∂

∂ẑ
Ψ(y, ẑ)

)
d(y, ẑ)

=
∑
g∈Λ∗

Im
(
ψg(z)

( .
ψg(z) + i 2π(k0+g)ψg(z)

))
= 2π

∑
g∈Λ∗

(k0+g)|ψg(z)|2 +
∑
g∈Λ∗

Im
(
ψg(z)

.
ψg(z)

)
.

We see that the first sum corresponds to our conserved norm ‖ψ(z)‖2
G if the contributions of ψg(z)

for g ∈ Λ∗\G are negligible. The second sum is much smaller than the first sum, because of our

assumption of slowly varying amplitudes, namely |
.
ψg| � |k0ψg|, see (2.8).

Remark 3.3 (Dissipative version of the DHW equations) Often the system (2.5) or (2.7) are modi-
fied on a phenomenological level to account for dissipative effects like absorption by making VC com-
plex. Hence, Ug is replaced by Ug + iU ′g with a suitable U ′g. Under this assumption the above flux
conservation is no longer true, but most modeling choices (e.g. in the case that (U ′g−h)g,h∈G is neg-
ative definite) one can achieve the estimate ‖ψ(z)‖2

G ≤ ‖ψ(0)‖2
G for z ≥ 0, i.e. the wave flux

decays.

3.2 Exponential decay of modes

We first show that the solutions can be controlled in an exponentially weighted norm ‖·‖α with α ∈ R,
where the case α = 0 would correspond to the usual norm ‖ · ‖G in H(G). We define

‖ψ‖2
α :=

∑
g∈G

e2α|g|ρg|ψg|2.

Introducing this norm will destroy the Hamiltonian structure of the system.
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Maltsi et al. 12

Our main assumption is that the potential operator U acts in such a way that the Fourier coefficients
have exponential decay, namely

∃CU > 0, αU > 0 ∀ g ∈ Λ∗ : |Ug| ≤ CU e−αU|g|. (3.2)

Indeed, the scattering potential can be approximated by

Ug ∝
∑

ν
fν(g)e2πig·xνe−Mν |g|2 , (3.3)

where xν denotes the position of the atom ν in the unit cell, fν the atomic scattering factors, and
Mν > 0 is the Debye-Waller factor, see [WeK91] and [SR∗09], respectively. Thus. assumption (3.2) is
automatically satisfied. Figure 3.1 gives an example for GaAs.

With this assumption we are now able to control the size of the solutions of (2.7) in the weighted norm
if |α| < αU. In the following result α may be positive or negative, but later on we are interested in
α > 0.

Theorem 3.4 (Weighted norms) Consider the DHWG as in (2.10) with G ⊂ Gγ ⊂ Λ∗ with γ ∈
]0, 1[. Moreover, assume that U satisfies (3.2). Then, for all α ∈ ]−αU, αU[ and all initial conditions
ψ0 ∈ H(G) with ‖ψ0‖α <∞ the unique solutionψ of (2.10) withψ(0) = ψ0 satisfies the estimate

‖ψ(z)‖α ≤ eκ(α)|z|‖ψ0‖α for z ∈ R, (3.4)

where the exponential growth rate κ(α) is explicitly given by

κ(α) =
πCU

γρ0

|α|S1(αU−|α|), where Sm(β) :=
∑
κ∈Λ∗

|κ|me−β|κ| .

Proof. Step 1. Transformation of the equation: We introduce the new variables Bg = eα|g|ψg such
that ‖ψ‖α = ‖B‖G. In terms of B we can rewrite DHWG as

iR
.
B + ΣB = −U(α)B = −UB + P(α)B with P(α)

g,h =
(
1− eα(|g|−|h|))Ug−h. (3.5)

Here we used that R and Σ are diagonal operators, and hence commute with the multiplication of the
exponential factor. Using the bound (3.2) for Ug, the coefficients of the perturbation operator P(α) can
be bounded by

|P(α)
g,h| ≤ CU

(
1− e|α| |g−h|

)
e−αU|g−h| ≤ CU min{1, |α| |g−h|} e−(αU−|α|)|g−h|. (3.6)

Step 2. Operator norm of R−1P(α) in H(G). To control the perturbationR−1P(α)B in terms of ‖B‖G
we employ Lemma 3.5 to obtain ‖R−1P(α)B‖G ≤ C

(α)
P ‖B‖G with

C
(α)
P :=

(
sup
g∈G

∑
h∈G

π|P(α)
g,h|

|ρgρh|1/2
)1/2(

sup
h∈G

∑
g∈G

π|P(α)
g,h|

|ρgρh|1/2
)1/2

.

Because of ρg, ρh ∈ G ⊂ Gγ , and (3.6) this yields

C
(α)
P ≤ πCU sup

g∈G

∑
h∈G

|α| |g−h|
γρ0

e−(αU−|α|)|g−h| ≤ πCU

γρ0

|α|S1(αU−α) = κ(α).
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On the Darwin–Howie–Whelan equations 13

E k0 γ β = v/c0

100 270.165 1.196 0.548
200 398.734 1.391 0.695
300 507.937 1.587 0.777
400 608.293 1.783 0.828

Figure 2.1:

Acceleration voltage E in kV,
wave number k0 in nm−1,
mass ratio γ, and
relative velocity β = v/c0.
(Table adapted from [De 03, p. 93 Table 2.2])

ρg = 0

ρg > 0

ρg < 0

gy

gz

−k0

k0

Gγ GM

gy

gz

−k0

Figure 2.2: Ewald sphere SEw (blue) is shown together with the points of the dual lattice. Left: The
areas around the Ewald sphere show the regions where |σg| ≤ 0.1 |ρg|2. Only the upper half with
ρg > 0 is relevant for the DHW equations. Right: The sets Gγ and GM lie above the hyperplane
ρg = 0 and contain g = 0.

a) b)

Figure 3.1: Atomic form factors and scattering potential: a) atomic form factors in dependence on the
wave vector g for Ga, As, and In following [WeK91]. The vertical lines indicate positions of the lattice
planes (100), (110), (200) and (400) in GaAs.
b) Fourier coefficients of the scattering potential for GaAs along the [100]- (red) and [110]-
crystallographic directions (blue) as computed by pyTEM [Nie19] using (3.3). The blue and red lines
are only for guiding of the eye. An exponential decay (solid black) as assumed in (3.2) can be observed
with C = 10.1 1/nm2 and α = 0.125 nm.
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Step 3. Gronwall estimate. We now apply the variation-of-constants formula (Duhamel’s principle) to
the solutionB for (3.5) in the H(G), whereH = R−1(Σ−U) is the generator of the norm-preserving
C0 group eizH :

‖B(z)‖G ≤ ‖eiHzB(0)‖G +

∫ z

0

‖ei(z−ζ)H‖G‖R−1P(α)B(ζ)‖G dζ

≤ ‖ψ(0)‖α +

∫ z

0

κ(α) ‖B(ζ)‖G dζ.

