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Approximation schemes for materials with discontinuities
Sören Bartels, Marijo Milicevic, Marita Thomas, Sven Tornquist, Nico Weber

Abstract

Damage and fracture phenomena are related to the evolution of discontinuities both in space and in time. This contri-
bution deals with methods from mathematical and numerical analysis to handle these: Suitable mathematical formulations
and time-discrete schemes for problems with discontinuities in time are presented. For the treatment of problems with
discontinuities in space, the focus lies on FE-methods for minimization problems in the space of functions of bounded
variation. The developed methods are used to introduce fully discrete schemes for a rate-independent damage model
and for the viscous approximation of a model for dynamic phase-field fracture. Convergence of the schemes is discussed.

1 Introduction

This contribution discusses methods from mathematical and numerical analysis developed for the numerical treatment
of damage and fracture models used in engineering applications. Phenomenologically, damage and fracture processes
lead to a weakening of the material’s abilities to bear external loads, to a degradation of internal stresses, and ultimately
result in its complete failure. Such material defects appear as discontinuities in the spatial domain, across which kinematic
quantities associated with the deformable body, such as the deformation or the displacement field, may feature jumps
with respect to the spatial coordinates. But often cracks also seem to form or to propagate instantaneously in previously
undamaged regions, i.e., material points seem to jump in one instant from being sound to being damaged. In other words,
the evolution of material defects is not only accompanied by discontinuities in space but also by discontinuities with respect
to time. This effect is already reflected by Griffith’ fracture criterion for brittle, quasistatic crack growth [Gri21], with states
that, in a body Ωs0 with a pre-existing crack of length s0, crack growth sets in as soon as the energy released from the
body by potential crack growth reaches a critical value given by the fracture toughness Gc, i.e.,

−dΨ(Ωs0+s)

ds

∣∣∣
s=0

= Gc . (1)

Here, Ψ(Ωs0+s) denotes the sum of the strain energy and of the energy due to the applied forces of the body with a crack
extended by the length s. The left-hand side of (1) defines the energy release rate. The growth of the crack length s is thus
formally characterized by the conditions

ṡ ≥ 0, (2a)
dΨ(Ωs0+s)

ds

∣∣∣
s=0

+ Gc ≥ 0 , (2b)

ṡ
(

dΨ(Ωs0+s)

ds

∣∣∣
s=0

+ Gc

)
= 0 , (2c)

where ṡ denotes the time derivative. Above, condition (2a) states that the crack either keeps its position (ṡ = 0) or grows
(ṡ > 0) with time. By condition (2b) the values of the energy release rate can never exceed the fracture toughness.
Condition (2c) ensures that crack growth of any positive rate ṡ > 0 is possible if and only if (1) is satisfied. We remark
here, that (2c) holds true on a formal level, only, where it is assumed that the terms involved are sufficiently regular. To
simplify above explanations we have considered for (1) and (2) a two-dimensional setting, i.e. Ωs0 ,Ωs0+s ⊂ R2, so that
the crack is a one-dimensional subset and s0, resp. s0 + s indicates the position of the crack tip along this line. More
general crack geometries in higher space dimensions can be described by the Francfort-Marigo model for brittle fracture,
cf., e.g. [FM98], which is formulated as a minimum problem for the total energy of the body Ω ⊂ Rd

E(Γc) = Ψ(Ω\Γc) +

∫
Γc

Gc dS (3)
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given as the sum of the elastic bulk energy of the body and the crack surface energy along the crack Γc. However,
the propagation of general crack geometries, which may also involve effects like crack kinking and branching, is hard to
handle as sharp (d − 1)-dimensional manifolds in a d-dimensional body from the view point of mathematical analysis
and numerics. Therefore, it has become a well-established method to regularize the energy with the sharp (d − 1)-
dimensional crack surfaces by an energy functional that locates the material degradation in narrow d-dimensional volumes.
In the spirit of generalized standard materials [HN75] this is done with the aid of an internal variable, which indicates
the state of material degradation in each point of the domain Ω ⊂ Rd. This so-called damage or phase-field variable
z : [0,T]× Ω→ [0, 1] with z(t, x) = 1 if the material point x ∈ Ω is undamaged at time t ∈ [0,T] and z(t, x) = 0 in
case of maximal damage, is a phase indicator for the damaged and undamaged phase in the body and can be understood
as the volume fraction of undamaged material in each point x ∈ Ω. In this way, a possible regularization of (3) is given by
the Ambrosio-Tortorelli energy functional [Gia05]

E(t, u, z) :=

∫
Ω

(
1
2 (z + η)2Ce(u) :e(u)− f(t) · u

)
dx+

∫
Ω

Gc

(
`
2 |∇z|

2+ 1
2` (1− z)

2
)

dx. (4)

Herein, the second integral term can be seen as the volumetric regularization of the crack surface energy in (3). With a
small parameter η > 0 the first integral term is an approximation of the elastic bulk energy Ψ(Ω\Γc) in (3), which in this

case takes the form Ψ(Ω\Γc) :=
∫

Ω\Γc

(
1
2Ce(u) : e(u) − f(t) · u

)
dx with the displacements u : [0,T] × Ω → Rd

and a time-dependent external volume load f(t).

In this work we discuss methods from mathematical and numerical analysis that allow it to numerically handle the discon-
tinuities in space and time exhibited by solutions of damage and fracture models. This will involve energies of the form

E(t, u, z) :=

∫
Ω

(
1
2wC(z)Ce(u) :e(u)− f(t) · u

)
dx+ G(z) , (5)

where the degradation function wC allows for generalizations of the one in (4) and G(z) is a gradient regularization for the
damage variable. It can be a volumetric regularization of the crack surface energy as in (4) and thus our results apply to
models for phase-field fracture. But we will also adress general models for volume damage with

G(z) :=

∫
Ω

1
r |∇z|

r dx for r ∈ (1,∞) (6a)

a gradient in the sense of Sobolev spaces and, in case of r = 1,

G(z) := |Dz|(Ω) (6b)

the total variation of z in Ω leading to a regularization in BV (Ω), the space of functions of bounded variation, see Sec.
3.1.1 for more details. While gradient regularizations of type (6a) prevent jumps of z in Ω across (d − 1)-dimensional
manifolds, such jumps are possible in the limiting case r = 1. Hence, a BV -regularization of type (6b) can be used to
sharply distinguish between undamaged and damaged zones in a material. As already indicated along with (2), solutions
of problems related to damage and fracture also exhibit discontinuities with respect to time. In particular, the time-derivate
appearing in (2) cannot be understood in the classical sense, but only in the sense of measures, as solutions in general
can be shown to be of bounded variation in time, only. This low regularity in time is a general feature of rate-independent

evolution problems. Thus, in order to have (2c) well-defined, better regularity is required for
dΨ(Ωs0+s)

ds in order to com-
pensate for the low regularity of ṡ. However, this cannot be expected in general. Therefore, alternative formulations of the
evolution problem are required, which can handle the low regularity in time. Such formulations suited for discontinuities in
time and time-discrete approximation schemes thereof will be the topic of Section 2. Subsequently, Section 3 is devoted
to finite-element methods for problems with discontinuities in space, in particular for the FE-approximation of minimization
problems for functionals involving theBV -regularization (6b). Based on the developed FE-algorithms and on the methods
of Section 2 we will present in Section 3.5 an approximation result for a rate-independent damage model and also address
the challenges related to the convergence proof of the fully discrete scheme. Finally, in Section 4 we present a fully discrete
scheme for the viscous approximation of dynamic phase-field fracture in visco-elastic materials and prove convergence
of the method. Here, in addition to the elastic bulk energy of the type (5) also the kinetic energy of the body and further
viscous potentials will play a role.
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Approximation schemes for materials with discontinuities 3

2 Mathematical formulations to handle discontinuities in time

Before introducing abstract mathematical concepts to handle discontinuities in time we once more address Griffith’ model
for brittle fracture (2) and motivate with this example some terms and ideas that will reappear in a more general setting
lateron.

At first, we discuss that (2) is a rate-independent process. Rate-independent processes are characterized by the fact that
reparametrizations in time of the given data lead to solutions of the problem, which are reparametrized in the same way.
Thus, if the external loadings change twice as fast, then the solution of the problem will respond twice is fast, i.e., here
the crack tip position s will move twice as fast. This effect can be described mathematically by introducing a convex,
lower semicontinuous dissipation potential R1 that is positively 1-homogeneous to reflect rate-independence, i.e., for all
admissible velocities v and all constants λ > 0 it is

R1(λv) = λR1(v) and R1(0) = 0 . (7)

Indeed, for (2) we may set R1(v) := Gc|v|+ χ[0,∞)(v), where the characteristic function of the interval [0,∞) ensures
that velocities are non-negative, i.e., χ[0,∞)(v) = 0 if v ≥ 0 and χ[0,∞)(v) = ∞ if v < 0. We remark here that R1 is
not classically differentiable in v = 0, but generalized derivatives can be defined in the sense of subdifferentials of convex
functionals, which here takes the form

∂R1(v) :=

 {Gc} if v > 0,
(−∞,Gc] if v = 0,
∅ if v < 0.

(8)

For above choice of R1 it can be easily checked that (7) is satisfied and from (8) one can see that ∂R1 is positively
homogeneous of degree 0, i.e., ∂R1(λv) = ∂R1(v) for all admissible v and all λ ≥ 0. Hence, reparametrizations in time
do not change the evolution law.

We now check how (2) can be reformulated in terms of the dissipation potential R1. With the above choice of R1, by
multiplication with velocities v ≥ 0, (2b) can be formally rewritten as

v
(

dΨ(Ωs0+s)

ds

∣∣∣
s=0

)
+ R1(v) ≥ 0 for all admissible velocities v with v ≥ 0 . (9)

This provides a local stability condition, restricted to test functions with v ≥ 0. Moreover, given that the terms involved
are sufficiently regular, then (2c) can be integrated over [0, t] for any t ∈ [0,T]. A formulation in the spirit of (9) together
with a time-integrated version of (2c) adapted to the context of phase-field fracture will be obtained for limit solutions of the
approximation procedure in Sec. 4.

We further observe that (9) can be assumed to hold true for all admissible velocities v such that the expression

v
(

dΨ(Ωs0+s)

ds

∣∣∣
s=0

)
takes a finite value. Then the inequality is true also if v < 0, since then R1(v) = ∞. If the terms in (2c) are suitably
regular, the subtraction of (2c) from (9) results in a variational inequality

(v − ṡ)
(

dΨ(Ωs0+s)

ds

∣∣∣
s=0

)
+ R1(v)− R1(ṡ) ≥ 0 for all admissible velocities v , (10)

where we also used that R1(ṡ) = 0 by (2a). In view of the convexity of R1 and provided that all terms are sufficiently
regular, the variational inequality (10) is equivalent to the subdifferential inclusion

− dΨ(Ωs0+s)

ds

∣∣∣
s=0
∈ ∂R1(ṡ) . (11)

We point out once more that above discussion has been carried out on a formal level in a pointwise sense in space and time
always assuming that all quantities are sufficiently regular. For an elaborate mathematical analysis the reader is referred,
e.g., to [KMZ08].
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Solution concepts for rate-independent systems: Let us now turn to a general setting that allows us also to treat
models for rate-independent damage and phase-field fracture in elastically deformable bodies. The state of the body is
then characterized by a kinematic variable, such as the displacement field u and by an internal variable z responsible for
the dissipative process. It is assumed that the evolution of z is rate-independent and that u evolves in a quasi-static way.
The evolution of the pair (u, z) can then be given as a variational formulation in suitable Banach spaces U and Z with
duals U∗ and Z∗ based on an energy functional E : [0, T ]×U× Z→ R ∪ {∞}, e.g., of the form (5) and based on a
convex, lower semicontinuous and positively 1-homogeneous dissipation potential R1 : Z→ [0,∞]:

〈DuE(t, u(t), z(t)), ũ〉U = 0 for all ũ ∈ U, (12a)

〈DzE(t, u(t), z(t)), z̃ − ż(t)〉Z + R1(z̃)− R1(ż(t)) ≥ 0 for all z̃ ∈ Z (12b)

for a.e. t ∈ (0, T ). Here, 〈·, ·〉U and 〈·, ·〉Z denote the dual pairings defined for elements from the Banach spaces
U, resp. Z and their duals. Moreover, DuE(t, u(t), z(t)) ∈ U∗ and DzE(t, u(t), z(t)) ∈ Z∗ denote the variational
derivatives of the energy functional with respect to the variables u and z. In this way, (12a) provides a weak formulation
of the quasistatic momentum balance and (12b) characterizes the rate-independent evolution of z in terms of a variational
inequality alike (10). Again, it has to be assumed that all quantities in (12b) are sufficiently regular in order to have the dual
pairing well-defined. Since this regularity cannot be provided in general, one is interested in reformulations of (12) that
avoid time-derivatives and differentials. Such reformulations are based on additional convexity assumptions for the energy
functional and they can be deduced as follows:

� Multiplying (12b) by h > 0 and using the test function z̃ := v/h with v ∈ Z leads in the limit h → 0 to the local
stability condition

〈DzE(t, u(t), z(t)), v〉Z + R1(v) ≥ 0 for all v ∈ Z , (13)

i.e., the analogon of (2b). In fact, with R1(0) = 0 one finds that (13) is equivalent to −DzE(t, u(t), z(t)) ∈
∂R1(0). Choosing ũ := û − u(t) for û ∈ U in (12a) and z̃ := ẑ − z(t) for ẑ ∈ Z in (12b), summing up, and
exploiting convexity relations the energy functional, results in the global stability condition

E(t, u(t), z(t)) ≤ E(t, û, ẑ) + R1(ẑ − z(t)) for all (û, ẑ) ∈ U× Z (14)

in case that E(t, ·, ·) : U × Z → R ∪ {∞} is convex. Instead, if the energy is only separately convex, i.e.,
E(t, ·, z̃) : U → R ∪ {∞} is convex for any fixed z̃ ∈ Z and E(t, ũ, ·) : Z → R ∪ {∞} is convex for any fixed
ũ ∈ U, one finds two separate stability conditions for u and z, i.e.,

minimality: E(t, u(t), z(t)) ≤ E(t, û, z(t)) for all û ∈ U, (15a)

semistability: E(t, u(t), z(t)) ≤ E(t, u(t), ẑ) + R1(ẑ − z(t)) for all ẑ ∈ Z. (15b)

� Testing (12b) with the test functions z̃ := 0 and z̃ := 2ż(t) results in

〈DzE(t, u(t), z(t)), ż(t)〉Z + R1(ż(t)) = 0, (16)

i.e., the analogon of (2c). Testing (12a) with ũ := u̇(t), provided that u̇(t) ∈ U is an admissible testfunction,
summing the result with (16), and integrating over (t1, t2) for any t1 < t2 ∈ [0,T] results in the energy-dissipation
balance

E(t2, u(t2), z(t2)) + VarR1(z; [t1, t2]) = E(t1, u(t1), z(t1)) +

∫ t2

t1

∂tE(t, u(t), z(t)) dt . (17)

Here, ∂tE(·, u, z) denotes the partial time-derivative of the energy functional and

VarR1(z; [t1, t2]) := sup
all partitions of [t1,t2]

N∑
k=1

R1(z(tk)− z(tk−1))

denotes the total variation in time with respect to the potential R1.

The above deduction (13)–(17) motivates
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Definition 1 (Notions of solution for rate-independent systems). Let U,Z be Banach spaces, E : [0,T] ×U × Z →
R∪ {∞} be an energy functional and R1 : Z→ [0,∞] a convex, lower semicontinuous, and positively 1-homogeneous
dissipation potential. The triple (U× Z,R1,E) is called a rate-independent system.

A pair (u, z) : [0,T]→ U× Z is called

1 local solution of (U × Z,R1,E), if (12a) and (13) are satisfied for almost all t ∈ (0,T) and if (17) holds true as
an upper energy-dissipation estimate, i.e., with ’≤’ in (17) for all t1 ≤ t2 ∈ [0,T];

2 semistable energetic solution of (U × Z,R1,E), if (15a) is satisfied for almost all t ∈ (0,T), if (15b) is valid for
all t ∈ [0,T], and if (17) holds true as an upper energy-dissipation estimate for t1 = 0 and for all t2 ∈ [0,T], i.e.:

E(t2, u(t2), z(t2)) + DissR1
(z; [0, t2]) ≤ E(0, u0, z0) +

∫ t2

0

∂tE(t, u(t), z(t)) dt ; (18)

3 energetic solution of (U× Z,R1,E), if (14) and (17) are satisfied for all t ∈ [0, T ].

We also refer to the monograph [MR15] for more details on the theory of rate-independent processes, cf. also [MR15, Def.
3.3.2] for further solution concepts.

