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Abstract

The stochastic trapezoidal rule provides the only discretization scheme from the family of implicit Euler meth-

ods (see [11]) which possesses the same asymptotic (stationary) law as underlying linear continuous time

stochastic systems with white or coloured noise. This identity is shown for systems with multiplicative (para-

metric) and additive noise using �xed point principles and the theory of positive operators. The key result

is useful for adequate implementation of stochastic algorithms applied to numerical solution of autonomous

stochastic di�erential equations. In particular it has practical importance when accurate long time integration

is required such as in the process of estimation of Lyapunov exponents or stationary measures for oscillators

in Mechanical Engineering.
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1 Introduction

Numerous applications in Natural Sciences and Econometrics lead to models which correspond to linear

di�erential systems perturbed additively or parametrically by random noise. This noise could be modelled as

real, coloured or white one. All our results hold for this general case too. For simplicity of this contribution,

we con�ne ourselves to the white noise case where the basic ideas are clearly visible. The occuring systems

can often be interpreted as systems of linear di�erential equations in IRd. Consider systems

dXt = A0Xt dt +

mX
j=1

[AjXt + aj] dW
j
t (1)

where Aj are d � d matrices, aj d{dimensional vectors and W
j
t independent standard Wiener processes.

Without loss of generality, we may suppose that system (1) is given in Itô interpretation. (Otherwise one

transforms given stochastic calculus to Itô one.) For following analysis we decompose system (1) into related

systems

dXt = A0Xt dt +

mX
j=1

aj dW
j
t (2)

with purely additive noise and

dXt = A0Xt dt +

mX
j=1

Aj Xt dW
j
t (3)
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with purely multiplicative noise. For basic facts on theory of stochastic di�erential equations (SDEs), see

[1],[10] or more recent monographs [6],[8],[9]. For some applications in Mechanical Engineering, have a look

in [20],[26].

Under discretization these systems have a large variety of analoga. For examples, see [2], [11], [13],

[14], [17], [19], [24] or [25]. We are especially interested in qualitative behaviour of the simplest and most

used numerical methods as integration time tends to in�nity. Such methods are performed by the family of

implicit Euler methods. Their scheme applied to system (1) with equidistant step size h > 0 can explicitly

be written to

Xn+1 = B0Xn +
p
h

mX
j=1

[BjXn + bj] �
j
n (4)

where

B0 =
�
I � �hA0

�
�1 �

I + (1� �)hA0

�
; Bj =

�
I � �hA0

�
�1

Aj; bj =
�
I � �hA0

�
�1

aj;

�jn =
�
W j(tn+1)�W j(tn)

�
=
p
h

along time{discretization 0 < t0 < t1 < ::: < tn < tn+1 < :::. Here � 2 [0; 1] (or � � 0) represents

the parameter of implicitness. Throughout the paper I denotes d � d unit matrix in IRd�d. Well{known

members of this family are performed by (explicit) Euler (i.e. � = 0), trapezoidal (i.e. � = 0:5, sometimes

called improved Euler method which is also identical with midpoint method in linear autonomous case) and

implicit Euler method (i.e. � = 1). They belong to the more general classes of stochastic �{methods (for

introduction, see [15]) and stochastic Runge{Kutta methods. Note that this class only takes into account an

incorporation of implicitness carried by drift part of underlying continuous time dynamics. An appropriate

incorporation of stochastic{implicit terms is fairly complicated without changing stochastic calculus in the

presence of multiplicative noise. Besides stochastic implicitness shall not be necessary for the purpose of our

considerations. Thereby we do not consider such representatives in this paper.

