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Adaptive manifold clustering
Franz Besold, Vladimir Spokoiny

Abstract

Clustering methods seek to partition data such that elements are more similar to elements
in the same cluster than to elements in different clusters. The main challenge in this task is the
lack of a unified definition of a cluster, especially for high-dimensional data. Different methods
and approaches have been proposed to address this problem. This paper continues the study
originated by [10] where a novel approach to adaptive nonparametric clustering called Adaptive
Weights Clustering (AWC) was offered. The method allows analyzing high-dimensional data with
an unknown number of unbalanced clusters of arbitrary shape under very weak modeling as-
sumptions. The procedure demonstrates a state-of-the-art performance and is very efficient even
for large data dimension D. However, the theoretical study in [10] is very limited and did not re-
ally address the question of efficiency. This paper makes a significant step in understanding the
promising performance of the AWC procedure, particularly in high dimension. The approach is
based on combining the ideas of adaptive clustering and manifold learning. The manifold hypoth-
esis means that high-dimensional data can be well approximated by a d-dimensional manifold
for small d helping to overcome the curse of dimensionality problem and to get sharp bounds
on the cluster separation which only depend on the intrinsic dimension d. We also address the
problem of parameter tuning. Our general theoretical results are illustrated by some numerical
experiments.

1 Introduction

1.1 Manifold Clustering

The task of clustering is often informally described as partitioning a set of objects such that objects
in the same group are more similar to each other than to those in other groups. The lack of a unified
definition has led to a range of algorithms with different objectives. One of the oldest and best-known
procedures are centroid-based methods such as k-means [34]. Other well-known approaches are
density-based methods, like DBSCAN [12] or spectral methods [23]. For a comprehensive survey
of clustering methods, we refer to [39]. A more general task is to obtain a hierarchical collection of
clusters, the so-called density cluster tree [17]. This problem has been studied thoroughly, see e.g.
[8], [21], [11] and [4] for more recent work. Allthough this approach avoids the choice of a scale
parameter, it utilizes a specific definition of clusters beeing connected components of superlevel sets
of the underlying density. In this paper, we study a nonparametric clustering algorithm originated from
[10] and called Adaptive Weights Clustering (AWC). It is adaptive as it does not require the user to
specify the number of clusters, and it is able to recover clusters of different size, level of density and
shape, including non-convex clusters. The cluster structure of the data is represented by an adjacency
matrix containing binary entries, so-called weights, hence the name. The adjacency matrix is not
guaranteed to correspond to a partition of the data, but rather will give information about local clusters
for each data point. Informally speaking, the objective of the algorithm is to find maximal subsets of
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the data without any significant gap, that is a region within the cluster adjoining two areas in opposite
direction of relatively larger density. This novel objective is in fact the reason for the high adaptivity of
AWC to clusters with very different structural properties.

This paper focuses on a theoretical study of the algorithm, as [10] already provides a comprehen-
sive comparative numerical study. In particular, we want to address the challenges that arise from
high-dimensional data that does not concentrate on lower-dimensional linear subspaces and where
the PCA analysis does not yield a significant spectral gap. We are therefore interested in the case
of high-dimensional data lying close to a lower-dimensional submanifoldM. This setup has already
been studied for other clustering algorithms, e.g. in [4] and [19]. Moreover, it appears in the context of
homology inference [5]. It has been shown that this is a realistic model for various data, e.g. for images
which are represented in a patch space [28, 26] and a wide range of algorithms have been proposed
to deal with the problem of non-linear dimension reduction [40], e.g. multidimensional scaling (MDS),
kernel PCA, Isomap, Laplacian eigenmaps, self-organizing maps (SOM), locally-linear embeddings
and autoencoders [33]. In this work, we will not rely on any of these techniques, however, we recom-
mend using a manifold denoising algorithm in practice such as [30] as an additional preprocessing
step in order to reduce the magnitude of the noise.

1.2 Submanifolds with positive reach

As regularity condition for the manifold we assume a positive reach, see Definition 1.

Definition 1. For ε > 0 and a set S ⊂ RD, let us denote the ε-offset of S by

Sε = {y ∈ RD : ∃x ∈ S with ‖x− y‖ ≤ ε}
and define the reach of S to be

reach(S) := sup{r ≥ 0 : ∀y ∈ Sr there exists a unique x ∈ S nearest to y}.

Originally introduced by [13], a positive reach has proven to be a widely used minimal condition in
geometric and topological inference, c.f. [7]. This includes in particular the topics of manifold estimation
[15], [2] as well as homology inference [24], [5]. The latter can in fact be seen as a generalization of
the clustering problem.

If a set has a positive reach 1
κ

, it is also 1
κ

-convex and one can freely roll a ball of radius r < 1
κ

around
it [9]. The reach provides information about the local and the global structure of the manifold at the
same time [1]: Any unit speed geodesic of a compact smooth submanifoldM without boundary with
reach(M) ≥ 1

κ
> 0 has a curvature bounded by κ and also any so-called bottleneck, i.e. a point

on the manifold that has two distinct projections onto the manifold in exactly opposite directions, has
a distance of at least 1

κ
to M. More precisely, it can be shown that the reach is either attained by

the curvature of a unit speed geodesic or is equal to the distance of a bottleneck to the manifold. See
Figure 1 for a visualization. Moreover,M has a local Lipschitz continuous parametrization in terms of
the tangent plane, see Lemma 4. We exploit this property, using that anyL -Lipschitz function changes
the d -dimensional Lebesgue volume at most by a factor Ld, see Lemma 3. For a survey on sets with
positive reach see [35].

1.3 AWC revisited

The key ingredient of the AWC procedure is a so-called test of no gap, which is based on a likelihood-
ratio test for local homogeneity from [29]. Given a sequence of radii 0 < h0 < · · · < hK in addition to
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Adaptive manifold clustering 3

Figure 1: The reach of a manifold can be either attained by the curvature radius of a geodesic (left) or
the distance to a bottleneck (right)

Figure 2: For locally homogeneous data we observe θ(k)
ij ≈ q

(k)
ij (left), whereas a significant gap is

characterized by θ(k)
ij � q

(k)
ij (right)

our data X1, . . . , Xn ∈ RD and using the test of no gap, the algorithm successively screens subsets
of increasing diameters. Using information from previous steps, AWC defines at each step k around
each point Xi a so-called local cluster C(k)

i that is supposed to be a maximal subset of the data in a
vicinity of the given radius hk satisfying the no gap objective.

In the following, let us explain the main idea of the algorithm more formally. An exact description
via pseudocode is given in Algorithm 1. By ‖ · ‖ we denote the euclidean norm, λ denotes the D-
dimensional Lebesgue measure and B(·, ·) is the usual notation for a closed euclidean Ball in RD

with given center and radius. Suppose our data X1, . . . , Xn ∈ RD is sampled independently from a
common probability distribution P. Using regular conditional distributions, let us treat Xi and Xj as

deterministic for some i 6= j. From a given sequence of radii h0 < h1 < · · · < hK s.t. hl+1

hl
< 2 we

choose hk such that ‖Xi −Xj‖ < hk and define the so-called gap coefficient

θ
(k)
ij =

P (B(Xi, hk−1) ∩B(Xj, hk−1))

P (B(Xi, hk−1) ∪B(Xj, hk−1))
.

In case of our distribution being uniform on a neighborhood of B(Xi, hk) ∪ B(Xj, hk), or more
generally, having a linear density, the gap coefficient coincides with the so-called volume coefficient

q
(k)
ij =

λ (B(Xi, hk−1) ∩B(Xj, hk−1))

λ (B(Xi, hk−1) ∪B(Xj, hk−1))
.

In Figure 2, we visualize the relationship between those two quantities. The idea of a significant gap
is formalized using a likelihood-ratio test of the null hypothesis

H0 : θ
(k)
ij ≥ q

(k)
ij

against the alternative
H1 : θ

(k)
ij < q

(k)
ij .
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Figure 3: Local clusters during different steps of the AWC algorithm

Suppose we are given binary weights w(k−1)
ij = 1(‖Xi −Xj‖ ≤ hk−1) and let us denote the local

cluster around Xi of radius hk−1 by C(k−1)
i = {Xj : w

(k−1)
ij = 1}. Then the corresponding test

statistic can be written as

T
(k)
ij = N

(k)
i∨jK(θ̃

(k)
ij , q

(k)
ij )
(
1(θ̃

(k)
ij < q

(k)
ij )− 1(θ̃

(k)
ij ≥ q

(k)
ij )
)
, (1)

where
N

(k)
i∨j =

∑
l 6=i,j

1(Xl ∈ C(k−1)
i ∪ C(k−1)

j )

denotes the empirical mass of the union, K(α, β) denotes the Kullback-Leibler divergence of two
Bernoulli variables with means α and β and

θ̃
(k)
ij =

∑
l 6=i,j 1(Xl ∈ C(k−1)

i ∩ C(k−1)
j )

N
(k)
i∨j

is an estimator for the gap coefficient. In the AWC algorithm, the assumption of the weights being of
the non-adaptive form w

(k−1)
ij = 1(‖Xi −Xj‖ ≤ hk−1) will only be guaranteed for the first step, as

the weights are successively updated as

w
(k)
ij = 1(d(Xi, Xj) ≤ hk)1(T

(k)
ij ≤ λ)

for some parameter λ ∈ R. That is, the so-called test of no gap given in (1) that is used in the
procedure does not necessarily coincide with the likelihood-ratio test, complicating the theoretical
study. However, those successive updates allow the weights to carry information from all previous
steps and enable the algorithm to detect gaps at any scale, in particular at a significantly smaller scale
than the size of the final clusters.

The output of the algorithm will be a weight matrix
(
w

(K)
ij

)n
i,j=1

. Experiments have shown this matrix

to carry relevant information about the cluster structure of the data. In fact, AWC performs well on
artificial and real-live data benchmarks. However, there is no theoretical guarantee, that these weights
actually describe the edge-disjoint union of fully connected graphs. The lack of a well-defined global
cluster objective of AWC distinguishes it from most other methods and can be seen as a disadvantage
from a comparative point of view. But from a practical point of view, this allows the algorithm to adapt
well to a very inhomogeneous and unknown cluster structure. Moreover, the local cluster structure can
also be seen as an advantage as it allows for overlapping clusters.

The idea of the no gap test seems similar to a density-based method such as DBSCAN. This is in
fact true on a local level in most situations. However, the absolute density levels are irrelevant for the
local decisions of the AWC procedure. Thus, the results on a global level differ significantly from those
obtained at a certain level of a density level tree, c.f. figure 5.

Currently, there is a significant gap between practical and theoretical results on AWC. Experiments
have shown the algorithm to deliver state-of-the-art performance on a wide range of artificial and real-
life examples. Some artificial examples are shown in Figure 4. Theoretical results are fairly limited:
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Adaptive manifold clustering 5

Algorithm 1 Adaptive Weights Clustering (AWC)

1: input: data X1, . . . , Xn ∈ RD, a sequence of bandwidths 0 < h0 < · · · < hK and a threshold
λ ∈ R for the likelihood-ratio test

2: initialize the weights w(0)
ij = 1(‖Xi −Xj‖ ≤ h0), 1 ≤ i, j ≤ n

3: for k from 1 to K do
4: for i 6= j s.t. ‖Xi −Xj‖ ≤ hk do
5: compute the empirical mass of the union

N
(k)
i∨j =

∑
l 6=i,j

1(Xl ∈ C(k−1)
i ∪ C(k−1)

j )

where C(k−1)
i := {Xj : w

(k−1)
ij = 1}.

