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Discrete approximation of dynamic phase-field fracture in visco-elastic
materials

Marita Thomas, Sven Tornquist

Abstract

This contribution deals with the analysis of models for phase-field fracture in visco-elastic materials with dynamic
effects. The evolution of damage is handled in two different ways: As a viscous evolution with a quadratic dissipation
potential and as a rate-independent law with a positively 1-homogeneous dissipation potential. Both evolution laws en-
code a non-smooth constraint that ensures the unidirectionality of damage, so that the material cannot heal. Suitable
notions of solutions are introduced in both settings. Existence of solutions is obtained using a discrete approximation
scheme both in space and time. Based on the convexity properties of the energy functional and on the regularity of the
displacements thanks to their viscous evolution, also improved regularity results with respect to time are obtained for the
internal variable: It is shown that the damage variable is continuous in time with values in the state space that guarantees
finite values of the energy functional.

1 Introduction

This work is concerned with the evolution of dynamic fracture in a visco-elastically deformable solid body occupying a
domain Ω ⊂ Rd, 1 < d ∈ N. The process is monitored within a time interval [0,T]. It is assumed that only sufficiently
small external loadings are applied such that the setting of small strains is admissible. Here the displacement field u :
[0,T] × Ω → Rd characterizes the elastic deformation of the fracturing solid and the linearized strain tensor e(u) :=
1
2 (∇u+∇u>) is a feasible measure of strain. To enable the model to capture complicated crack geometries the approach
of phase-field fracture is applied [FM98, BFM00, MHW10, HW14, AGDL15, KM10], in which the (d − 1)-dimensional
crack surface is approximated by a d-dimensional volume where damage of the material occurs. In the spirit of generalized
standard materials [HN75] the volume damage of the material is modelled with the aid of an internal variable

z : [0,T]× Ω→ [0, 1],

called here phase-field or damage variable, which accounts for the state of material degradation in each point of the
domain Ω ⊂ Rd. By taking values in [0, 1], z represents in our notation the volume fraction of undamaged material, i.e.,
z(t, x) = 1 if the material is completely sound and z(t, x) = 0 in case of maximal damage in a material point x ∈ Ω at
time t ∈ [0,T]. As it is the case for metals or rubber we assume that healing of the material cannot occur, so that damage
increases over time and hence in our notation z has to decrease in time. This unidirectional evolution is realized in the
model by a non-smooth constraint, enforced by the characteristic function χ(−∞,0] of the interval (−∞, 0], i.e.,

χ(−∞,0](v) :=

{
0 if v ∈ (−∞, 0],
∞ otherwise,

(1)

and the occurrence of this non-smooth function in the model turns the evolution law into a subdifferential inclusion, resp.
variational inequality. In this work, we will study two different evolution laws for z: A viscous law and a rate-independent
law. On a formal level, the Cauchy problem for phase-field fracture in visco-elastic materials at small strains with a viscous
evolution of damage is given as follows:

ρü− div
(
D(z)e(u̇) + C(z)e(u)

)
= fV in (0,T)× Ω , (2a)

Mż+∂χ(−∞,0](ż)+ 1
2C
′(z)e(u):e(u)− 1

` (1−z)−`div∇z 3 0 in (0,T)× Ω . (2b)

In (2a), ρ > 0 is the mass density and fV : [0,T] × Ω → Rd denotes an external volume force. Moreover, in (2b) the
parameter M > 0 is the viscosity parameter and ` > 0 controls the width of the diffusive crack zone. The evolution laws
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(2a) and (2b) are complemented by the boundary and initial conditions

u(t) = 0 in [0,T]× ∂DΩ (2c)

(D(z)e(u̇) + C(z)e(u)
)
n = fS in (0,T)× ∂NΩ, (2d)

`∇z · n = 0 in (0,T)× ∂Ω, (2e)

u(0) = u0 in Ω, (2f)

u̇(0) = u̇0 in Ω, (2g)

z(0) = z0 in Ω, (2h)

where u0, u̇0, z0 are given initial data. The boundary of Ω is denoted by ∂Ω with outer unit normal n. On the Dirichlet
boundary ∂DΩ there are imposed homogeneous Dirichlet conditions at all times t ∈ [0,T], i.e., it is assumed that
also u0 = u̇0 = 0 on ∂DΩ. On the Neumann boundary ∂NΩ := ∂Ω \ ∂DΩ there acts an external surface force
fS : [0,T]× ∂NΩ→ Rd.