Remark 1 (Approximation methods for rate-independent systems). In the setting of infinite-dimensional Banach spaces
U × Z it has been shown in [RT17a] that semistable energetic solutions for rate-independent systems (Def. 1, Item 2)
can be obtained via alternate minimization: Given a partition Πτ := {tkτ , k = 0, . . . Nτ} of the time interval [0,T] with
0 = t0τ ≤ t1τ ≤ . . . ≤ tNττ = T and starting with the given initial datum (u0

τ , z
0
τ ) := (u0, z0) ∈ U × Z, for each

k ∈ {0, . . . Nτ} find a pair (ukτ , z
k
τ ) via the following staggered time-discrete scheme:

ukτ = argminũ∈U E(tkτ , ũ, z
k−1
τ ), (19a)

zkτ ∈ argminz̃∈Z E(tkτ , u
k
τ , z̃) + R1(z̃ − zk−1

τ ) . (19b)

Convergence proofs are based on deriving a discrete version of the defining properties ((15) and (17) with t1 = 0 and
’≤’) for semistable energetic solutions, where the discrete upper energy-dissipation estimate provides suitable compact-
ness properties, and by subsequently passing to the limit from time-discrete to time-continuous in the defining properties.
Here, in particular in case of non-smooth and discontinuous dissipation potentials as in the case of damage and fracture
problems, the limit passage in (15b) requires techniques for (evolutionary) Γ-convergence such as the construction of a
mutual recovery sequence, cf. e.g., [MR15] and [RT17a, Hyp. 2.5] for further details. The limit passage in the upper energy-
dissipation estimate is based on weak lower semicontinuity properties of the functionals and the well-preparedness of the
initial data. Instead, if the upper energy-dissipation estimate was required to hold for all t1 ∈ [0, T ] on the right-hand side
of (17), then convergence of the energy along sequences of approximate solutions is needed. However, for non-smooth
and non-linear energy functionals, as it is often the case for damage and fracture problems, this property is not available a
priori. In some cases, as in Sec. 4, energy convergence along approximate solutions can be obtained a posteriori, e.g., if
the energy dissipation estimate can be confirmed to be valid as an equality.

Energetic solutions of rate-independent systems (Def. 1, Item 3) can be obtained by the approximation with solutions of a
time-discrete scheme that simultaneously minimizes with respect to the pair (u, z), i.e., for all k ∈ {1, . . . , Nτ} it is

(ukτ , z
k
τ ) ∈ argmin(ũ,z̃)∈U×Z

(
E(tkτ , ũ, z̃) + R1(z̃ − zk−1

τ )
)
. (20)

Based on this minimality property such an approximation procedure has been successfully carried out also for energy
functionals with weaker convexity properties than required in the deduction (13)–(17). However, if properties (12a) and
(13) are employed to determine solutions of (20), then convexity of E(t, ·, ·) in the pair (u, z) is needed to find energetic
solutions, whereas separate convexity will in general result in semistable energetic solutions, only. Indeed, algorithms
based on a FE-discretization in space use (12a) and (13), so that only the approximation of semistable energetic solutions
can be expected. In fact, for many applications in damage and phase-field fracture the energy functionals are assumed to
be separately convex, but in general lack the joint convexity in the pair (u, z), because of multiplicative terms of the form
wC(z)W (e(u)) appearing in the bulk elastic energy, cf. (4) and (5).

Recently the concept of Balanced Viscosity solutions for rate-independent systems has gained attention, see, e.g., [MRS12].
This notion of solution can be obtained by introducing an additional viscous dissipation for z, weighted with a parameter
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ε. As ε → 0 a selection of solution for the resulting rate-independent system is made, which is characterized by a lo-
cal stability condition and an energy-dissipation balance that features in comparison to (18) additional dissipative terms
which become active in particular in jump regimes of the solutions, see, e.g., also [KRZ13a] in the setting of damage
models. It has been shown in [KN17, AN19] that solutions of this type can be obtained for phase-field fracture problems
with the aid of an alternating multi-step algorithm in time. In [ABN18] the convergence of alternating single- and multi-step
algorithms in combination with FE-discretization is analyzed in the setting of L2-gradient flows for the Ambrosio-Tortorelli
phase-field fracture model with (non-vanishing) viscous regularization of the damage variable. For this model the authors
show that solutions of the limit problem that satisfy the unidirectionality constraint z(s) ≥ z(t) for all s ≤ t ∈ [0, T ]
can be approximated by a posteriori truncated solutions of the discrete, unconstrained problems. Finally, we also refer to
[AB19], where the P1 FE-approximation of the quasistatic evolution in terms of semistable energetic solutions is analyzed
for the Ambrosio-Tortorelli functional. It is pointed out that the study of the viscous problem as an L2-gradient flow relies
on improved regularity results for elliptic systems [HMW11]. For nonlinearly coupled damage problems this restricts the
results to d = 2 and to a quasistatic evolution of the displacements. This is why we will employ a different concept for the
visco-elastodynamic problem in Sec. 4; it is rather based on the ideas below.

Concepts for rate-independent systems coupled with rate-dependent processes: While mathematical analysis of
purely rate-independent systems (U×Z,R1,E) is well-established by now, results for rate-independent systems coupled
with other rate-dependent processes are much less developed. These types of systems with such a mixed type of evolution
arise in mechanics, e.g., if, instead of the quasistatic law (12a) the evolution of the displacements is assumed to be dynamic
or subject to dissipative effects in a visco-elastic material, while the evolution of the internal variable z is still governed by a
rate-independent dissipation potential R1. In this case, (12a) is replaced by (a weak formulation of the) momentum balance

ρü(t) + DuE(t, u(t), z(t)) + DV(u̇) = 0 in U∗, (21)

with ρ > 0 the mass density and V : U → [0,∞) a dissipation potential of superlinear growth such that V(0) = 0.
In [Rou09] first steps towards the analysis of such coupled rate-independent/rate-dependent systems were made for the
case that E is separately convex in u and z, and that V is quadratic. This type of viscous dissipation potential covers
Kelvin-Voigt rheology, see also Sec. 4. Under this setting [Rou09] provides a notion of solution that consists of the weak
formulation of the momentum balance (21), coupled with the semistability inequality (15b), and complemented by an upper
energy-dissipation estimate in analogy to (18), see (23) below. In [RT17a] this concept was generalized to non-smooth
energy functionals with (lower order) non-convexities based on the notion of Fréchet subdifferentials and also allowing for
non-quadratic, convex, lower semicontinuous dissipation potentials V : U → [0,∞). We denote by K : W → [0,∞),
K(u̇) :=

∫
Ω
ρ
2 |u̇|

2 dx the kinetic energy with W a Hilbert space and U a separable Banach space such that U ⊂
W ⊂ U∗ form an evolution triple. In [RT17a] two different cases are distinguished: the case ρ ≡ 0 in Ω where inertia
is disregarded and the case ρ > 0 in Ω where inertia is present. In the first case, the coupled system forms a gradient
system, whereas second case is a damped inertial system. The following definition is used:

Definition 2 ([RT17a, Def. 3.1 & 3.4] semistable energetic solutions for coupled rate-independent/rate-dependent sys-
tems). Let U,Z be separable Banach spaces, W a Hilbert space, E : [0,T] × U × Z → R ∪ {∞} an energy
functional, K : W → [0,∞) the kinetic energy functional, R1 : Z → [0,∞) and V : U → [0,∞) convex and
lower semicontinuous dissipation potentials with R1 positively 1-homogenous and V of superlinear growth. A coupled
rate-independent/rate-dependent system characterized by the tuple (U,Z,V,R1,E) is called a gradient system and a
coupled system characterized by (U,W,Z,V,K,R1,E) is called a damped inertial system.

A pair (u, z) : [0,T]→ U×Z is called a semistable energetic solution of (U,Z,V,R1,E), resp. (U,W,Z,V,K,R1,E)
if the following conditions are satisfied:

� subdifferential inclusion for u for almost all t ∈ (0,T):

ρü(t) + ∂uE(t, u(t), z(t)) + ∂V(u̇(t)) 3 0 in U∗, (22)

i.e., ρü(t) + ξ(t) + ω(t) = 0, with ξ(t) ∈ ∂uE(t, u(t), z(t)) and ω(t) ∈ ∂V(u̇(t)) for almost all t ∈ (0, T );
� semistability condition (15b) for all t ∈ [0,T];
� upper energy-dissipation estimate for all t ∈ [0,T]:
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K(u̇(t))+

∫ t

0

(
V(u̇(r))+V∗(−ξ(r)−ü(r))

)
dr+VarR1(z; [0, t])+E(t, u(t), z(t))

≤ K(u̇(0)) + E(0, u(0), z(0)) +

∫ t

0

∂rE(r, u(r), z(r)) dr

(23)

with ξ(r) ∈ ∂uE(r, u(r), z(r)) the selection from (22), i.e., ξ(r) fulfills (22) for almost all r ∈ (0,T).

Moreover, a pair (u, z) : [0,T] → U × Z is called a weak semistable energetic solution of (U,Z,V,R1,E), resp.
(U,W,Z,V,K,R1,E), if for all t ∈ [0,T] it satisfies semistability condition (15b) and the upper energy-dissipation
estimate (23).

Above in (22) the term ∂V(u̇) denotes the subdifferential of the convex, lower semicontinuous potential V. Instead E

may feature non-convex terms of lower order, so that ∂uE(t, u, z) rather is to be understood in the sense of Fréchet
subdifferentials. In (23) the term V∗ : U∗ → [0,∞) denotes the Legendre-Fenchel conjugate of the convex potential
V : U→ [0,∞). This term in (23) stems from the DeGiorgi-principle for gradient flows, see [RT17a] for a derivation.

Remark 2. Using suitable staggered time-discrete schemes, alike (19), abstract existence results in the sense of Def. 2
were deduced in [RT17a] for four cases:

� semistable energetic solutions for (U,Z,V,R1,E) for V quadratic, cf. [RT17a, Thm. 4.9];
� weak semistable energetic solution for (U,Z,V,R1,E) for V with general superlinear growth, cf. [RT17a, Thm.

4.13];
� weak semistable energetic solution for (U,W,Z,V,K,R1,E) for V with general superlinear growth, cf. [RT17a,

Thm. 5.4];
� semistable energetic solutions for (U,Z,V,R1,E) for V quadratic, cf. [RT17a, Thm. 5.6].

The notion of semistable energetic solutions for coupled systems has been applied in the context of damage models
[LRTT18] as well as for delamination models [RT15, RT17b, TZ17].
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3 Finite element approximation for total variation regularized problems

3.1 Model problem and analytical properties

3.1.1 The space BV (Ω)

Classes of weakly differentiable functions like those defined by Sobolev spaces are not suitable to describe quantities
that are discontinuities. A function space that contains a large class of discontinuous functions is provided by the set of
functions of bounded variation which is the subset of integrable functions on Ω whose distribtutional derivative is a bounded
Radon measure, i.e.,

BV (Ω) = {v ∈ L1(Ω) : Dv ∈M(Ω)}.
The condition Dv ∈M(Ω) is specified by the requirement that Dv is of bounded total variation, i.e.,

|Dv|(Ω) = sup
{
−
∫

Ω

v div φdx : φ ∈ C∞c (Ω;Rd), |φ(x)| ≤ 1
}
<∞,

which means that the operator norm of the distributional derivativeDv is bounded as a functional on compactly supported,
smooth functions. If v is weakly differentiable then we have

|Dv|(Ω) = ‖∇v‖L1(Ω).

The space BV (Ω) is larger than L1(Ω) as, e.g., characteristic functions of sets with bounded perimeter are contained in
BV (Ω). The quantity

‖v‖BV (Ω) = ‖v‖L1(Ω) + |Dv|(Ω)

defines a norm onBV (Ω) for which it is complete. For variational problems it is important to note that the concept of weak*
convergence guarantees that bounded sequences admit suitable subsequences with corresponding limits. For analyzing
numerical methods an intermediate notion of convergence is needed which asserts that vj → v intermediately if

vj → v in L1(Ω) and |Dvj |(Ω)→ |Dv|(Ω).

For this notion of convergence density of smooth functions can be established. We refer the reader to [AFP00, ABM06] for
details.

3.1.2 Model problem

A model problem arising in image processing determines a regularized image z ∈ BV (Ω) ∩ L2(Ω) of a noisy image
g ∈ L2(Ω) via minimizing

I(z) = |Dz|(Ω) +
α

2
‖z − g‖2.

Despite the implicit definition of the total variation |Dz|(Ω), the functional has positive analytical features, cf., e.g., [ROF92,
CL97, BKP10, Bar15b] for full explanations of the results summarized below.

Proposition 1 (Well posedness). (i) Given g ∈ L2(Ω) there exists a unique minimizer z ∈ BV (Ω) ∩ L2(Ω) for I . In
particular, for every y ∈ BV (Ω) ∩ L2(Ω) we have

α

2
‖z − y‖2 ≤ I(y)− I(z).

(ii) If z, z̃ ∈ BV (Ω) ∩ L2(Ω) are minimizers corresponding to the data g, g̃ ∈ L2(Ω) then we have that

‖z − z̃‖ ≤ ‖g − g̃‖.

(iii) If g ∈ L∞(Ω) then we have that z ∈ L∞(Ω) with ‖z‖L∞(Ω) ≤ ‖g‖L∞(Ω).

Proof (sketched). The properties are direct consequences of compactness properties of the spaceBV (Ω) and coercivity
and strong convexity properties of the functional I .
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3.1.3 Dual problem

Important implicit properties of solutions are provided by the dual formulation of the convex minimization problem I . By
using the characterization of the total variation |Dv|(z) as a maximization problem we find by exchanging extrema that

inf
z
I(z) = inf

z
sup
p
−
∫

Ω

z div pdx− IK1(0)(p) +
α

2
‖z − g‖2

≥ sup
p

inf
z
−
∫

Ω

z div p dx− IK1(0)(p) +
α

2
‖z − g‖2

= sup
p

inf
z
L(z, p).

Here we assumed that p ·n = 0 on the boundary ∂Ω. The functional IK1(0) denotes the indicator functional of the subset
of vector fields p ∈ L2(Ω;Rd) that satisfy |p(x)| ≤ 1 almost everywhere in Ω. Given such a vector field p the optimal z
in the saddle-point formulation satisfies ∂zL(z, p) = 0, i.e.,

−div p+ α(z − g) = 0 ⇐⇒ z = g + α−1 div p.

This equation complements the condition 0 ∈ ∂pL(z, p), i.e., the subdifferential inclusion ∇z ∈ ∂IK1(0)(p) or equiva-
lently p ∈ ∂|∇z|. Inserting the identity for z into L and using that

−g div p− α−1(div p)2 +
α

2
(α−1 div p)2 = − 1

2α
(div p+ αg)2 +

α

2
g2

yields the dual functional

D(p) = − 1

2α
‖ div p+ αg‖2 +

α

2
‖g‖2 − IK1(0)(p)

= − 1

2α
‖ div p‖2 −

∫
Ω

div p g dx− IK1(0)(p).

The derivation of the functional implies that we have the weak duality relation

I(z) ≥ D(p)

for admissible functions z ∈ BV (Ω) ∩ L2(Ω) and vector fields p ∈ W 2
N (div; Ω). In fact, it can be shown that strong

duality applies, i.e., that equality holds at optimality, cf. [HK04].

Proposition 2 (Strong duality). The functionals I and D satisfy the strong duality relation

inf
z
I(z) = sup

p
D(p).

Existence of a dual solution p can be established using the direct method in the calculus of variations, uniqueness cannot
be expected in general. While it is difficult to establish general regularity properties for the primal problem, solutions of the
dual problem may satisfy classical regularity properties such as Lipschitz continuity. The following example illustrates this
aspect, cf., e.g., [Bar15b].

Example 1. Let r > 0 be such that Br(0) ⊂ Ω and define g = χBr(0). Then

z = max
{

0, 1− d/(αr)
}
χBr (0)

is the minimizer for I subject to z|∂Ω = 0. Assume that d ≤ αr and define

p(x) =

{
−r−1x for |x| ≤ r,
−rx/|x|2 for |x| ≥ r.
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Then p ∈ H(div; Ω) with div p = −(d/r)χBr(0) and |p| ≤ 1. Moreover, we have z = (1/α) div p+g. Since p = −n
on ∂Br(0) we have for every q ∈ H(div; Ω) with |q| ≤ 1 that

−(z,div(q − p)) = −
(
1− d/(αr)

) ∫
∂Br(0)

(q − p) · n ds ≤ 0,

i.e.,∇z ∈ ∂IK1(0)(p). If d ≥ αr, we define

p(x) =

{
−(α/d)x for |x| ≤ r,
−(α/d)r2x/|x|2 for |x| ≥ r

and verify div p = −αχBr(0) = −αg, i.e., z = (1/α) div p+g = 0, and |p| ≤ αr/d ≤ 1. Since z = 0 the variational
inclusion Dz ∈ ∂IK1(0)(p) is satisfied.

3.2 Notation in finite element spaces

For a sequence of regular triangulations (Th)h>0, where h > 0 refers to a maximal mesh-size that tends to zero, the set
of elementwise polynomial functions or vector fields of maximal polynomial degree k ≥ 0 is defined by

Lk(Th)` =
{
vh ∈ L1(Ω;R`) : vh|T ∈ Pk(T )` for all T ∈ Th

}
.

We let Πh : L1(Ω;R`) → L0(Th)` denote the L2 projection onto elementwise constant functions or vector fields and
note that Πh is self-adjoint, i.e., ∫

Ω

Πhfg dx =

∫
Ω

fΠhg dx

for all f, g ∈ L1(Ω). We let Sh denote the set of sides of elements and define the mesh-size function hS|S = hS =
diam(S) for all sides S ∈ Sh. We let nS : Sh → Rd denote a unit vector field given for every side S ∈ Sh by

nS|S = nS

for a fixed unit normal nS on S which is assumed to coincide with the outer unit normal if S ⊂ ∂Ω. The jump and average
on a side S of a function vh ∈ Lk(Th)` are for x ∈ S defined for inner sides via

JvhK(x) = lim
ε→0

(
vh(x− εnS)− vh(x+ εnS)

)
,

{vh}(x) = lim
ε→0

1

2

(
vh(x− εnS) + vh(x+ εnS)

)
.

For S ⊂ ∂Ω we set
JvhK = {vh} = vh.

The integral means of jumps and averages are denoted by

JvhKh = |S|−1

∫
S

JvhK ds, {vh}h = |S|−1

∫
S

{vh} ds,

which in case of elementwise affine functions coincide with the evaluation at the midpoint xS for every S ∈ Sh. We denote
the space of continuous, piecewise linear functions via

S1(Th) = L1(Th) ∩ C(Ω),

and the larger space of discontinuous, piecewise linear functions via

S1,dg(Th) = L1(Th).