6: compute the estimation of the gap coefficient

θ̃
(k)
ij =

∑
l 6=i,j 1(Xl ∈ C(k−1)

i ∩ C(k−1)
j )

N
(k)
i∨j

7: compute the likelihood-ratio test statistic

T
(k)
ij = N

(k)
i∨jK(θ̃

(k)
ij , q

(k)
ij )
(
1(θ̃

(k)
ij < q

(k)
ij )− 1(θ̃

(k)
ij ≥ q

(k)
ij )
)

where K(α, β) = α log α
β

+ (1− α) log 1−α
1−β and

q
(k)
ij =

2
B
(
D+1

2
, 1

2

)
B
(

1− ‖Xi−Xj‖2
4h2k−1

, D+1
2
, 1

2

) − 1

−1

with B(·, ·, ·) denoting the incomplete beta function and B(·, ·) = B(1, ·, ·) denoting the
usual beta function

8: end for
9: update the weights

w
(k)
ij =

{
1(‖Xi −Xj‖ ≤ hk)1(T

(k)
ij ≤ λ) for 1 ≤ i 6= j ≤ n

1 for 1 ≤ i = j ≤ n

10: end for
11: output: matrix of weights

(
w

(K)
ij

)n
i,j=1
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Figure 4: Six artificial examples demonstrate the adaptivity of AWC w.r.t. clusters of different size and
density, non-convex shapes and clusters with manifold structure. The top left and the bottom right
examples are original data sets, the rest are taken from [6].

First of all, they are limited to the case where no gaps have been detected in the previous step, as
otherwise, the test of no gap does not necessarily coincide with a likelihood-ratio test. Finite sample
guarantees on the propagation effect are only given at a local scale under the assumption of homo-
geneity due to the lack of results concerning the propagation at the boundaries of the clusters. A result
about consistent separation is stated for the special case of i.i.d. data X1, . . . , Xn from a piecewise
constant density supported on three neighboring regions of equal cylindrical shape. A sufficient con-
dition that allows consistency is that the density is smaller by a factor (1− εn) on the middle cylinder
than on the other two and that nε2n(log n)˘1 is large enough. It turns out that this rate is optimal up
to the logarithmic factor, more precisely it is impossible for any algorithm to achieve consistent sepa-
ration if nε2n 9 ∞. It has also been shown, that AWC adapts asymptotically to a linear submanifold
structure of the data if the intrinsic dimension is known. However, specific conditions on the size of
the considered deviation from the linear manifold are missing. Moreover, the procedure requires a cru-
cial tuning parameter λ. This parameter has to grow logarithmically in the data size n to ensure both
propagation and separation. Unfortunately, these results do not indicate how to scale λ, as no finite
sample guarantee is given for the separation case.

In this work, we will significantly improve the current theory for AWC, and also solve some of the
open problems mentioned above. First of all, we will consider distributions supported in the vicinity of
closed non-linear submanifolds. We propose a slight adjustment of the algorithm in order to take into
account the intrinsic dimension as well as local deviations due to the curvature of the manifold and the
magnitude of the noise. In addition to generalizing the previous results to this setup, we will give finite
sample guarantees both for propagation and separation and propose a theoretically justified choice
for λ under rather general assumptions on the structure of the clusters. Moreover, we show that the
propagation effect is still valid for points close to the boundary of a homogeneous cluster. This means
that the propagation and separation results do no longer need to be stated separately, c.f. Corollary
3. The rest of the paper is organized as follows. In section 2 we present our main results. We start in
subsection 2.1 by introducing the manifold hypothesis and studying properties of the gap coefficient.
This leads to the introduction of the so-called adjusted volume coefficient and a minor modification
of the algorithm which will preserve consistency under the manifold hypothesis. In subsection 2.2 we
discuss the case of uniform data without any clusters and continue in 2.3 by studying the sensitivity of
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Adaptive manifold clustering 7

(a) AWC, λ = 10 (b) AWC, λ = 20

(c) DBSCAN, eps = 1.0 (d) DBSCAN, eps = 1.2

(e) DBSCAN, eps = 0.9 (f) DBSCAN, eps = 1.0

(g) DBSCAN, eps = 0.8 (h) DBSCAN, eps = 0.8

Figure 5: Two datasets and the corresponding clusters obtained via AWC and DBSCAN. The cluster
structures obtained via AWC differ from those obtained at a certain level of a density cluster tree. In
the left example, DBSCAN is not able to recover the cluster structure because the density is constant,
whereas for the right example the density levels of the different clusters and the spaces between them
vary too much.
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F. Besold, V. Spokoiny 8

the algorithm w.r.t. local gaps. We will show that the procedure is rate-optimal and discuss the problem
of parameter tuning. Finally, we discuss the boundary case in subsection 2.4. In the following section
3 we present numerical results illustrating the main results of section 2. Proofs are collected in section
4.

2 Theoretical results

2.1 Inequalities for the gap coefficient

When the dimension of the data is too large, the curse of dimensionality will cause the AWC procedure
to fail. That is why we want to study the case where our data is locally lying approximately on a linear
subspace. We start by studying the relationship between two central quantities of the algorithm. The
first is the so-called gap coefficient

qP :=

∫
1B(M1,r)∩B(M2,r)dP∫
1B(M1,r)∪B(M2,r)dP

,

where P is a probability measure on RD underlying our data, r > 0 is a bandwidth parameter that
increases subsequently by a factor b ∈ (1, 2) during the procedure and M1 and M2 are two points
in RD. We only need to compute it if ‖M1 −M2‖ ≤ br. The purpose of this quotient is to measure
whether there is a significant gap in the data between M1 and M2, e.g. a region with a lower density,
by comparing it to the volume coefficient

q :=

∫
1B(M1,r)∩B(M2,r)dλ∫
1B(M1,r)∪B(M2,r)dλ

,

with λ being the Lebegue measure. The volume coefficient in dimension D is a function of s :=
‖M1−M2‖

r
and is given by [10]

q = qD(s) :=

(
2

B
(
D+1

2
, 1

2

)
B
(
1− s2

4
, D+1

2
, 1

2

) − 1

)−1

, (2)

where B(·, ·, ·) denotes the incomplete beta function and B(·, ·) = B(1, ·, ·) denotes the beta func-
tion. As the dimension D increases, the volume coefficient decreases approximately exponentially in
D as stated in the following Proposition. This demonstrates the curse of dimensionality, as we need
at least an exponential growth in the data size w.r.t. the data dimension to guarantee a reasonable
estimation of the gap coefficient, which is a necessity for the AWC algorithm.

Proposition 1. For 0 < s < 2, we have

1

2
≤ qD(s)


(

1− s2

4

)D+1
2

Γ
(

1
2

)√
d+ 1


−1

≤ 2
5
2

s2
.

By considering locally homogeneous data lying close to a lower-dimensional submanifold of dimension
d, we show in the second Lemma that the gap coefficient essentially behaves locally as for homoge-
neous data on a linear subspace of the same dimension. We will use this in the following to prove
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theoretical guarantees for the AWC procedure. Let us start by listing all the assumptions on the dis-
tribution P and the tuning parameters of the algorithm that we need - these are mainly a lower bound
for the reach of the manifold on which the data is concentrated, an upper bound for the size of the
additional noise in terms of the size of the considered vicinity and an upper bound for the radius of the
considered vicinity in terms of the reach.

Assumptions A(r0, r1):

� P is the probability distribution of a random variable of the form X + ξ, where X follows a
density f on a manifoldM and ‖ξ‖ ≤ rξ

� M is a connected and compact d-dimensional C2 submanifold of RD without boundary

� reach(M) ≥ 1
κ

for κ > 0

� rξ ≤ r0
max{20,5d}

� r1 ≤ 1
max{120,

√
720d}κ

� 1 < b ≤ b′

(1+360κ2r21)
(

1+5
rξ
r0

) for some b′ < 2

Our assumption of bounded noise is identical to the one in the work of [4] about the cluster density tree
on manifolds and is relatively weak. It can be seen as a generalization of the so-called tubular noise
and additive noise, c.f. [5]. Some authors additionally require orthogonality of the noise, c.f. [25] and
[30]. Moreover, note that the upper bound for b is not a very restrictive assumption, as it will always

be satisfied for 1 < b ≤ 3
2
. The complexity of the AWC algorithm with respect to b is O

(
1

log b

)
, so

as long as b is bounded away from 1, e.g. as long as b′ ≥
√

2, this does not change the overall
complexity.

Proposition 2. Suppose assumptions A(r, r) are satisfied for a constant density f and M1, M2 are
two points in the support of P whose distance is at most br. Then

(1 + εM)−1(1 + εξ)
−1 ≤ qP

qd(s)
≤ (1 + εM)(1 + εξ)

for

εM :=
9600(d+ 1)κ2r2(

1−
(
b′

2

)2
) d+1

2

and

εξ :=
80(d+ 1)

rξ
r(

1−
(
b′

2

)2
) d+1

2

.

Let us point out that our bound on the deviation of the gap coefficient from the volume coefficient is
a product of the form (1 +O(κ2r2))

(
1 +O

( rξ
r

))
, as long as the intrinsic dimension d is bounded

and as long as b′ is bounded away from 2. The first factor takes into account the reach of the manifold,
whereas the second factor only depends on the size of the noise. In particular, using a manifold
denoising algorithm [16, 18, 38, 30], we can preprocess our data in order to reduce noise and expect
the second factor to be irrelevant. Thus, it might also be reasonable to study a setup without noise as
in the following trivial Corollary.
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Corollary 1. Suppose rξ = 0 in addition to the assumptions of Proposition 2. Then

(1 + εM)−1 ≤ qP
qd(s)

≤ 1 + εM.

Recall that the main idea of the AWC algorithm is to distinguish a homogeneous area from a gap
between two clusters by estimating and comparing the gap coefficient with the volume coefficient.
However, due to the non-linear manifold structure as well as the noise, we cannot establish a strict
inequality between the two quantities even for the uniform case. Nevertheless, Proposition 2 guar-
antees a strict inequality for the homogeneous case if we adjust the volume coefficient by a factor
(1 + εM)−1(1 + εξ)

−1. Consequently, we will adjust the proposed test of the AWC procedure to

T
(k)
ij := N

(k)
i∨jK

(
θ̃

(k)
ij , q

(k)
ij

){
1
(
θ̃

(k)
ij < q

(k)
ij

)
− 1

(
θ̃

(k)
ij ≥ q

(k)
ij

)}
by considering an adjusted volume coefficient

q
(k)
ij := (1 + εM)−1(1 + εξ)

−1qd

(‖Xi −Xj‖
hk−1

)
.

Note that in practice, the parameters d, 1
κ

and rξ are unknown. We refer to [20] for an overview of
procedures dedicated to estimating the intrinsic dimension. The estimation of the noise is related to
the estimation of the manifold and is particularly related to the problem of recovering the projections of
the data onto the manifold, see [30]. The estimation of the reach has been studied in [1]. However, the
effect of the reach is locally small and can be ignored. Similarly, using a manifold denoising algorithm,
we can assume the effect of the noise to be insignificant. In contrast, the effective dimension parameter
is crucial for the computation of the test statistic. Following the proofs of theorems 1 and 2, we see that
the AWC procedure is still consistent in case of overestimation of d as long as the gap is significant
enough. However, we cannot expect the algorithm to be rate optimal in this case. In subsection 3.4
we discuss a simple numerical example, that suggests that the procedure might be stable in practice
w.r.t. to over- and underestimation of d.

2.2 Propagation in the uniform case

In the following, we generalize the results from [10] to our considered setup. As expected, the adjusted
AWC algorithm consistently propagates homogeneous areas of our data: If the threshold λ of our
likelihood-ratio test is of the formC log n, then the accuracy in estimating the weights of the adjacency
matrix is of order 1−O

(
n−(C−3)

)
.

Theorem 1. With high probability, the AWC algorithm does not detect a gap between two points
from a distribution that is nearly uniform on a manifold, as long as it did not detect any gaps in the

previous step. To be precise, suppose assumptions A(hk−1, hk−1) hold and X1, X2, . . . , Xn
i.i.d.∼ P.