The class of implicit Euler methods provides numerically mean square converging solutions to SDEs (1)

with convergence order 
 = 1:0 for subsystems (2) and order 
 = 0:5 for subsystems (3). Related discrete

time subsystems are given by

Xn+1 = B0Xn +
p
h

mX
j=1

bj �
j
n (5)

and

Xn+1 = B0Xn +
p
h

mX
j=1

Bj Xn �
j
n (6)

with matrices Bj and vectors bj as above. As in deterministic analysis, these methods and implicit techniques

at all are introduced to stabilize the behaviour of numerical solutions. The parameters � � 0 and h > 0

turn out to be corresponding control parameters in the process of numerical stabilization. There the general

concept of numerical stability (A{stability) has established to classify and decide the question of goodness

and preference of corresponding approximations (cf. contributions of Dahlquist [3], [4]). For further aspects

on deterministic numerical analysis, see [5], [7], [22] or [23]. In stochastic analysis, a possible counterpart

to concept of numerical stability could be the concept of stationarity. Moreover, one is aiming to obtain

an `i�'{relation between discrete and underlying continuous time systems in view of asymptotic (stationary)

probabilistic behaviour. First investigations in this respect can be found for simple systems in [16] and [18].

An obvious necessary condition for existence of asymptotic (stationary) laws of continuous time systems

(1) is that all real parts of eigenvalues of drift matrix A0 are exclusively negative. In another words, it holds

8�
�
9 e 2 IRd Ae = � e

�
: Re(�(A0)) < 0 (7)

where Re(�(A0)) represents the real part of inscribed eigenvalue of matrix A0. Requirement (7) also guar-

antees the existence of the inverse of matrices I � �hA0 for all parameters �h � 0, which one needs for

`unconditioned' construction of methods (4). Let us assume assumption (7) throughout the remaining exposi-

tion of this paper. However, in case of more general discrete time systems of form (4) where B0 is an arbitrary
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matrix, it nessitates (and su�ces for subsystem (5)) to require

r(B0) < 1

for existence of asymptotic laws. r(B) denotes the spectral radius of inscribed matrix (or operator). In passing

we note that from physical arguments it is also reasonable to require the existence of asymptotic (stationary)

probabilistic laws. For example, this can be motivated by dissipation of energy of damped harmonic oscilla-

tions. Besides, for simplicity, we assume that matrices Aj ; Bj and vectors aj ; bj are deterministic throughout

this paper.

The remaining part of this contribution is organized as follows. Section 2 states necessary and su�cient

conditions for existence and form of asymptotic (stationary) laws of continuous and discrete time stochastic

systems. First, we compile basic facts on asymptotic behaviour of systems (1) { (3), taken from Arnold [1].

Second, we shall prove a new theorem concerning asymptotic behaviour for discrete time stochastic systems

(4). For this purpose we make use of standard �xed point principles and theory of linear, positive operators,

as known from Krasnosel'skij, Lifshitz and Sobolev [12]. The invariance of asymptotic laws of linear

SDEs under appropriate discretization is noticed for family of implicit Euler methods in section 3. After it we

shall show results of some numerical experiments for damped harmonic oscillators excited by random noise.

The paper is �nished with a summary and remarks in section 5, supplemented with an appendix containing

an auxiliary lemma on linear positive operators in section 6.

2 Asymptotic (stationary) laws of linear stochastic systems

Before coming to key result, we add some of basic results on stationary laws of linear stochastic systems. In

stating assertions below, let N (�; �2) denote Gaussian distribution with mean � and covariance matrix �2, O
is d� d null matrix and (:)T the transpose of inscribed vector or matrix. Let X

1
denote the random variable

of asymptotic (stationary) solution.

T h e o r e m 1. Assume that IE kX0k2 < +1. Let X0 be independent of �fW j
t : j = 1; 2; :::;m; t� 0g.

Then system (2) has stationary law X
1
2 N (0;M ) if and only if

(i) condition (7) holds and

(ii) M 2 IRd�d satis�es

A0M + M AT
0 +

mX
j=1

aj a
T
j = O : (8)

Furthermore, system (3) has exponentially mean square stable null solution X
1

= 0 if and only if

(i) condition (7) holds and

(ii) 9 positive{de�nite solutionM 2 IRd�d of matrix equation

A0M + M AT
0 +

mX
j=1

AjM AT
j = �C (9)

for any positive{de�nite matrix C 2 IRd�d :

R em a r k . The proof of Theorem 1 can be omitted since it follows from Arnold [1]. More precisely,

�rst part of Theorem 1 is a modi�ed version of Theorem 8.2.12 from [1], whereas the second part is an

immediate consequence of Theorem 11.4.11 from [1].