A space of discontinuous vector fields is given by

RT 0,dg(Th) = L0(Th)d + (id−xT)L0(Th),
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where id is the identity and xT = Πh id ∈ L0(Th)d the elementwise constant vector field that coincides with the midpoint
xT on every T ∈ Th. Differential operators on these spaces are defined elementwise, indicated by a subscript h, i.e., we
have

∇hvh|T = ∇(vh|T ), divh zh|T = div(zh|T )

for vh ∈ S1,dg(Th), zh ∈ RT 0,dg(Th) and all T ∈ Th. The operators are also applied to weakly differentiable functions
and vector fields in which case they coincide with the weak gradient and the weak divergence. By construction, any vector
field yh ∈ RT 0,dg(Th) has a piecewise constant normal component yh · nL along straight lines L with normal nL.
Subspaces of elementwise affine functions and vector fields with certain continuity properties on element sides are given
by

S
1,cr
D (Th) = {vh ∈ S1,dg(Th) : JvhKh|S = 0 for all S ∈ Sh \ ΓNeu},

and

RT 0
N (Th) = {yh ∈ RT 0,dg(Th) : Jyh · nSKh|S = 0 for all S ∈ Sh \ ΓDir},

which coincide with low order Crouzeix–Raviart and Raviart–Thomas finite element spaces introduced in [CR73, RT77].
These spaces provide quasi-interpolation operators

Jcrh : W 1,p
D (Ω)→ S

1,cr
D (Th), Jrth : W q

N (div; Ω)→ RT 0
N (Th),

with the projection properties

∇hJcrh v = Πh∇v, div Jrth y = Πh div y,

and the interpolation estimates

‖v − Jcrh v‖Lp(Ω) ≤ ccr,1h‖∇v‖Lp(Ω),

‖v − Jcrh v‖Lp(Ω) + h‖∇h(v − Jcrh v)‖Lp(Ω) ≤ ccr,2h2‖D2v‖Lp(Ω),

for v ∈W 2,p
D (Ω) with 1 ≤ p ≤ ∞, and

‖y − Jrth y‖Lq(Ω) ≤ crth‖∇y‖Lq(Ω)

for y ∈ W q
N (div; Ω) with 1 ≤ q ≤ ∞. The standard nodal interpolation operator is denoted by Ih : C(Ω) → S1(Th)

and satisfies the estimate

‖v − Ihv‖Lp(Ω) + h‖∇(v − Ihv)‖Lp(Ω) ≤ cp1h2‖D2v‖Lp(Ω).

We refer the reader to [Cia78, BBF13, BS08, Bar16b] for details. Elementary calculations lead to the identities

Jvhyh · nSK =


JvhK{yh · nS}+ {vh}Jyh · nSK if S 6⊂ ∂Ω,

JvhK{yh · nS} if S ⊂ ΓDir,

{vh}Jyh · nSK if S ⊂ ΓNeu.

By carrying out an elementwise integration by parts we thus find that for vh ∈ S1,dg(Th) and yh ∈ RT 0,dg(Th) we have∫
Ω

vh div yh dx+

∫
Ω

∇hvh · yh dx

=

∫
Sh\ΓNeu

JvhKh{yh · nS} ds+

∫
Sh\ΓDir

{vh}hJyh · nSK ds.
(24)

If vh ∈ S
1,cr
D (Th) and yh ∈ RT 0

N (Th) then the terms on the right-hand side are equal to zero.
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3.3 Finite element discretization

Typical finite dimensional spaces of functions on Ω such as spaces of continuous or discontinuous piecewise polynomial
finite element functions define subsets of BV (Ω) ∩ L2(Ω). We show below that their performance in discretizing the
model problem can be quite different. We always consider a sequence of regular triangulations (Th)h>0 of Ω consisting
of triangles or tetrahedra for d = 2 and d = 3 respectively. We recall that associated finite element spaces are defined
via sets Pk(T ) of polynomials of degree k on the elements T ∈ Th and certain optional continuity conditions across
interelement sides. The P0 finite element space of elementwise constant functions is given by

L0(Th) = {vh ∈ L∞(Ω) : vh|T ∈ P0(T ) for all T ∈ Th}.

Elementwise affine, globally continuous functions are contained in the space of P1 finite element functions

S1(Th) = {vh ∈ C(Ω) : vh|T ∈ P1(T ) for all T ∈ Th}.

A space of discontinuous functions that are continuous at midpoints of element sides is the Crouzeix–Raviart finite element
space

S1,cr(Th) = {vh ∈ L∞(Ω) : vh|T ∈ P1(T ) for all T ∈ Th,

vh continuous at all xS for all S ∈ Sh}.

Low order discontinuous Galerkin methods use the space of elementwise affine functions

S1,dg(Th) = {vh ∈ L∞(Ω) : vh|T ∈ P1(T ) for all T ∈ Th}.

We discuss below the discretization of the model problem with these finite element spaces, i.e., the minimization of the
functional

I(z) = |Dz|(Ω) +
α

2
‖z − g‖2,

restricted to the spaces L0(Th), S1(Th), S1,cr(Th), and S1,dg(Th).

3.3.1 Discontinuous P0 elements

Using a space of discontinuous functions to discretize the model problem appears attractive as such spaces can reproduce
simple discontinuities exactly. However, if the geometry of the underlying sequence of triangulations (Th)h>0 does not
approximate the discontinuity set sufficiently accurately then discrete minimizers may fail to converge to the right objects.
We note that we have

|Dvh|(Ω) =
∑

S∈Sh\∂Ω

|S||JvhKS |

for every vh ∈ L0(Th), where JvhKS is the jump of vh across an inner side S of the triangulation Th whose length or
surface area is denoted by |S|.

Proposition 3 (Failure of convergence). Given n ≥ 1 let h = 1/n and Th the triangulation of Ω = (−1, 1)2 as indicated
in Figure 1. Then for v(x1, x2) = χ{x1>0}(x1, x2) we have for every sequence (vh)h>0 of functions vh ∈ L0(Th) the
implication

vh → v in L1(Ω) =⇒ |Dvh|(Ω) 6→ |Dv|(Ω)

as h→ 0. In particular, the union of finite element spaces ∪h>0L
0(Th) is not dense in BV (Ω) with respect to interme-

diate convergence.

The proposition implies that in general, it is not possible to correctly approximate minimizers of the model problem I via
the minimization

I(zh) =
∑
S∈Sh

|S||JzhKS |+
α

2
‖zh − g‖2

in the set of all zh ∈ L0(Th) despite the consistency of the method. We refer the reader to [Bar12, Bar15b] and [BL02]
for further details.
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1/4
1/2

Figure 1: Triangulations Thn with hn = 1/n for n = 2 and n = 4 used to illustrate the failure of the P0 method. The
length of the discontinuity set of the discontinuous function v(x, y) = sign(x) (indicated via gray shading) is incorrectly
approximated by any sequence of piecewise constant functions (vh)h>0 with vh → v in L1(Ω).

3.3.2 Continuous P1 elements

The standard finite element space of piecewise affine, globally continuous functions S1(Th) provides the approximation
property that for all v ∈ BV (Ω) there exists a sequence (vh)h>0 with vh ∈ S1(Th) for all h > 0 and

vh → v in L1(Ω) & |Dvh|(Ω)→ |Dv|(Ω)

as h→ 0. This is an immediate consequence of the intermediate density of smooth functions in BV (Ω) and the density
of the union of P1 finite element spaces in the space W 1,1(Ω). In fact, we have that

|Dvh|(Ω) =

∫
Ω

|∇vh|dx

for all vh ∈ S1(Th). If zh ∈ S1(Th) is the minimizer for

I(zh) =

∫
Ω

|∇zh|dx+
α

2
‖zh − g‖2

in the set of all zh ∈ S1(Th) then it follows that

α

2
‖z − zh‖2 ≤ I(zh)− I(z) ≤ I(vh)− I(z)→ 0

as h → 0 if the sequence (vh)h>0 is chosen such that vh → z intermediately in BV (Ω). By an explicit construction of
an approximating sequence (vh)h>0 for a given function z ∈ BV (Ω)∩L∞(Ω) it is possible to determine a convergence
rate as in [WL11, Bar12, BNS14].

Proposition 4 (Suboptimal convergence). Assume that g ∈ L∞(Ω) and Ω is star shaped. Then we have that

‖z − zh‖ ≤ ch1/4,

where c > 0 depends on the geometry of Ω and the triangulations, as well as α and ‖g‖L∞(Ω).

Proof (sketched). The strong convexity property of I and a binomial formula lead for arbitrary vh ∈ S1(Th) to the estimate

α

2
‖z − zh‖2 ≤ I(zh)− I(z)

≤ I(vh)− I(z)

= |Dvh|(Ω)− |Dz|(Ω) +
α

2

∫
Ω

(vh − g)2 − (z − g)2 dx

≤ |Dvh|(Ω)− |Dz|(Ω) +
α

2
‖vh − z‖L1(Ω)‖vh + z + 2g‖L∞(Ω).

By choosing a regularization zε ∈ C∞(Ω) of z and setting vh,ε = Ihzε one derives the bounds

‖z − vh,ε‖L1(Ω) ≤ c
(
h2ε−1 + ε

)
|Dz|(Ω),

|Dvh,ε|(Ω) ≤ |Dz|(Ω) + c
(
hε−1 + ε)|Dz|(Ω),

‖vh,ε‖L∞(Ω) ≤ ‖z‖L∞(Ω).
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With these estimates we deduce that

α

2
‖z − zh‖2 ≤ c

(
hε−1 + h2ε−1 + ε

)
.

The choice ε = ε1/2 leads to the asserted error bound.

The estimate can be improved if a total-variation diminishing quasi interpolation operator is available, i.e., on an intermedi-
ately dense subset X ⊂ BV (Ω) there exists an operator Ĩh : X → S1(Th) with the monotonicity estimate

‖∇Ĩhv‖L1(Ω) ≤ |Dv|(Ω),

the approximation and stability bounds

‖v − Ĩhv‖L1(Ω) ≤ ch, ‖Ĩhv‖L∞(Ω) ≤ c‖v‖L∞(Ω),

then by following the lines of the proof of the previous proposition one finds, cf. [BNS15], that

‖z − zh‖ ≤ ch1/2.

Total-variation diminishing interpolation operators can be constructed in one-dimensional settings or if the anisotropic
variant of the total variation is used on regular partitions. The convergence rate O(h1/2) is optimal for the approximation
of a discontinuous function by continuous finite element functions, e.g., for a generic function v ∈ BV (Ω)∩L∞(Ω) with
discontinuity, we have for the L2 best approximation

inf
vh∈S1(Th)

‖v − vh‖ ≥ ch1/2.

As shown in [Bar15b] this can be verified directly in the simple setting Ω = (−1, 1), Th a sequence of symmetric
triangulations with respect to the origin, and the function v(x) = sign(x) as illustrated in Figure 2. To prove the estimate,
we first note that the optimal finite element approximation satisfies vh(0) = 0. This follows from the fact thatfor the unique
optimal function vh and its reflection ṽh(x) = −vh(−x) we have, noting that −v(−x) = v(x),

‖v − vh‖ = ‖v − ṽh‖.

Considering now the convex combination wh = (vh + ṽh)/2 and noting that the L2 norm is convex we deduce that

‖v − wh‖ ≤
1

2
‖v − vh‖+

1

2
‖v − ṽh‖ = ‖v − vh‖.

By uniqueness we obtain that necessarily vh = wh where wh satisfies by construction wh(0) = 0. Moreover, we obtain
that vh satisfies vh(−x) = −vh(x). On the two elements adjacent to the origin covering the region (−h, h) we have
that vh(x) = ax and hence

‖vh − v‖2 ≥ 2

∫ h

0

(ax− 1)2 dx = 2(a2h3/3− ah2 + h).

The minimal value occurs for a = (3/2)h−1 and equals h/2.

3.3.3 Crouzeix–Raviart method

The error analysis of the continuous P1 method revealed the importance of a total-variation diminishing interpolation
operator. The Crouzeix–Raviart finite element method provides an inconsistent variant of this property via the quasi-
interpolation operator Jcrh with the property

∇hJcrh v = Πh∇v,
where ∇h is the elementwise application of the gradient operator and Πh the orthogonal projection onto elementwise
constant vector fields. Jensen’s inequality directly implies the monotonicity property

‖∇hJcrh v‖L1(Ω) ≤ ‖∇v‖L1(Ω).
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h

Figure 2: Oscillations in the approximation of a discontinuous function by continuous, piecewise affine functions. Oscilla-
tions occur in a neighborhood of the discontinuity and lead to suboptimal convergence behavior.

Via appropriate density arguments this property can be carried over to functions v ∈ BV (Ω). We follow [CP19, Bar20b]
and use the discrete functional

Ih(zh) =

∫
Ω

|∇hzh|dx+
α

2
‖Πhzh − gh‖2

on the set S1,cr(Th) to approximate minimizers of the model problem. The functional Ih is an inconsistent approximation
of I since the first term does not coincide with the total variation |Dzh|(Ω) of a discontinuous function zh ∈ S1,cr(Th).
Therefore, an error analysis has to control the effect of inconsistency of the method. This is done via a discrete duality
argument. We thus consider the discrete dual problem consisting in maximizing the functional

Dh(ph) = − 1

2α
‖ div ph + αgh‖2 +

α

2
‖gh‖2 − IK1(0)(Πhph)

in the set of discrete vector fields ph ∈ RT 0
N (Th). The indicator functional IK1(0) applied to the elementwise average of

ph enforces midpoint values ph(xT ) to satisfy |ph(xT )| ≤ 1 for all T ∈ Th. An important feature is the following discrete
duality relation.

Proposition 5 (Discrete duality). Assume that gh ∈ L0(Th). Then, the functionals Ih defined on S1,cr(Th) and Dh

defined on RT 0
N (Th) are in discrete duality, i.e.,

inf
zh∈S1,cr(Th)

Ih(zh) ≥ sup
ph∈RT 0

N (Th)

Dh(ph).

Proof. We first note that for any vector field ph ∈ RT 0
N (Th) with |ph(xT )| ≤ 1 for all T ∈ Th we have∫

T

ph · ∇hzh dx ≤
∫
T

|∇hzh|dx

for all T ∈ Th since∇hzh is constant on T . We use the discrete integration-by-parts (24) formula to verify∫
Ω

|∇hzh|dx+
α

2
‖Πhzh − gh‖2

≥
∫

Ω

ph · ∇hzh dx− IK1(0)(Πhph) +
α

2
‖Πhzh − gh‖2

= −
∫

Ω

div phzh dx− IK1(0)(Πhph) +
α

2
‖Πhzh − gh‖2.

For the convex function G(s) = (α/2)|s− g|2 for s, g ∈ R we have Fenchel’s inequality

G(s)− rs ≥ −G∗(r)

with

G∗(r) = sup
s∈R

rs−G(s) =
1

2α
(r + αg)2 − α

2
g2.
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Hence, it follows that ∫
Ω

|∇hzh|dx+
α

2
‖Πhzh − gh‖2

≥ − 1

2α
‖ div ph + αgh‖2 +

α

2
‖g‖2 − IK1(0)(Πhph).

Since zh and ph are arbitrary, this implies the asserted estimate.

Since the modulus function and its convex conjugate can be approximated uniformly on their supports by differentiable
functions, a strong duality relation can be established, i.e., that in fact equality applies in Proposition 5, cf. [CP19, Bar20b].
For the quasi-optimal error estimate stated below the weak duality result of the proposition is sufficient.

Theorem 1 (Quasi-optimality, [CP19, Bar20b]). If zh ∈ S1,cr(Th) and z ∈ BV (Ω) ∩ L∞(Ω) are the minimizers of Ih
and I , respectively, for some g ∈ L∞(Ω) and with gh = Πhg and if there exists a dual solution p ∈W 2

N (div; Ω) with

p ∈W 1,∞(Ω;Rd),

then we have the quasi-optimal error estimate

‖z −Πhzh‖ ≤ ch1/2.

Proof. The discrete functional Ih satisfies the coercivity property

α

2
‖Πh(yh − zh)‖2 ≤ Ih(yh)− Ih(zh).

Using the discrete duality relation Ih(zh) ≥ Dh(ph), and choosing z̃h = Jcrh z and p̃h = γ−1
h Jrth p, with γh =

max{1, ‖Jrth p‖L∞(Ω)} so that |p̃h(xT )| ≤ 1 for all T ∈ Th and hence p̃h is admissible in Dh, we find that

α

2
‖Πh(z̃h − zh)‖2 ≤ Ih(z̃h)−Dh(p̃h).

The monotonicity property ‖∇hz̃h‖L1(Ω) ≤ |Dz|(Ω) and the identity

‖Πh(z̃h − g)‖2 = ‖Πhz̃h − g‖2 − ‖g − gh‖2

= ‖z − g‖2 +

∫
Ω

(
Πhz̃h − z

)(
Πhz̃h + z − 2g

)
dx− ‖g − gh‖2

imply that

Ih(z̃h) = ‖∇hz̃h‖L1(Ω) +
α

2
‖Πh(z̃h − g)‖2

≤ |Dz|(Ω) +
α

2
‖z − g‖2 − α

2
‖g − gh‖2

+
α

2
‖Πhz̃h − z‖L1(Ω)‖Πhz̃h + z − 2g‖L∞(Ω)

= I(z)− α

2
‖g − gh‖2

+
α

2
‖Πhz̃h − z‖L1(Ω)‖Πhz̃h + z − 2g‖L∞(Ω).