We consider a constant density f and assume that the AWC algorithm did not detect any gaps in the
previous step. If we choose the threshold λ = C log n for some C > 0, then

P⊗n
(
T

(k)
ij > C log n

∣∣∣‖Xi −Xj‖ ≤ hk

)
≤ 2n˘C .

Corollary 2. With high probability, the AWC algorithm does not detect any gaps if our data distribution
is close to a uniform distribution on a submanifold of RD. To be precise, suppose assumptions A(h0,

hK ) hold and X1, X2, . . . , Xn
i.i.d.∼ P. We consider a constant density f . If K < n and we choose

the threshold λ = C log n for C > 3, then

P⊗n
(
w

(K)
ij = 1(‖Xi −Xj‖ ≤ hK)∀i, j

)
≥ 1− 2n−(C−3).
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Adaptive manifold clustering 11

Remark 1. By symmetricity, a linear density also satisfies the no gap condition in the full dimensional
case d = D. So up to the constants in the terms εM and εξ, Proposition 2 is still valid if the underlying
density is of the form f = 1(M)f for a linear function f on RD. Consequently, the above results on
propagation in the uniform case can also be generalized to this linear model.

2.3 Separation in the gap case

For the case of a significant gap in the data, we can also generalize the results of [10] to the manifold
setup and show that we consistently separate the data achieving nearly rate-optimality. In addition,
we give a finite sample guarantee. Together with the previous results for the homogeneous case,
this yields a first theoretically justified proposal to choose the parameter λ. Moreover, we do not only
generalize from a linear to a smooth subspace structure of our data but also significantly generalize
the definition of the considered clusters.

Assumptions B(r):

� First of all, we include assumptions A(r, r)

� Additionally, we consider disjoint subsets C1, . . . , CkC ofM

� Spatial separation of clusters is ensured by

d∞(Cl, Cm) := min
x∈Cl,y∈Cm

‖x− y‖ ≥ r + 2rξ for 1 ≤ l 6= m ≤ kC

� Similarly as in [32], we assume a thickness condition on each cluster: We assume there is a
constant f0 > 0 s.t. for any x ∈ Cl and r′ ∈ [r − 2rξ, r + 2rξ] we have∫

f1B(x,r′) ≥ f0

∫
1B(x,r′)∩M

� Separation of clusters is also ensured by a significant depth of the gap: For x1 ∈ Cl, x2 ∈ Cm,
r′ ∈ [r − 2rξ, r + 2rξ] with l 6= m and ‖x1 − x2‖ ≤ br we have∫

f1B(x1,r′)∩B(x2,r′) ≤ (1− ε)f0

∫
1B(x1,r′)∩B(x2,r′)∩M

� The sample size n has to be large enough, i.e. for some β > 0 we have

n

log n
≥ 2β

z2
k

where f−1
0 zk denotes the volume of a d-dimensional ball of radius 7

8
r

� The depth ε < 1 of must be significant w.r.t. the effect of curvature and noise, and decreases
not faster than (log n)

1
2n−

1
2 , i.e. it satisfies the lower bound

ε ≥ max

{
7(εM + εξ + εMεξ),

√
2α log n

zkq2
d(b)n

}
for some α > β.
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The integral conditions are up to a change of constants a generalization of the simpler separation
condition

ess supM\∪iCi f ≤ (1− ε) inf
∪iCi

f

from [8]. However, the here introduced generalization allows for both smooth f as well as a step
function. Moreover, the upper bound on the size of the bounded noise ε & rξ

r
d also appears in the

work of [4] (with parameters (θ, σ) instead of (rξ, r)).

The assumptions above are designed to be comparable to the framework of other density-based
methods. However, AWC does not reconstruct connected superlevel sets of the unterlying density.
Conversely, other procedures will in general not find a cluster structure respecting the idea of signifi-
cant gaps. Moreoever, theoretical guarantees for AWC are only given for local clusters. In general, it
is difficult to assign a global partition of the data from this information, as the local clusters might form
connected components that are heavily overlapping. This limits the comparability of the presented
results to a local level.

Theorem 2. We consider a distribution on the vicinity of a submanifold of RD containing different
clusters separated by significant gaps in the density. As long as the AWC algorithm did not detect
gaps in the previous step, it will detect the gap between two points from different clusters with high

probability. To be precise, consider the assumptions B(hk−1) andX1, X2, . . . , Xn+2
i.i.d.∼ P. Suppose

that the algorithm did not detect any gaps in the previous steps. Then

P⊗(n+2)

(
T

(k)
ij ≥

(√
α−

√
β
)2

log n
∣∣∣ ‖Xi−Xj‖≤hk
∃l 6=m:Xi∈C

rξ
l ,Xj∈C

rξ
m

)
≥ 1− 3n−β.

Remark 2. Under the previous assumptions, the gap will be consistently detected at the step k where
the considered vicinity first exceeds the width of the gap. However, as in the homogeneous case, the
speed of convergence depends on the choice of the tuning parameter λ. Theorems 1 and 2 suggest
choosing a threshold of the form λ = C log n. Moreover, the optimal constant C∗ that yields the
fastest convergence w(k)

ij −→ wij in probability for both discussed cases according to the given lower
bounds for the accuracy of the estimation of the weights is given by

C∗ = sup
β∈(0,α)

min

{(√
α−

√
β
)2

, β

}
=
α

4
.

The corresponding rate of misclassification is for both cases

P⊗n
(
w

(k)
ij 6= wij

)
≤ O(n−

α
4 ).

Remark 3. We consider a low manifold dimension d as a reasonable assumption and thus consider
only asymptotics in n while d is bounded from above. While the rate of the algorithm is essentially (i.e.
up the involved constants) independent of d, we have the following dependencies on d:

� To guarantee a fixed level of uncertainty, i.e. with fixed β, the lower bound on the sample size n
in the list of assumptions increases exponentially in d, demonstrating the curse of dimensionality
if the manifold dimension is very large.

� For larger d we allow a smaller level of noise∝ d−1 and a smaller size of the considered vicinity
∝ d−

1
2 .
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2.4 Boundary case

In the previous subsection 2.2 we considered a homogeneous distribution on the manifold. In the
presence of non-trivial clusters, this assumption can only be satisfied locally and only for points far
enough from the boundaries of the clusters. However, the no gap condition enjoys the remarkable
property that is still valid for points close to a locally linear boundary. In fact, the corresponding gap
coefficient might only be larger than in the homogeneous case.

Lemma 1. We assume M1 6= M2 ∈ RD and r1, r2 > 0. Moreover, suppose that H is a D-
dimensional half-space containing M1 and M2. Then

λ(B(M1, r) ∩B(M2, r2))

λ(B(M1, r) ∪B(M2, r2))
≤ λ(H ∩B(M1, r) ∩B(M2, r2))

λ(H ∩ (B(M1, r) ∪B(M2, r2)))

The proof of Lemma 1 relies on the following result via Fubini’s theorem. Again, we assume D > 0
and denote the D-dimensional Lebesgue measure by λ.

Lemma 2. Suppose M1 6= M2 ∈ RD+1 and r > 0. We consider a hyperplane H ⊂ RD+1

containing M1+M2

2
. Suppose v is vector of norm 1 that is orthogonal toH . Moreover, we define tmax :=

sup{t : (H + tv) ∩ (B(M1, r) ∪B(M2, r)) 6= {}}. Then the functionQ : [0, tmax)→ R≥0,

Q(t) :=
λ((H + tv) ∩B(M1, r) ∩B(M2, r))

λ((H + tv) ∩ (B(M1, r) ∪B(M2, r)))

is monotonely decreasing in t.

The quantity Q in the result above is a generalization of the volume coefficient in a lower dimension:
The intersection of the considered hyperplane with each ball is again a ball of a lower dimension -
however, the corresponding radii are in general not identical.

Lemma 2 shows in fact more than what is claimed in Lemma 1: As we move the two center points
closer to the linear boundary, the volume coefficient starts increasing monotonely as soon as the two
balls are not completely contained by the half-space anymore. At some point, the volume coefficient
attains its maximum, after which it decreases monotonely. By symmetricity, the volume coefficient has
the same value again as in the homogeneous case, when the boundary of the half-space contains
M1+M2

2
. If we consider a stepfunction

f ∝ 1(H ∩ (B(M1, r) ∪B(M2, r))) + (1− ε)1(HC ∩ (B(M1, r) ∪B(M2, r))) (3)

as a generalization of the uniform density considered in Lemma 1, we observe the analogue mono-
tonicity, if we move the two center points further away from the half-spaceH, c.f. Figure 6.

Lemma 1 allows to extend the lower bound of Proposition 2 to the boundary case under an almost
identical set of assumptions with an additional cluster structure.

Assumptions C(r):

� First of all, we consider assumptions A(r, r)

� Additionally, we consider disjoint clusters C1, . . . , CkC of d∞-distance at least r + 2rξ as sub-
manifolds ofM with boundaries ∂Ci of reach at least 1

κ′
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Figure 6: The top sketch illustrates the notation and relation between Lemma 1 and 2: The half-plane
H+tv is the boundary of the half-spaceH. However, the uniform assumption of Lemma 1 is modified
to a piecewise constant density as described in (3) with ε = 1

2
. At the bottom, we see a plot of the

corresponding functionQ(t) from Lemma 2 (left) as well as the gap coefficient qP (right). These values
were obtained by Monte Carlo integration.

� The density f onM is constant with value c0 on ∪Ci and satisfies

ess supM\ ∪Ci f ≤ c0

� Outside of the clusters we require the following regularity condition for the density: Any nontrivial
intersection of a superlevel set of f with an offset Cr+2rξ

i is equal to the intersection of that
superlevel set with a submanifold ofM having a boundary of reach at least 1

κ′

� r ≤ 1
132κ′

√
d+1

The last condition together with the upper bound from A(r, r) ensures that both the reach ofM and
∂Ci are large enough w.r.t. the radius r, such that both the manifold and the boundary of the cluster
can be locally approximated by affine subspaces.

Proposition 3. We consider assumptions C(r). Suppose M1,M2 ∈ Ci are points of distance at
most br. Then

qP ≥ qd (s) (1 + εM)−1 (1 + εξ)
−1 (1 + ε∂C)

−1 ,
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for

εM =
45360(d+ 1)κ2r2(

1− b′2

4

) d+1
2

εξ =
264(d+ 1)

rξ
r(

1− b′2

4

) d+1
2

ε∂C = 132κ′r
√
d+ 1

This inequality is stronger than the lower bound from Proposition 2. Hence, we have to modify the
definition of the adjusted volume coefficient. For the following, we consider

q
(k)
ij := (1 + εM)−1(1 + εξ)

−1 (1 + ε∂C)
−1 qd

(‖Xi −Xj‖
hk−1

)
to allow for consistent propagation in the boundary case as stated in the following Theorem. Again, in
practice, the implementation of the adjusted volume coefficient might be ignored, c.f. [10]. However,
it is important to not underestimate the dimension parameter d. In fact, an overestimation of d might
compensate for dropping the first three factors of the adjusted volume coefficient and ensure the
propagation of homogeneous areas.

Theorem 3. We consider a distribution in the vicinity of a manifold and two points inside a homogenous
cluster. Then with high probability, the AWC algorithm will not detect a gap between them, even if
the points happen to be in close proximity to the boundary of the cluster. To be precise, suppose

assumptions C(hk−1) hold and X1, X2, . . . , Xn+2
i.i.d.∼ P. We assume that the AWC algorithm did

not detect any gaps in the previous step. If we choose the threshold λ = C log n for some C > 0,
then

P⊗(n+2)
(
T

(k)
ij > C log n

∣∣∣Xi, Xj ∈ Crξ , ‖Xi −Xj‖ ≤ hk

)
≤ 2n˘C .