Now, Gronwall’s estimate gives ‖ψ(z)‖α = ‖B(z)‖G ≤ eκ(α)z‖ψ(0)‖α, and the proof is completed.

Step 2 of the above proof relies on the following elementary lemma, which will be used again to
calculate the norm of convolution-type operators involving U.

Lemma 3.5 (Operator norm) Consider G(1),G(2) ⊂ Gγ with γ > 0 and B : H(G(1))→ H(G(2))

with (BA)g =
∑

h∈G(1) BghAh. Setting B̃gh =
√
ρg/ρhBgh gives

‖BA‖G(2) ≤ CB‖A‖G(1) , CB =
(

sup
h∈G(1)

∑
g∈G(2)

|B̃gh|
)1/2(

sup
g∈G(2)

∑
h∈G(1)

|B̃gh|
)1/2

, (3.7)

which is the square root of the product of the row-sum and column-sum norm.

Proof. With rg = ρ
1/2
g the desired result is obtained as follows:

‖BA‖2
G(2) =

∑
g∈G(2)

r2
g

( ∑
h∈G(1)

BghAh

)
(BA)g ≤

∑
g∈G(2)

∑
h∈G(1)

rh|B̃gh|1/2|Ah|rg|B̃gh|1/2|(BA)g|

≤CaSch

( ∑
g∈G(2)

∑
h∈G(1)

|B̃gh| r2
h|Ah|2

)1/2( ∑
g∈G(2)

∑
h∈G(1)

|B̃gh| r2
g |(BA)g|2

)1/2

≤
(

sup
h∈G(1)

( ∑
g∈G(2)

|B̃gh|
))1/2

‖A‖G(1)

(
sup
g∈G(2)

( ∑
h∈G(1)

|B̃gh|
))1/2

‖BA‖G(2)

= CB‖A‖G(1)‖BA‖G(2) .

Thus, Lemma 3.5 is established.

The importance of Theorem 3.4 is that the growth rate κ(α) is completely independent of the domain
G as long as G is contained in Gγ . Thus, we will have the option to compare solutions obtained for
different wave-vector sets G.

As a first consequence we obtain that for all z ∈ [0, z∗] the solutions ψ(z) = (ψg(z))g∈G decay
with |g| → ∞. Indeed, recalling that the initial condition is given by the incoming wave encoded in the
δ = (δ0,g)g∈G (Kronecker symbol) we have

‖ψ(0)‖α = ‖ψ(0)‖G = ‖δ‖G =
√
ρ0 =

√
k0 · ν ≈

√
|k0|, (3.8)

which is independent of the exponential weighting by α. With this and α ∈ ]0, αU[ we obtain

|ψg(z)| ≤ e−α|g|
√
ρg
‖ψ(z)‖α ≤ eκ(α)|z|−α|g|

√
ρ0

ρg
.
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On the Darwin–Howie–Whelan equations 15

Thus, the exponential factor eκ(α)|z|−α|g| shows that the solutionψ(z) can only have a nontrivial effect
at g 6= 0 if |z| > α/κ(α) |g|. We may consider the quotient α/κ(α) as a collective scattering length
that describes how fast a beam has to travel through the specimen to generate nontrivial amplitudes at
neighboring wave vectors g. In contrast, the extinction length ξg is defined for each individual g ∈ Λ∗

(see [De 03, p.309]):

α

κ(α)
=

γ k0 · ν
πCUS1(αU−α)

versus the extinction length ξg :=
|ρg|
|Ug|

.

Hence, for doing a reasonable TEM experiment, one wants κ(α)z∗ to be big enough to see some
effect of scattering. However, it should not be too big such that the radius of possibly activated wave
vectors with |ψg| ≥ ε is not too small, namely those with |g| ≤ 1

α

(
κ(α)z∗ + log(1/ε)

)
. In addition

we define the excitation length to be `excit(sg) = 1/|sg|, which describes the period of the phase
oscillation of ψg(t).

3.3 Error estimates for finite-dimensional approximations

We now compare the DHW equations on different sets G(1) and G(2), both contained in Gγ ⊂ Λ∗.
We denote by ψ(j) the solution of DHWG(j) with the initial condition ψ(j)(0) = δ.

Assuming G(1) ⊂ G(2) we can decompose ψ(2) into two pieces, namely

ψ(2) = (B,C) with B = ψ(2)|G(1) := (ψg)g∈G(1) and C = ψ(2)|G(2)\G(1) .

We may rewrite the DHWG(2) in block structure via

R(1)

.
B = i

(
Σ(1)B + UBBB + UBCC

)
, B(0) = (δ0,g)g∈G(1) (3.9a)

R(2)\(1)

.
C = i

(
Σ(2)\(1)B + UCBB + UCCC

)
, C(0) = 0. (3.9b)

Here we used that the initial conditions ψ(0) is localized in the incoming beam such that ψg(0) = 0
for g ∈ G(2) \G(1). Moreover, the DHWG(1) is given by (3.9a) if we omit the coupling term “ +UBCC
”:

R(1)M
.
ψ

(1)

= i
(
Σ(1) + UBB

)
ψ(1), ψ(1)(0) = (δ0,g)g∈GM . (3.10)

The following result provides a first estimate between the solution ψ(2) = (B,C) on the larger
wave-vector set G(2) and ψ(1) on the smaller set G(1) by exploiting the exponential decay estimates
established in Theorem 3.4. In this first case, we consider only the model sets G(1) = GM and
G(2) = Gγ with GM ⊂ Gγ , see (2.9).