Defining p̃ = γ−1
h p we have that p̃h = Jrth p̃ and

div p̃h + gh = Πh(div p̃+ g).

The identity ‖g‖2 − ‖gh‖2 = ‖g − gh‖2 shows that

Dh(p̃h) = − 1

2α
‖ div p̃h + αgh‖2 +

α

2
‖gh‖2

≥ − 1

2α
‖ div p̃+ αg‖2 +

α

2
‖g‖2 − α

2
‖g − gh‖2.
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We use that 1 ≤ γh ≤ 1 + cLh to deduce that

Dh(p̃h) ≥ − 1

2α
‖ div p̃‖2 −

∫
Ω

div p̃ g dx− α

2
‖g − gh‖2

= − 1

2α
γ−2
h ‖ div p‖2 − γ−1

h

∫
Ω

g div p dx− α

2
‖g − gh‖2

≥ − 1

2α
γ−2
h ‖ div p‖2 −

∫
div p g dx

− (1− γ−1
h )‖g‖‖div p̃‖ − α

2
‖g − gh‖2

≥ D(p)− (1− γ−1
h )‖g‖‖div p̃‖ − α

2
‖g − gh‖2.

By combining the estimates, noting that 1 − γ−1
h ≤ ch‖∇p‖L∞(Ω), and using ‖z − Πhz̃h‖2 ≤ ch|Dz|(Ω)‖z‖∞(Ω)

L ,
we deduce the asserted error bound.

3.3.4 Discontinuous Galerkin method

The discontinuous Galerkin finite element method generalizes the Crouzeix–Raviart method by introducing jump and
average terms. It is crucial to use quadrature via midpoint evaluation to obtain a precise duality relation. We follow [Bar20a].

Definition 3 (Jumps and averages). Let r, s ≥ 1 and letαS, βS : Sh → R≥0 be piecewise constant. For zh ∈ S1,dg(Th)

and ph ∈ RT 0,dg(Th) define

Jh(zh) =
1

r
‖α−1

S JzhKh‖rLr(Sh\ΓNeu) +
1

s
‖βS{zh}h‖sLs(Sh\ΓDir)

,

Kh(ph) =
1

r′
‖αS{ph · nS}‖r

′

Lr′ (Sh\ΓNeu)
+

1

s′
‖β−1

S Jph · nSK‖s
′

Ls′ (Sh\ΓDir)
,

where we require JzhKh = 0 if αS = 0 and Jph · nSK = 0 if βS = 0. For r = 1 or s = 1 the functionals (1/r′)‖ · ‖r′
Lr′

or (1/s′)‖ · ‖s′
Ls′

are interpreted as indicator functionals IK1(0) of the closed unit ball K1(0).

We have the following discrete duality result, here stated for the case of the total variation minimization problem.

Proposition 6 (dG duality). For uh ∈ S1,dg(Th) and gh = Πhg let

Ih(uh) =

∫
Ω

|∇hzh|dx+
α

2
‖Πhzh − gh‖2 + Jh(zh),

Then with the discrete dual functional defined for ph ∈ RT 0,dg(Th) by

Dh(ph) = −IK1(0)(Πhph)− 1

2α
‖ divh ph + αgh‖+

α

2
‖gh‖2 −Kh(zh)

we have
Ih(zh) ≥ Dh(ph)

and equality holds if and only if zh and ph are optimal for Ih and Dh, respectively.

By adapting the arguments that lead to the error estimate in case of the Crouzeix-Raviart method we obtain a similar
estimate here.

Proposition 7 (Error estimate). Assume that g ∈ L∞(Ω) and that there exists a Lipschitz continuous solution p ∈
W 2
N (div; Ω) ∩W 1,∞(Ω) for the dual problem. Moreover, suppose that

‖h−1
S αr

′

S ‖L∞(Sh) + ‖h−1
S βsS‖L∞(Sh) ≤ ch,

where the first term can be omitted if r = 1 and 0 < αS ≤ 1. Then, for the solutions z ∈ BV (Ω) ∩ L2(Ω) and
zh ∈ S1,dg(Th) of the primal and discrete primal problem we have

‖z −Πhzh‖ ≤ ch1/2Mz,p,g,

with a factor Mz,p,g that depends on α > 0, ‖g‖L∞(Ω), and ‖∇p‖L∞(Ω).
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3.3.5 A posteriori error estimates

Duality relations also lead to computable error estimates for conforming discretizations.

Proposition 8 (A posteriori error estimate, [Bar15a]). Let z ∈ BV (Ω) ∩ L2(Ω) be minimal for I and zh ∈ S1(Th) be
arbitrary. For every ph ∈ RT 0

N (Th) with |ph| ≤ 1 we have that

α

2
‖z − zh‖2 ≤

∫
Ω

|∇zh| − ∇zh · ph dx+
1

2α
‖ div ph − α(zh − g)‖2.

Proof. Given any p ∈ W 2
N (div; Ω) with |p| ≤ 1 almost everywhere in Ω we have by minimality of z and conformity of

the P1 method that
α

2
‖z − zh‖2 ≤ I(zh)− I(z).

The continuous duality relation yields that I(z) ≥ D(ph) and hence we have that

I(zh)− I(z) ≤ I(zh)−D(ph)

=

∫
Ω

|∇zh|dx+
α

2
‖zh − g‖2 +

1

2α
‖div ph + αg‖2 − α

2
‖g‖2.

We use that

−
∫

Ω

∇zh · ph dx =

∫
Ω

zh · div ph dx

and

1

2α
‖div ph − α(zh − g)‖2

=
1

2α
‖ div ph + αg‖2 −

∫
Ω

(div p+ αg)zh dx+
α

2
‖zh‖2

=
1

2α
‖ div ph + αg‖2 −

∫
Ω

zh div p dx+
α

2
‖zh − g‖2 −

α

2
‖g‖2.

A combination of the equations yields the asserted estimate.

The a posteriori error estimate is of residual type since the optimal z ∈ BV (Ω) ∩ L2(Ω) and an optimal vector field p
are formally related via the identities

div p = α(z − g), p =
∇z
|∇z|

.

The error estimate is optimal. If ph is the solution of the dual problem restricted to the Raviart–Thomas finite element space
with a relaxation of the constraint |ph| ≤ 1. By computing an approximation with the elementwise constraint |p̃h(xT )| ≤ 1
for all T ∈ Th one obtains a vector field p̃h ∈ RT 0

N (Th) and may then define

ph = γ−1
h p̃h

where γh = max{1, ‖p̃h‖L∞(Ω)}. In fact, the elementwise quantity

γh(T ) = max{0, ‖p̃h‖L∞(T ) − 1},

T ∈ Th, may be used as an additional error indicator.

3.3.6 Numerical experiments

Figures 3, 4, and 5 show the numerical results of the finite element discretization of the model problem using standard
P1 finite elements, the Crouzeix-Raviart method, and the discretization of the dual problem using the Raviart-Thomas
method. The setting was chosen as in Example 1 with d = 2, Ω = (−1, 1)2, r = 1/2, and α = 10. The advantages
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of the nonconforming methods become apparent when the projections onto piecewise constant functions are plotted.
The P1 function leads to an inaccurate approximation of the circular discontinuity set which is improved by the other
methods. The discrete problems were solved with the methods described in the subsequent section and we refer the
reader to [BM16, BM17, BM20] for comparisons of their performances. For iterative methods for the dual problem we refer
the reader to [Cha04, HHS+19].

3.4 Iterative solution methods

The nondifferentiability of the functional I and limited regularity properties of solutions lead to difficulties in the iterative
solution of the discretized model problem. We discuss below possible approaches and address aspects such as choice of
step sizes, monotonicity properties, and the development of stopping criteria. Throughout what follows we use for a step
size τ > 0 the difference quotient operator

dta
k = τ−1(ak − ak−1)

for an arbitrary sequence (ak)k=0,1,... in a linear space X .

3.4.1 Regularized gradient descent

A classical gradient descent approach can be used if a regularization of the functional is introduced, e.g., via a regular
approximation of the modulus function or the euclidean length, e.g., for ε > 0 and a ∈ Rd we define

|a|ε = (|a|2 + ε2)1/2.

This leads to the regularized functional

Iε(z) =

∫
Ω

|∇z|ε dx+
α

2
‖z − g‖2.

The uniform estimate 0 ≤ |a|ε − |a| ≤ ε for all a ∈ Rd implies that minimizers z for I and zε for Iε are related via

α

2
‖z − zε‖2 ≤ ε,

cf. [FvOP05, ES09] for related estimates. In a finite element setting this motivates using ε = h. With a suitable inner
product (·, ·)∗ and a semi-implicit treatment of the variation δIε we obtain the following numerical scheme.

Algorithm 1 (Regularized gradient descent). Let z0 ∈W 1,1(Ω) and choose τ, εstop > 0, set k = 1.
(1) Compute zk ∈W 1,2(Ω) such that

(dtz
k, v)∗ +

∫
Ω

∇zk

|∇zk−1|ε
· ∇v dx+ α

∫
Ω

(zk − g)v dx = 0

for all v ∈W 1,2(Ω).
(2) Stop if ‖dtzk‖∗ ≤ εstop; otherwise increase k → k + 1 and continue with (1).

The semi-implicit treatment eliminates monotonicity properties of the variation δIε. Remarkably, an energy decay property
can be established unconditionally for ε > 0.

Proposition 9 (Energy decay, [BDN18]). For ε > 0 the iterates (zk)k=0,1,... are well defined and satisfy for everyK ≥ 0

Iε(z
K) + τ

K∑
k=1

‖dtzk‖2∗ ≤ Iε(z0).

In particular, we have that dtzk → 0 as k → ∞ and the sequence (zk)k≥0 converges weakly to the unique minimizer
zε of Iε.
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Figure 3: Numerical solution (left) obtained with the continuous P1 finite element method and its elementwise average
(right). Although a reasonably acurate resolution of the jump is obtained its circular geometry is not well resolved.
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Figure 4: Numerical solution (left) obtained with the Crouzeix-Raviart finite element method and its elementwise average
(right). While the approxmimation does not obey a maximum principle, the circular discontinuity set is well approximated.
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Figure 5: Numerical solution (left) obtained with the Raviart-Thomas method for the dual formulation and the resulting
elementwise constant approximation zh = α−1 div ph + gh of the primal variable (right). The approximation is nearly
identical with the averages of the Crouzeix-Raviart approximation.
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Proof (sketched). To illustrate the main idea of the proof we omit the quadratic term in Iε, i.e., we assume for simplicity
α = 0 and note that in this case choosing v = dtz

k in Algorithm 1 shows that

‖dtzk‖2∗ +
1

2

∫
Ω

dt|∇zk|2 + τ |dt∇zk|2

|∇zk−1|ε
dx = 0.

To identify the regularized energy Iε on the left-hand side we employ elementary formulas related to difference quotient
calculus and derive the identity

dt|ak|ε = dt
|ak|2ε
|ak|ε

=
dt|ak|2ε
|ak−1|ε

+ |ak|2ε dt
1

|ak|ε

=
dt|ak|2ε
|ak−1|ε

− |ak|2ε
dt|ak|ε

|ak−1|ε|ak|ε

=
dt|ak|2ε
|ak−1|ε

− |a
k|εdt|ak|ε
|ak−1|ε

=
dt|ak|2ε
|ak−1|ε

− 1

2

dt|ak|2ε + τ(dt|ak|ε)2

|ak−1|ε

=
1

2

dt|ak|2ε
|ak−1|ε

− 1

2

τ(dt|ak|ε)2

|ak−1|ε
.

Using this formula with ak = ∇zk and noting that dt|ak|2ε = dt|ak|2 for the regularized euclidean length, we find that

‖dtzk‖2∗ + dt

∫
Ω

|∇zk|ε dx+
τ

2

∫
Ω

|dt∇zk|2 + (dt|∇zk|ε)2

|∇zk−1|ε
dx = 0.

This implies the asserted bound.

While stability of the iteration is independent of ε and also of a spatial discretization, the development of an efficient
stopping criterion, i.e., optimal choice of εstop is difficult. Related error estimates have to control the effect of the semi-
implicit treatment of the operator which introduces a critical dependence on ε; we refer the reader to [BDN18, BR20] for
related estimates.

3.4.2 Primal-dual iteration

The use of primal-dual methods in the context of total-variation minimization problems has been proposed in [CP11,
CP16b, CP16a]. The main idea is to alternatingly update the primal and dual variables z and p in the Lagrange functional

L(z, p) = −
∫

Ω

z div p+
α

2
‖z − g‖2 − IK1(0)(p)

via appropriate discretizations of the dynamical system

∂tp = δpL(z, p), ∂tz = −δzL(z, p).

When the evolution becomes stationary, a saddle-point for L has been detected. In case of a continuous P1 finite element
discretization of the primal problem, we may carry out an integration by parts in the first term and consider the discrete
Lagrange functional

Lh(zh, ph) =

∫
Ω

ph · ∇zh dx+
α

2
‖zh − g‖2 − IK1(0)(ph)

where we use elementwise constant vector fields ph ∈ L0(Th)d. An important aspect here is that the functional is
quadratic in zh and nondifferentiable but pointwise in ph. Hence, the separate minimization and maximization in the
variables can be realized efficiently. We have that a pair (zh, ph) ∈ S1(Th) × L0(Th)d is a saddle-point for Lh if and
only if |ph| ≤ 1 in Ω and

(ph,∇vh) = −α(zh − g, vh), (∇zh, qh − ph) ≤ 0
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for all (vh, qh) ∈ S1(Th)×L0(Th)d with |qh| ≤ 1 in Ω. The inequality is equivalent to the pointwise variational inclusion

∇zh ∈ ∂IK1(0)(ph).

The following algorithm uses appropriate implicit and explicit treatments of the discretized dynamical system to decouple
the equations. The use of the extrapolated iterate

z̃kh = zk−1
h + τdtz

k−1
h

is crucial to obtain moderate conditions for stability on the involved step size τ > 0. Appropriate choices of the inner
product (·, ·)h,s to define the evolution of the primal variable will be discussed below.

Algorithm 2 (Primal-dual iteration). Let (·, ·)h,s be an inner product on S1(Th), τ > 0, (z0
h, p

0
h) ∈ S1(Th)×L0(Th)d,

set dtz0
h = 0, and for k = 1, 2, . . . with z̃kh = zk−1

h + τdtz
k−1
h solve the equations

(−dtpkh +∇z̃kh, qh − pkh) ≤ 0,

(dtz
k
h, vh)h,s + (pkh,∇vh) + α(zkh − g, vh) = 0

subject to |pkh| ≤ 1 in Ω for all (vh, qh) ∈ S1(Th)×L0(Th)d with |qh| ≤ 1 in Ω. Stop the iteration if ‖dtzkh‖h,s ≤ εstop.

We have that pkh is the unique minimizer of the nondifferentiable mapping

qh 7→
1

2τ
‖qh − pk−1

h ‖2 − (qh,∇z̃kh) + IK1(0)(qh).

It is straightforward to verify that pkh is given by the pointwise truncation operation

pkh =
(
pk−1
h + τ∇z̃kh

)
/max{1, |pk−1

h + τ∇z̃kh|}.

For this explicit formula the use of the L2 inner product to define the evolution in the p variable is essential. The iterates
of Algorithm 2 converge to a stationary point if τ is sufficiently small. The following result is obtained from arguments
developed in [Roc76, EB92, Nes05, BT09, CP11, Bar12].

Proposition 10 (Convergence). Let zh ∈ S1(Th) be minimal for I in S1(Th) and define

θ = sup
vh∈S1(Th)\{0}

‖∇vh‖
‖vh‖h,s

.

If τθ ≤ 1, then the iterates of Algorithm 2 converge to zh in the sense that they satisfy for every K ≥ 1

τ

K∑
k=1

(
(1−τ2θ2)

τ

2
‖dtzkh‖2h,s + α‖zh − zkh‖2

)
≤ 1

2

(
‖zh − z0

h‖2h,s + ‖ph − p0
h‖2
)
.

In general we cannot expect convergence pkh → ph since ph may fail to be unique, e.g., if∇zh|T = 0 for some T ∈ Th.
If (·, ·)h,s is the L2 inner product then the parameter θ characterizes the constant in an inverse estimate and is given by
θ ≤ ch−1. To avoid the resulting restrictive step size condition τ ≤ ch other choices of the inner product (·, ·)h,s obtained
as weighted combinations of the inner product in L2(Ω) and the semi-inner product in H1(Ω) are useful.

Proposition 11 (Discrete inner products, [Bar16a]). For s ∈ [0, 1] and vh, wh ∈ S1(Th) define

(vh, wh)h,s = (vh, wh) + h(1−s)/s(∇vh,∇wh),

where h(1−s)/s = 0 if s = 0. We then have ‖∇vh‖ ≤ ch−min{1,(1−s)/(2s)}‖vh‖h,s for all vh ∈ S1(Th) with c = 1 if
s > 0.

A particular choice of the scalar products (·, ·)h,s has to guarantee that the right-hand side in the estimate of Proposition 10
remains bounded, e.g., the choice s = 1 defines the H1 norm but minimizers for the total variation minimization problem
do not belong to this space, i.e., the quantity on the right-hand side will deteriorate as h → 0. For s ≤ 1/2 the upper
bounded remains bounded which follows from the discrete interpolation estimate

h‖∇vh‖2 ≤ c‖vh‖L∞(Ω)‖∇vh‖L1(Ω)

and the fact that minimizers zh for Ih remain bounded in the setW 1,1(Ω)∩L∞(Ω). To obtain robustness of the stopping
criterion a smallness property of ‖dtzkh‖h,s has to be checked.
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3.4.3 ADMM iteration

The idea of the alternating direction of multiplier method proposed in [FG83] for solving convex optimization problems of
the form

I(z) = F (Bz) +G(z)

consists in introducing the variable r = Bz and imposing this identity via a Lagrange multiplier λ and a stabilizing term.
In the case of the total variation minimization problem the method is thus based on the augmented Lagrange functional

Lτ (z, r, λ) =

∫
Ω

|r|dx+
α

2
‖z − g‖2 + (λ,∇z − r)H +

τ

2
‖∇z − r‖2H .