In addition to the viscous evolution of z with M > 0 in (2b), we will also consider the case of a rate-independent evolution
M = 0 in (2b). In particular, we will use a vanishing viscosity limit M → 0 to prove the existence of solutions for the
rate-independent setting. In order to better explain our methods and results we now define the function spaces

Z := L1(Ω) , ZM := L2(Ω) , X := H1(Ω) , Y := H1(Ω) ∩ L∞(Ω) , (3a)

U := {v ∈ H1(Ω,Rd), v = 0 on ∂DΩ}, W := L2(Ω;Rd) , (3b)

and introduce the functionals that lead to the evolution law (2). In particular, we define the viscous dissipation potential for
the damage variableRM : ZM → [0,∞],

RM (v) =

∫
Ω

RM (v) dx with RM (v) :=
M

2
|v|2 + χ(−∞,0]

(
v
)
. (4)

The vanishing-viscosity limit M → 0 results in the non-smooth, rate-independent potentialR : Z→ [0,∞], which here
only consists of the unidirectionality constraint,

R(v) :=

∫
Ω

χ(−∞,0](v) dx . (5)

At this point we observe thatR indeed is positively homogeneous of degree 1, sinceR(0) = 0 andR(λv) = λR(v) is
trivially satisfied for all λ > 0 and v ∈ Z.

In view of (2a) we also introduce the viscous dissipation potential of quadratic growth for the displacements V : X×U→
[0,∞),

V(z; u̇) :=

∫
Ω

1

2
D(z)e(u̇) : e(u̇) dx , (6)

and the kinetic energy K : W→ [0,∞),

K(u̇) :=

∫
Ω

ρ

2
|u̇|2 dx . (7)

Moreover, the energy functional E : [0, T ]×U×X→ R associated with system (2) is given by

E(t, u, z) :=

∫
Ω

(
1
2C(z)e(u) :e(u) +

(
1
2` (1− z)

2 + `
2 |∇z|

2
))

dx− 〈f(t), u〉U∗,U , (8)

where we have gathered the volume load fV from (2a) and the surface load fS from (2d) in the term

〈f(t), u〉U∗,U :=

∫
Ω

fV (t) · udx+

∫
∂NΩ

fS(t) · udS;

the detailed assumptions on the external loadings are specified in (17). Note that E is a slight modification of the Ambrosio-
Tortorelli functional for phase-field fracture as we will allow C to depend on z in a monotone, but non-convex way to keep
C bounded, cf. assumptions (13) & (14) lateron. Moreover, we will assume both tensors C and D in (6) to be uniformly
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positive definite for all z ∈ R, so that the material can bear loads and still shows a visco-elastic response even in the state
of maximal damage z = 0. In this way, model (2) captures partial damage of the body, only. In the purely rate-independent
case of quasistatic evolutions, i.e., in the setting of energetic solutions for rate-independent processes the systems given by
(U×Z, E ,R) from (3), (5), and with an energy of the type (8), were shown in [Gia05] to approximate the Francfort-Marigo
model for brittle fracture [FM98] as `→ 0. This model is a variational formulation of Griffith’ energetic approach [Gri21] to
the description of brittle crack growth in terms of competing elastic bulk and dissipative surface energies. Following Griffith’
ideas for brittle solids, such as glass and certain metals, fracture is often modelled as a rate-independent process. This
modelling approach captures the observation that cracks can form and evolve abruptly, much faster than the changes of the
external loadings. In fact, solutions of purely rate-independent damage and fracture models do feature jumps with respect
to time, cf. e.g., [KS12, RTP15]. More recently, research focus in both engineering applications [BVS+12, SWKM14,
SKM+17] and in applied analysis [DMLT16, DMLT19, DMLT20, LRTT18, Rou19, RT17a, SS19] is put on the investigation
of dynamic fracture.