Theorem 3.6 (Control of approximation errors) Assume that the assumptions (2.6) and (3.2) hold
and that k0, M and γ ∈ ]0, 1[ are such that GM ⊂ Gγ . Then, for α ∈ ]0, αU[ the solutions ψγ and
ψM of DHWGγ and DHWGM with initial condition δ satisfy the estimates

∥∥ψM(z)−ψγ(z)|GM

∥∥
GM ≤

S0(αU)− 1

αS1(αU−α)
eκ(α)|z|−αM ‖δ‖0 and (3.11a)∥∥ψγ(z)|Gγ\GM

∥∥
Gγ\GM ≤ eκ(α)|z|−αM‖δ‖0 for all z ∈ R. (3.11b)

where as before Sm(β) :=
∑

κ∈Λ∗ |κ|m e−β|κ|.
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Proof. We denote by GO := Gγ \GM the set of outer wave vectors.

Step 1: Estimate of C . The solution ψγ = (B,C) satisfies all assumptions of Theorem 3.4. Hence,
we can rely on the exponential estimate and obtain

‖C(z)‖2
GO

=
∑
h∈GO

ρh |ψh(z)|2 ≤ e−2αM
∑
g∈Gγ

ρg e2α|g| |ψg(z)|2

= e−2αM‖ψM(z)‖2
α ≤ e2κ(α)|z|−2αM‖ψM(0)‖2

α = e2κ(α)|z|−2αM‖δ‖2
0,

which is the desired result (3.11b).

Step 2. Estimate between B and ψM . For comparing B and ψM we define A = B − ψM and see
that A satisfies

RM

.
A(z) = i

(
ΣMA(z) + UBBA(z) + UBCC(z)

)
, A(0) = 0, (3.12)

where now the initial condition is 0. Using the unitary group eizHM on H(GM) defined via HM =
R−1
M (ΣM+UBB), the solution is given in terms of Duhamel’s principle viaA(z) =

∫ z
0

ei(z−ζ)HMR−1
M UBCC(ζ)dζ .

Taking the norm in H(GM) we arrive at

‖A(z)‖GM ≤
∫ z

0

‖R−1
M UBCC(ζ)‖GM dζ ≤ ‖R−1

M UBC‖H(GO)→H(GM )

∫ z

0

‖C(ζ)‖GO
dζ.

Using Lemma 3.5, the operator norm Ncpl = ‖R−1
M UBC‖ can be estimated by

Ncpl ≤
(

sup
h∈GM

∑
g∈GO

π|Ug−h|√
ρgρh

)1/2(
sup
g∈GO

∑
h∈GM

π|Ug−h|√
ρgρh

)1/2

≤ π
γρ0

sup
g∈Λ∗

∑
h∈Λ∗\{g}

CUe−αU|g−h|,

where we used g ∈ Gγ and (3.2). We also increased the sets GM and GO but kept the information
that they are disjoint by summing only over h different from g. Thus, we find Ncpl ≤ πCU

(
S0(αU)−

1
)
/(γρ0).

Inserting this into the bound for ‖A(z)‖GM and integrating the bound (3.11b) for C(ζ) we see can-
cellations in the factor Ncpl/κ(α), and the result (3.11a) follows.

The next result is dedicated to the case of two general sets G(1) and G(2) both of which satisfy
GM ⊂ G(j) ⊂ Gγ for j = 1, 2. Denoting by ψ(j) : [0, z∗] → H(G(j)) the solutions of DHWG(j) ,
we will see that their restrictions to GM will be exponentially close with a factor e−αM . This explains
why the exact choice of the subset G of the wave vectors is not relevant for z ∈ [0, z∗] as long as it
contains a sufficiently large subset GM , i.e. M is much larger than κ(α)z∗/α.

Corollary 3.7 (Arbitrary sets G(j) of wave vectors) Consider k0, γ, and M as in Theorem 3.6 and
consider two subsets G(j) ⊂ Λ∗ satisfying GM ⊂ G(j) ⊂ Gγ for j = 1, 2. Then, the solutionsψ(j)

of DHWG(j) with initial condition ψ(j)(0) = δ satisfy the estimate

∥∥ψ(1)(z)|GM −ψ(2)(z)|GM

∥∥
GM ≤

2
(
S0(αU)− 1

)
αS1(αU−α)

eκ(α)|z|−αM ‖δ‖0 for all z ∈ R .

Proof. The proof follows simply by observing that Theorem 3.6 can easily be generalized by replacing
the bigger set Gγ by any set G between GM and Gγ . Hence, we can compare the two solutions
ψ(j) on GM with the solution ψM of DHWGM . Now the result follows by

‖ψ(1)|GM −ψ(2)|GM‖GM ≤ ‖ψ(1)|GM −ψM‖GM + ‖ψM −ψ(2)|GM‖GM
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On the Darwin–Howie–Whelan equations 17

and applying (3.11a) with ‖ψ(0)‖α = ‖δ‖0 = ρ
1/2
0 .

From now on we will always choose α = αU/2, which is the intermediate value that makes all sums
Sm

(
αU/2

)
finite. Thus, the critical exponential error term takes the form

eκ(αU/2)z−MαU/2 for z ∈ [0, z∗].

From practical purposes there is no reason of doing a calculation in a set G bigger than GM , since
increasing the number of ODEs without a gain in accuracy is useless. Moreover, it is desirable to
reduce M as much as possible as the number of ODEs in DHWGM with M = µ|k0| is proportional
to Md. However, in a true experiment we want to see the effect of scattering such that κ(α)z∗ needs
to be big enough. The way to make this work is to choose M proportional to a small power of |k0|:

M ∼ |k0|η with η ∈ ]0, 1[.

For instance the first few Laue zones (see below) can be obtained by η = 1/2.

While in a ball GM of radiusM the number of wave vectors scales withMd, there are further physical
reasons that many of these wave vectors are not relevant, as they cannot be activated because of
energetic criteria as discussed now.