Here, a suitable Hilbert space and a parameter τ > 0 have to be chosen. We have that

inf
z
I(z) = inf

z,r
sup
λ
Lτ (z, r, λ).

The ADMM iteration successively minimizes Lτ with respect to z and r, and then performs an ascent step with respect
to λ. Because of the splitting of the differential operator and the nonquadratic, nondifferentiable functional, the separate
optimization in the different variables can be realized efficiently. To explain the algorithm and derive some features we
consider the general form as stated above with convex functionals F : X → R∪ {+∞} and G : Y → R∪ {+∞} and
a bounded linear operator B : X → Y . Possible strong convexity of F or G is characterized by nonnegative functionals
%F : Y × Y → R and %G : X ×X → R in the following lemma.

Lemma 1 (Optimality conditions). A triple (z, r, λ) is a saddle point for Lτ if and only if Bz = r and(
λ, q − r

)
Y

+ F (r) + %F (q, r) ≤ F (q),

−
(
λ,B(v − z)

)
Y

+G(z) + %G(v, z) ≤ G(v),

for all (v, q) ∈ X × Y .

We approximate a saddle-point using the following iterative scheme which coincides with the scheme introduced in [Glo84]
in the case of fixed step sizes.

Algorithm 3 (Generalized ADMM). Choose (z0, λ0) ∈ X × Y such that G(z0) <∞. Choose τ ≥ τ > 0 and R� 0
and set j = 1.
(1) Set τ1 = τ and R0 = R.
(2) Compute a minimizer rj ∈ Y of the mapping

r 7→ Lτj (z
j−1, r;λj−1).

(3) Compute a minimizer zj ∈ X of the mapping

z 7→ Lτj (z, r
j ;λj−1).

(4) Update λj = λj−1 + τj(Bz
j − rj).

(5) Define

Rj =
(
‖λj − λj−1‖2Y + τ2

j ‖B(zj − zj−1)‖2Y
)1/2

.

(6) Stop if Rj is sufficiently small.
(7) Choose step size τj+1 ∈ [τ , τ ].
(8) Set j → j + 1 and continue with (2).

Further variants and related algorithms are investigated in [DR56, GM76, LM79, KM98, HY12, SX14, DY16, DHYZ17].
In [BM20] a strategy for the adjustment of τj based on checking certain contraction properties has been developed.
Convergence of the iteration of Algorithm 3 is based on comparing the optimality conditions for Lτ to the optimality
conditions arising from the iteration.
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Lemma 2 (Decoupled optimality). With λ̃j := λj−1 + τj(Bz
j−1− rj) the iterates (zj , rj , λj)j=0,1,... satisfy for j ≥ 1

the variational inequalities (
λ̃j , q − rj

)
Y

+ F (rj) + %F (q, rj) ≤ F (q),

−
(
λj , B(v − zj)

)
Y

+G(zj) + %G(v, zj) ≤ G(v),

for all (v, q) ∈ X×Y . In particular, (zj , rj ;λj) is a saddle-point forLτ if and only if λj−λj−1 = 0 andB(zj−zj−1) =
0.

To state a convergence property of the iteration we use the symmetrized coercivity functionals

%̂G(z, z′) = %G(z, z′) + %G(z′, z), %̂F (r, r′) = %F (r, r′) + %F (r′, r).

Typically, %̂F and %̂G are given by certain powers of norms of differences, e.g., %̂G(v, w) ∼ ‖v − w‖2.

Theorem 2 (Termination). Let (z, r;λ) be a saddle-point for Lτ . Suppose that the step sizes satisfy the monotonicity
property

0 < τ ≤ τj+1 ≤ τj

for j ≥ 1. For the iterates (zj , rj ;λj), j ≥ 0, of Algorithm 3, the corresponding differences δjλ = λ− λj , δjr = r − rj
and δjz = z − zj , and the distance

D2
j = ‖δjλ‖

2
Y + τ2

j ‖Bδjz‖2Y ,

we have for every J ≥ 1 that

1

2
D2
J +

J∑
j=1

(
τj
(
%̂G(z, zj) + %̂F (r, rj) + %̂G(zj−1, zj)

)
+

1

2
R2
j

)
≤ 1

2
D2

0.

In particular, Rj → 0 as j →∞ and Algorithm 3 terminates.
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3.5 Fully discrete approximation of rate-independent damage processes

In [BMT18] a numerical method is developed to determine approximate solutions for a rate-independent damage model
(U × Z,R1,E). Here, the energy functional E : U ×X → R is of the form (5) with a gradient regularization of BV -
type as in (6b), with finite sublevels on the Banach space U × X. Here, U := {u ∈ H1(Ω;R2), u = 0 on ΓD},
X := BV (Ω), and Z := L1(Ω). The positively 1-homogeneous dissipation potential R1 : Z→ [0,∞] is given by

R1(v) :=

∫
Ω

R1(v) dx , with R1(v) :=

{
a1|v| if v ≤ 0,
∞ otherwise.

(25)

With z = 1 for the undamaged state of the material and z = 0 for the maximally damaged state R1 from (25) ensures
that z has to decrease with time and thus prevents healing of the material. The non-smoothness of R1 together with the
non-smoothness and nonlinearity of E impose a challenge both for numerical and mathematical analysis. To devise an
iterative solution method, the staggered time-discrete scheme (19) is combined with a P1-FE discretization in space. To
solve for the nonlinear, non-smooth discrete problem (19b) an ADMM-algorithm as described in Sec. 3.4.3 is used. It is
obtained that the approximate solutions satisfy a discrete analogon of the notion of semistable energetic solutions, cf. Def.
1, Item 2, upon an error term arising from the numerical method. Thanks to a result similar to Thm. 2 it can be shown that
this error is controlled and vanishes as time-step and mesh size tend to zero. This is the basis to show that the approximate
solutions converge to a semistable energetic solution of the rate-independent process. The convergence of the method is
shown in [BMTW20] for gradient regularizations of the type (6a) and (6b). The convergence proof is based on methods
from evolutionary Γ-convergence for rate-independent systems. The interplay of the non-smooth constraint imposed by
the dissipation potential with the discrete FE-spaces lead to additional error terms in the discrete semistability inequality,
which are shown to vanish as h→ 0 if the triangulations tend to a right-angled triangulation.

4 Fully discrete approximation of dynamic phase-field fracture by viscous
regularization

In this section we regularize the rate-independent damage process by a viscous damping. This means that R1 from (25)
now is replaced by

RM (v) =

∫
Ω

RM (v) dx with RM (v) =
M

2
|v|2 + χ(−∞,0]

(
v
)
, (26)

with M > 0 a viscosity parameter, and with χ(−∞,0](v) = 0 if v ∈ (−∞, 0] and χ(−∞,0](v) = ∞ if v > 0 the
characteristic function of the interval (−∞, 0] to prevent healing of the material. While R1 from (25) allows solutions to
jump in time, this is prevented by the viscous potential (26). A viscous regularization of the evolution law is often used
in engineering literature, see e.g., [KM10, SWKM14, MHW10] to make numerical simulations more stable. It was used in
[TBW18, TBW17], where convergence of a staggered time-discrete scheme was shown for a phase-field fracture model
at finite strains. There, the focus lay on a quasistatic evolution law for the deformation (ρ = 0 and D ≡ 0 in (27a)
below) featuring a stress tensor which takes into account the anisotropy of damage. This is achieved by applying an
anisotropic split of the modified principle invariants of the right Cauchy-Green strain tensor. In this framework the existence
of solutions was studied using a staggered time-discrete scheme and by showing that the time-discrete solutions converge
in a weak sense to a solution of the time-continuous formulation of the model. The main challenge here comes from the
non-convexity of the energy functional with respect to the deformation gradient in the finite-strain setting, where in general
only polyconvexity is available, combined with the use of modified principle invariants. While complicating mathematical
analysis the use of the anisotropic split and modified invariants has proved to lead to better numerical results with good
qualitative agreement of simulation and experiment [HSD+16].

While the viscosityM > 0 in (26) was kept fixed in [TBW18, TBW17] and convergence was investigated for a time-discrete
scheme, it is the aim of this section to prove the convergence of a discretization of a visco-elastodynamic phase-field
fracture model both in time and space such that M(τ) → 0 as time-step size τ → 0. We will confine the analysis to
the setting of small strains, but allow for a visco-elastodynamic evolution of the displacements. More precisely, the model
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problem in a time interval [0,T] in the reference domain Ω ⊂ Rd, d ∈ N, d > 1, formally reads:

ρü− div
(
D(z)e(u̇) + C(z)e(u)

)
= fV in (0,T)× Ω , (27a)

∂RM (ż) + C′(z)e(u) : e(u)− Gc

(1

`
(1− z)− `div∇z

)
3 0 in (0,T)× Ω . (27b)

for the displacement u : [0, T ] × Ω → Rd and the phase-field z : [0, T ] × Ω → [0, 1] with z = 1 for the undamaged
state and z = 0 for the maximally damaged state of the material. In (27a), e(u) = 1

2 (∇u + (∇u)>) denotes the
linearized strain tensor, ρ > 0 is the (constant) mass density, and fV : [0, T ] × Ω → Rd a given volume force. The
parameters ` and Gc are the characteristic length scale of the crack regularization and the fracture toughness appearing
in the phase-field fracture energy functional E of the type (4). (27b) is given as a subdifferential inclusion because of the
nonsmooth term χ(−∞,0]. The evolution laws (27a)–(27b) are complemented by the boundary and initial conditions

u(t) = 0 in (0,T)× ∂DΩ (27c)

(D(z)e(u̇) + C(z)e(u)
)
n = fS in (0,T)× ∂NΩ, (27d)

Gc`∇z · n = 0 in (0,T)× ∂Ω, (27e)

u(0) = u0 in Ω, (27f)

u̇(0) = u̇0 in Ω, (27g)

z(0) = z0 in Ω, (27h)

Above in(27e), ∂Ω denotes the boundary of Ω and n the outer unit normal vector to ∂Ω. In (27c), ∂DΩ defines the
Dirichlet boundary for the displacements and ∂NΩ = ∂Ω\∂DΩ the Neumann boundary, where the surface load fS :
[0, T ]× ∂NΩ→ Rd is active. The functions u0, u̇0, and z0 are given initial data for u and z, respectively.

The phase-field energy functional E : [0, T ] ×U ×X → R associated with system (27) is very similar to (4) and here
takes the form

E(t, u, z) :=

∫
Ω

(1

2
C(z)e(u) : e(u) + Gc

( 1

2`
(1− z)2 +

`

2
|∇z|2

)
− fV (t) · u

)
dx

−
∫
∂NΩ

fS · udS .

(28)

As in Section 2 we also introduce the kinetic energy K : W → [0,∞) and the viscous dissipation potential V : U →
[0,∞), which here take the form

K(u̇) :=

∫
Ω

ρ

2
|u̇|2 dx and V(u̇) :=

∫
Ω

1

2
D(z)e(u̇) : e(u̇) dx . (29)

We formally understand system (27) as a viscous approximation of a rate-independent evolution of the phase-field param-
eter z. We will thus investigate the limit M → 0 in (26) and hence in (27b). In the limit this leads to a rate-independent,
non-smooth potential R : Z→ [0,∞], which is here given by

R(v) :=

∫
Ω

χ(−∞,0](v) dx . (30)

In the rate-independent limit M → 0 the evolutionary inclusion (27b) for z will thus formally turn into

∂χ(−∞,0](ż) + C′(z)e(u) : e(u)− Gc

(1

`
(1− z) + `div∇z

)
3 0 in (0,T)× Ω . (31)

While the potential RM keeps rates ż with values in ZM = L2(Ω), this regularity will be lost with M → 0 and one will
only find that z is of bounded variation in time. For the definition of the above functionals and in the subsequent exposition
we will make use of the following abbreviations for function spaces

Z := L1(Ω) , ZM := L2(Ω) , X := H1(Ω) , Y := H1(Ω) ∩ L∞(Ω) , (32a)

U := {v ∈ H1(Ω,Rd), v = 0 on ∂DΩ}, W := L2(Ω;Rd) . (32b)
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Definition 4. We denote the damped inertial system with viscous regularization from (27) by the tuple
(U,W,ZM ,V,K,RM ,E). The damped inertial system obtained in the rate-independent limit M → 0 will
be denoted by (U,W,Z,V,K,R,E).

In this section we discuss the convergence of a numerical scheme to find solutions for system

(U,W,Z,V,K,R,E) .

Solutions of (U,W,Z,V,K,R,E) are defined in a weak sense in the following way:

Definition 5 (Solutions of (U,W,Z,V,K,R,E)). A pair (u, z) : [0,T]→ U×X is a solution of
(U,W,Z,V,K,R,E) if it satisfies the following four conditions:

• one-sided variational inequality for z:∫
Ω

1

2
C′(z(t))e

(
u(t)

)
: e
(
u(t)

)
− Gc

`

(
1− z(t)

)]
η + Gc`∇z(t) · ∇η dx ≥ 0 (33a)

for all t ∈ [0,T] and for all η ∈ Y such that η ≤ 0 a.e. in Ω;

• unidirectionality: for all t1 < t2 ∈ [0,T] it is z(t2) ≤ z(t1) a.e. in Ω ; (33b)

• weak formulation of the momentum balance for all t ∈ [0,T] :

ρ

∫
Ω

u̇(t) · v(t) dx− ρ
∫ t

0

∫
Ω

u̇(r) · v̇(r) dxdr

+

∫ t

0

∫
Ω

[
D(z)e(u̇) + C(z)e(u)

]
: e(v) dxdr (33c)

= ρ

∫
Ω

u̇(0) · v(0) dx+

∫ t

0

〈f(r), v(r)〉U∗,U dr

for all v ∈ L2(0,T;U) ∩W 1,1(0,T;L2(Ω,Rd)) ;

• energy-dissipation balance for all t ∈ [0,T]:

ρ

2

∫
Ω

|u̇(t)|2 dx+ E(t, u(t), z(t)) +

∫ t

0

∫
Ω

D(z)e(u̇) : e(u̇) dxdr (33d)

=
ρ

2

∫
Ω

|u̇(0)|2 dx+ E(0, u(0), s(0)) +

∫ t

0

∂tE
(
r, u(r), z(r)

)
dr .

Remark 3 (Semistable energetic solution of (U,W,Z,V,K,R,E)). In fact, we obtain that solutions of

(U,W,Z,V,K,R,E)

in the sense of Definition 5 also satisfy the semistability inequality for all t ∈ [0,T]:

E(t, u(t), z(t)) ≤ E(t, u(t), z̃) + R(z̃ − z(t)) for all z̃ ∈ X (34)

with E from (28) and R from (30). Thus, solutions of (U,W,Z,V,K,R,E) are also semistable energetic solutions in
the sense of Definition (2).

It is the aim of this section to show the existence of solutions for system (U,W,Z,V,K,R,E) in the sense of Def. 5 by
discrete approximation. For this, we will combine a staggered time-discrete scheme with a P1 finite-element discretization
in space to find weak solutions of system (U,W,ZM ,V,K,RM ,E) corresponding to (27), see (48). While the numeri-
cal computation of solutions for the discrete version of (27a) reduces to solving a linear system of equations, solving for the
discrete version of (27b) is more involved. For this we propose to regularize the non-smooth viscous dissipation potential
by a smoothened version of the Yosida-regularization, cf. (42) for more details. In this way, e.g., a Newton’s method will
be applicable to solve the discretized version of the nonlinear problem, where the nonlinearities stem from the nonlinear
dependence of the tensor C on z, cf. (36), and from the Yosida-regularization. We show that the approximate solutions
obtained by the staggered Galerkin scheme (48) satisfy a discrete version of the notion of solution given in Def. 5. How-
ever, since the discrete nonlinear problem will only be solved approximately, error terms will appear. We derive sufficient
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conditions to control the error terms, so that convergence of the approximate solutions can be shown. These sufficient
conditions can serve as stopping criteria for the numerical algorithm.

The outline of this Section is as follows: After specifying the basic assumptions on the domain and given data in Section
4.1.1, we introduce the staggered Galerkin scheme (48) in Section 4.1.2 and show the existence of approximate solutions,
cf. Prop. 12. This already leads to a first set of qualifying conditions, cf. (51). Subsequently, in Section 4.1.3 we deduce a
second set of qualifying criteria, cf. (55), (56), and (59), that allow it to find uniform bounds for the approximate solutions
and we show the convergence of (a subsequence of) approximate solutions to a solution of (U,W,Z,V,K,R,E) in the
sense of Definition 5, cf. Theorem 3.