As an immediate approach based on well-established models for rate-independent phase-field fracture, the rate-independent
evolution of the damage variable is coupled with a (visco-) dynamic evolution of the displacements as also done in (2). In
order to achieve better stability in numerical simulations, often a viscosity for the damage variable is added to the model, as
we also allow for in (2) if M > 0. It is the aim of this contribution to better investigate the interplay of the rate-independent
evolution of the damage variable with the visco-elastodynamic evolution of the displacements.

For this, we will now give a suitable weak formulation for system (2). In this setting, we will show the existence of solutions
and study their temporal regularity for both cases M > 0 and M = 0.

Definition 1.1. In the spirit of [RT17a] we call a system that combines the conservative process of elastodynamics with
further dissipative processes a damped inertial system. We denote the damped inertial system with viscous regularization
M > 0 for the damage variable from (2) by the tuple (U,W,ZM ,V,K,RM , E). The damped inertial system obtained
in the rate-independent limit M → 0 is denoted by (U,W,Z,V,K,R, E).

In the viscous case M > 0 a suitable weak formulation for the damped inertial system (U,W,ZM ,V,K,RM , E) is
introduced as follows:

Definition 1.2 (Solutions of (U,W,ZM ,V,K,RM , E), viscous case M > 0). A pair (uM , zM ) : [0,T] → U ×X
is a solution of (U,W,ZM ,V,K,RM , E) if it satisfies the following four conditions:

• one-sided variational inequality for zM for almost all t ∈ [0,T):∫
Ω

[
1
2C
′(zM (t))e

(
uM (t)

)
:e
(
uM (t)

)
− 1

`

(
1− zM (t)

))
+MżM (t)

]
η dx

+

∫
Ω

`∇zM (t)·∇η dx ≥ 0 (9a)

for all η ∈ Y such that η ≤ 0 a.e. in Ω;

• unidirectionality: for all t1 < t2 ∈ [0,T] it is zM (t2) ≤ zM (t1) a.e. in Ω ; (9b)

• weak formulation of the momentum balance for all t ∈ [0,T] :

ρ

∫
Ω

u̇M (t) · v(t) dx− ρ
∫ t

0

∫
Ω

u̇M (r) · v̇(r) dxdr

+

∫ t

0

∫
Ω

[
D(zM )e(u̇M ) + C(zM )e(uM )

]
: e(v) dxdr (9c)

= ρ

∫
Ω

u̇M (0) · v(0) dx+

∫ t

0

〈f(r), v(r)〉U∗,U dr

for all v ∈ L2(0,T;U) ∩H1(0,T;L2(Ω,Rd)) ;

• energy-dissipation balance for almost all t ∈ [0,T):

K(u̇M (t)) + E(t, uM (t), zM (t)) +

∫ t

0

2
(
V(zM ; u̇M ) +RM (żM )

)
dr (9d)

= K(u̇0) + E(0, u0, z0) +

∫ t

0

∂tE
(
r, u(r), z(r)

)
dr .
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Above, in (9d) the term ∂tE(r, u(r), z(r)) = −〈ḟ(r), u(r)〉U∗,U stands for the partial time-derivative of the energy
functional. We point out that the formulation of the viscous damage evolution (9a) in terms of a one-sided variational in-
equality was already used in e.g. [HK11] at small strains and e.g. in [TBW20, TBW18] at finite strains. We also refer to the
works [HK11, BB08, RR15, HKRR17], where viscous damage models have been studied also in combination with dynam-
ics and further dissipative effects such as heat transport and phase separation. Moreover, [Rou19] gives a comprehensive
overview on different time-discretization schemes for damage models with viscous evolution and dynamics.

In analogy to the above viscous case, a suitable notion of weak solution for the damped inertial system
(U,W,Z,V,K,R, E) in the rate-independent case M = 0 is given by:

Definition 1.3 (Solutions of (U,W,Z,V,K,R, E), rate-independent case M = 0). A pair (u, z) : [0,T] → U ×X
is a solution of (U,W,Z,V,K,R, E) if it satisfies the the following four conditions:

• one-sided variational inequality for z for almost all t ∈ [0,T):∫
Ω

[1
2
C′(z(t))e

(
u(t)

)
: e
(
u(t)

)
− 1

`

(
1− z(t)

)]
η + `∇z(t) · ∇η dx ≥ 0 (10a)

for all η ∈ Y such that η ≤ 0 a.e. in Ω;