3.4 Averaging via conservation of the energy norm

The relevance of the Ewald sphere lies in the fact that on SEw the excitation error sg = σg/(2ρg)
equals 0. This means that beams propagating with wave vectors g ∈ SEw have much lower energy,
because they have only little phase oscillations. Beams with wave vectors that are not close to the
Ewald sphere will necessarily have much smaller amplitudes, because they have much larger phase
oscillations than beams with wave vectors near the Ewald sphere. Mathematically this can be mani-
fested by conservation of suitable energies. Another way of obtaining this result would be by performing
a temporal averaging for the functions ψg with large |sg|.
We return to the DHW equations on G = GM ⊂ Gγ . The linear finite-dimensional Hamiltonian
system

R
.
ψ = i

(
Σ+U

)
ψ, ψ(0) = δ ∈ H(GM), (3.13)

can be rewritten via the transformation R̃ = R1/2 = diag
(
(ρg/π)1/2

)
g∈G. SettingA = R̃ψ, system

(3.13) takes the standard Hamiltonian form

.
A = iHA with H = R̃−1

(
Σ+U

)
R̃−1, (3.14)

where H is now a Hermitian operator on `2(GM), now using the standard scalar product. This pro-
vides the explicit solution A(z) = eizHA(0) via the unitary group z 7→ eizH. An easy consequence is
the invariance of the hierarchy of norms:

∀ k ∈ N0 ∀ z ∈ R :
〈
HkA(z), A(z)

〉
=
〈
HkA(0), A(0)

〉
.

For k = 0 this is the simple wave-flux conservation established in Proposition 3.1. The result for
k = 1 is not useful, because the operator H is indefinite, since U is bounded and Σ has many
positive (associated with g inside the Ewald sphere) and many negative eigenvalues (associated with
g outside the Ewald sphere).

DOI 10.20347/WIAS.PREPRINT.2801 Berlin, December 22, 2020/rev. May 17, 2021



Maltsi et al. 18

Hence, we concentrate on the case k = 2, where

0 ≤ H2 = Σ̃2 + ŨΣ̃ + Σ̃Ũ + Ũ2, with Σ̃ := R̃−1ΣR̃−1 = R−1Σ and Ũ := R̃−1UR̃−1.

The following, rather trivial result highlights that H2 has suitable definiteness properties that will then
be useful for estimating the solutions of the DHW equations.

Lemma 3.8 (Energy estimate) Let H = Σ̃ + Ũ where Σ̃ and H are Hermitian, then we have the
estimate

‖HA‖2 =
〈
H2A,A

〉
≥ 1

2
‖Σ̃A‖2 − ‖ŨA‖2 for all A ∈ `2(GM). (3.15)

Proof. We expand H2 in a suitable way:

H2 = (Σ̃ + Ũ)2 =
1

2
Σ̃2 +

(1

2
Σ̃2 + Σ̃Ũ + ŨΣ̃ + 2Ũ2

)
− Ũ2

=
1

2
Σ̃2 +

( 1√
2

Σ̃ +
√

2Ũ
)2

− Ũ2 ≥ 1

2
Σ̃2 − Ũ2.

This is the desired result.

It is instructive to transform estimate (3.15) back to the original variable ψ and the operator H =
R−1(Σ+U), which yields

‖R−1Σψ‖2
GM ≤ 2 ‖Hψ‖2

GM + 2 ‖R−1Uψ‖2
GM . (3.16)

Since along solutions z 7→ ψ(z) ∈ H(GM) of DHWGM the energy ‖Hψ(z)‖2
GM is constant, see

(3.1), we can use this for bounding ‖R−1Σψ(z)‖2
GM .

Proposition 3.9 (Energy bound for solutions) Consider k0, γ, and M such that GM ⊂ Gγ . Let
ψ be the solution of DHWGM with initial condition ψ(0) = δ. Then, ψ satisfies the estimate

‖R−1Σψ(z)‖GM ≤ 2πCUS0(αU)

γρ0

‖δ‖GM for all z ∈ R.

Proof. Lemma 3.5 yields ‖R−1Uψ‖GM ≤ ‖ψ‖GM with = π CUS0(αU)/(γρ0). Exploiting (3.16)
and the conservation of ‖Hψ(z)‖2

GM and ‖ψ(z)‖2
GM we find

‖R−1Σψ(z)‖2
GM ≤ 2‖Hψ(z)‖2

GM+22‖ψ(z)‖2
GM

= 2‖Hψ(0)‖2
GM+22‖ψ(0)‖2

GM = 2‖R−1Uδ‖2
GM+22ρ0 ≤ 42ρ0,

where we used ψ(0) = δ and σ0 = 0. This shows the desired assertion.

Using the energy bound, we can split the set GM according to the size of the excitation errors sg =
σg/(2ρg) using a cut-off value s̃∗ to be chosen later:

GM = GM
Ew

.∪ GM
far with GM

Ew :=
{
g ∈ GM

∣∣ |σg|/(2ρg) < s̃∗
}

and GM
far :=

{
g ∈ GM

∣∣ |σg|/(2ρg) ≥ s̃∗
}
.

Of course, we always have g = 0 ∈ GM
Ew, as σ0 = 0 and s̃∗ > 0.
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SEw

GM
Ew

GM

gy

gz

Figure 3.2: Ewald sphere SEw (blue), dual lattice Λ∗ (black dots), and the decomposition of GM (light
red ball) into GM

Ew (red annular arc, for s̃∗ = 3π) and GM
far. The boxes indicate the Laue zones: lowest

order (yellow) to third order (green).

Using the energy bound from Proposition 3.9 and R−1Σ = diag(πσg/ρg) we immediately see that
solutions ψ of DHWGM satisfy

‖ψM(z)|GM
far
‖GM

far
≤ 1

s̃∗

CU S0(αU)

γρ0

‖δ‖GM for all z ∈ R. (3.17)

The factor in front of ‖δ‖GM = ρ0 is small if the “cut-offëxcitation length `excit(s∗) = 1/s̃∗ is small
with respect to the global scattering length `scatt = ρ0/CU. In such a case it may be reasonable to
neglect these wave vectors and solve DHW on the much smaller set GM

Ew instead in all of GM . The
error is controlled in the following result.

Theorem 3.10 (Reduction to Ewald sphere) Under the above assumptions consider the solutions
ψM and ψM

Ew of DHWGM and DHWGM
Ew

with initial condition δ, respectively. If GM
Ew is given by s̃∗,

then for all z ∈ R we have the error estimate

‖ψM
Ew(z)−ψM(z)|GM

Ew
‖GM

Ew
≤ |z| π

s̃∗

C2
U (S0(αU)−1)S0(αU)

γ2 ρ2
0

‖δ‖GM . (3.18)

Proof. We proceed exactly as in the proof of Theorem 3.6 but the nested couple (GM ,Gγ) there
is replaced by the nested couple (GM

Ew,G
M) here. The bound in Step 1 is replaced by the bound

for ψM(z)|GM
far

in (3.17). In Step 2 the norm of the coupling operator can be estimated by the same
constant Ncpl. Now

‖ψM
Ew(z)−ψM(z)|GM

Ew
‖GM

Ew
≤
∫ z

0

Ncpl‖ψM(ζ)|GM
far
‖GM

far
dζ

gives the desired result.