4.1 Basic assumptions and main result

4.1.1 Basic assumptions

Assumptions on the domain: We assume that

Ω ⊂ Rd is a bounded domain with Lipschitz-boundary ∂Ω, such that

∂DΩ ⊂ ∂Ω is non-empty and relatively open and ∂NΩ := ∂Ω \ ∂DΩ.
(35)

Assumptions on the tensors C, D: The tensors C,D : R → Rd×d×d×dsym depend on the phase-field parameter z

through functions wC, wD : R→ [w0, w
∗] being prefactors to constant tensors C̃, D̃, i.e.,

C(z) := wC(z)C̃ and D(z) := wD(z)D̃ for all z ∈ R, (36a)

with constant, symmetric, and positively definite tensors C̃, D̃. (36b)

For the functions wC, wD we further assume:

• Differentiability & boundedness:

wD ∈ C1(R, [w0, w
∗]), wC ∈ C2(R, [w0, w

∗]), (37a)

with constants 0 < w0 < w∗,

• Monotonicity: w′C(z) ≥ 0 and w′D(z) ≥ 0 for all z ∈ R, (37b)

• Locally constant growth: w′C(z) = 0 and w′D(z) = 0. (37c)

for all z ∈ (−∞, 0] ∪ [z∗,∞),

• Local convexity: There are z∗ ∈ (1, z∗) and w∗ ∈ (w0, w
∗) s.t.

wC : [0, z∗]→ [w0, w∗] is convex. (37d)

A direct implication of (36) and (37a) is the existence of constants 0 < c0D < c∗D and 0 < c0C < c∗C such that for all z ∈ R
and for all A ∈ Rd×dsym there holds:

c0D |A|
2 ≤ D(z)A : A ≤ c∗D |A|

2 and (38a)

c0C |A|
2 ≤ C(z)A : A ≤ c∗C |A|

2 . (38b)

Remark 4 (Discussion of the assumptions (37)). Assumption (37a) on the boundedness of wC and wD is crucial to
guarantee the existence of discrete solutions because it ensures the uniform bounds from below in (38) and thus the co-
ercivity of the energy functional (28) and the viscous dissipation potential (26). We further impose in (37a) the regularity
wC ∈ C2(R, [w0, w

∗]) in order to comply with the requirements of a Newton’s method to numerically solve the nonlin-
ear equation (48a). Monotonicity assumption (37b) reflects the physical property that an increase of damage leads to a
decrease of the stresses, since it ensures

wC(z1) ≤ wC(z2) as well as wD(z1) ≤ wD(z2) for all z1 ≤ z2,

and since an increase of damage is represented by a decrease of the values of z in our model. As a direct implication of
the boundedness (37a) and the monotonicity (37b) the functions wC and wD need to be constant on subintervals of R as
further stated in (37c). It can be shown for solutions (u, z) of (U,W,Z,V,K,R,E) that z takes values in [0, 1] a.e. in Ω
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w0

w∗

w∗

10 z∗ z∗

Figure 6: Qualitative shape of wC : R →
[w0, w

∗]: The function is constant on
(−∞, 0]∪[z∗,∞), monotonously increas-
ing on R, and convex on (−∞, z∗) with
z∗ > 1 but non-convex on [z∗, z

∗).

and thus can be understood as the volume fraction of undamaged material, cf. Thm. 3. To obtain this result it is important to
make sure in (37c) that the subintervals, where wC and wD have constant growth, do not intersect with the interval [0, 1].
We also refer to [KRZ13b] where similar growth assumptions and resulting observations have been made. Finally, convexity
assumption (37d) allows it to deduce that solutions (u, z) of (U,W,Z,V,K,R,E) satisfy the upper energy-dissipation
estimate (18), which can be shown even to hold as a balance (33d). This result is important from a thermodynamical point
of view and from a general mathematical point of view it provides compactness properties. Alltogether, assumptions (37)
in particular imply that wC qualitatively is of the form indicated in Fig. 6. However, monotonicity (37b) together with the
boundedness (37a) further require wC to be non-convex on a subinterval, which is given by [z∗, z

∗] with z∗ > 1 in Fig. 6.
In turn, the non-convexity ofwC on the interval [z∗, z∗] entails that upper energy-dissipation estimates are not yet available
for approximating solutions of the fully discretized problem.

Remark 5 (Comparison of wC from (37) with other degradation functions from literature). We finally point out that on
the interval [0, 1] the degradation function wC may take any polynomial form commonly used in literature, such as, e.g.,
wC(z) := η + z2 with a constant η > 0 in the standard Ambrosio-Tortorelli functional, cf. [Gia05, KM10, SWKM14] or
wC(z) := (1− z)2 in [MHW10]. Other variants like wC(z) := (ag − 2)(1− z)3 + (3− ag)(1− z)2 with ag ∈ (0, 2]
in [HGO+17] or

wC(z) := a(z3 − z2) + 3z2 − 2z3 (39)

in [BHL+16] are non-convex in the interval [0, 1] for the typical choice of parameters. This is used to model a linear be-
haviour of the non-fractured material right before crack initiation and accomplished with a horizontal slope at the transition
between sound and damaged. However, in our work convexity assumption (37d) is a technical but crucial tool to deduce
the convergence of the approximation method (49). In order to comply with the requirements of mechanics and thus also
to allow for non-convex degradation functions we propose here to formulate the degradation function in dependence of the
mesh size h, as for example in (39) with a = a(h) to recover convexity in the limit as h→ 0.

Assumptions on the given data: For the volume force fV in (27a) and the surface force fS in (27d) we assume here
the regularity fV ∈ C1([0,T];U∗) and fS ∈ C1([0,T];L2(∂NΩ,Rd)), i.e., the external loadings are continuously
differentiable in time and the time-derivative is Lipschitz-continuous with values in (a subspace of) the spatial dual. We
then define the combined external loading f by

〈f(t), v〉U∗,U := 〈fV (t), v〉U∗,U +

∫
∂NΩ

fS(t) · v dHd−1 for all v ∈ U . (40a)

Above regularity assumptions on fV and fS imply the following properties for f :

• Regularity: f ∈ C1
(
[0, T ];U∗

)
, (40b)

• Boundedness of the time-derivative: sup
t∈[0,T]

∥∥∥ḟ(t)
∥∥∥
U∗

<∞ , (40c)

Additionally, we impose for the initial data in (27f)-(27h):

u0 ∈ U , u̇0 ∈ U, (41a)

z0 ∈ X such that z0(x) ∈ [0, 1] for almost all x ∈ Ω . (41b)

Yosida-regularization and mollified max-function: For the numerical method we propose to replace the non-smooth
dissipation potential RM by a smooth approximation that allows it to compute second derivatives. This can be achieved
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using a smoothened variant of the Yosida-regularization and the regularization parameter will be chosen in dependence
of the time-step size τ . For this, the characteristic function χ(−∞,0] enforcing unidirectionality in (26) will be approximated
by

r 7→ Nτ
2
|mτ (r)|2 (42a)

where mτ : R→ [0,∞) denotes a regularization of the function max{·, 0}, given as

mτ (r) :=


r − τ

2 r ≥ τ ,
r3

τ2 − r4

2τ3 r ∈ (0, τ) ,

0 r ≤ 0.

(42b)

We refer to [Kop09, Sec. 4] for further details on this construction. In this way, RM in (26) will be replaced in the discrete
scheme by

RMτ (v) :=
M

2
|v|2 +

Nτ
2
|mτ (v)|2 (42c)

and we write RMτ for the corresponding integral functional.

4.1.2 Discretization of (U,W,ZM ,V,K,RM ,E) in space and time

Our strategy to find weak solutions for (U,W,ZM ,V,K,RM ,E) consists in a discretization in time and space using
FEM. In the following we introduce the notation for the discrete setting and present the discrete scheme below in (49).
Subsequently, in Section 4.1.3 we discuss the convergence of the method.

Discretization in space: For a family (Th)h of triangulations of Ω with mesh size h = supT∈Th diamT let Nh, Eh be
the sets of nodal points and edges, respectively. For the infinite-dimensional Banach space V ∈ {X,U}, we consider
the finite-element spaces Vh, of piecewise affine-linear functions. We assume (Th)h to be such that the finite-dimensional
spaces contain each other successively as h → 0, i.e., Vh1 ⊂ Vh2 ⊂ V for any h2 < h1. In this way, the finite-
dimensional spaces Vh are dense in V, i.e., V = ∪hVh. Further, let Nh be the number of vertices in Nh. Then Nh
coincides with the dimension of the FE-space in the scalar case Vh = Xh, while for the vectorial case Vh = Uh the
space dimension is given by dNh. Let #»ϕ := (ϕj)

Nh
j=1 denote the vector of (suitably ordered) nodal basis elements for

Xh given by the scalar hat function with ϕj(xj) = 1 in node xj and ϕj(xi) = 0 for i 6= j. Then the nodal basis for

Uh given as (ϕl)
dNh
l=1 = (ϕje1, . . . , ϕjed)

Nh
j=1, where ei, i = 1, . . . , d, are orthornormal basis vectors of Rd. In this

way, the elements z ∈ Xh and u ∈ Uh are represented by linear combinations z =
∑Nh
j=1 zjϕj and u =

∑dNh
l=1 ulϕl

of the basis elements using coefficient vectors z = (zj)
Nh
j=1 and u = (uj)

dNh
j=1 ∈ RdNh . For functions η ∈ C(Ω̄) and

v ∈ C(Ω,Rd) we further introduce the scalar and vectorial nodal interpolants as follows

PX
h : C(Ω)→ Xh, P

X
h (η) :=

∑
xi∈Nh

η(xi)ϕi, (43a)

PU
h : C(Ω,Rd)→ Uh, P

U
h (v) :=

∑
xi∈Nh

d∑
l=1

(v(xi) · el)ϕiel. (43b)

Then, PX
h (η) → η strongly in X for any η ∈ X ∩ (C∞(Rd)|Ω) as well as PU

h (v) → v strongly in U for any
v ∈ U ∩ (C∞(Rd)|Ω)d.

Remark 6. By choice of piecewise affine-linear finite-element spaces, the density of Xh ⊂ X can be assumed for all
h > 0. In certain cases these approximations have to meet some additional constraints. For the inital datum z0 ∈ X
with z0 ∈ [0, 1] a.e. in Ω it must be guaranteed that the approximations in the finite-element spaces satisfy this bound
as well which can be justified as follows: First, one finds by density of smooth functions in X a sequence (ηl)l ⊂ X ∩
(C∞(Rd)|Ω) such that ηl → z0 strongly in X. Now, let (εl)l ⊂ R be such that εl → 0 as l→∞. Projection of ηl onto
the box [εl, 1− εl] defines the truncated functions η̃l := min{1− εl,max{ηl, εl}}. Then because of ‖η̃l‖X ≤ ‖ηl‖X,
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(η̃l)l is uniformly bounded in the separable Hilbert space X and thus admits passing to a (not relabeled) subsequence
that

η̃l ⇀ z̃ weakly in X. (44)

Now, we have η̃l → z in L2(Ω) which can be seen by∫
Ω

|η̃l − z|2 dx =

∫
[ηl∈[0,1]\[εl,1−εl]]

|η̃l − z|2 dx

+

∫
[ηl∈[εl,1−εl]]

|η̃l − z|2 dx+

∫
[ηl∈R\[0,1]]

|η̃l − z|2 dx

≤
∫

[ηl∈[0,1]\[εl,1−εl]]
2 |η̃l − ηl|2 dx+

∫
[ηl∈[0,1]\[εl,1−εl]]

2 |ηl − z|2 dx

+

∫
[ηl∈[εl,1−εl]]

|ηl − z|2 dx+

∫
[ηl∈R\[0,1]]

|ηl − z|2 dx+ εlL
d(Ω) .

The first two terms on the right-hand side converges to 0 as l → ∞ because on the set [ηl ∈ [0, 1] \ [εl, 1 − εl]] ⊂ Ω
we have |η̃l − ηl| ≤ εl. while for the second summand we already know the strong convergence in U. For the third term
notice that η̃l = ηl on [ηl ∈ [εl, 1 − εl]]. For the last term again one knows strong convergence on the whole domain
Ω. Altogether it follows η̃ → z in L2(Ω) and thus z̃ = z with (44). Then, lim supl→∞ ‖η̃l‖X ≤ lim supl→∞ ‖ηl‖X =
‖z‖X, i.e. the convergence in the norms of X, supplemented with the weak convergence η̃l ⇀ z imply η̃l → z strongly in
X. At last, mollifying η̃l one obtains functions η̂l having the suitable regularity to see that for the projections PX

h (η̂l)→ z
strongly in X is true (see [EG13, Corollary 1.109 and 1.110, p. 61]).

Discretization in time: Let Πτ = {0 = t0τ < t1τ . . . < tNττ = T} be a uniform partition of the time interval [0,T]
with step size τ = T

Nτ
. For a function v : [0,T] → V we write vkτ := v(tkτ ) for any tkτ ∈ Πτ and introduce the discrete

time-derivatives

Dτv
k
τ :=

vkτ−v
k−1
τ

τ , (45a)

D2
τv
k
τ := 1

τ

(
Dτv

k
τ − Dτv

k−1
τ

)
= vk−2vk−1+vk−2

τ2 . (45b)

For the discretization of the given data and here especially for the external loading f from (40), we use an approximation

fkτ := f(tkτ ) (46)

and denote by fkτh the restriction of fkτ ∈ U∗ to Uh, where naturally

fkτh → fkτ strongly in U∗ as h→ 0 for all k ∈ {1, . . . , Nτ} and τ > 0 fixed . (47)

Discrete approximation scheme for (U,W,ZM ,V,K,RM ,E): Keep τ > 0 fixed. For the initial data (z0, u0, u̇0)
from (41) set z0

τ := z0, u0
τ := u0, and u−1

τ := u0 − τ u̇0 and let (z0
τh)h, (u0

τh)h, (u−1
τh )h with z0

τh ∈ Xh, u0
τh, u

−1
τh ∈

Uh for all h > 0 be approximations of the inital data such that z0
τh → z0

τ , u0
τh → u0

τ and u−1
τh → u−1

τ as h → 0.
For each τ, h > 0 fixed, using the discrete initial data (z0

τh, u
0
τh, u

−1
τh ) our aim is to find for every time step tkτ ∈ Πτ

solutions z̃kτh ∈ Xh, ũkτh ∈ Uh by solving the following staggered discrete Galerkin scheme: For all k ∈ {1, . . . , Nτ}
find z̃kτh ∈ Xh, ũkτh ∈ Uh such that

〈DzE(tkτ , ũ
k−1
τh , z̃kτh) + DRMτ (Dτ z̃

k
τh), ηh〉X∗,X = 0 for all ηh ∈ Yh, (48a)∫

Ω

ρD2
τ ũ

k
τh · vh dx+ 〈DuE(tkτ , ũ

k
τh, z̃

k
τh) + DV(Dτ ũ

k
τh), vh〉U∗,U = 0 for all vh ∈ Uh. (48b)

We point out that, on an abstract level it is possible to show the existence of Galerkin solutions (ũkτh, z̃
k
τh) for system

(48); we refer to [TT20, Prop. 3.1] for a proof. While ũkτh is obtained by solving the linear system of equations (48b), z̃kτh
is given by the nonlinear system (48a), where the nonlinearity stems from the properties (37) of the degradation function
wC and from the properties (42) of the regularized maximum-function mτ . The abstract existence proof is based on fixed
point arguments for nonlinear systems of equations and verifies that (48a) can be exactly solved. Instead, when applying
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an iterative method to solve the nonlinear system (48a), it will be only solved approximately. We denote the approximate
solution for (48a) obtained by the numerical method by zkτh. The approximate solution zkτh will satisfy (48a) only up to an
error, which we will indicate by εkτ,h on the right-hand side, see (49a) below. Furthermore, the approximate solution zkτh
is an input in the staggered scheme to solve for the discrete momentum balance, which, due to its linearity, can be solved
exactly. With the input zkτh this results in a solution ukτh. In conclusion, given the discrete initial data (z0

τh, u
0
τh, u

−1
τh ) ∈

Xh×Uh×U∗h the numerical method provides for any choice of h, τ > 0 fixed and for all k ∈ {1, . . . , Nτ} approximate
solutions (ukτh, z

k
τh) satisfying

〈DzE(tkτ , u
k−1
τh , zkτh) + DRMτ (Dτz

k
τh), ηh〉X∗,X = εkτ,h(ηh) for all ηh ∈ Yh, (49a)

〈ρD2
τu

k
τh + DuE(tkτ , u

k
τh, z

k
τh) + DV(Dτu

k
τh), vh〉U∗,U = 0 for all vh ∈ Uh. (49b)

Here, εkτ,h(η) indicates that the error induced in (49a) by the numerical method also depends on the test functions η ∈ Yh

and it has to be ensured by suitable stopping criteria for the numerical algorithm that this error can be controlled in such a
way that εkτ,h(η) ≈ 0. The following proposition provides the existence of approximate solutions for the staggered Galerkin
scheme (49) as well as uniform a priori bounds.

Proposition 12 (Existence of approximate solutions & a priori estimates). Let the assumptions (35)–(42) be satisfied.
Keep h, τ > 0, k ∈ {1, . . . , Nτ} fixed. Then there exists an approximate solution (ukτh, z

k
τh) of the staggered Galerkin

scheme (49) for system (U,W,Z,V,K,R1,E). Moreover, for all k ∈ {1, . . . , Nτ} there is a constant C̃ so that the
approximate solutions (ukτh, z

k
τh) satisfy the a priori bounds

‖ukτh‖U ≤ C̃ , (50a)

‖zkτh‖X ≤ C̃ (50b)

with a constant C̃ = C̃(k, τ−1) > 0, but independent of h > 0.