• unidirectionality: for all t1 < t2 ∈ [0,T] it is z(t2) ≤ z(t1) a.e. in Ω ; (10b)

• weak formulation of the momentum balance for all t ∈ [0,T] :

ρ

∫
Ω

u̇(t) · v(t) dx− ρ
∫ t

0

∫
Ω

u̇(r) · v̇(r) dxdr

+

∫ t

0

∫
Ω

[
D(z)e(u̇) + C(z)e(u)

]
: e(v) dx dr (10c)

= ρ

∫
Ω

u̇(0) · v(0) dx+

∫ t

0

〈f(r), v(r)〉U∗,U dr

for all v ∈ L2(0,T;U) ∩H1(0,T;L2(Ω,Rd)) ;

• energy-dissipation balance for almost all t ∈ [0,T):

K(u̇(t)) + E(t, u(t), z(t)) +

∫ t

0

2V(z(r); u̇(r)) dr +R(z(t)− z(0)) (10d)

=
ρ

2

∫
Ω

|u̇(0)|2 dx+ E(0, u(0), s(0)) +

∫ t

0

∂tE
(
r, u(r), z(r)

)
dr .

Remark 1.4 (Semistable energetic solution of (U,W,Z,V,K,R, E)). The tensorial map z 7→ C(z) is assumed to
be non-convex, but with a convexity regime (−∞, z∗) with z∗ > 1, such that C is convex in particular on the interval
[0, 1], see assumptions (13) & (14) for more details. Hence, the map z 7→ E(t, u, z) is non-convex in general, but
convex for functions z ∈ X that take values in [0, 1] a.e. in Ω. In fact, for solutions (u, z) in the sense of Def. 1.3 it
will be shown in Theorem 5.1, and for the time-discrete version in Theorem 4.1, that z : [0,T] → X takes its values
in the interval [0, 1] a.e. in Ω. Hence, convexity of E(t, u(t), ·) can be exploited along solutions. This is the reason why
solutions of (U,W,Z,V,K,R, E) in the sense of Definition 1.3 also fulfill the following semistability inequality for almost
all t ∈ [0,T):

E(t, u(t), z(t)) ≤ E(t, u(t), z̃) +R(z̃ − z(t)) for all z̃ ∈ X (11)

with E from (8) and R from (5). Hence, solutions in the sense of Definition 1.3 are also semistable energetic solutions in
the spirit of [RT17a].

Remark 1.5 (Improved temporal regularity and (9d), (10), (11) for all t ∈ [0,T)). Let Dc := {z ∈ Y, 0 ≤ z(x) ≤
z∗ a.e. in Ω} denote the convexity regime of C. Thanks to the observations for C discussed above in Remark 1.4 one
finds for E from (8) that E(t, u(t), ·) : Dc → R is even uniformly convex in the following sense: There is a constant
C? > 0 such that for all z0, z1 ∈ Dc and for all λ ∈ [0, 1]:

E(t, u(t), zλ) + C?λ(1− λ)‖z1 − z0‖2X ≤ λE(t, u(t), z1) + (1− λ)E(t, u(t), z0) ,

where we set zλ := λz1+(1−λ)z0. This allows us to deduce improved regularity statements for the solution z by suitably
adapting a general regularity result from [RT17a, Thm. 3.8] for coupled rate-independent/rate-dependent systems. In the

DOI 10.20347/WIAS.PREPRINT.2798 Berlin 2020



Dynamic phase-field fracture in visco-elastic materials 5

rate-independent case M = 0 we prove in Theorem 5.2 an abstract result providing a modulus of continuity to control the
expression ‖z(t)− z(s)‖X at any times s, t ∈ [0,T] in which the variational inequality (10a) and the energy-dissipation
balance (10d) are valid. In analogy, for the viscous case M > 0 we deduce in Theorem 6.2 a modulus of continuity to
control a kind of α-variation