Estimate (3.18) for z ∈ [0, z∗] contains the main error term z∗
`scatt

`excit(s̃∗)
`scatt

. Because of z∗ ≈ `scatt it is
important to have s̃∗ big enough to obtain `excit(s̃∗) = 1/s̃∗ � `scatt.

However, using the fact that |σg| ≈ 2|k0| dist(g,SEw) and |ρg| ≈ |k0| we see that the number
of wave vectors in GM

Ew is proportional to O(s̃∗M
d−1), while the number of wave vectors in GM

scales like O(Md). Thus, it is desirable to make s̃∗ even less than 1, which means one spacing in Λ∗

perpendicular to SEw (recall that s̃∗ has the physical dimension of |k0| which is an inverse length).
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4 Special approximations

Here we discuss approximations that are commonly used in the physical literature to interpret TEM
measurements, see [Jam90, De 03, Kir20].

4.1 Free-beam approximation

For a mathematical comparison, it is instructive to consider the trivial approximation, where only the
incoming beam is considered, i.e. we use G = {0}, i.e. the equation DHW{0} consists of the single
ODE

ρ0

π

.
ψ0 = i(σ0+U0)ψ0, ψ0(0) = 1. (4.1)

Using σ0 = 0 we obtain the trivial solution ψ0(z) = eizπU0/ρ0 and obtain that the intensity I0 remains
constant: I0(z) = |ψ0(z)|2 = 1. We will see that this is a reasonable approximation for z ∈ [0, z∗],
if z∗CU/|k0| = z∗/`scatt � 1, which means that the scattering length is small compared to the
thickness z∗ of the specimen.

Lemma 4.1 (Free beam) Choose γ ∈ ]0, 1[ and consider G ⊂ Gγ with 0 ∈ G. Let the solution

ψ = (ψg)g∈G of DHWG with initial condition ψ(0) = δ and let ψ̂0 be the solution of (4.1). Then we
have the approximation errors

|ψ̂0(z)− ψ0(z)| ≤ min{Ncpl|z|, 2} with Ncpl =
πCU(S0(αU)−1)

γρ0

, (4.2a)

‖ψ(z)|G\{0}‖G\{0} ≤ min{Ncpl|z|, 1}‖δ‖G for all z ∈ R . (4.2b)

Proof. This result follows exactly as in Theorem 3.10, where we now use the a priori estimate ‖ψ(z)|G\{0}‖G\{0} ≤
‖ψ(z)‖G = ‖δ‖G = |ρ0|1/2. Then, the analog to (3.18) gives |ρ0|1/2|ψ̂0(z)−ψ0(z)| ≤ Ncpl|ρ0|1/2|z|.
Together with the trivial bounds |ρ0|1/2|ψ0(z)| ≤ ‖ψ(z)‖G = |ρ0|1/2 we arrive at (4.2a).

To obtain the second equation we set B(z) = ψ(z)|G\{0} ∈ H(G\{0}) and apply Duhamel’s

principle to iR
.
B + ΣB − UBBB = UB,{0}ψ0(z) and obtain

‖ψ(z)|G\{0}‖G\{0} ≤
∫ z

0

‖UB,{0}‖‖ψ0(ζ)‖{0}dζ ≤
∫ z

0

Ncpl|ρ0|1/2 dζ = Ncpl|ρ0|1/2|z|.

Together with the trivial bound ‖ψ(z)|G\{0}‖G\{0} ≤ ‖ψ(z)‖G = |ρ0|1/2 we find (4.2b).

Thus, this trivial result provides a rigorous quantitative estimate for the obvious fact that the incom-
ing beam stays undisturbed only if the thickness z∗ of the specimen is significantly shorter than the
scattering length |k0|/CU, i.e. Ncplz∗ � 1.

4.2 Approximation via the lowest-order Laue zone

The lowest-order Laue zone (LOLZ) is defined if the wave vectors in the tangent plane Tk0 :=
{
η ∈

Rd
∣∣ η · k0 = 0

}
to the Ewald sphere SEw at g = 0 form a lattice of dimension d − 1. Denoting by

κ∗ the minimal distance between different points in Λ∗ we define

GLOLZ :=
{
g ∈ Λ∗ ∩Tk0

∣∣ dist(g,SEw) ≤ κ∗/2
}
,
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see Figure 3.2 for an illustration. Because the Ewald sphere can be approximated by the parabola gz =
−|gx|2/(2|k0|), the set GLOLZ is contained in a circle of radius M := m∗|k0|1/2 inside T, where

m∗ = κ
1/2
∗ . (To include higher-order Laue zones up to order n one chooses m∗ =

(
(2n+1)κ∗

)1/2
.)

This observation allows us to assess the approximation error for the solution ψLOLZ that is obtained
by solving the DHW equations on H(GLOLZ). For this, we first use Theorem 3.6 to reduce to the
set GM with M = m∗|k0|1/2, and second we reduce to the GLOLZ = GM

Ew using Theorem 3.10
with a suitable s̃∗ ∼ κ∗. In the following result we give up the exact formulas for the constants in
the error estimate. In particular, we will drop the dependence on αU, which we consider to be fixed.
However, we keep the dependence on |k0| andCU to the influence of the energy and the scattering. To
achieve formulas with correct physical dimensions we sometimes use the length scale α∗, which could
be chosen as the lattice constant of Λ, as 1/κ∗, or simply αU. We will use generic, dimensionless
constants N and Nj that may change from line to line and will depend on α∗ and αU, but do not
depend on |k0| and CU.