T h e o r e m 2. Assume that IE kX0k2 < +1. Let X0 be independent of �fW j
t : j = 1; 2; :::;m; t� 0g.

Fix arbitrary step size h > 0. Then system (5) has stationary law X
1
2 N (0;M ) if and only if

(i) r(B0) < 1 holds and

(ii) M 2 IRd�d satis�es

M = B0M BT
0 + h

mX
j=1

bj b
T
j : (10)
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Furthermore, system (6) has exponentially mean square stable null solution X
1

= 0 if and only if

(i) r(B0) < 1 holds and

(ii) 9 positive{de�nite solutionM 2 IRd�d of matrix equation

�M + B0M BT
0 + h

mX
j=1

Bj M BT
j = �C (11)

for any positive{de�nite matrix C 2 IRd�d :

Proof. For mathematical convenience, consider separated systems with purely additive and multiplica-

tive noise. Fix arbitrary step size h > 0. Consider system (5) at �rst. Suppose (i) and (ii) are valid. If

asymptotic law exists then it must be Gaussian. This fact directly follows from explicit expansion of numerical

solution which is possible under (i), cf. [18]. Therefore it su�ces to show the existence of stationary �rst and

second moments. That stationary solution X
1

exists can be seen from the following argumentation. De�ne

operators

H1(S) := B0 S B
T
0 ; H2(S) := B0 S B

T
0 + h

mX
j=1

bj b
T
j = H1(S) + h

mX
j=1

bj b
T
j

mapping from the space of symmetric, real{valued, d � d matrices Sd into itself. Note that operator H2

describes the evolution of second moments of corresponding discrete time system (5). Namely, it holds

IE [Xn+1X
T
n+1] = H2(IE [XnX

T
n ]) = [H2]

n+1(IE [X0X
T
0 ]) :

Introduce scalar product < S1; S2 >+:= trace(S1 S2) on the space Sd, which renders Sd to a Hilbert space.

De�ne K as the subspace of positive{semide�nite matrices which is a positive, reproducing, normal cone in

Sd. Obviously, operators H1 and H2 leave positive cone K invariant. Now, let us formulate the asymptotic

behaviour of discrete time stochastic systems in terms of positive operators. The asymptotic law X
1

with

bounded second moments exists for system (5) if and only if operator H2 is contractive with respect to metric

induced by scalar product < :; : >+. This is equivalent with r(H1) < 1 where r() is the spectral radius of

linear, positive operator H1. This fact can be seen from a series of theorems from Krasnosel'skij, Lifshitz

and Sobolev [12] as a consequence of well{known Krejn{Rutman Theorem (1948), see appendix. (Note

that one operates on �nite{dimensional spaces. In the in�nite{dimensional setup this `i�'{relation is not

always true for linear operators, see [12] for an example.) Hence corresponding successive approximations

Sn+1 = H2(Sn); S0 2 K must converge if and only if r(H1) < 1. This is equivalent with existence of unique

�xed pointM of (10). Moreover, as standard �xed point principle says, the limit limn!+1[H2]
n(S0) converges

towards the unique �xed point M of (10) for any initial matrix S0 2 K (with respect to metric induced by

scalar product < :; : >+). Then stationary law exists and is Gaussian with matrix M of second moments.