Together with Theorem 2 we are able to cover all the discussed cases at once. In the following corollary,
we will use the term global clusters to describe the disjoint offsets Crξi .

Corollary 3. We consider the conditions C(hk−1) and B(hk−1) with a slightly stricter lower bound

ε ≥ 7 (1 + εM) (1 + εξ) (1 + ε∂C)− 7.

Suppose X1, . . . , Xn+2
i.i.d.∼ P. We assume that the AWC algorithm did not detect any gaps in

the previous step. Moreover, we choose the threshold λ = α
4

log n. Then with probability at least

1−3n−
α−8
4 , every local cluster C(k)

i calculated by AWC at step k satisfies the following: IfXi belongs

to a global cluster, C(k)
i contains all points from this cluster of distance at most hk to Xi, while it does

not contain any points from other global clusters.

2.5 Optimality

The lack of a rigorous global cluster objective makes it difficult to compare our theoretical results to
previous work. Moreover, we have shown that the algorithm differs significantly from other density-
based methods, c.f. Figure 5. However, the local separation considered in Theorem 2 as well as
Corollary 3 is very similar to the split of two components in the cluster density tree. Consistent and
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rate-optimal estimation of the cluster density tree using a single-linkage clustering algorithm has been
established in[8]. Using different notation (i.e. σ instead of r as width of the gap and λ instead of
f0 as density level), the authors show that the optimal rate is (up to logarithmic factors and factors
dependent on d) given by

ε &

√
1

nrdf0

In [4] this has been extended to the manifold setup. Further work by [37] shows that, under the as-
sumption of a Hölder smooth density, this rate can be described by only one separation parameter
together with the smoothness parameter.

In view of zk ∝ f0r
d, our lower bound on the depth of the gap

ε ≥
√

2α log n

zkq2
d(b)n

achieves in fact the optimal rate given above w.r.t. (n, r, f0). We verify the optimality w.r.t. n for our
setup under very simple conditions, showing that no algorithm can consistently detect the gap if ε
decreases at the rate n−

1
2 .

Assumptions D:

� C1, . . . , Ck are disjoint subsets of a manifoldM⊂ RD

� X1, . . . , Xn are drawn i.i.d. from a density supported onM that is constant on V := ∪Ci with
value fV and constant on G :=M\ V with value fG

Theorem 4. Let assumptions D be satisfied. We consider the null hypothesis of a uniform distribution
on the manifold, i.e.

H0 : fG = fV

against the alternative

H1 : fG = (1− δ)fV
for δ > 0. Then no test can separate the two cases consistently if nδ2 9∞ as n→∞.

3 Experimental Results

Although manifold models are considered to be realistic, we still impose some assumptions for our
theoretical study that are usually not satisfied in real-life. Most importantly we assume that our data
lies on a manifold without boundary and positive reach up to bounded noise. A comprehensive nu-
merical study of the procedure including real-life data by [10] suggested that these assumptions are
not necessary in practice and the performance of the algorithm is competitive with state-of-the-art al-
gorithms. Rather, the limiting factor of the algorithm for clustering so-called big data at a global scale
seems to be its polynomial complexity. That being said, in this work, we will restrict to some rather
simple artificial examples in order to illustrate and verify our theoretical results.
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Figure 7: Density fε (left), i.i.d. sample of size n = 800 from P
U( 1

10)
1
2

with two dashed lines highlighting

the gap in the data (center) and clusters obtained via AWC (right)

3.1 Consistency

In order to verify the sensitivity of the AWC algorithm w.r.t. local gaps for data lying on non-linear
submanifolds and illustrate the main results Theorem 1 and Theorem 2, we will start by studying an
artificial example where the embedding dimension is equal to 2 and the intrinsic dimension of the data
is 1. We consider a distribution on the vacinity of the unit circle S1 in R2 with two clusters

C1 := {(x, y) ∈ S1 : y >
1

4
}

and

C2 := {(x, y) ∈ S1 : y < −1

4
}.

By Pε we denote the distribution corresponding to the density

fε :=
1

2π

(
1C1∪C2 + (1− ε)1S1\(C1∪C2)

)
.

Moreover, by U(r) we denote the uniform distribution on a 2-dimensional ball of radius r. Then we
sample X1, . . . , Xn i.i.d. from

P
U( 1

10)
ε := Pε ∗ U

(
1

10

)
,

cf. Figure 7. To measure the performance of the algorithm we use a modified version of the Rand index
[31]  ∑

(Xi,Xj)∈(C1∪C2)2

0<||Xi−Xj ||<hK

1


−1


∑
Xi,Xj∈C1
Xi,Xj∈C2

0<||Xi−Xj ||<hK

w
(K)
ij +

∑
Xi∈C1,Xj∈C2
Xi∈C2,Xj∈C1
||Xi−Xj ||<hK

(
1− w(K)

ij

)
 .

For simplicity, we refer to this measure as Rand index. It can also be defined as the accuracy of
a subset of the weights (w

(K)
ij )ni,j=1. As our theoretical results only apply at a local scale, we also

restrict here to a local scale hK = 1 and fix a series of bandwidths hi = 2
i
2
−2, i = 0, . . . , 4. We only

adjust the gap coefficient with respect to the intrinsic dimension, that is, we assume the reach and the
noise magnitude to be zero in the computation of the adjusted volume coefficient. For each sample,

DOI 10.20347/WIAS.PREPRINT.2800 Berlin, December 18, 2020/rev. August 25, 2022



F. Besold, V. Spokoiny 18

200 400 800 1600 3200 6400
sample size n

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

de
pt

h 
of

 g
ap

 

average Rand index

0.96

0.97

0.98

0.99

1.00

200 400 800 1600 3200 6400
sample size n

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

de
pt

h 
of

 g
ap

 

quota of correct outputs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Average rand index (left) and quota of experiments yielding a rand index 1 (right)

we run the algorithm for different λ and consider only the best resulting Rand index, i.e. we overfit λ.
Finally, for different values of ε, we repeat the experiment 100 times. The resulting average rand index
is plotted in Figure 8 on the left. Note that the Rand index is in general quite close to 1, however, this is
only due to the imbalance in the considered classification problem. For the evaluation of the results, we
are only interested in the relatively large values, e.g.≥ 0.99. On the right, the quota of experiments is
plotted where a rand index of 1 is achieved. This relates to our theoretical results, whereas the average
rand index is a more common measure in practice. Our theoretical results show, that the minimal ε,
for which we can reconstruct the cluster structure with high probability, is up to logarithmic factors of

order
√

1
n

. The experiment is not exhaustive enough to verify this result. However, the results verify

the asymptotics ε
n→∞−−−→ 0 and indicate that ε decreases significantly slower than 1

n
.

A less expected detail in the plot is the fact, that for small values of the depth ε, we observe better
Rand indices as the sample size n decreases. This can be explained as follows. If ε is small, our
distribution is very close to a distribution without a gap. Thus, for large n, the empirical distribution will
also be close to a uniform distribution, and it will be very difficult for the algorithm to detect the clusters.
However, for small n, the distribution may deviate more from the uniform distribution and form random
clusters that in some cases do accidentally have similarities to the true cluster structure.

3.2 Scaling of sensitivity parameter λ

In the experiment above, we also computed for each experiment the minimal value of λ that achieved
the largest rand index and plotted the resulting average in Figure 9. The results support our proposition
that λ should be scaled logarithmically w.r.t. the data size.

3.3 High-dimensional data

In this subsection, we study the effect of the embedding dimension, i.e. the effect of high-dimensional
noise. Recall that the presented results are independent of the embedding dimension D of the data.
However, as we assume the norm of the noise to be bounded. In the case of centered noise with
i.i.d. coordinates this implies that for each coordinate the variance is of orderO(D−1). This motivates
the study of two different noise distributions. Firstly and corresponding to our theoretical results, we
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Figure 9: Average minimal lambda with best rand index for ε = 0.9
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Figure 10: Average rand index (left) and quota of experiments yielding a rand index 1 (right) for uniform
noise of norm ≤ 1

10

consider the uniform distribution U(r) on a centered D -dimensional ball of radius r. Also we want to
consider the centered multivariate normal distribution N (σ2) with covariance matrix σ2ID. Note that
for large D,N (σ2) is concentrated on a thin annulus around the centered sphere of radius σ

√
D, so

the two noise distributions mainly differ in the parametrization of the scale.

By PD,ε we denote an D -dimensional embedding of the distribution Pε described in subsection 3.1.
Then we draw our sample X1, . . . , Xn i.i.d. either from

P
U( 1

10)
D,ε := PD,ε ∗ U

(
1

10

)
or

P
N( 1

3200)
D,ε := PD,ε ∗ N

(
1

3200

)
.

Note that the distribution P
U( 1

10)
ε used in the above experiments is a special case of P

U( 1
10)

D,ε forD = 2.
Moreover, for D = 32, both distributions concentrate on the proximity of a centered sphere of radius
1
10

. Thus we might expect similar performance of the algorithm for both distributions for D = 32.
According to our results, the performance should not break down in the uniform case for largeD while
we expect the performance to decrease with growing embedding dimension for the Gaussian noise as
the noise radius increases.

DOI 10.20347/WIAS.PREPRINT.2800 Berlin, December 18, 2020/rev. August 25, 2022



F. Besold, V. Spokoiny 20

2 4 8 16 32 64 128 256 512
embedding dimension D

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

de
pt

h 
of

 g
ap

 

average Rand index

0.90

0.92

0.94

0.96

0.98

1.00

2 4 8 16 32 64 128 256 512
embedding dimension D

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

de
pt

h 
of

 g
ap

 

quota of correct outputs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Average rand index (left) and quota of experiments yielding a rand index 1 (right) for Gaus-
sian noise of variance 1

3200
ID

We fix the sample size n = 1000 and proceed otherwise analogously to the first experiment: For
each sample, we optimize λ and repeat the experiment 1000 times for each value of ε. The resulting
average rand indices, as well as the quota of experiments with rand index equal to 1, are presented in
Figures 10 and 11 and confirm our expectations. We observe one interesting detail in the quota of cor-
rect outputs in the presence of uniform noise on the right plot in Figure 10. For a very small embedding
dimension D the performance is slightly worse. A possible explanation is that the high-dimensional
noise approximately preserves distances up to a constant summand with large probability. So in this
experiment, the separation of the two clusters might be more difficult under smaller embedding dimen-
sion D.

3.4 Effect of intrinsic dimension parameter d

Our theoretical results require knowledge of the parameter d of the effective dimension of the data.
Otherwise, we cannot expect consistency under the asymptotics ε → 0. In practical applications, the
dimension parameter is often unknown and can be estimated [20]. However, under the reasonable
assumption that d is not too large, e.g. d ≤ 5, we can also just run the clustering procedure for the dif-
ferent values of d. In both cases, uncertainty about the true intrinsic dimension remains. Unfortunately,
our theoretical study does not provide much insight into the stability of the algorithm with respect to
the dimension parameter.

In order to observe the effect of both under- and overstimation of the dimension parameter, we will
consider the following simple 2-dimensional example. We consider a distribution on the unit sphere S2

in R3 with two clusters

C1 := {(x, y, z) ∈ S2 : z >
1

4
}

and

C2 := {(x, y, z) ∈ S2 : z < −1

4
}.