Theorem 4.2 (LOLZ approximation) Consider the solutionψγ of DHWGγ with γ = 1/2 and the so-
lutionψLOLZ of DHWGLOLZ

for the initial condition δ. Given a constantN0 > 0 there exists constants
k∗ and N1 such that the following holds:

If |k0| ≥ k∗ and z∗ ≤ N0|α∗k0|1/3
|k0|
CU

, then for all z ∈ [0, z∗] we have (4.3a)

‖ψLOLZ(z)−ψγ(z)|GLOLZ
‖GLOLZ

≤ N1

( 1

|α∗k0|2
+
α∗C

2
U

|k0|2
z∗

)
‖δ‖G . (4.3b)

Proof. Step 1. Reduction to GM . Using M = m∗|k0|1/2 and |k0| ≥ k∗ we have GM ⊂ Gγ , and
Theorem 3.6 with α = αU/2 provides the error estimate

‖ψM(z)−ψγ(z)|GM‖GM ≤ N2 eN3CUz/|k0|−N4|α∗k0|1/2‖δ‖G .

Step 2. Reduction to GLOLZ. The theory in Section 3.4 reduces to the Ewald sphere. In particular,

because of our given radius M = m∗|k0|1/2 the set GM
Ew exactly equals GLOLZ if we choose the

cut-off value s̃∗ suitably.

For this we have to identify the smallest value of |σg/ρg| in GM\GLOLZ. Because ρg = k0 · ν +
O(|k0|1/2) in GM , it suffices to minimize |σg| in GM

far = GM\GLOLZ, or simply minimize the distance
to SEw. Hence, the points in the interior of the Ewald balls in the lattice layer right below GLOLZ ⊂ T
are most critical. All of them have distance κ∗ to T and thus their distance to the Ewald sphere is
bigger or equal κ∗ −M2/(2|k0|) = κ∗/2 > 0.

From this, for g ∈ GM
far one has |sg| ≥ κ∗

2
|k0|, and with ρ0 ≈ |k0| we are able to apply Theorem

3.10 with σ̃∗ = κ∗/3, which is independent of |k0| and CU. With this we conclude ‖ψLOLZ(z) −
ψM(z)|GLOLZ

‖GLOLZ
≤ |z|N4C

2
U‖δ‖G/|k0|2 for all z ∈ R.

Step 3. Combined estimate. We observe that the second relation in (4.3a) allows us to simplify the
estimate in Step 1. For z ∈ [0, z∗] the exponent can be estimated via

N3CUz/|k0| −N4|α∗k0|1/2 ≤ N3N0|α∗k0|1/3 −N4|α∗k0|1/2 ≤ N5 − N4

2
|α∗k0|1/2.

Now, the final result follows e−N6|k0|1/2 ≤ N7/|k0|2 and the previous two steps.
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Figure 4.1: A typical setup for the
two-beam conditions: g = 0 and
g = ĝ are the only two points in
SEw ∩ Λ∗.

4.3 Two-beam approximation and beating

The most simple nontrivial approximation is obtained by assuming that the incoming beam at g = 0
interacts mainly with one other wave vector ĝ. The energy exchange between ψ0 and ψĝ is called
beating and occurs on a well controllable length scale. Thus, it can be used effectively for generating
contrast in microscopy, see [Dar14] or [MN∗20, Sec. 4].

The theory is often explained by the following two-equation approximation of DHW with G = {0, ĝ},
but even though it turns out that this model predicts nicely certain qualitative features it is not accurate
enough for quantitative predictions. For a typical microscopical experiment, one chooses k0 such that
g = 0 and g = ĝ are the only two wave vectors on the Ewald sphere:

σ0 = σĝ = 0 and ρ0 = ν · k0 = ρĝ. (4.4)

Assuming ĝ = (0, n, 0) ∈ Gwith a small integer n this can be achieved by setting k0 = (θ,−n/2, k)
with k ≈ |k0| � 1 and |θ| < 1, see Figure 4.1. Then, the two-equation model for g = 0 and g = ĝ
reads:

ρ0

π

.
ψ0 = i

(
σ0ψ0 + U0ψ0 + U ĝψĝ

)
,

ρĝ
π

.
ψĝ = i

(
σĝψĝ + Uĝψ0 + U0ψĝ

)
. (4.5)

This complex two-dimensional and real four-dimensional system can be solved explicitly leading to
quasi-periodic motions with the frequencies ω1,2 = π(U0±|Uĝ|)/ρ0, where we used (4.4) to simplify
the general expression.

Recalling the wave-flux conservation from Proposition 3.1 we obtain the relation ρ0|ψ0(t)|2+ρĝ|ψĝ(t)|2 =
ρ0 by using the initial condition ψ(0) = δ. A direct, but lengthy calculation gives

I0(z) := |ψ0(z)|2 =
(

cos(
π|Uĝ|
ρ0

z)
)2

and Iĝ(z) := |ψĝ(t)|2 =
(

sin(
π|Uĝ|
ρ0

z)
)2
, (4.6)

which clearly displays the energy exchange, also called beating.

We do not give a proof for the validity of the two-beam approximation, but rather address its limitations.
However, we refer to the systematic-row approximation in the next section, which includes the two-
beam approximation as a special case. To see the limitation we simply argue that having the beams
in g = 0 and g = ĝ = (0, n, 0), we also have scattering from g = 0 to the neighbors (0, j, 0). This
scattering must be small if the two-beam approximation should be good. The smallness can happen
if one of the following reasons occurs: (i) the scattering coefficient U(0,j,0) is 0 or very small or (ii)
the excitation error s(0,j,0) is already big. The first case may indeed occur, e.g. for symmetry reasons,
however, because beating needs a reasonably large Uĝ = U(0,n,0) we also have that U(0,−n,0) = U ĝ

is reasonably large. Hence, in this case only the reason (ii) can be valid, i.e. we need |s(0,−n,0)| �
π|U(0,−n,0)|/ρ(0,−n,0) ≈ 3|Uĝ|/|k0|. Using σ0 = σĝ = 0, the excitation error has the expansion
s(0,j,0) ≈ (nj−j2)/(n|k0|), which leads with j = −n to the condition 3|Uĝ| � |n|, which is not
easily satisfied.
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Indeed, in [MN∗20] TEM imaging is done under two-beam conditions for ĝ = (0, 4, 0), whereU(0,j,0) =
0 for odd j andU(0,2,0) ≈ −0.05U(0,4,0). In particular, j = 4 was chosen, because it gives the biggest
value for |U(0,j,0)| for j 6= 0. Nevertheless, it was necessary to base the analysis of the TEM images
in the solution ψ of DHWG for G = GM

Ew obtained via the software package pyTEM. The simple
usage of the approximations in (4.6) would not be sufficient.