Besides, operator H1 must have the unique �xed point O when �xed point of H2 exists. This also implies

that the related deterministic system has asymptotically stable null solution. Therefore stationary solution

X
1

satis�es IE X
1

= 0. An analogous argumentation one can make for systems (6). De�ne linear, positive

operator

H(S) := B0 S B
T
0 + h

mX
j=1

Bj S B
T
j

mapping from the space Sd into itself. Thus H is the sum of linear, positive operators. This implies the

necessity of requirement r(B0) < 1. As above, one notices that operator H describes the evolution of second

moments of corresponding discrete time system (6). Then system (6) has exponentially stable null solution

if and only if operator H possesses an unique �xpoint O 2 K. Thanks to auxiliary lemma in appendix, it

can be shown that this requirement is equivalent with r(H) < 1. Under latter condition, inverse (I �H)�1
exists, is linear and positive. Moreover, for all positive{de�nite matrices S 2 K, then it holds H(S) < S.

That is H(S) � S =: �C is negative{de�nite, and for all C 2 K, there exists matrix M 2 K such that

�(I �H)�1(C) = M . Thus requirement (ii) of Theorem 2 is rather obvious. Thus this completes the proof.

3

R em a r k . Theorem 2 represents a natural discrete counterpart to Theorem 1. Its validity is not

connected with the speci�c choice of matrices B0; Bj and vectors b0; bj as in the family of implicit Euler
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methods (4). For example, its assertion is also true for discrete time stochastic systems (4) with arbitrary

d� d matrices B0. However, then we can not expect any relation to numerical solution of SDEs (1).

3 Coincidence of asymptotic laws of systems (1) with (4)

The asymptotic laws of both numerical solution and underlying continuous time stochastic dynamics can be

identical. This observation has �rstly been noted for one{dimensional case with multiplicative noise in [16],

and for systems with diagonalizable drift matrix and additive noise in [18]. By evaluation of corresponding

matrix{valued (Lyapunov) equations occuring in Theorems 1 and 2 we are able to generalize this observation

to the following assertion.

T h e o r e m 3. Assume that

(i) IE kX0k2 < +1;

(ii) X0 is independent of �fW j
t : j = 1; 2; :::;m; t� 0g and

(iii) (7) holds:

Then trapezoidal rule (i.e. � = 0:5) provides the only method with equidistant step size h > 0 from the

family of implicit Euler methods (4) which gives the same asymptotic law as the class of stochastic processes

(1). More precisely, system (2) has stationary Gaussian law N (0;M ) with second moments M if and only

if system (5) has stationary Gaussian law N (0;M ) with second moments M . System (3) has exponentially

mean square stable null solution if and only if system (6) has exponentially mean square stable null solution.

Moreover, the choice of step size h > 0 as well as the coincidence of initial values of discrete and continuous

dynamics plays no role for this identity.

Proof. Suppose (7) holds. For mathematical convenience, once again we separate our considerations for

systems with purely additive and multiplicative noise. Of course, the equivalence of asymptotic laws is valid

for full original system (1). Elementary calculations show the equivalence of condition (7) with requirement

r(B0) < 1 for trapezoidal method (note � = 0:5) and all step sizes h > 0. Consider systems (2) and (5) with

� = 0:5 at �rst. Then both systems possess a stationary Gaussian solution with �rst moment 0 and bounded

second moments (use �xed point arguments as before) if and only if condition (7) holds. The coincidence

of stationary second moments becomes clear after the following equivalent rearrangements. Suppose matrix

M of stationary second moments satis�es (10). Then the simultanuous multiplication of matrices I � �hA0

from left and (I��hA0)
T from right does not change the unique solvability of stationary equation (10), since

matrix I � �hA0 is invertible. Thus M is unique solution of (10) if and only if M uniquely solves

(I � 1

2
hA0)M (I � 1

2
hA0)

T = (I +
1

2
hA0)M (I +

1

2
hA0)

T + h

mX
j=1

aja
T
j :

After algebraic rearrangements and devision by h this equality is identical with equation (8). Consequently

stationary second moments of systems (2) coincide with that of (5). Now, consider systems (3) and (6) with

� = 0:5. Then both systems have asymptotically vanishing �rst moments for all step sizes h > 0 if and only if

(7). Suppose system (6) is exponentially mean square stable, i.e. second moments asymptotically vanish too.