We sample X1, . . . , Xn i.i.d. from the distribution Pε corresponding to the density

fε ∝ 1C1∪C2 + (1− ε)1S2\(C1∪C2),
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Figure 12: Left: Sketch of density fε. Right: Obtained clustering from AWC with parameters d = 1 and
λ = 50 for a sample of size n = 1000 and depth ε = 2
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Figure 13: Sum of weights heuristics for the sample in Figure 12 with parameters d = 1 (left), d = 2
(middle) and d = 3 (right)

cf. Figure 12. For a sample of size n = 1000 with depth ε = 2
3
, we consider various parameter λ and

plot the corresponding sum of weight heuristic S, i.e. the normalized sum of all weigths obtained at
the final step of the AWC procedure. This statistic is a possible way to tune λ in practice. One might
simply take λ at a plateau of the graph of S, as it is expected for a clear cluster structure that the
output of the algorithm is stable with respect to the tuning parameter. The results are shown in figures
12 and 13.
In figure 13 we see for each dimension parameter d = 1, 2, 3 a unique plateau at a value around

0.5. The value S(λ) = 0.5 corresponds to two clusters of equal size. Indeed a plot for the parameters
(d = 1, λ = 50) in figure 12 verifies that the cluster structure is detected as expected. We ommited
plots for (d = 2, λ = 20) and (d = 3, λ = 8), as the results are nearly identical. Moreover, we
observe that the scaling of λ depends on d. A larger dimension parameter requires smaller λ. This
can be explained by the fact the the corresponding volume coefficient decreases with an increase of
the dimension parameter. So it is harder for the algorithm to detect gaps, while the propagation effect
is even stronger. A smaller λ compensates this effect.

The experiment suggests that the AWC procedure is able to detect the cluster structure even if the
effective dimension parameter d is over- or underestimated. However, the scaling of λ depends on the
choice of d.
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4 Proofs

Proof of Proposition 1. The main tool for the bounds will the series representation

B (x, a, b) = xa
∞∑
n=0

Γ(1− b+ n)

Γ(1− b)Γ(n+ 1)(a+ n)
xn

for the incomplete beta function [27]. Also, we use the logarithmic convexity of the gamma function.
For the upper bound we get

qd(t) =
B
(

1− t2

4
, d+1

2
, 1

2

)
2B
(
d+1

2
, 1

2

)
− B

(
1− t2

4
, d+1

2
, 1

2

)
≤
B
(

1− t2

4
, d+1

2
, 1

2

)
B
(
d+1

2
, 1

2

)
≤

2
d+1

∞∑
n=0

(
1− t2

4

) d+1
2

+n

B
(
d+1

2
, 1

2

)
=

2
d+1

(
1− t2

4

) d+1
2

Γ
(
d+2

2

)
t2

4
Γ
(
d+1

2

)
Γ
(

1
2

)
≤

2
d+1

(
1− t2

4

) d+1
2

Γ
1
2

(
d+3

2

)
t2

4
Γ

1
2

(
d+1

2

)
Γ
(

1
2

)
= 2

5
2 t−2

(
1− t2

4

) d+1
2

(d+ 1)
1
2 Γ
(

1
2

)
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and similarly, we compute the lower bound

qd(t) ≥
B
(

1− t2

4
, d+1

2
, 1

2

)
2B
(
d+1

2
, 1

2

)
≥

(
1− t2

4

) d+1
2

(d+ 1)B
(
d+1

2
, 1

2

)
=

(
1− t2

4

) d+1
2

Γ
(
d+2

2

)
(d+ 1)Γ

(
d+1

2

)
Γ
(

1
2

)
≥

(
1− t2

4

) d+1
2

Γ
1
2

(
d+2

2

)
(d+ 1)Γ

1
2

(
d
2

)
Γ
(

1
2

)
=
d

1
2

(
1− t2

4

) d+1
2

2
1
2 (d+ 1)Γ

(
1
2

)
≥ 2−1

(
1− t2

4

) d+1
2

(d+ 1)
1
2 Γ
(

1
2

) .

For the proof of Proposition 2 we will use the following two auxiliary Lemmas. By vol(·) we denote the
Lebesgue volume on a submanifold of RD. We will consider different such manifolds and not specify
them explicitly, as long as it clear from the context to which manifold we refer.

Lemma 3. For any d-dimensional C2 submanifoldsM1,M2 ∈ RD, a measurable subset A ⊂M1

and a C-Lipschitz function f :M1 →M2, we have

vol(f(A)) ≤ Cdvol(A).

Proof. This inequality is also valid for the d -dimensional Hausdorff measure. In this case, it is a simple
consequence of the definition of the Hausdorff measure [3]. As the Lebesgue measure is related by a
constant factor [14], it also holds for the Lebesgue measure.

For the second auxiliary Lemma we consider a connected and compact C2 submanifoldM ⊂ RD

with reach 1
κ
> 0 and without boundary. For some fixed x ∈ M we denote the tangent plane ofM

at x by T . Also, we consider the projection P : RD → T associating each y ∈ RD with the closest
point in T .

Lemma 4. Suppose 0 < r ≤ 1
40κ

. Then the restriction P |M∩B(x,r) is a 1-Lipschitz injection and its
image contains T ∩B(x, r/L). Moreover, its inverse is L-Lipschitz for

L := 1 + 40κ2r2 ≤ 1 + κr.

Proof. This Lemma is given in [3] with some unspecified small enough constant instead of 1
40

. Follow-
ing the corresponding proof, it can be easily verified that this constant is indeed small enough.
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Proof of Proposition 2. Let us denote the uniform measure on the manifold with µ. For i = 1, 2, we
choose a point M ′

i on the manifoldM of distance at most rξ to Mi. Because the Euclidean norm of
the noise ξ is bounded by rξ, we get

ql :=

∫
1B(M ′1,r−2rξ)∩B(M ′2,r−2rξ)dµ∫
1B(M ′1,r+2rξ)∪B(M ′2,r+2rξ)dµ

≤ qP

≤
∫
1B(M ′1,r+2rξ)∩B(M ′2,r+2rξ)dµ∫
1B(M ′1,r−2rξ)∪B(M ′2,r−2rξ)dµ

=: qu (4)

Let us denote by ∩∪ one of the symbols ∩ or ∪ and suppose r′ ∈ [r− 2rξ, r+ 2rξ]. By P we denote
the orthogonal projection onto the tangent plane T ofM at M ′

1. Our assumptions ensure that a ball
of radius 3r around M ′

1 contains both B(M ′
1, r
′) and B(M ′

2, r
′). Since the restriction P |M∩B(M ′1,3r)

is an injective 1-Lipschitz map with an L -Lipschitz inverse with L := 1 + 360κ2r2, we conclude (cf.
[3])

L−d ≤ vol(P (M∩ (B(M ′
1, r
′)∩∪ B(M ′

2, r
′))))

vol(M∩ (B(M ′
1, r
′)∩∪ B(M ′

2, r
′)))

≤ 1. (5)

Moreover, the above Lipschitz constants imply

T ∩B
(
P (M ′

i),
r′

L

)
⊆ P (M∩B(M ′

i , r
′)) ⊆ T ∩B(P (M ′

i), r
′)

for i = 1, 2 and therefore

1 ≤ vol (T ∩ (B(P (M ′
1), r′)∩∪ B(P (M ′

2), r′)))

vol (P (M∩ (B(M ′
1, r
′)∩∪ B(M ′

2, r
′))))

≤ vol (T ∩ (B(P (M ′
1), r′)∩∪ B(P (M ′

2), r′)))

vol
(
T ∩ (B(P (M ′

1), r
′

L
)∩∪ B(P (M ′

2), r
′

L
))
) =: q∩∪ ,r′ . (6)

Note also that according to our assumptions, any intersections encountered so far are nonempty. From
(5) and (6) we conclude

q−1
∩∪ ,r′

vol (T ∩ (B(P (M ′
1), r′)∩∪ B(P (M ′

2), r′)))

≤ vol (P (M∩ (B(M ′
1, r
′)∩∪ B(M ′

2, r
′))))

≤ vol (M∩ (B(M ′
1, r
′)∩∪ B(M ′

2, r
′)))

≤ Ldvol (P (M∩ (B(M ′
1, r
′)∩∪ B(M ′

2, r
′))))

≤ Ldvol (T ∩ (B(P (M ′
1), r′)∩∪ B(P (M ′

2), r′)))

and obtain

q−1
∩∪ ,r′
≤ vol (M∩ (B(M ′

1, r
′)∩∪ B(M ′

2, r
′)))

vol (T ∩ (B(P (M ′
1), r′)∩∪ B(P (M ′

2), r′)))
≤ Ld. (7)

In particular, considering (∩∪ , r′) = (∩, r + 2rξ) and (∩∪ , r′) = (∪, r − 2rξ) in (7), we get

qu ≤ q∪,r−2rξL
dq∪qr+2rξ , (8)

where qr′ is defined as

qr′ :=
vol (T ∩B(P (M ′

1), r′) ∩B(P (M ′
2), r′))

vol (T ∩ (B(P (M ′
1), r′) ∪B(P (M ′

2), r′)))
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for r′ ∈ [r − 2rξ, r + 2rξ] and

q∪ :=
vol (T ∩ (B(P (M ′

1), r + 2rξ) ∪B(P (M ′
2), r + 2rξ)))

vol (T ∩ (B(P (M ′
1), r − 2rξ) ∪B(P (M ′

2), r − 2rξ)))
.

For the lower bound, we similarly obtain

ql ≥ q−1
∩,r−2rξ

L−dq−1
∪ qr−2rξ . (9)

The quotient qr′ is exactly the volume coefficient defined in (2) in dimension d at ‖P (M ′1)−P (M ′2)‖
r′

. The
derivative of qd is given by

q′d(t) = −2

(
1− t2

4

) d−1
2 B

(
d+1

2
, 1

2

)(
2B
(
d+1

2
, 1

2

)
− B

(
1− t2

4
, d+1

2
, 1

2

))2 .

Its absolute value on [0, 2) is bounded from above by 2

B( d+1
2
, 1
2)

. For the following we define s :=

‖M1−M2‖
r

. Because qd is a monotonely decreasing function on [0, 2) and

‖P (M ′
1)− P (M ′

2)‖ − 2rξ ≤ ‖M1 −M2‖ ≤ L‖P (M ′
1)− P (M ′

2)‖+ 2rξ,

we have

qr+2rξ ≤ qd

(
max{0, ‖M1 −M2‖ − 2rξ}

L(r + 2rξ)

)
≤ qd(s) +

2

B
(
d+1

2
, 1

2

) (s− ‖M1 −M2‖ − 2rξ
L(r + 2rξ)

)
= qd(s) +

2

B
(
d+1

2
, 1

2

) ( sr(L− 1)

L(r + 2rξ)
+

2srξ
r + 2rξ

+
2rξ

L(r + 2rξ)

)
≤ qd(s) +

1440κ2r2

B
(
d+1

2
, 1

2

) +
12

rξ
r

B
(
d+1

2
, 1

2

)
≤ qd(s)

(
1 +

1440κ2r2

qd(b′)B
(
d+1

2
, 1

2

))(1 +
12

rξ
r

qd(b′)B
(
d+1

2
, 1

2

)) . (10)

Similarly, we obtain

qr−2rξ ≥ qd

(‖M1 −M2‖+ 2rξ
r − 2rξ

)

= qd(s)

 qd(s)

qd

(
‖M1−M2‖+2rξ

r−2rξ

)
−1

≥ qd(s)

qd
(
‖M1−M2‖+2rξ

r−2rξ

)
+ 2

B( d+1
2
, 1
2)

(
‖M1−M2‖+2rξ

r−2rξ
− s
)

qd

(
‖M1−M2‖+2rξ

r−2rξ

)

−1

≥ qd(s)

1 +
2
(

2srξ
r−2rξ

+
2rξ
r−2rξ

)
qd (b′)B

(
d+1

2
, 1

2

)
−1

≥ qd(s)

(
1 +

12
rξ
r

qd (b′)B
(
d+1

2
, 1

2

))−1

. (11)
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It remains to find upper bounds for q∪, c∪,r′ and q∩,r′ . Firstly, note that for x ∈ T , we have

q∪,r′ ≤
vol
(
T ∩B(x, r

′

L
)
)

+ 2vol
(
T ∩ (B(x, r′) \B(x, r

′

L
)
)

vol
(
T ∩B(x, r

′

L
)
) = 2Ld − 1. (12)