We will see in Section 5 that even in simple examples the two-beam approximation is only a very rough
approximation, see e.g. Figure 5.4.

4.4 Systematic-row approximation

We choose
G =

{
n g∗

∣∣ nmin ≤ n ≤ nmax

}
,

where g∗ is small and almost perpendicular to k0, such that the convex hull of the set G is roughly
tangent to the Ewald sphere SEw. Of course, this set should coincide with GM

Ew of Section 3.4, which
can be achieved by choosing an appropriate k0. In particular, the case of two-beam conditions of
Section 4.3 can always be seen as embedded into a systematic-row case.

Indeed, consider the simple dual lattice Λ∗ = Z3 and choose k0 = (kx, 0, kz) where now 1� kx �
kz ≈ |k0|, i.e. the incoming wave has a small, but nontrivial angle to the normal ν of the specimen.
Assuming kx = c∗|k0|2/3 and considering only g ∈ GM = BM(0) ∩ Z3 with M = |k0|1/4 we see
that

σg = |k0|2 − |k0+g|2 ≈ −g2
x − g2

y − g2
z − 2c∗|k0|2/3gx − 2|k0|gz

can only take values smaller than O(|k0|1/2) if the wave vectors satisfy gx = gz = 0, i.e. g =
n(0, 1, 0) with |n| ≤ |k0|1/4, which is a finite row of wave vectors.

Moreover, in GM we have ρg = (k0+g) · ν = |k0|+O(|k0|1/2) and conclude

Gsyrow :=
{

(0, n, 0)
∣∣ |n| ≤ |k0|1/4

}
= GM

Ew :=
{
g ∈ GM

∣∣ |sg|/(2ρg) < σ̂∗
}

with M = κ3/4
∗ |k0|1/4 and σ̂∗ = κ3/2

∗ |k0|−1/2.

Thus, as for the case of the lowest-order Laue zone we obtain an error estimate.

Theorem 4.3 (Systematic-row approximation) Under the above assumptions consider the solutions
ψγ and ψsyrow of DHWGγ with γ = 1/2 and DHWGsyrow , respectively. Then, for all N0 there exists
k∗ and N1 such that the following holds:

If |k0| ≥ k∗ and z∗ ≤ N0|α∗k0|1/5
|k0|
CU

, then for all z ∈ [0, z∗] we have (4.7a)

‖ψsyrow(z)−ψγ(z)|Gsyrow‖Gsyrow ≤ N1

( 1

|α∗k0|2
+
α

3/2
∗ C2

U
|k0|3/2

z∗

)
‖δ‖G . (4.7b)

Proof. Step 1. Reduction to GM . Using M = κ3/4|k0|1/4 and |k0| ≥ k∗ we have GM ⊂ Gγ =
G1/2, and Theorem 3.6 with α = αU/2 provides the error estimate

‖ψM(z)−ψγ(z)|GM‖GM ≤ N2 eN3CUz/|k0|−N4|α∗k0|1/4‖δ‖G .

Step 2. Reduction to Gsyrow. Applying Theorem 3.10 with s̃∗ = κ
3/2
∗ |k0|−1/2 we obtain the error

bound ‖ψsyrow(z)−ψM(z)|Gsyrow‖Gsyrow ≤ N5
z∗
κ
3/2
∗

C2
U

|k0|3/2
‖δ‖GM .
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approximation Laue zone systematic row

(M, σ̃) (|k0|1/2, 1 ) (|k0|1/4, |k0|−1/2)

number of points |k0| |k0|1/4

thickness restriction z∗ ≤ N0|k0|1/3`scatt z∗ ≤ N0|k0|1/5`scatt

first error term |α∗k0|−2 |α∗k0|−2

second error term
α∗z∗
`2scatt

α
3/2
∗ |k0|1/2z∗
`2scatt

Figure 4.2: Comparison
of the Laue approxi-
mation in Section 4.2)
and the systematic-row
approximation.

Step 3. Combined estimate. We conclude as in Step 3 of the proof of Theorem 4.2.

In contrast to the cut-off choice σ̃∗ ∼ 1 for the Laue-zone approximation we have now chosen s̃∗ ∼
|k0|−1/2. This reduces the number of points in the systematic-row approximation, i.e. the number of
coupled ODEs to be solved is proportionally |k0|1/4, whereas for the Laue-zone approximation, the
number of ODEs is proportional to |k0|. However, the gain in computation power is accompanied by a
loss of accuracy and a smaller domain of applicability, see Figure 4.2.

5 Simulations for TEM experiments

Here we provide a numerical example of the DHW equations, compare the solutions for different
choices of the wave-vector set G, and relate the observed errors with the mathematical bounds es-
tablished above.

To make our simulations close to values in real TEM, we choose the lattice constant a0 = 0.56503 nm
of a GaAs crystal and the specimen thickness z∗ = 200a0 = 113.006 nm. At the TEM typical accel-
eration voltage 400 kV, the wave length is λ = 1/|k0| = 1.644 pm, which in normalized dimensions
is λ = 0.00294a0. This gives us a wave vector of |k0| = 608.293nm−1. The full system to consist of
30 beams:

G =
{
g =

4

a0

(g̃y, g̃z)
∣∣ g̃y ∈ {−2, . . . , 3} and g̃z ∈ {−2, . . . , 2}

}
.

One would expect to use a beam list of the form
{
g = 1

a0
(g̃y, g̃z)

∣∣ g̃y, g̃z ∈ Z
}

. But for GaAs the
scattering potential has significant contributions Ug only for beams of the form in G, while the other
Ug are small or even 0, see Figure 3.4. This is due to the face-centered cubic lattice of the crystal and
the properties of the Ga and As atomic form factors. Therefore, we restrict our beam list to that case
in our example.

For the potential we use U(0,0) = 10 nm−2, U(±1,0) = U(0,±1) = 3 nm−2, and U(±1,±1) =
U(±1,∓1) = 2 nm−2 and Ug̃ = 0 for the rest. We consider strong beam excitation (g̃y, g̃z) = (1, 0)
corresponding to g = 1

a0
(4, 0) and k0 = (−2/a0, 608.293).