∑
k∈N ‖z(tk) − z(tk−1)‖αX for partitions (tk)k∈N of any time interval [s, t] ⊂ [0,T] with

s, t such that (9a) and the energy-dissipation balance (9d) are valid. In both cases, M > 0 and M = 0, the modulus of
continuity emerges from terms related to the displacements and to their smoothness in time provided by the viscosity V
from (6). Further exploiting the unidirectionality (10b), resp. (9b), of the damage evolution the modulus of continuity can be
extended to any time t ∈ [0,T) in Corollary 5.5 for the rate-independent case M = 0 and in Corollary 6.4 for the viscous
case M > 0. In this way, one ultimately finds that the map z : [0,T) → X is continuous if M > 0, cf. Theorem 6.1,
and even Hölder-continuous if M = 0, cf. Theorem 5.1. Thus, in contrast to the purely rate-independent case, here in the
coupled rate-independent/rate-dependent setting, the uniform convexity of E(t, u(t), ·) : Dc → R rules out that solutions
z have jumps in time, because the regularity of the displacements enhanced by the viscosity V also improves the temporal
regularity of the internal variable z to a continuous evolution in time with values in the state space X.

Based on these continuity results, also properties (9d), (10) & (11) can be concluded to hold for all t ∈ [0,T), cf. Corollaries
5.5 & 6.4 for more details.

Outline of the paper. The purpose of this work is two-fold: On the one hand, as described in Remark 1.5, we investigate
the influence of the coupling of the state variables on their temporal regularity. On the other hand we aim to bring the
analytical approach closer to numerical methods. This is why we carry out the analysis for the existence of solutions in the
sense of Definitions 1.2 and 1.3 for both systems (U,W,ZM ,V,K,RM , E) and (U,W,Z,V,K,R, E) based on a
full discretization both in space and time. After specifying the basic assumptions on the domain and given data in Section 2,
we introduce in Section 3 the discrete scheme based on a staggered time-discrete method in combination with a Galerkin
approach in space, cf. (25), and we establish the existence of discrete solutions in Proposition 3.1. In particular, as done for
numerical simulations we understand on the discrete level the discretized version of (U,W,ZM ,V,K,RM , E) as an
approximation of the system. On the discrete level we also regularize the non-smooth unidirectionality constraint (1) with the
aid of a Yosida approximation. While the fully discrete counterpart to (2a) reduces to solving a linear system of equations,
it is more involved to find solutions for the discrete version of the damage evolution (2b) due to the nonlinearities stemming
from the nonlinear z-dependence of the elastic tensor C and the Yosida term. The existence proof thus relies on arguments
for nonlinear systems of equations based on Brouwer’s fixed point theorem. We subsequently show that the discrete
solutions obtained by the fully discrete scheme (25) approximate solutions of the systems (U,W,ZM ,V,K,RM , E)
and (U,W,Z,V,K,R, E) in several steps: Based on uniform a-priori bounds in Prop. 3.2 being independent of the
space-discretization we first pass to a space-continuous but time-discrete problem. In this setting it is possible to show that
solutions satisfy the constraint z ∈ [0, 1] a.e. in Ω and hence lie in the convexity regime Dc of the energy functional. In this
way one can obtain further uniform a priori bounds for the time-discrete solutions based on energy-dissipation estimates.
Section 5 treats the limit passage from time-discrete to continuous in the case M → 0 and thus provides the existence of
solutions to system (U,W,Z,V,K,R, E) in the sense of Def. 1.3, cf. Theorem 5.1. Subsequently, Section 6 is devoted
to the viscous analogon with M > 0 fixed and the existence of solutions to system (U,W,ZM ,V,K,RM , E) in the
sense of Def. 1.2 is obtained in Theorem 6.1. The abstract results on the temporal regularity of the solutions addressed in
Remark 1.5 are provided in Theorem 5.2 for the case M = 0 and in Theorem 6.2 for the case M > 0. We also point out
that we obtain strong convergence of the discrete solutions thanks to the validity of the energy-dissipation balance (10d) &
(9d), cf. Theorems 5.1 & 6.1.