Analogously, using (1 + x)d < 1 + 2xd for 0 ≤ x ≤ 1
d
, we find

q∪ ≤
(

2

(
r + 2rξ
r − 2rξ

)d
− 1

)

≤
(

2

(
1 +

5rξ
r

)d
− 1

)

≤
(

1 +
20drξ
r

)
(13)

and
Ld
(
2Ld − 1

)
≤ 1 + 2880dκ2r2. (14)

Moreover, for s′ := ‖P (M ′1)−P (M ′2)‖
r′

,

q∩,r′ = q∪,r′
qd (s′)

qd (s′L)

≤ (2Ld − 1)
qd(s

′L) + s′(L− 1) 2

B( d+1
2
, 1
2)

qd(s′L)

≤ (2Ld − 1)

(
1 +

1440κ2r2

qd(b′)B
(
d+1

2
, 1

2

)) . (15)

Finally, we derive a tractable bound for 1

qd(b′)B( d+1
2
, 1
2)

. Using only the first term of the series [27]

B (x, a, b) = xa
∞∑
n=0

Γ(1− b+ n)

Γ(1− b)Γ(n+ 1)(a+ n)
xn,

we get

1

qd(b′)B
(
d+1

2
, 1

2

) =
2B
(
d+1

2
, 1

2

)
− B

(
1−

(
b′

2

)2
, d+1

2
, 1

2

)
B
(

1−
(
b′

2

)2
, d+1

2
, 1

2

)
B
(
d+1

2
, 1

2

)
≤ 2

B
(

1−
(
b′

2

)2
, d+1

2
, 1

2

)
≤ d+ 1(

1−
(
b′

2

)2
) d+1

2

. (16)

Finally, putting (4), (8), (9), (10), (11), (12), (13), (14), (15) and (16) together, we obtain

M−1 ≤ qP
qd(s)

≤M
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for

M :=
(
1 + 2880dκ2r2

)1 +
1440(d+ 1)κ2r2(

1−
(
b′

2

)2
) d+1

2

(1 + 20
drξ
r

)1 +
12(d+ 1)

rξ
r(

1−
(
b′

2

)2
) d+1

2

 .

According to our assumptions, both 2880dκ2r2 and 20drξ
r

are not larger than 4. In particular, M is
bounded from above by (1 + εM)(1 + εξ).

Proof of Theorem 1. Note that the proof of [10, Theorem 3.1] relies only on the inequality θ(k)
ij ≥ q

(k)
ij

for ‖Xi −Xj‖ ≤ hk. However, this is ensured by Proposition 2 and the construction of the adjusted
volume coefficient.

Proof of Corollary 2. This is a simple consequence of Theorem 1 and the union bound.

Proof of Theorem 2. Suppose xi, xj ∈ RD are rξ-close to two different clusters and ‖xi−xj‖ ≤ hk.
To simplify notation, we will implizitely condition on Xi = xi and Xj = xj for the remainder of this
proof. For l = i, j we choose a point X ′l ∈ Ckl for ki 6= kj such that ‖X ′l − Xl‖ ≤ rξ. Our
assumptions imply that the density f in the overlap B(X ′i, hk−1 + 2rξ) ∩ B(X ′j, hk−1 + 2rξ) ∩M
is bounded from above by (1− ε)f0. Let us denote the uniform measure on the manifold by µ and the
distribution with gap and without noise by Pε. We conclude

θ
(k)
ij ≤

Pε(B(X ′1, r + 2rξ) ∩B(X ′2, r + 2rξ))

Pε(B(X ′1, r − 2rξ) ∪B(X ′2, r − 2rξ))

≤ (1− ε)f0A

(1− ε)f0B + εf0C

=
A

B

(
1− εC

(1− ε)B + εC

)
with

A = µ(B(X ′1, r + 2rξ) ∩B(X ′2, r + 2rξ)),

B = µ(B(X ′1, r − 2rξ) ∪B(X ′2, r − 2rξ))

and C = µ(B(X ′1, r − 2rξ)) + µ(B(M ′
2, r − 2rξ)).

The factor A
B

is bounded from above by (1 + εM)(1 + εξ)q
(k)
ij as shown in the proof of Proposition 2.

Moreover, B < C implies that the second factor is bounded from above by 1− ε, providing the upper
bound

θ
(k)
ij ≤ (1− ε)(1 + εM)(1 + εξ)q

(k)
ij .

Monotonicity of qd and the lower bound of the depth ε of the gap lead to

q
(k)
ij − θ(k)

ij ≥
(
(1 + εM)−1(1 + εξ)

−1 − (1− ε)(1 + εM)(1 + εξ)
)
qd(b)

≥
((

1 +
ε

7

)−1

− (1− ε)
(

1 +
ε

7

))
qd(b)

≥ ε
qd(b)√

2
. (17)
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Using Pinsker’s inequality, we get

K
(
q

(k)
ij , θ

(k)
ij

)
≥ ε2qd(b)

2. (18)

As n
logn
≥ 2β

z2k
, we can choose some δ > 0 satisfying the inequalities

2δ2n ≥ β log n (19)

and δn ≤ zkn

2
. (20)

Note that zk ≤ P (B(Xi, hk−1) ∪B(Xj, hk−1)). Hoeffding’s inequality implies in view of (19)

N
(k)
i∨j ≥ (zk − δ)n

with probability at least 1− n−β . This implies together with (20)

N
(k)
i∨j ≥

zkn

2
(21)

with probability at least 1− n−β . On the other hand, by [10, Lemma 5.1] we have

K(θ̃
(k)
ij , θ

(k)
ij ) <

β log n

N
(k)
i∨j

(22)

with probability at least 1 − 2n−β . By the union bound, there exists an event E of probability at least
1− 3n−β on which both (21) and (22) hold. In the following let us fix an outcome of the event E. Then
(21) and (22) imply

K(θ̃
(k)
ij , θ

(k)
ij ) <

2β log n

zkn

The assumption ε2n
logn
≥ 2αz−1

k qd(b)
−2, α > β > 0, implies

K(θ̃
(k)
ij , θ

(k)
ij ) <

β

α
ε2qd(b)

2. (23)

Note that (17) implies in particular q(k)
ij > θ

(k)
ij . Since the function K(·, θ) is strictly monotone on the

interval [θ, 1) and considering β
α
< 1, we conclude from (18) and (23)

θ̃
(k)
ij < q

(k)
ij . (24)

The triangle inequality and Pinsker’s inequality yield

|θ̃(k)
ij − q

(k)
ij | ≥ |θ(k)

ij − q
(k)
ij | − |θ̃(k)

ij − θ(k)
ij |

≥ ε
qd(b)√

2
−
√

1

2
K(θ̃

(k)
ij , θ

(k)
ij )

(23)

≥ ε
qd(b)√

2

(
1−

√
β

α

)
(25)
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From Pinsker’s inequality and the assumption ε2n
logn
≥ 2αz−1

k qd(b)
−2 we deduce

K(θ̃
(k)
ij , q

(k)
ij ) ≥ 2

(
θ̃

(k)
ij − q

(k)
ij

)2

(25)

≥ ε2qd(b)
2

(
1−

√
β

α

)2

≥ log n

zkn
2α

(
1−

√
β

α

)2

(21)

≥ log n

N
(k)
i∨j

(√
α−

√
β
)2

(26)

Finally, putting together (24) and (26), we conclude that any outcome of the event E satisfies

T
(k)
ij = N

(k)
i∨jK(θ̃

(k)
ij , q

(k)
ij ){1(θ̃

(k)
ij < q

(k)
ij )− 1(θ̃

(k)
ij ≥ q

(k)
ij )}

≥
(√

α−
√
β
)2

log n.

The choice of xi and xj is irrelevant for this result, so it is also valid in the unconditional form.

Proof of Theorem 4. Let us denote the value of the constant density under the null hypothesis by f0

and the Kullback-Leibler divergence by DKL(·, ·). Using 1 = fG|G|+ fV |V |, we compute

fV =
1

|G|+ |V | − δ|G| and

fG =
1− δ

|G|+ |V | − δ|G| .

Additivity of the Kullback-Leibler divergence and f0 = 1
|V |+|G| yields

n−1DKL(P0,P1) = f0|G| log
f0

fG
+ f0|V | log

f0

fV

= log

(
1− δ |G|

|G|+ |V |

)
− |G|
|G|+ |V | log(1− δ)

=
δ2

2

|G|
|G|+ |V |

(
1 +

|G|
|G|+ |V |

)
+ o(δ2),

the latter follows from the Taylor expansion. As DKL(P0,P1) → ∞ is a necessary condition for con-
sistent testing [36, Section 2.4.2], we deduce that no test is able to separate the two cases consistently
provided that nδ2 9∞ as n→∞.

Before we prove Lemma 2, let us introduce the so-called general volume coefficient.

Definition 2. Suppose r1, r2 > 0, D ∈ Z>0, M1 = (0, . . . , 0) ∈ RD and M2 = (1, 0, . . . , 0) ∈
RD. By λD we denote theD-dimensional Lebesgue measure andBD(·, ·) denotes an euclidean Ball
in RD with given center and radius. We define the D-dimensional general volume coefficient by

qD (r1, r2) :=
λD (BD (M1, r1) ∩BD (M2, r2))

λD (BD (M1, r1) ∪BD (M2, r2))
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Lemma 5. For M1 6= M2 ∈ RD and r1, r2 > 0 we have

λD(BD(M1, r1) ∩BD(M2, r2))

λD(BD(M1, r1) ∪BD(M2, r2))
= qD

(
r1

‖M1 −M2‖
,

r2

‖M1 −M2‖

)
Proof. This follows from the invariance of the quotient of two D-dimensional volumes under rotation,
translation and uniform scaling.

Lemma 6. Suppose r1, r2 > 0. Using the usual order of arguments we denote the regularized
incomplete beta function by I·(·, ·). Then

qD(r1, r2) =



0 , r1 + r2 ≤ 1(
rj
ri

)D
, ri − rj ≥ 1

r1+r2−1
r1+r2+1

, D = 1 and r1 + r2 > 1 and |r1 − r2| < 1
V cap
D (r1,r2)+V cap

D (r2,r1)

V ball
D (r1)+V ball

D (r2)−V cap
D (r1,r2)−V cap

D (r2,r1)
, otherwise

with

V ball
D (ri) = 2rDi

V cap
D (ri, rj) =


rDi I

1−
(

1+r2
i
−r2
j

2ri

)2

(
D+1

2
, 1

2

)
, r2
j − r2

i ≤ 1

2rDi − rDi I
1−
(

1+r2
i
−r2
j

2ri

)2

(
D+1

2
, 1

2

)
, r2
j − r2

i > 1

Figure 14: Left: Different regimes for formula of qD(r1, r2) given in Lemma 6.
Right: Plot of q2(r1, r2)

Proof. We only discuss the nontrivial regime where r1 + r2 > 1 and |r2 − r1| < 1 for D > 1.
Then the overlap of the two corresponding spheres with radii r1 and r2 around M1 = (0, . . . , 0) and
M2 = (1, 0, . . . , 0) contains two points of the form (x,±y, 0, . . . , 0). The coordinate equations of
the two spheres yield

x2 + y2 = r2
1

(x− 1)2 + y2 = r2
2
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implying

x =
1 + r2

1 − r2
2

2

y = ±r1

√
1−

(
1 + r2

1 − r2
2

2r1

)2

We denote the smaller angle between the x-axis and the line through M1 and (x, y) by φ1. Analo-
gously we define φ2, c.f. Figure 15.

Figure 15: The volume of the overlap of two balls is the sum of the volumes of two caps that are shown
in green and red. The corresponding angles used in the formulas of these volumes are highlighted in
the same colour. On the left, we see the case 0 < x < 1, whereas on the right x > 1.