We first solve the DHW equations for G with 30 beams as a reference solution. Note that in 2D there is
no distinction between Laue zone and systematic-row approximation. Figure 5.1 displays the excitation
errors sg: In the middle row, which corresponds to the points close to the Ewald sphere, the entries
have a modulus that is more than a factor of 10 smaller than in the rows above and below. We have a
zero excitation error at (0, 0) and (1, 0), due to our strong beam excitation condition.

Figure 5.2 shows that the amplitudes of the numerical solutions are related to the excitation errors.
For each beam g, we plot a circle with center (g̃y, g̃z) and radius proportional to |ψg(z∗)|. We see

DOI 10.20347/WIAS.PREPRINT.2801 Berlin, December 22, 2020/rev. May 17, 2021



On the Darwin–Howie–Whelan equations 25

g̃z \ g̃y -2 -1 0 1 2 3

-2 -14.07 -14.24 -14.33 -14.33 -14.24 -14.07
-1 -6.87 -7.04 -7.12 -7.12 -7.04 -6.87
0 0.25 0.08 0 0 0.08 0.25
1 7.28 7.12 7.04 7.04 7.12 7.28
2 14.24 14.09 14.00 14.00 14.08 14.24

Figure 5.1: Excitation errors sg = σg/(2ρg) for every point g = 4
a0

(g̃y, g̃z) ∈ G. The middle row
corresponds to beams of the systematic-row approximation.

component g̃y of g ∈ G

co
m

po
ne

nt
g̃ x

of
g
∈
G

Figure 5.2: The radius of the circles
correspond to the amplitudes |ψg(z∗)|.
Close to the Ewald sphere (boundary
of light green area) the excitation errors
are significantly smaller and the ampli-
tudes are much larger. All simulations
are done in Julia.

that near the Ewald sphere, where the excitation error is small, the amplitude is significantly higher. It
becomes obvious that there are four main modes, corresponding to the beams (−1, 0), (0, 0), (1, 0),
and (2, 0).

Next, we reduce the beam list G to observe how the errors of the solutions change. We create three
sets corresponding to the systematic-row approximation:

G1 =
{
g =

4

a0

(g̃y, g̃z)
∣∣ g̃y ∈ {0, 1} and g̃z ∈ {0}

}
,

G2 =
{
g =

4

a0

(g̃y, g̃z)
∣∣ g̃y ∈ {−1, · · · , 2} and g̃z ∈ {0}

}
,

G3 =
{
g =

4

a0

(g̃y, g̃z)
∣∣ g̃y ∈ {−2, · · · , 3} and g̃z ∈ {0}

}
,

where the set G1 corresponds to the two-beam case, shown in Figure 5.3. For comparison, we also
create a set including beams above and below the Ewald sphere

G4 =
{
g =

4

a0

(g̃y, g̃z)
∣∣ g̃y ∈ {−2, · · · , 3} and g̃z ∈ {−1, · · · , 1}

}
.

From Figure 5.3 we have a first qualitative comparison for the systematic-row cases. We see that
the qualitative features, meaning the beating and the two main modes, namely (0, 0) and (1, 0), are
captured in every case. The two beam case however fails to capture the other two main modes, for
(−1, 0) and (2, 0).

To obtain a quantitative comparison of the different models we show the numerical values of ψ(1,0)(z∗)
and ψ(2,0)(z∗) in Figure 5.4. As a first observation we see that the two-beam case has only one
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|ψg|

1

k k2

1

k k2

1 11

k k2

Figure 5.3: Beam amplitudes |ψg(z)| of solutions for the three choices G1, G2, and G3. The same
beating of the two main modes is observed in all the cases.

significant digit correct, making it a very rough approximation. Similar limitations of the two-beam
approximation were observed in [ScS93, WuS19] when doing simulations with CUFOUR.

Moving to G2 with four beams gives an accuracy of 4 significant digits, while increasing the size of the
systematic-row approximation further does not bring higher accuracy as G3 with six beams still has
only four significant digits. The accuracy of the solutions can only be improved by going beyond the
systematic-row approximation (see Section 4.4). Indeed, we obtain 7 significant digits by adding the
layer above and below the Ewald sphere in the G4 system, which has 18 beams.

System (0, 0) mode (1, 0) mode digits

G1 −0.16153606468− 0.07740830300 i 0.42515771142− 0.88721717658 i 1
G2 −0.16446909478− 0.06766454587 i 0.37790257701− 0.90775029000 i 4
G3 −0.16445260546− 0.06764875833 i 0.37789496977− 0.90775362575 i 4
G4 −0.16444252690− 0.06764808597 i 0.37791410830− 0.90774683865 i 7
G −0.16444251537− 0.06764807576 i 0.37791412093− 0.90774682391 i —

Figure 5.4: Comparison of solutions for g̃ = (0, 0) and g̃ = (1, 0). The underlined decimals indicate
which numbers are already correct (up to rounding) with respect to the last line, i.e. we take the G
system as reference.

For comparing numerical errors with the mathematical error bounds in Figure 4.2, we observe that the
scattering length is `scatt = |k0|

|CU |
= 60.83 nm ≈ z∗/2. Choosing α∗ = a0 = 0.565 nm and using

|k0| = 0.608 · 1012 m−1, we find the error terms

|α∗k0|−2 = 0.0000084647989 ≪ 1 and
α∗z∗
`2

scatt

= 0.01735570� 1,

which are indeed small for the chosen setup.

For many practical purposes, like the simulation of TEM images with pyTEM as in [Nie19] (see Fig-
ure 1.2) an accuracy of 4 significant digits is certainly good enough. However, for other applications
higher accuracy may be needed, e.g. for detecting phase differences for beams of low amplitudes like
in electron holography, see e.g. [Lic13].

In fact, the software pyTEM creates a beam list G in the following way. It first restricts to the LOLZ or
systematic-row approximation by setting gz = 0. Next, a minimum for |Ug| is chosen to restrict to the
sublattice generated by those g with |Ug| ≥ umin. For instance, the coefficients displayed in Figure
3.1(b) lead to the sublattice

{
g = 1

a0
(0, 2m, 0)

∣∣m ∈ Z
}

. Finally, a maximum value s̃∗ is chosen
for the excitation error sg, which leads to a final systematic row approximation with 12 beams with
m ∈ {−5, . . . , 6}. Thus, it covers the same range as our set G3.
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