Comparison with other approaches in literature. For the limit passage from time-discrete to time-continuous in Sections
5 and 6 we adapt arguments from [LRTT18], where the existence of semistable energetic solutions has been shown for a
system coupling rate-independent damage processes in thermo-viscoelastic materials with dynamic effects. This concerns
in particular the proofs of the weak balance of momentum and the energy-dissipation estimates, whereas the limit passage
in the variational inequality for the damage evolution is different here due to the viscous regularization M > 0. For
simplicity, the present work only considers homogeneous Dirichlet conditions (2c) and postulates C1-regularity in time for
the external load f, cf. (17). We refer to [LRTT18] for a relaxation toH1-regularity in time and to [LRTT16] for the treatment
of inhomogeneous, time-dependent Dirichlet conditions. We further point to the recent work [KZ19] which extends the
existence theory for the purely rate-independent setting to discontinuous loads using Kurzweil integrals. We emphasize
that our approach on the discrete level regularizes the unidirectionality constraint in terms of the Yosida approximation.
There are other techniques to provide monotonicity of the damage evolution. In many applications the problem is solved as
an unconstrained minimization and imposed a posteriori by a truncation with the solution from the previous time-step. In a

DOI 10.20347/WIAS.PREPRINT.2798 Berlin 2020



M. Thomas, S. Tornquist 6

quasistatic 2d-setting with a viscous regularization for the damage variable it is shown in [ABN18] that discrete solutions
obtained with this method by unconstrained minimization in an alternate minimization scheme and a posteriori truncation
converge to solutions of a unilateral L2-gradient flow.

We apply a vanishing viscosity method on the discrete level, but we do not develop balanced viscosity solutions in the
sense of [MRS12, MRS08, EM06] for general rate-independent systems, or like in [KRZ13, KRZ15, KRZ19] in the context
of quasistatic, rate-independent damage models. The main difficulty to apply this approach lies in the stored elastic energy∫

Ω
1
2C(z)e(u) : e(u) dx that nonlinearly couples the damage variable with the strains. Solutions u for the displacement

field, naturally found in the space U ⊂ H1(Ω;Rd), are not regular enough to make the variational derivative DzE(t, z, u)
a well-defined object in the dual space X∗ or in ZM in general space dimension d > 2, even if one finds z being bounded
with values in [0, 1] a.e. in Ω. Due to this lack of regularity there is no chain rule available to calculate the time-derivative of
the energy and hence, solutions cannot be a priori characterized in terms of an energy dissipation balance. In [KRZ13] or in
[ABN18] in 2d this issue is solved with the aid of an elliptic regularity result [HMW11, Theorem 1.1, p. 803] which provides
sufficiently improved regularity for the displacements to find a chain rule. However, because of the rate-dependence of the
displacements in problem (2) due to viscosity and inertia such improved spatial regularity results for the displacements are
not available here.

2 Notation and basic assumptions

We denote by Lm the m-dimensional Lebesgue measure for any m ∈ N.

Assumptions on the domain: For the domain Ω we make the assumptions

Ω ⊂ Rd is a bounded domain with Lipschitz-boundary ∂Ω, such that

∂DΩ ⊂ ∂Ω is non-empty and relatively open and ∂NΩ := ∂Ω \ ∂DΩ.
(12)

Assumptions on the tensors C, D: The dependence of the material tensors C,D : R → Rd×d×d×dsym on the phase-

field parameter z is realized by functions wC, wD : R→ [w0, w
∗] being prefactors to constant tensors C̃, D̃, i.e.,

C(z) := wC(z)C̃ and D(z) := wD(z)D̃ for all z ∈ R, (13a)

with constant, symmetric, and positively definite tensors C̃, D̃. (13b)

For wC, wD it is further assumed:

• Differentiability & boundedness: wC, wD ∈ C1(R, [w0, w
∗]) (14a)

with constants 0 < w0 < w∗,

• Monotonicity: w′C(z) ≥ 0 and w′D(z) ≥ 0 for all z ∈ R, (14b)

• Locally constant growth: w′C(z) = 0 and w′D(z) = 0. (14c)

for all z ∈ (−∞, 0] ∪ [z∗,∞),

• Local convexity: There are z∗ ∈ (1, z∗) and w∗ ∈ (w0, w
∗) s.th.

wC : [0, z∗]→ [w0, w∗] is convex. (14d)

Remark 2.1 (Properties of wC, wD and consequences). Properties (14) imply the existence of constants 0 < c0D < c∗D
and 0 < c0C < c∗C such that for all (z,A) ∈ R× Rd×d we have

c0D |A|
2 ≤ D(z)A : A ≤ c∗D |A|

2 and (15a)

c0C |A|
2 ≤ C(z)A : A ≤ c∗C |A|

2
. (15b)

Moreover, (14) implies that wC qualitatively is of the form indicated in Fig. 1.