The proof of Prop. 12 is carried out in Sec. 4.2. There it becomes apparent that a suitable stopping criterion for the algorithm
to solve (49) must ensure that

max
{
|εkτ,h(ϕj)|, |εkτ,h(zkτh)| , j = 1, . . . ,Nh

}
≤ TOL(h)� 1 (51)

with a suitably chosen tolerance TOL(h) with the property

TOL(h)→ 0 as h→ 0. (52)

In (51) the requirement |εkτ,h(ϕj)| ≤ TOL(h) for j = 1, . . . ,Nh directly stems from (49a), while |εkτ,h(zkτh)| ≤ TOL(h)
is imposed in addition to ensure that the a priori bounds (50) are independent of h > 0. This is important for a limit passage
h→ 0, while keeping τ and k fixed. For this limit passage the bounds (50) provide sufficient compactness to find suitably
convergent subsequences and limit pairs (ukτ , z

k
τ ), k = 1, . . . , Nτ , that are solutions of the time-discrete, but space-

continuous version of (49). Instead, due to the explicit dependence of C̃ on τ−1 estimate (50) is not sufficient to pass to
the limit also with the time-step size τ or to consider the simultaneous limit h = h(τ) as τ → 0, as it will be discussed in
Sec. 4.1.3 below. For this, further estimates are needed, which can be understood as discrete energy-dissipation estimates
perturbed by some error terms stemming from the approximation method and from the non-convexity of the degradation
function wC. As we shall see in Sec. 4.1.3, the control of these error terms will lead to additional criteria alike (51) that will
impose relations between the fineness of the mesh size h and time-step size τ .

4.1.3 Convergence of the staggered Galerkin scheme (49)

In the following we discuss the convergence of the approximate solutions (ukτh, z
k
τh)Nτk=1 to a pair (u, z) that provides a

solution to (U,W,Z,V,K,R,E) in the sense of Def. 5. For this we want to treat a simultaneous limit h→ 0 and τ → 0
and thus we consider mesh size h as a function of the time-step size τ, i.e., from now on we assume that

h = h(τ) . (53)
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Yet, we will continue using the notation from Sec. 4.1.2 and only explicitely write h(τ) in sub- or superscripts when relevant.
As we shall outline in what follows, the dependence of h on τ can be specified by further criteria alike (51) that are needed
to verify the convergence of the approximate solutions. More precisely, the convergence is obtained from perturbed energy-
dissipation estimates that need to be uniform with respect to the parameters k, τ, and h. We now discuss the main points
that provide the criteria for the h(τ)-dependence and refer to Sec. 4.3 for further details:

The above-mentioned perturbed energy-dissipation estimate for the approximate solutions is obtained by testing (49b) by
τDτu

k
τh and (49a) by τDτzkτh, summing the result and summing up over k ∈ {1, . . . , Nτ}. Since the criteria for the

τ(h)-dependence mainly arise from contributions of (49a) we here focus on these terms. More precisely, applying above
procedure to (49a) results in

Nτ∑
k=1

〈DzE(tkτ , u
k−1
τh , zkτh) + DRMτ (Dτz

k
τh), zkτh − zk−1

τh 〉X∗,X =

Nτ∑
k=1

εkτ,h(zkτh − zk−1
τh ) (54)

and the right-hand side of (54) will appear as a perturbation term in the energy-dissipation estimate. To control this pertur-
bation one has to ensure that

max
{
|εkτ,h(zkτh − zk−1

τh )| , k = 1, . . . , Nτ
}
≤ TOL(h) . (55)

Moreover, to make the perturbation term disappear in (54) as h→ 0, further requires

NτTOL(h(τ)) = T
TOL(h(τ))

τ
→ 0 as τ → 0 , (56)

which provides a first refinement of (52) and (53). In addition, a further perturbation of the energy-dissipation estimate
arises on the left-hand side of (54) by the term 1

2C
′(zkτh)(zkτh−z

k−1
τh )e(uk−1

τh ) : e(uk−1
τh ), where C′(zkτh) = w′C(zkτh)C̃.

This error is due to non-convexity of the degradation function wC in subsets of Ω where z∗ ≤ zkτh ≤ z∗ or z∗ ≤ zk−1
τh ≤

z∗, cf. (37) and Remark 4. The treatment of this non-convex term requires the control of the integrand term

EC(zk−1
τh , zkτh, e(u

k−1
τh )) := 1

2

(
C(zk−1

τh )− C(zkτh) + C′(zkτh)(zkτh − zk−1
τh )

)
e(uk−1

τh ) : e(uk−1
τh ) (57)

on the set where the non-convexity of C is located, which is the set

Bkh :=
(

[z∗ ≤ zkτh ≤ z∗] ∩ [z∗ ≤ zk−1
τh ≤ z∗]

)
∪
(

[zkτh ≤ z∗] ∩ [zk−1
τh ≥ z∗]

)
∪
(

[zkτh ≥ z∗] ∩ [zk−1
τh ≤ z∗]

) (58)

with [f ≤ g] := {x ∈ Ω, f(x) ≤ g(x)}. In other words, the energy-dissipation estimate will also feature the perturbation

term
∑Nτ
k=1

∫
Bkh
EC(zk−1

τh , zkτh, e(u
k−1
τh )) dx on its right-hand side. This term can be controlled by (56) if the additional

condition ∣∣∣ ∫
Bkh

EC(zk−1
τh , zkτh, e(u

k−1
τh )) dx

∣∣∣ ≤ TOL(h) (59)

is imposed. We will deduce in Prop. 13 of Sec. 4.3 that criterion (59) can be met.

With the stopping criteria (51) and (55) for the algorithm and with the conditions (56) and (59) on the discretization at hand
we now state the convergence result:

Theorem 3 (Convergence of the staggered Galerkin scheme (49)). Let the assumptions of Proposition 12 be satisfied.
Further let the criteria (51) and (55) and the conditions (56) and (59) on the parameters τ and h = h(τ) be satisfied.
Then the family of approximate solutions (

(ukτh(τ), z
k
τh(τ))

Nτ
k=1

)
h(τ)

obtained by the staggered Galerkin scheme (49) provides a subsequence that suitably converges to a limit pair

(u, z) ∈ L∞(0,T;U) ∩H1(0,T;U)× L∞(0,T;X) ∩BV (0, T ;Z)

with the following properties:
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1 The pair (u, z) is a solution of (U,W,Z,V,K,R,E) in the sense of Def. 5.
2 For all t ∈ [0,T] it is 0 ≤ z(t, x) ≤ 1 for Ld-a.e. x ∈ Ω.
3 The pair (u, z) also satisfies the semistability inequality (34).

The proof of Thm. 3 will be discussed in Sec. 4.3. It consists of three major steps, which treat the limit passage in h and τ
separately: In a first step the limit passage h → 0 from the fully discrete setting to a space-continuous but time-discrete
setting is carried out, leading to the criterion (51). The second step handles the limit passage τ → 0 from the time-
discrete to the time-continuous setting. In the third step, the simultaneous limit passage by suitably choosing a sequence
of mesh-sizes h = h(τ) → 0 as τ → 0 is justified and in the line of this argument conditions (55), (56), and (59) are
observed.

4.2 Proof of Proposition 12

In the following, the parameters h, τ > 0 and k ∈ {1, . . . , Nτ} are kept fixed. Using the notation of Section 4.1.2
the finite-element scheme (49) can be rewritten as a system of (non-)linear equations for the coefficient vectors zkτh =

(zkτhi)
Nh
i=1 ∈ RNh and ukτh ∈ RdNh . More precisely, testing (49a) with the basis functions ϕj for Xh, j ∈ {1, . . . ,Nh},

we find the nonlinear system of Nh equations

εkτ,h(ϕj) = 〈DzE(tkτ , u
k−1
τh , zkτh) + DRMτ (Dτz

k
τh), ϕj〉X∗,X

=

∫
Ω

(
1
2C
′(zkτh)e(uk−1

τh ) : e(uk−1
τh ) + Nτ

2
d
dzm

2
τ ( 1
τ (zkτh − zk−1

τh ))
)
ϕj dx

+

Nh∑
i=1

[∫
Ω

(
M
τ + Gc

`

)
ϕiϕj dx

]
zkτhi +

Nh∑
i=1

[∫
Ω

Gc`∇ϕi·∇ϕj dx

]
zkτhi

−
∫

Ω

(
M
τ z

k−1
τh + Gc

`

)
ϕj dx

(60)

for j ∈ {1, . . . ,Nh}. Recalling that zkτh =
∑Nh
i=1 z

k
τhiϕi and that C′(·) and d

dzm
2
τ (·) are nonlinear functions by

assumptions (36), (37), and (42) we observe that the first integral term on the right-hand side constitutes a nonlinear
function f(zkτh) = (fj(z

k
τh))Nhj=1 of the coefficient vector zkτh. Instead, the second and the third term on the right-hand

side are linear in zkτh and can be rewritten as a matrix-vector multiplication with matrices M1 and M2 collecting the
integrals over the basis elements and the parameters. Finally, the last term on the right-hand side is independent of zkτh
and we denote it by p. In this way, the above nonlinear system of equations rewrites as(

εkτ,h(ϕj)
)Nh
j=1

= f(zkτh) + M1z
k
τh + M2z

k
τh − p =: g(zkτh) . (61)

Here, a suitable numerical method, such as the Newton’s method, can be applied to approximate roots of the nonlinear

function g. A stopping criterion for the algorithm has to be chosen such that g(zkτh) =
(
εkτ,h(ϕj)

)Nh
j=1
≈ 0. This can be

ensured by enforcing in the stopping criterion that

max
{
|εkτ,h(ϕj)|, j = 1, . . . ,Nh

}
≤ TOL(h)� 1 (62)

with a suitably chosen tolerance TOL(h) such that TOL(h)→ 0 as h→ 0.

Similarly, testing (49b) with the nodal basis ϕj for Uh, j = 1, . . . , dNh, we obtain the system of dNh linear equations

0 =τ2〈ρD2
τu

k
τh + DuE(tkτ , u

k
τh, z

k
τh) + DV(Dτu

k
τh),ϕj〉U∗,U

=

dNh∑
i=1

ukτhi

(∫
Ω

ρϕi·ϕj dx+

∫
Ω

(
τ2C(zkτh) + τD(zkτh)

)
e(ϕi) : e(ϕj) dx

)
+ ρ

∫
Ω

(−2uk−1
τh + uk−2

τh ) ·ϕj − τD(zkτh)e(uk−1
τh ) : e(ϕj) dx− τ2〈fkτh,ϕj〉U∗,U

for j ∈ {1, . . . , dNh}. We see that the first sum on the right-hand side can be rewritten as a matrix-vector multiplication
of the coefficient vector ukτh with two matrices M3 and M4, which gather the integrals over the basis elements and the

DOI 10.20347/WIAS.PREPRINT.2799 Berlin 2020



Approximation schemes for materials with discontinuities 35

material tensors C(zkτh) and D(zkτh). Moreover, the remaining terms on the right-hand side are independent of ukτh and
we denote them by b. Hence, the above system of linear equations reformulates as

(M3 + M4)ukτh = b .

This linear system is solvable since the matrices M3 and M4 are invertible due to the linear independence of the basis
elements and thanks to the coercivity of the tensors C(zkτh) and D(zkτh) given in (38).

To verify the uniform a priori bounds (50) we argue by induction, i.e., we assume∥∥uk−1
τh

∥∥
U

+
∥∥uk−2

τh

∥∥
U

+
∥∥zk−1
τh

∥∥
X
≤ C (63)

for all h > 0 and show that approximate solutions (ukτh, z
k
τh) at step k are bounded independenty of h. We note that (63)

is indeed an outcome of the induction argument below starting out from uniform bounded initial data as given by (41b).
For the argument, we test in (49a) and (49b) with the approximate solutions zkτh and ukτh. Summing these two relations
results in

εkτ,h(zkτh) = 〈DzE(tkτ , u
k−1
τh , zkτh) + DRMτ (Dτz

k
τh), zkτh〉X∗,X +

∫
Ω

ρD2
τu

k
τh · ukτh

+

∫
Ω

[
D(zkτh)e(Dτu

k
τh) + C(zkτh)e(ukτh)

]
: e(ukτh) dx− 〈fkτh, ukτh〉U∗,U .

(64)

At this point we see that, in order to obtain a uniform bound C̃ being independent of h as in (50), we have to make sure
for the approximate solutions that also

|εkτ,h(zkτh)| ≤ TOL(h)� 1 (65)

in addition to (62). Now, the right-hand side of (64) can be further estimated using standard arguments; for the details,
we refer to a similar estimate with a sligthly different Yosida-regularization in [TT20, Prop. 3.2]. In this way, we ultimately
obtain from (64) that∫

Ω

(M
2τ

+
Gc

4`

) ∣∣zkτh∣∣2 + Gc`
∣∣∇zkτh∣∣2 dx+

c0C
2c2K

∥∥ukτh∥∥2

U

≤ εkτ,h(zkτh) +
(Gc

2`
+

T

8
+
c4T

2

)
Ld(Ω) +

c5
2

∥∥fkτh∥∥2

U∗

+
ρ

τ2

(
2
∥∥uk−1

τh

∥∥2

L2 +
1

2

∥∥uk−2
τh

∥∥2

L2

)
+
(M

2τ
+

T

2τ2

)∥∥zk−1
τh

∥∥2

L2 +
c∗D

2

2τc0D

∥∥e(uk−1
τh )

∥∥2

L2

where it was used that in [0, τ), τ � 1, mτ , m′τ can be estimated from above by τ and 1, respectively while c4, c5 > 0
are constants. The right-hand side indeed provides a constant C̃ that depends on the approximate solutions from the
previous time-step and on τ−1, but which is independent of h thanks to (63) and (65). This finishes the proof of the a priori
estimates (50) and completes the proof of Prop. 12. �

Remark 7 (Newton’s method). For h, τ, k fixed, Newton’s method to find roots of the nonlinear equation (61) takes in
every iteration step α the form

zkα = zkα−1 −Dg(zkα−1)−1g(zkα−1) =: Ng(zkα−1)

with the Newton-operator Ng. Here, the nonlinear function f of g in (61) depends on C′. Thus, for Ng to be meaningful
requires wC ∈ C2(R, [w0, w

∗]) as demanded in (37). If in addition, wC ∈ C3(R, [w0, w
∗]), one can use a Taylor

expansion near a root a of g to estimate∣∣Ng(zkα)− a
∣∣ ≤ ∣∣Dg(zkα)−1

∣∣ ∣∣cD2g(ξ)
∣∣ ∣∣(zkα − a)

∣∣2 (66)

with ξ on a straight line between a and zkα. If
∣∣Dg(·)−1

∣∣, ∣∣D2g(·)
∣∣ are uniformly bounded in a neighbourhood U(a) of a

and defining K := c infz∈U(a) |Dg(z)| supz∈U(a)

∣∣D2g(z)
∣∣, then (66) implies with dn := K

∣∣zkα − a∣∣ that

K
∣∣zkα − a∣∣ = dn ≤ d2

α−1 ≤ . . . ≤ d2α
0 = (K

∣∣zk0 − a∣∣)2α (67)

By induction one finds quadratic convergence to a provided the initial value zk0 is located in a neighbourhood of a such
that

∣∣zk0 − a∣∣ < 1
K .
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4.3 Outline of the Proof of Convergence Theorem 3

The strategy of the proof consists in three major steps:

Step 1: For τ > 0 fixed, starting from approximate solutions ((ukτh, z
k
τh)Nτk=1)h given by Prop. 12 we pass to the limit

h → 0. By compactness arguments we find a limit pair (ukτ , z
k
τ )Nτk=1 for which we show that it satisfies a space-

continuous but time-discrete version of (49). The results of this step are summarized in Thm. 4 below and we refer
to [TT20] for the details of the proof.

Step 2: We pass to the limit τ → 0 and show that a subsequence of the time-discrete solutions ((ukτ , z
k
τ )Nτk=1))τ con-

verges to a limit pair being a solution of (U,W,Z,V,K,R,E) in the sense of Def. 5. The results of this step are
collected in Theorem 5 and refer to [TT20] for a proof.

Step 3: We show that the simultaneous limit in h = h(τ), τ → 0 can be carried out by selecting a suitable diagonal
sequence that complies with the constraints (51), (55), and (59). We further show that the constraint (59) on the
discretization can be met. Step 3 will be carried out in Sec. 4.3.2.

4.3.1 Results of Steps 1 and 2

Theorem 4 (Existence of solutions in the space-continuous setting). Let the assumptions of Theorem 3 be satisfied. Keep
τ > 0 fixed. Then the following statements hold true:

1 For each k ∈ {1, . . . , Nτ} there is a (not relabeled) subsequence (ukτh, z
k
τh)h and limit pairs (ukτ , z

k
τ ) ∈ U×X

such that

ukτh ⇀ ukτ weakly in U , (68a)

zkτh ⇀ zkτ weakly in X as h→ 0. (68b)

2 Assume that the discrete initial data satisfy

u0
τh → u0

τ in U and u−1
τh → u−1

τ in U, (69a)

z0
τh → z0

τ in X. (69b)

Then, for each k ∈ {1, . . . , Nτ} the limit pair (ukτ , z
k
τ ) ∈ U×X is a solution of the time-discrete problem

0 = 〈DzE(tkτ , u
k−1
τ , zkτ ) + DRMτ (Dτz

k
τ ), η〉X∗,X for all η ∈ Y , (70a)

0 =

∫
Ω

ρD2
τu

k
τ · v +

[
D(zkτ )e(Dτu

k
τ ) + C(zkτ )e(ukτ )

]
: e(v) dx−

〈
fkτ , v

〉
U∗,U

for all v ∈ U . (70b)

3 Suppose that (69) is satisfied. Then, in addition to (68), for each k ∈ {1, . . . , Nτ} also the following improved
convergence results hold true:

ukτh → ukτ strongly in U , (71a)

zkτh → zkτ strongly in X . (71b)

4 Suppose that z0
τh ∈ [0, 1] a.e. in Ω. Then, for each k ∈ {1, . . . , Nτ} the limit function zkτ satisfies

zkτ ∈ Y, in particular 0 ≤ zkτ ≤ 1 a.e. in Ω. (72)

5 The time-discrete solutions (ukτ , z
k
τ )Nτk=0 of (70) satisfy the following upper energy-dissipation estimate for each
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L ∈ {1, . . . , Nτ}:∫
Ω

ρ

2

∣∣DτuLτ ∣∣2 dx+

L∑
k=1

τ

∫
Ω

D(zkτ )e(Dτu
k
τ ) : e(Dτu

k
τ ) dx

+

∫
Ω

1

2
C(zLτ )e(uLτ ) : e(uLτ ) + Gc

( 1

2`
(1− zLτ )2 +

`

2
|∇zLτ |2

)
dx

− 〈fLτ , uLτ 〉U∗,U +

L∑
k=1

2τRMτ (Dτz
k
τ )

≤
∫

Ω

ρ

2

∣∣Dτu0
τ

∣∣2 dx+

∫
Ω

1

2
C(z0

τ )e(u0
τ ) : e(u0

τ ) + Gc

( 1

2`
(1− z0

τ )2 +
`

2
|∇z0

τ |2
)

dx

−
〈
f0
τ , u

0
τ

〉
U∗,U

− τ
L∑
k=1

〈
Dτf

k
τ , u

k−1
τ

〉
U∗,U

.