Then, thanks to Theorem 2, there exists unique solution M of matrix equation (11) for any given positive{

de�nite matrix C 2 IRd�d. By equivalent transformation of (11) with I � �hA0 from left and (I � �hA0)
T

from right one encounters with

�(I � 1

2
hA0)M (I � 1

2
hA0)

T + (I +
1

2
hA0)M (I +

1

2
hA0)

T + h

mX
j=1

AjMAT
j = �(I � 1

2
hA0)C(I �

1

2
hA0)

T

which is equivalent to

A0M +MAT
0 +

mX
j=1

AjMAT
j = � 1

h
(I � 1

2
hA0)C(I �

1

2
hA0)

T =: Ĉ :

That is, for any positive{de�nite C 2 K, we �nd a positive{de�nite Ĉ 2 K such that M uniquely solves

(9). Hence, thanks to Theorem 1, the null solution is exponentially mean square stable for system (3) too.
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An analogous conclusion holds for `vice versa' direction. Consequently, the equivalence of asymptotic laws

(i.q.m.) is obvious when � = 0:5. The fact that trapezoidal method is the only method with this equivalence

property within equidistant integration of class of systems (1) can easily be seen in the one{dimensional linear

case (see [16] and [18]). Thus this completes the proof. 3

R em a r k . Theorem 3 has important practical meaning. For example, in all applications where

exactness of asymptotic laws under discretization is required or even asymptotic characteristics of underlying

continuous time dynamics (like Lyapunov exponents or invariant measures) are to be estimated. There one

should make use of those numerical techniques which preserve the asymptotic law under discretization. It

is worth noting that trapezoidal method has this invariance{property which turns out to be independent of

step size h > 0 used in numerical integration. Note also we have not proven that under speci�c constellation

of multi{dimensional systems (1) and (4) one can not �nd a choice of step size h, implicitness � and initial

values X0 such that asymptotic laws coincide.

Theorem 2 gives rise to introduce a new de�nition concerning the invariance of asymptotic (probabilistic)

laws under discretization. For the sake of classi�cation, let us complete this section with the notion of

asymptotic equivalence of stochastic systems.

De f i n i t i on . Stochastic systems (1) and (4) are called asymptotically equivalent i� equivalence of

conditions (i) and (ii) of Theorems 1 and 2, respectively, hold.

R e m a r k . The only case when the property of asymptotic equivalence could be proven so far is

the case � = 0:5 with autonomous and linear systems. It would be interesting to carry over the search for

asymptotically equivalent systems to the case of nonlinear or nonautonomous coe�cients. For example, for

periodically excited autonomous oscillators or for oscillators with hysteretic forces as often met in Mechanical

Engineering, see Sobczyk [20].

4 Numerical experiments for randomly excited harmonic oscillator

The following numerical illustration supplements the presented theory. Consider a randomly excited linear

oscillator with one degree of freedom. Let x be its displacement and v = _x its velocity. After elimination of

its mass the equation of motion reduces to

�x + 2 � ! _x + !2 x = �0�0 + �1 x �1 + �2 _x�2 (12)

where ! 2 IR+ is its eigenfrequency, � 2 IR+ damping coe�cient, �i 2 IR noise intensities, and �i formal

derivatives of independent standard Wiener processes. It is clear that system (12) can be rewritten to a

system of form (1). For example, take x1 = x; x2 = _x and

A0 =

�
0 1

�!2 �2 � !