We conclude

sin2 φ1 =

( |y|
r1

)2

= 1−
(

1 + r2
1 − r2

2

2r1

)2

and

sin2 φ2 =

( |y|
r2

)2

=
r2

1

r2
2

−
(

1 + r2
1 − r2

2

2r2

)2

= 1−
(

1 + r2
2 − r2

1

2r2

)2

Note that x < 1 is equivalent to r2
1 − r2

2 < 1 and x > 0 is equivalent to r2
2 − r2

1 < 1. Using the
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formula for the volume of a hyperspherical cap given in [22], we conclude

λD (BD(M1, r1) ∩BD(M2, r2)) =
π
D
2

2Γ
(
D
2

+ 1
) (V cap

D (r1, r2) + V cap
D (r2, r1))

λD (BD(M1, r1) ∪BD(M2, r2)) =
π
D
2

2Γ
(
D
2

+ 1
) (V ball

D (r1) + V ball
D (r2)− V cap

D (r1, r2)− V cap
D (r2, r1)

)

Proof of Lemma 2. Since Q is contineous and Q(t) = 0 for t > t′max := sup{t : (H + tv) ∩
B(M1, r)∩B(M2, r) 6= {}}, we only need to dicuss the case 0 < t < t′max. AsQ(t) is contineous
w.r.t. rotation of H around the point M1+M2

2
, we can w.l.o.g. assume that the vector M1 − M2 is

neither parallel nor orthogonal to H . Moreoever, we assume w.l.o.g. that there exists d > 0 such that
M1 ∈ H + dv. As a nontrivial intersection of a ball in RD+1 with a hyperplane is a D-dimensional
ball, we can rewrite Q(t) using Lemma 5. The corresponding radii can be easily computed using
Pythagoras’ theorem, c.f. Figure 16. We get

Q(t) = qD (r1(t), r2(t))

with r1(t) =

√
1− (t− d)2

‖M1 −M2‖2 − 4d2

and r2(t) =

√
1− (t+ d)2

‖M1 −M2‖2 − 4d2

Figure 16: We denoteM1 +(t−d)v byM ′
1 andM2 +(t+d)v byM ′

2. These are the center points of
the two D-dimensional balls that form the intersection of the original (D + 1)-dimensional balls with
H + tv. According to Pythagoras’ theorem, their radii are given by (r2 − (t− d)2)1/2 and (r2 − (t+
d)2)1/2, whereas the distance between the center points is ‖M ′

1 −M ′
2‖ = (‖M1 −M2‖2 − 4d2)1/2.
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We have

d

dt
r1(t) =

−t+ d√
1− (t− d)2

√
‖M1 −M2‖2 − (2d)2

d

dt
r2(t) =

−t− d√
1− (t+ d)2

√
‖M1 −M2‖2 − (2d)2

We oberserve the following relations between r1 and r2:

r1(t) > r2(t) (27)

d

dt
r2(t) < 0 (28)∣∣∣∣ ddtr1(t)

∣∣∣∣ < ∣∣∣∣ ddtr2(t)

∣∣∣∣ (29)

First, let us discuss the case when there exists an open environment I containing t, such thatQ(t′) =
r1(t′)−Dr2(t′)D for all t′ ∈ I . We conclude from (27), (28) and (29)

d

dt
Q(t) = D

(
r2(t)

r1(t)

)D−1 r1(t)
(
d
dt
r2(t)

)
−
(
d
dt
r1(t)

)
r2(t)

r1(t)2

< 0

Next, let us consider that case whereQ = (r1 +r2−1)(r1 +r2 +1)−1 on an open interval containing
t. Again, we conclude from (28) and (29)

d

dt
Q(t) = 2

d
dt
r1(t) + d

dt
r2(t)

(r1 + r2 + 1)2

< 0

Finally, consider the case where D > 2 and on an open environment around t we have

Q = qD(r1, r2)

=
V cap
D (r1, r2) + V cap

D (r2, r1)

V ball
D (r1) + V ball

D (r2)− V cap
D (r1, r2)− V cap

D (r2, r1)
(30)

for V ball
D (·) and V cap

D (·, ·) defined as in Lemma 6. The terms V ball
D (·) and V cap

D (·, ·) denote the volume
of the respective balls and caps up to the constant

c =
2Γ
(
D
2

+ 1
)

π
D
2

Recall that the derivative of the volume of a ball w.r.t. its radius is given by the surface area of the
corresponding sphere. In particular, we have

d

dri
V ball
D (rj) =

{
cAsphere

D (ri) , i = j

0 , i 6= j

with Asphere
D (·) denoting the surface area of a D-dimensional sphere with given radius. Similarly, it can

be shown that the partial derivatives of the volume of the overlap c−1(V cap
D (r1, r2) + V cap

D (r2, r1))
w.r.t. r1 and r2 are up to the same constant given by the surface areasAcap

D (r1, r2) andAcap
D (r2, r1) of
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the the corresponding hyperspherical caps that form together the boundary of the overlap, c.f. Figure
17.

Figure 17: Case D = 2: The derivative of the area of the intersection of the two balls (gray) w.r.t. r1

(r2) is given by the red (green) arc length

Exact formulas forAcap
D (·, ·) are given in [22]. However, those are not needed for this proof. It is enough

to observe the following relation

Acap
D (r1, r2) < Acap

D (r2, r1)

as a consequence of (27). Let us introduce the notations

Sball := V ball
D (r1) + V ball

D (r2)

Scap := V cap
D (r1, r2) + V cap

D (r2, r1)

We conclude

and
d

dr1

Sball >
d

dr2

Sball (31)

d

dr1

Scap <
d

dr2

Scap (32)

In view of

d

dri
qD(r1, r2) =

(
d
dri
Scap

)
Sball − Scap

(
d
dri
Sball

)
(Sball − Scap)2

we conclude from (31) and (32)

d

dr1

qD <
d

dr2

qD (33)

Note that increasing the radii r1 and r2 by a common factor C > 1 has the same effect on the
coefficient of the volumes of the intersection and the union of the two corresponding balls as when
moving the center point M2 such that ‖M1 −M2‖ decreases by a factor C−1. Considering Lemma
5, we observe

qD(Cr1, Cr2) > qD(r1, r2)
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for C > 1. This implies

r1
d

dr1

qD + r2
d

dr2

qD > 0 (34)

From (33) and (34) we deduce

0 <
d

dr2

qD (35)

and

∣∣∣∣ ddr1

qD

∣∣∣∣ < d

dr2

qD (36)

Note that qD(r1, r2) is differentiable at (r1(t), r2(t)) as the formula given in (30) is valid on open
environment. From (28), (29), (35) and (36) we conclude

d

dt
Q(t) =

d

dt
r1(t)

d

dr1

qD(r1(t), r2(t)) +
d

dt
r2(t)

d

dr2

qD(r1(t), r2(t))

< 0

Lastly, r1(t)−r2(t) is strictly monotonely increasing on (0, t′max). In view of Lemma 6, this implies that
Q(t) is differentiable on (0, t′max) \ S with a negative derivative for some finite subset S ⊂ (0, t′max).
The functionQ is contineous on [0, tmax). Consequently, it is also monotonely decreasing.

Proof of Lemma 1. The case D = 1 is trivial. Let us assume D > 1. We prove the lemma by
contradiction, i.e. we assume that there exists a counterexample such that

λ(H ∩B(M1, r) ∩B(M2, r))

λ(H ∩ (B(M1, r) ∪B(M2, r)))
<
λ(B(M1, r) ∩B(M2, r))

λ(B(M1, r) ∪B(M2, r))
(37)

We can choose H such that for any other half-space of the form H′ = H + v′ for some v′ ∈ RD

containing M1 and M2 we have

λ (H ∩B(M1, r) ∩B(M2, r))

λ(H ∩ (B(M1, r) ∪B(M2, r)))
≤ λ (H′ ∩B(M1, r) ∩B(M2, r))

λ(H′ ∩ (B(M1, r) ∪B(M2, r)))
(38)

There exists a unique half-space H0 whose boundary H0 contains M1+M2

2
and is parallel to the

boundary ofH. Note that by symmetricity,

λ (H0 ∩B(M1, r) ∩B(M2, r))

λ (H0 ∩ (B(M1, r) ∪B(M2, r)))
=
λ (B(M1, r) ∩B(M2, r))

λ (B(M1, r) ∪B(M2, r))
(39)

There exists a unique vector v of norm 1 that is orthogonal to H0 such that M1+M2

2
∈ H0 + v.

Moreover, for tmax := sup{t : (H0 + tv) ∩ (B(M1, r) ∪ B(M2, r)) 6= {}}, there exists a unique
tH ∈ (0, tmax) such thatH = H0 + tHv. Let us denote the (D− 1)-dimensional Lebesgue measure
by λD−1. According to Fubini’s theorem we have

λ (H ∩B(M1, r) ∩B(M2, r))

λ (H ∩ (B(M1, r) ∪B(M2, r)))

=
λ (H0 ∩B(M1, r) ∩B(M2, r)) +

∫ tH
0
λD−1((H0 + tv) ∩B(M1, r) ∩B(M2, r))dt

λ (H0 ∩ (B(M1, r) ∪B(M2, r))) +
∫ tH

0
λD−1((H0 + tv) ∩ (B(M1, r) ∪B(M2, r)))dt

(40)
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From (37), (39), (40) and the monotonicity described in Lemma 2, we conclude

λD−1((H0 + tHv) ∩B(M1, r) ∩B(M2, r))

λD−1((H0 + tHv) ∩ (B(M1, r) ∪B(M2, r)))
<

λ (H ∩B(M1, r) ∩B(M2, r))

λ (H ∩ (B(M1, r) ∪B(M2, r)))
(41)

Suppose t′ ∈ (tH, tmax). Then

λ ((H0 + t′v) ∩B(M1, r) ∩B(M2, r))

λ ((H0 + t′v) ∩ (B(M1, r) ∪B(M2, r)))

=
λ (H ∩B(M1, r) ∩B(M2, r)) +

∫ t′
tH
λD−1((H0 + tv) ∩B(M1, r) ∩B(M2, r))dt

λ (H ∩ (B(M1, r) ∪B(M2, r))) +
∫ t′
tH
λD−1((H0 + tv) ∩ (B(M1, r) ∪B(M2, r)))dt

(42)

From (41), (42) and Lemma 2 we deduce

λ ((H0 + t′v) ∩B(M1, r) ∩B(M2, r))

λ ((H0 + t′v) ∩ (B(M1, r) ∪B(M2, r)))
<

λ (H ∩B(M1, r) ∩B(M2, r))

λ (H ∩ (B(M1, r) ∪B(M2, r)))

This is a contradiction to (38).

Before proving Proposition 3, we state the following generalization of Lemma 3. We denote the
Lebesgue measure on a submanifold of RD by λ.

Lemma 7. For a C-Lipschitz function f1 : M1 →M2 between two d-dimensional submanifolds of
RD and a measurable function f2 onM2 we have∫

M2

f2dλ ≤ Cd

∫
M1

f2 ◦ f1dλ

Proof. This follows from Lemma 3 together with the definition of the Lebesgue integral of a positive
function as a supremum of integrals of step functions.

Proof of Proposition 3. W.l.o.g. we consider only one cluster C = C1 and assume f ∝ 1(C). If the
set of all possible superlevel sets is finite, the general result follows by summation. In case that this set
is infinite, e.g. if f is smooth and not constant, f can be constructed as the limit of discrete functions.

Moving on, consider M ′
i ∈ C of distance at most rξ to Mi. Moreover, let us denote the projection

on the tangent plane T to M at M ′
1 by P . Depending on the context, we denote by λ either the

Lebesgue measure on M or a linear space such as the tangent space. We apply Lemma 4. For
rκ ≤ (120)−1, the projection P is injective on the Ball B(M ′

1, 3r) with an inverse that is Lipschitz
with constant L := 1 + 360κ2r2. Note that this ball contains B(M ′

1, r + 2rξ) ∪ B(M ′
2, r + 2rξ).