(73)

For the approximate solutions (ukτh, z
k
τh)Nτk=1 obtained by solving (49), piecewise constant interpolants v̄τh, vτh, and

affine-linear approximations vτh for v ∈ {u, z} are introduced, defined for t ∈ (tk−1
τ , tkτ ], k = 1, . . . Nτ by

v̄τh(t) = vkτh, vτh(t) = vk−1
τh , vτh(t) =

t− tk−1
τ

τ
vkτh +

tkτ − t
τ

vk−1
τh . (74)

Theorem 5 (Existence of solutions in the space- and time-continuous setting). Let the assumptions of Theorem 4 be
satisfied. Further suppose that z0

τ = z0, u0
τ = u0 and u−1

τ = u0 − τ u̇0 for all τ > 0. Consider the viscosity parameter
M in (26) to depend on τ such that M(τ)→ 0 as τ → 0. Then the following results hold true:

1 There exists a limit pair (u, z) : [0,T] → U × X and a (not relabeled) subsequence of approximate solutions
(ūτ , uτ , uτ , z̄τ , zτ )τ such that

ūτ , uτ
∗
⇁ u weakly-∗ in L∞(0,T;U) , (75a)

uτ ⇀ u weakly in H1(0,T;U) , (75b)

u̇τ
∗
⇁ u̇ weakly-∗ in L∞

(
0,T;L2(Ω,Rd)

)
, (75c)

ūτ (t), uτ (t) ⇀ u(t) weakly in U for all t ∈ [0,T] , (75d)

u̇τ (t) ⇀ u̇(t) weakly in L2(Ω,Rd) for all t ∈ [0,T] , (75e)

z̄τ , zτ
∗
⇁ z weakly-∗ in L∞

(
0,T;X

)
, (75f)

z̄τ (t) ⇀ z(t) weakly in X for all t ∈ [0,T] , (75g)

z̄τ (t)→ z(t) strongly in L2(Ω) for all t ∈ [0,T] , (75h)

zτ (t) ⇀ z(t) weakly in X for all t ∈ [0,T] , (75i)

zτ (t)→ z(t) strongly in L2(Ω) for all t ∈ [0,T] . (75j)

2 The limit pair (u, z) is a solution of (U,W,Z,V,K,R,E) in the sense of Def. 5.

Corollary 1. Let the assumptions of Theorem 5 be valid. Then:

1 The limit pair (u, z) from Thm. 5 also satisfies semistability inequality (34) and thus is a semistable energetic
solution in the sense of Def. 2.

2 As a result of the energy-dissipation balance (33d) there also holds

z̄τ (t)→ z(t) strongly in X for all t ∈ [0,T]. (76)

4.3.2 Discussion of Step 3: Simultaneous limit h = h(τ), τ → 0

In the following we verify that it is possible to select a (diagonal) subsequence of (interpolants of) approximate solutions

(ūτjhj , uτjhj , uτjhj , z̄τjhj , zτjhj )j
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converging to a solution (u, z) of (U,W,Z,V,K,R,E) in the sense of Definition 5. By making use of the convergence
results in Theorems 4, 5, and Cor. 1, we provide in Proposition 13 sufficient conditions (55), (56) and (59), which allow it
to deduce a uniform upper energy-dissipation estimate (perturbed by error terms). Under these conditions uniform a priori
bounds will be available for the approximate solutions which provide sufficient compactness so that convergence results in
the topologies of (75) can be concluded. These will be sufficient to pass to the limit in the staggered Galerkin scheme (49)
and to find a solution of (U,W,Z,V,K,R,E) in the sense of Def. 5. In addition, we will show in Lemma 3 below, that
on an abstract level a better selection is possible. The idea is here that, in accordance with the necessary stopping criteria
(51) and (52), h as to be chosen ’as small as possible’ so that the space continuous solution (ukτ , z

k
τ )Nτk=1 from Theorem

4 is approximated already as ’good as possible’. We remark that solutions obtained from the uniform bound in Prop. 13
must not coincide with the one obtained in Lemma 3, because solutions of (U,W,Z,V,K,R,E) are not unique since
the energy functional E(t, ·, ·) is non-convex.

Proposition 13 (Uniform energy-dissipation estimate and validity of fineness criterion (59)). Let the assumptions of Propo-
sition 12 be satisfied and let ((ukτh, z

k
τh)Nτk=1)τh be approximate solutions obtained by the staggered Galerkin scheme

(49) such that condition (51) holds true.

1 Then, ((ukτh, z
k
τh)Nτk=1)τh comply with an upper energy-dissipation estimate up to an error:

L∑
k=1

εkτ,h(zkτh − zk−1
τh ) +

L∑
k=1

∫
Bkh

EC(zk−1
τh , zkτh, e(u

k−1
τh )) dx

+ τ

L∑
k=1

〈
Dτf

k
τh, u

k−1
τh

〉
U∗,U

+

∫
Ω

ρ

2

∣∣Dτu0
τh

∣∣2 dx

+

∫
Ω

1

2
C(z0

τh)e(u0
τh) : e(u0

τh) dx+

∫
Ω

Gc

( 1

2`
(1− z0

τh)2 +
`

2

∣∣∇z0
τh

∣∣2)dx−
〈
f0
τh, u

0
τh

〉
U∗,U

≥
∫

Ω

ρ

2

∣∣DτuLτh∣∣2 dx+

L∑
k=1

τ2RMτ (Dτz
k
τh) +

L∑
k=1

τ

∫
Ω

D(zkτh)e(Dτu
k
τh) : e(Dτu

k
τh) dx

+

∫
Ω

1

2
C(zLτh)e(uLτh) : e(uLτh) +

∫
Ω

Gc

( 1

2`
(1− zLτh)2 +

`

2

∣∣∇zLτh∣∣2)dx−
〈
fLτh, u

L
τh

〉
U∗,U

(77)

for all L ∈ {1, . . . , Nτ} and with the error terms εkτ,h,
∫
Bkh
EC(zk−1

τh , zkτh, e(u
k−1
τh )) dx given in (49a) and (57).

2 Condition (59) can be met.
3 Assume in addition that (55) and (56) as well as (59) are fulfilled.

Then the error terms

Nτ∑
k=1

εkτ,h(zkτh − zk−1
τh )

and

Nτ∑
k=1

∫
Bkh

EC(zk−1
τh , zkτh, e(u

k−1
τh )) dx

in (77) vanish as h = h(τ)→ 0 and τ → 0.
Thus, the upper energy-dissipation estimate (77) provides a uniform a priori estimate for the approximate solutions
((ukτh, z

k
τh)Nτk=1)τh.
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Proof. of Prop. 13, Item 1: As mentioned for (54), by testing the discrete evolution equation (48b) with τDτukτh and (48a)
with τDτzkτh and summing up one finds

Nτ∑
k=1

εkτ,h(zkτh − zk−1
τh ) +

Nτ∑
k=1

〈
fkτh, u

k
τh − uk−1

τh

〉
U∗,U

+

∫
Ω

ρ

2

∣∣Dτu0
τh

∣∣2 dx+

∫
Ω

Gc

( 1

2`
(1− z0

τh)2 +
`

2

∣∣∇z0
τh

∣∣2)dx

≥
∫

Ω

ρ

2

∣∣∣DτuNττh ∣∣∣2 dx+

Nτ∑
k=1

τ

∫
Ω

D(zkτh)e(Dτu
k
τh) : e(Dτu

k
τh) dx

+

Nτ∑
k=1

τ2RMτ (Dτz
k
τh) +

∫
Ω

Gc

( 1

2`
(1− zNττh )2 +

`

2

∣∣∣∇zNττh ∣∣∣2)dx

+

Nτ∑
k=1

∫
Ω

1

2
C(zkτh)e(ukτh) : e(ukτh)− 1

2
C(zkτh)e(uk−1

τh ) : e(uk−1
τh ) dx

+

Nτ∑
k=1

∫
Ω

1

2
C′(zkτh)(zkτh − zk−1

τh )e(uk−1
τh ) : e(uk−1

τh )dx .

(78)

In order to make the stored elastic energy at step k − 1 appear in (78) we would like to replace in the second last line
of (78) the term − 1

2C(zkτh)e(uk−1
τh ) : e(uk−1

τh ) by − 1
2C(zk−1

τh )e(uk−1
τh ) : e(uk−1

τh ). This has to be compensated and
together with the last term in (78) we collect it in the error term EC from (57), once more recalled

EC
(
zk−1
τh , zkτh, e(u

k−1
τh )

)
:= 1

2

(
C(zk−1

τh )− C(zkτh) + C′(zkτh)(zkτh − zk−1
τh )

)
e(uk−1

τh ) : e(uk−1
τh ) .

In this way, the last two lines in (78) can be rewritten as follows:

Nτ∑
k=1

∫
Ω

1

2
C(zkτh)e(ukτh) : e(ukτh)− 1

2
C(zkτh)e(uk−1

τh ) : e(uk−1
τh ) dx

+

Nτ∑
k=1

∫
Ω

1

2
C′(zkτh)(zkτh − zk−1

τh )e(uk−1
τh ) : e(uk−1

τh )dx

=

Nτ∑
k=1

∫
Ω

1

2
C(zkτh)e(ukτh) : e(ukτh)− 1

2
C(zk−1

τh )e(uk−1
τh ) : e(uk−1

τh ) + EC
(
zk−1
τh , zkτh, e(u

k−1
τh )

)
dx

(79)

Using (79) in (78) one arrives at the upper energy-dissipation estimate (77). �

Proof of Prop. 13, Item 2: To show that condition (59) can be met, we keep τ > 0 fixed and investigateEC on a partition
Ω = B1 ∪B2 ∪B3 ∪B4 ∪B5 with

B1 = [zkτh ≤ z∗] ∩ [zk−1
τh ≤ z∗] , B2 = [z∗ ≤ zkτh ≤ z∗] ∩ [z∗ ≤ zk−1

τh ≤ z∗] ,
B3 = [z∗ ≤ zkτh] ∩ [z∗ ≤ zk−1

τh ] , B4 = [zkτh ≤ z∗] ∩ [z∗ ≤ zk−1
τh ] , B5 = [z∗ ≤ zkτh] ∩ [zk−1

τh ≤ z∗] .

On B1, the error EC
(
zk−1
τh , zkτh, e(u

k−1
τh )

)
can be estimated from below by 0 because this is a convex branch of the

energy. Instead, on B3, the error EC
(
zk−1
τh , zkτh, e(u

k−1
τh )

)
= 0 vanishes. For the remaining sets, i.e. for Bkh = B2 ∪

B4 ∪B5, we have the inclusion

Bkh ⊂
[∣∣zkτh − zkτ ∣∣ ≥ δ] ∪ [∣∣zk−1

τh − z
k−1
τ

∣∣ ≥ δ] (80)

with δ ∈ (1, z∗). Here, clearly Ld
(
[
∣∣zkτh − zkτ ∣∣ ≥ δ] ∪

[∣∣zk−1
τh − zk−1

τ

∣∣ )→ 0 as h→ 0 in consequence of the strong
convergence in Z, cf. (71b). Hence, also

Ld(Bkh)→ 0 as h→ 0 . (81)
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Thanks to the strong convergence uk−1
τh → uk−1

τ in U given by (71a) one finds∫
Ω

EC(zk−1
τh , zkτh, u

k−1
τh ) dx→

∫
Ω

EC(zk−1
τ , zkτ , u

k−1
τ ) dx (82)

by continuity of EC(·, ·, ·) guaranteed by (36) and (37).

This provides the tools to verify that the condition (59) can be met: Using (82) the error onBkh can be estimated as follows:∣∣∣∣∣
∫
Bkh

EC(zk−1
τh , zkτh, e(u

k−1
τh ))

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Bkh

EC(zk−1
τh , zkτh, e(u

k−1
τh ))− EC(zk−1

τ , zkτ , e(u
k−1
τ )) dx

∣∣∣∣∣+

∣∣∣∣∣
∫
Bkh

EC(zk−1
τ , zkτ , e(u

k−1
τ )) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫

Ω\Bkh
EC(zk−1

τh , zkτh, e(u
k−1
τh ))− EC(zk−1

τ , zkτ , e(u
k−1
τ )) dx

∣∣∣∣∣
=

∣∣∣∣∫
Ω

EC(zk−1
τh , zkτh, e(u

k−1
τh ))− EC(zk−1

τ , zkτ , e(u
k−1
τ )) dx

∣∣∣∣
+

∣∣∣∣∣
∫
Bkh

EC(zk−1
τ , zkτ , e(u

k−1
τ )) dx

∣∣∣∣∣ −→ 0 ,

where the first term tends to zero by (82) and the second term by (82) and (81). Hence also∣∣∣∣∣
∫
Bkh

EC(zk−1
τh , zkτh, e(u

k−1
τh ))

∣∣∣∣∣→ 0 as h→ 0 for all k ∈ {1, . . . , Nτ} . (83)

From this we see that the perturbation term in (77) stemming from the non-convexity of the energy is controlled if

Nτ∑
k=1

∣∣∣∣∣
∫
Bkh

EC(zk−1
τ , zkτ , e(u

k−1
τ )) dx

∣∣∣∣∣ → 0 . (84)

This can be accomplished by ensuring for all k ∈ {1, . . . , Nτ} that∣∣∣∣∣
∫
Bkh

EC(zk−1
τh , zkτh, e(u

k−1
τh ))

∣∣∣∣∣ ≤ TOL(h) (85)

and in addition

NτTOL(h(τ)) = T
TOL(h(τ))

τ
→ 0 as τ → 0 . (86)

This provides conditions (56) and (59). We conclude that (85), hence (59), can be met thanks to the convergence ontained
in (83). �

Proof of Prop. 13, Item 3: The error term due to the non-convexity can be controlled and vanishes according to (84) if
conditions (85) and (86), i.e., (59) and (56), are satisfied. Similarly, one can see that the error term

∑Nτ
k=1 ε

k
τ,h(zkτh −

zk−1
τh ) in (77) tends to zero, provided (56) and (55) are satisfied. Under these condtions the two error terms in (77) are

uniformly bounded in h = h(τ), τ, so that the upper energy dissipation estimate provides uniform bounds for approximate
solutions.

Lemma 3 (Selection of a diagonal subsequence). Let the conditions (51) and (52) be satisfied. Then, it is possible to
select a diagonal subsequence (τjhj)j∈N of the time-step and mesh sizes, such that the corresponding approximate
solutions (ūτjhj , z̄τjhj )j∈N : [0,T]→ U×X converge to the limit pair (u, z) : [0,T]→ U×X obtained in Theorem
5. More precisely, we have for all t ∈ [0, T ]:

uτjhj (t) ⇀ u(t) weakly in U, (87a)

zτjhj (t)→ z(t) strongly in Z as j →∞. (87b)
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Proof. We first show (87b). For this, first, keep τ > 0 fixed. Since there are only Nτ time-steps in the partition Πτ of the
time interval [0,T], the strong convergence (71b) for h → 0 is uniform in time for the interpolants z̄τh. Thus, one can
select z̄τh(τ) such that for all t ∈ [0,T] ∥∥z̄τh(τ)(t)− z̄τ (t)

∥∥
X
< τ . (88)

By strong convergence (76), z̄τ (t)→ z(t) in X pointwise for all t ∈ [0, T ], we find∥∥z̄τh(τ)(t)− z(t)
∥∥
X
≤
∥∥z̄τh(τ)(t)− z̄τ (t)

∥∥
X

+ ‖z̄τ (t)− z(t)‖X ≤ τ + ‖z̄τ (t)− z(t)‖X → 0

as τ → 0.We argue in a similar manner to verify (87a), based on the strong convergence (71a) and the weak convergence
(75d). For each τ > 0 fixed, with the same arguments as for (88), we select ūτh(τ) such that for all t ∈ [0,T]∥∥ūτh(τ)(t)− ūτ (t)

∥∥
U
< τ .

For each v ∈ U with ‖v‖U ≤ 1 we then deduce

〈ūτh(τ)(t)− u(t), v〉U∗,U ≤
∣∣〈ūτh(τ)(t)− ūτ (t), v〉U∗,U

∣∣+
∣∣〈ūτ (t)− u(t), v〉U∗,U

∣∣
≤ ‖ūτh(τ)(t)− ūτ (t)‖U‖v‖U +

∣∣〈ūτ (t)− u(t), v〉U∗,U
∣∣ ≤ τ +

∣∣〈ūτ (t)− u(t), v〉U∗,U
∣∣→ 0

as τ → 0 by the weak convergence (75d), ūτ (t) ⇀ u(t) in U pointwise for all t ∈ [0, T ] where we used the usual
identification of dual and predual in Hilbert spaces. One may then choose a subsequence τj → 0 as j → ∞ and set
hj := h(τj) to ultimately conclude (87).
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