�
; A1 =

�
0 0

�1 0

�
; A2 =

�
0 0

0 �2

�
; A3 = O;

a1 =

�
0

0

�
; a2 =

�
0

0

�
; a3 =

�
0

�0

�
:

Obviously, key assumption (7) for existence of asymptotic laws is satis�ed when !; � > 0. Hence we may apply

theorems 1 { 3. Consequently, trapezoidal method (remember that � = 0:5 in (4)) is a favourite method for

numerical integration of system (12). The system components Bj ; bj for trapezoidal method of form (4)

applied to (12) can easily be found. For example, one gets

B0 =
1

det

�
1 + h � ! � 0:25h2!2 h

�h!2 1� h � ! � 0:25h2!2

�
; B1 =

�1

det

�
0:5h 0

1 0

�
;

B2 =
�2

det

�
0 0:5h

0 1

�
; b3 =

�0

det

�
0:5h

1

�
;

where h > 0 represents any equidistant step size, det = det(I � 0:5hA0) = 1 + h � ! + 0:25h2!2, and other

elements B3; b1; b2 vanish. For numerical illustration, we shall separate both continuous and corresponding

discrete time systems with purely additive and multiplicative noise. In passing we give a short remark on
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practical application of methods (4). The explicit form of (4) used here is possible because of its relatively

simple speci�c structure. In very high{dimensional situation one would prefer to solve algebraic implicit

equations by numerical procedures instead of explicit inversion of factors I � �hA0. Nevertheless, this fact

does not hinder us to advice to prefer such numerical methods which coincide with trapezoidal method (4)

under linearization.

First, the case of purely additive noise, i.e. �1 = �2 = 0. For abbreviation, we shall only refer to

`dimensionless' parameters �i; �; !. Let us estimate the mean square evolution of displacement and velocity

of corresponding linear oscillator with ! = 5, � = 0:04 and �0 = 2:0. This is done by means of trapezoidal

method using equidistant step size h = 0:001. From Theorem 3 we know about coincidence of stationary law

of continuous time oscillator (12) under the absence of multiplicative noise. This stationary law is Gaussian

with mean zero and second moments

IE [x2] =
�20

4 � !3
(= 0:2); IE [ _x2] =

�20
4 � !

(= 5:0); IE [x _x] = 0 :

The exact replication of this law can numerically be checked. For this purpose we plot the numerical mean

square evolution of displacement x and velocity v = _x in �gure 1. Figure 1 con�rms our theoretical results.

One obviously recognizes that both numerical mean square evolutions converge towards stationary values of

exact solution as integration time tends to in�nity. There we used sample size N = 50000 for statistical

estimation. Besides, numerical system has started in deterministic initial value (x; _x) = (1; 0) at time t = 0.

Now, the case of purely multiplicative noise, i.e. �1 = 0. Consider mean square evolution of displacement

and velocity of system (12) under the absence of additive noise. Suppose � = �1 = �2 and parameters !; �

are chosen as above. The statistical estimation of functionals of components of oscillators attracts special

interest. In particular, one desire is to estimate functionals

f(t) := IE [!2x2(t) + _x2(t)]=2 = IE [25x2(t) + _x2(t)]=2

which could be carried out using trapezoidal method with step size h = 0:001, noise intensity � = 0:1 and

sample size N = 50000. Functional f characterizes the mean total energy of damped harmonic oscillations

(as sum of kinetic and strain energy). Thus, from physical point of view, we are interested in estimation of

dissipation of energy. Note that the energy for continuous time system (12) decreases as time tends to in�nity

until _x coordinate reaches zero, and the term 2 � ! accounts for the dissipation of energy in the absence of

random perturbations. Numerical results for estimation of evolution of total energy of randomly perturbed

system (12) are visualized in �gure 2. It is clearly visible that the mean energy of stochastic oscillator dissipates

for given parameter choice. In another words, system (12) has asymptotically mean square stable null solution

for su�ciently small intensity �. In another words, the mean energy of stochastic oscillator dissipates. For

su�ciently large noise intensities, the system is mean square instable and statistical estimation would be more

and more problematic since higher moments diverge. Then a more accurate estimation needs an appropriate

re�nement of step sizes or more robust statistical procedures. So the plot of estimates for very large spread

of intensities requires very laborious work. Besides, energy dissipation cannot be observed in this case.