From Lemma 7 we conclude

qP =
P(B(M1, r) ∩B(M2, r))

P(B(M1, r) ∪B(M2, r))
≥ P0(B(M ′

1, r − 2rξ) ∩B(M ′
2, r − 2rξ))

P0(B(M ′
1, r + 2rξ) ∪B(M ′

2, r + 2rξ))

≥ L−d

∫
T∩B(P (M ′1),

r−2rξ
L

)∩B(P (M ′2),
r−2rξ
L

)
f ◦ P−1dλ∫

T∩(B(P (M ′1),r+2rξ)∪B(P (M ′2),r+2rξ))
f ◦ P−1dλ

,

where P0 denotes the noiseless distribution. Moreover, we can rewrite the integral using the push-
forward measure (P |−1

B(M ′1,3r)
)∗(P0). For simplicity we just use the notation P−1

∗ P0 as well as Zi :=
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P (M ′
i). We get the lower bound

qP ≥ L−dAB

A =
P−1
∗ P0

(
T ∩B(Z1,

r−2rξ
L

) ∩B(Z2,
r−2rξ
L

)
)

P−1
∗ P0

(
T ∩ (B(Z1,

r−2rξ
L

) ∪B(Z2,
r−2rξ
L

))
)

B =
P−1
∗ P0

(
T ∩ (B(Z1,

r−2rξ
L

) ∪B(Z2,
r−2rξ
L

))
)

P−1
∗ P0 (T ∩ (B(Z1, r + 2rξ) ∪B(Z2, r + 2rξ)))

WLOG we assume that P (C) does not fully contain the intersection in term A. Then there exists
p ∈ P (∂C) ∩ B(Z1,

r−2rξ
L

) ∩ B(Z2,
r−2rξ
L

). Consider a ball of radius 2r around P−1(p) and let’s
denote by T ′ the tangent plane of dimension d− 1 to ∂C at P−1(p). If κ′r ≤ 80−1 the inverse of the
restriction (to the ball around P−1(p)) of the projection of ∂C to T ′ is LC := 1 + 160(κ′r)2-Lipschitz.
By Pythagoras theorem the distance of ∂C to T ′ inside the considered Ball is bounded from above by

2r
√
L2
C − 1 = 2r

√
320(κ′r)2 + 1602(κ′r)4

≤ 2
√

324κ′r2

= 36κ′r2

As the projection onto T is 1-Lipschitz, also the distance of P (∂C) ∩ B(p, 2r
L

) to P (T ′) is bounded
by the same term. I. p. there exists half-planes H2 ⊂ H1 of dimension d in T whos boundaries are
parallel at a distance 72κ′r2 and

H2 ∩B(p,
2r

L
) ⊂ P (C) ∩B(p,

2r

L
) ⊂ H1 ∩B(p,

2r

L
)

For the denominator of A we get

P−1
∗ P0

(
T ∩

(
B(Z1,

r − 2rξ
L

) ∪B(Z2,
r − 2rξ
L

)

))
≤ 1

λ(M)
λ

(
H1 ∩

(
B(Z1,

r − 2rξ
L

) ∪B(Z2,
r − 2rξ
L

)

))
(43)

whereas for the nominator we get

P−1
∗ P0

(
T ∩B(Z1,

r − 2rξ
L

) ∩B(Z2,
r − 2rξ
L

)

)
≥ 1

λ(M)
λ

(
H2 ∩B(Z1,

r − 2rξ
L

) ∩B(Z2,
r − 2rξ
L

)

)
≥ 1

λ(M)

[
λ

(
H1 ∩B(Z1,

r − 2rξ
L

) ∩B(Z2,
r − 2rξ
L

)

)
− λ

(
(H1 \H2) ∩B

(
Z1,

r − 2rξ
L

))]
≥ 1

λ(M)

[
λ

(
H1 ∩B(Z1,

r − 2rξ
L

) ∩B(Z2,
r − 2rξ
L

)

)
− 72κ′r2λd−1

(
Bd−1

(
·, r − 2rξ

L

))]
(44)

In the above, we denote by λd−1(Bd−1(·, r′)) the volume of a (d − 1)-dimensional ball of radius r′.
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We have

72κ′r2λd−1

(
Bd−1

(
·, r−2rξ

L

))
λ
(
H1 ∩ (B(Z1,

r−2rξ
L

) ∪B(Z2,
r−2rξ
L

)
) ≤ 144κ′r2

λd−1

(
Bd−1

(
·, r−2rξ

L

))
λd

(
Bd

(
·, r−2rξ

L

))
≤ 144π−

1
2κ′rL

r

r − 2rξ

Γ
(
d+2

2

)
Γ
(
d+1

2

) (45)

Due to the upper bound assumption on rξ we have

r

r − 2rξ
≤ 10

9

Moreoever, the upper bound assumption on r with respect to the reach implies

L ≤ 41

40

The last factor can be upper bounded utilizing the logarithmic convexity of the gamma function

Γ
(
d+2

2

)
Γ
(
d+1

2

) ≤√Γ
(
d+3

2

)
Γ
(
d+1

2

)
=

√
d+ 1

2

Together, we conclude from (45)

72κ′r2λd−1

(
Bd−1

(
·, r−2rξ

L

))
λ
(
H1 ∩ (B(Z1,

r−2rξ
L

) ∪B(Z2,
r−2rξ
L

)
) ≤ 66κ′r

√
d+ 1

=: δ (46)

Our assumptions ensure δ ≤ 1
2
, i.p. (1− δ) ≥ (1 + 2δ)−1. Using Lemma 1, we conclude from (43),

(44) and (46)

A ≥ qd

(
L
‖Z1 − Z2‖
r − 2rξ

)
(1 + 2δ)−1

≥ qd

(
L
‖M1 −M2‖+ 2rξ

r − 2rξ

)
(1 + 2δ)−1

= qd(s)

(
qd(s)

qd(L
sr+2rξ
r−2rξ

)

)−1

(1 + 2δ)−1
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Using that the absolute value of the derivative of qd is bounded by 2

B( d+1
2
, 1
2)

, we get

qd(s)

qd(L
sr+2rξ
r−2rξ

)
≤ 1 +

2

B( d+1
2
, 1
2)

(
L
sr+2rξ
r−2rξ

− s
)

qd(L
sr+2rξ
r−2rξ

)

≤ 1 + 2
L
sr+2rξ
r−2rξ

− s
qd(b′)B

(
d+1

2
, 1

2

)
= 1 +

2

qd(b′)B
(
d+1

2
, 1

2

) (L− 1)sr + 2Lrξ + 2srξ
r − 2rξ

≤ 1 +
2

qd(b′)B
(
d+1

2
, 1

2

) (6
rξ
r

+ 3(L− 1)
)

(16)

≤ 1 +
2(d+ 1)(

1− b′2

4

) d+1
2

(
6
rξ
r

+ 3(L− 1)
)

Next, let us consider B. According to the upper bound (43) we have

P−1
∗ P0

(
T ∩

(
B(Z1,

r − 2rξ
L

)
∪B

(
Z2,

r − 2rξ
L

))
≥ 1

4λ(M)
λ

(
B(·, r − 2rξ

L
)

)
Consequently,

B =
P−1
∗ P0

(
T ∩ (B(Z1,

r−2rξ
L

) ∪B(Z2,
r−2rξ
L

))
)

P−1
∗ P0 (T ∩ (B(Z1, r + 2rξ) ∪B(Z2, r + 2rξ)))

≥
(

1 + 8
λ(B(·, r + 2rξ) \B(·, r−2rξ

L
))

λ(B(·, r−2rξ
L

))

)−1

=

1 + 8
(r + 2rξ)

d −
(
r−2rξ
L

)d
(
r−2rξ
L

)d

−1

=

(
1 + 8

(
L(r + 2rξ)

r − 2rξ

)d
− 8

)−1

Putting everything together, we end up

qP ≥ L−dAB

≥ qd(s)L
−d(1 + 2δ)−1

1 +
2(d+ 1)(

1− b′2

4

) d+1
2

(
6
rξ
r

+ 3(L− 1)
)−1(

1 + 8

(
L(r + 2rξ)

r − 2rξ

)d
− 8

)−1

where

δ = 66κ′r
√
d+ 1
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The last two factors can be lower bounded as follows1 +
2(d+ 1)(

1− b′2

4

) d+1
2

(
6
rξ
r

+ 3(L− 1)
)−1

≥

1 +
12(d+ 1)

rξ
r(

1−
(
b′

2

)2
) d+1

2


−11 +

2160(d+ 1)(κr)2(
1−

(
b′

2

)2
) d+1

2


−1

(
1 + 8

(
L(r + 2rξ)

r − 2rξ

)d
− 8

)−1

≥
(
1 + 8(Ld − 1)

)−1

(
1 + 8

((
r + 2rξ
r − 2rξ

)d
− 1

))−1

We reorder the factors of the resulting lower bound by variables and get

qP ≥ qd(s)AMA∂CAξ

with

AM = L−d
(
1 + 8(Ld − 1)

)−1

1 +
2160(d+ 1)(κr)2(

1−
(
b′

2

)2
) d+1

2


−1

A∂C =
(

1 + 132κ′r
√
d+ 1

)−1

Aξ =

(
1 + 8

((
r + 2rξ
r − 2rξ

)d
− 1

))−1
1 +

12(d+ 1)
rξ
r(

1−
(
b′

2

)2
) d+1

2


−1

Using the inequality (1 + x)d ≤ 1 + 2xd for 0 < x ≤ 1
d
, we get

L−d
(
1 + 8(Ld − 1)

)−1 ≥ 1 + 11520dκ2r2

Using the inequalities 760κ2r2(d+ 1) ≤ 1 and
(

1−
(
b′

2

)2
) d+1

2 ≤ 3
4

we can simplifify

AM ≥

1 +
45360(d+ 1)(κr)2(

1−
(
b′

2

)2
) d+1

2


−1

Next, we discuss the term Aξ. Since rξ
r
≤ 1

10
, we have r+2rξ

r−2rξ
≤ 1 + 5

rξ
r

. In view of rξ
r
≤ 1

5d
this

implies analogously (
1 + 8

((
r + 2rξ
r − 2rξ

)d
− 1

))−1

≥
(

1 + 80d
rξ
r

)−1

Using again rξ
r
≤ 1

5d
and

(
1−

(
b′

2

)2
) d+1

2 ≤ 3
4
, we simplify

A∂C ≥

1 +
264(d+ 1)

rξ
r(

1−
(
b′

2

)2
) d+1

2


−1

The final result is

qP ≥ qd(s) (1 + εM)−1 (1 + εξ)
−1 (1 + ε∂C)

−1
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Proof of Theorem 3. Again, we can follow the proof of [10, Theorem 3.1]. It relies only on the inequality
θ

(k)
ij ≥ q

(k)
ij for ‖Xi−Xj‖ ≤ hk. This is ensured by Proposition 3 and the construction of the adjusted

volume coefficient.

Proof of Corollary 3. This result combines Theorem 2 and Theorem 3. Note that for the proof of The-
orem 2, we also need to consider the modification of the adjusted volume coefficient from

q
(k)
ij = (1 + εM)−1(1 + εξ)

−1qd

(‖Xi −Xj‖
hk−1

)
to

q
(k)
ij = (1 + εM)−1(1 + εξ)

−1 (1 + ε∂C)
−1 qd

(‖Xi −Xj‖
hk−1

)
.

However, our assumption
ε ≥ 7 (1 + εM) (1 + εξ) (1 + ε∂C)− 7

ensures that inequality (17) is still valid. So the results from both theorems are valid under the consid-
ered assumptions. Application of the union bound leads to the final result.
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