5 Conclusions and remarks

This contribution represents a continuation of papers [15] { [18]. Therein and here in a more general context,

a remarkable coincidence between asymptotic (stationary) laws of discrete and continuous time systems could

be noticed. For the purpose of classi�cation, we have introduced the notion of asymptotic equivalence of

stochastic systems. It has been shown that stochastic trapezoidal and midpoint rule are preferable within

equidistant integration of linear autonomous stochastic systems. Their advantage particularly comes up

when stationary probabilistic law of underlying continuous time system should exactly be preserved under

discretization (i.e. the invariance of stationary law under discretization or, in another words, asymptotic

equivalence of continuous and discrete systems). However, for nonautonomous systems (1), nonlinear systems

or variable step size integration, we have not clari�ed this fact so far. This is due to a lack of knowledge on

�xed points of sequences of nonidentical (nonlinear) positive operators. It would also be interesting to carry

over the presented analysis to the more general class of stochastic �{methods (for introduction, see [15]) or

other stochastic Runge{Kutta techniques. Anyway, the presented results also are valid for other classes of

discrete time stochastic systems. The range of validity within theory of numerical integration is established

by all those (nonlinear) methods which possess the form (4) under linearization. Nontrivial examples di�ering
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Figure 1. Temporal evolution of mean square displacement and velocity of damped harmonic

oscillator (12) perturbed by additive noise.
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Figure 2. Temporal evolution of mean energy of damped harmonic oscillator (12) perturbed

by multiplicative noise.
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from family of implicit Euler methods in nonlinear situation are given by stochastic Rosenbrook (see [2])

or linear{implicit methods (see forthcoming paper [19]). Asymptotic moments of considered systems up to

second order also coincide in a NonGaussian framework. For example, when W
j
t ; �

j
n are only independently

identically distributed with corresponding �nite second moments.

The dynamics of deterministic (implicit) trapezoidal method and more general that of �{methods is

fairly well{understood nowadays. For example, the trapezoidal rule does not admit the existence of spurious

solutions (see Stewart and Peplow [21]) or this rule provides A{stable numerical solutions with highest

possible accuracy (see Dahlquist [3],[4]) within the class of linear multi{step methods. Thus, together

with main result of this contribution, one has received some advice to prefer implicit trapezoidal method (or

midpoint rule) in numerical integration of autonomous stochastic di�erential equations too.

6 Appendix: An auxiliary lemma

L e mma . Let H be a linear, continuous, positive operator mapping from Banach space (E; k:k) into
itself. Assume that H leaves reproducing cone K � E invariant, i.e. H(K) � K. Furthermore E is �nite{

dimensional or H is completely continuous. Then the sequence of successive approximations Sn+1 = H(Sn)
converges to unique �xed point O 2 K for all initial values S0 2 K if and only if r(H) < 1 where r(H) =
limn!+1 kHnk1=n.

Proof. The proof immediately follows from Krasnosel'skij, Lifshitz and Sobolev [12]. Theorem

15.1 from [12] yields su�ciency of r(H) < 1 for convergence of successive approximations towards unique

�xed point. This �xed point must be O 2 K since H is linear. From Theorem 15.2 in [12] we know that

r(H) � 1 is necessary for its convergence. The case r(H) = 1 can be excluded under assumptions above.

Suppose r(H) = 1. Then, thanks to Theorem 9.1 in [12] (when E �nite{dimensional) and Theorem 9.2 in

[12] (when H completely continuous), there exists (nonvanishing) eigenelement Ŝ 2 K belonging to eigenvalue

r(H) = 1. Form Sn = Hn(Ŝ). Then Sn = rnŜ = Ŝ. This would obviously imply convergence of Sn towards

nonvanishing element Ŝ 2 K which contradicts to unique convergence of successive approximations. Hence,

necessity of r(H) < 1 is clear too. Consequently, the proof has been completed. 3
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