The non-convexity ofwC on the interval [z∗, z∗] entails that an upper energy-dissipation estimate alike (9d) is not available
for fully discrete solutions (ukτh, z

k
τh)n. It will be only obtained in the limit n→∞ for the time-discrete, space-continuous

solutions (ukτ , z
k
τ ), since it will be shown in Theorem 4.1, Formula (41) that zkτ takes values in [0, 1] ⊂ [z∗, z

∗] a.e. in Ω.
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Figure 1: Qualitative shape of wC : R →
[w0, w

∗]: The function is constant on the inter-
vals (−∞, 0]∪ [z∗,∞), monotonously increas-
ing on R, and convex on the interval (−∞, z∗)
with z∗ > 1 but non-convex on [z∗, z

∗). The
points z	 � 0 and z⊕ � z∗ will play a role
later in the proof of Theorem 4.1, Formula (41),
when showing that solutions zkτ of the space-
continuous problem (2b) are bounded in [0, 1].

Assumptions on the given data: We assume for the external volume force fV in (2a) and the surface load fS in (2d)
that fV ∈ C1(0,T;U∗) and fS ∈ C1(0,T;L2(∂NΩ,Rd)). The combination of both forces

〈f(t), v〉U∗,U := 〈fV (t), v〉U∗,U +

∫
∂NΩ

fS(t) · v dHd−1 for all v ∈ U (16)

has the following properties:

• Regularity: f ∈ C1
(
0, T ;U∗

)
, (17a)

• Bounded time derivative: sup
t∈[0,T]

∥∥∥ḟ(t)
∥∥∥
U∗

<∞ . (17b)

In addition, from the set of initial data in (2f)-(2h) it is demanded that:

u0 ∈ U ,

u̇0 ∈ U,

z0 ∈ X, z0(x) ∈ [0, 1] for almost all x ∈ Ω .

(18)

Yosida-regularization: In the discrete setting, the non-smoothness in the dissipation potential RM in (4) will be substi-
tuted by a smooth approximation in terms of the Yosida-regularization. For this, the characteristic function χ(−∞,0] in (4)
is replaced by

r 7→ Nτ
2
m+(r)2 (19a)

with m+ : R → [0,∞) the maximum function m+(r) := max{r, 0} and Nτ → ∞ as time-step size τ → 0.
Accordingly, RM in (4) will be replaced in the discrete scheme by

RMτ (v) :=
M

2
|v|2 +

Nτ
2
m+(v)2 (19b)

and we write RMτ for the corresponding integral functional. For shorter notation in the proofs lateron, we will also write
m2

+(r) form+(r)2 in (19a). We point out that (19a) indeed is a regularization of the non-smooth unidirectionality constraint
since

d

dr
m2

+(r) =

{
2r if r > 0,
0 if r ≤ 0 .

(20)
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3 Existence of fully discrete solutions

The strategy to find solutions for the systems (U,W,ZM ,V,K,RM , E) and (U,W,Z,V,K,R, E) is to consider a
fully discrete scheme at first. The spatial discretization follows a Galerkin approach:

Space discretization: For V ∈ {X,Y,U} let Vn ⊂ V, n ∈ N, be finite-dimensional subspaces such that these spaces
form ascending chains, i.e. Vn1

⊂ Vn2
, if n1 ≤ n2, and such that

⋃
n>0 Vn ⊂ V densely. For Vn = Xn and Vn = Yn

the index n ∈ N coincides with the space dimension, while for Vn = Un the space dimension is supposed to be dn,
since elements u ∈ Un are vector-valued functions of dimension d. Moreover, PVn : V → Vn denotes the projection
onto Vn defined by ∥∥PVn (v)− v

∥∥
V

= min
w∈Vn

‖w − v‖V for all v ∈ V . (21)

Let (ϕj)
n
j=1, resp. (ϕj)

dn
j=1, be a basis for Xn, resp. Un. Then z ∈ Xn and u ∈ Un are represented by z =∑n

j=1 zjϕj , u =
∑dn
j=1 ujϕj and we write z = (zj)

n
j=1 ∈ Rn, u = (uj)

dn
j=1 ∈ Rdn for the vectors of coefficients.

Discretization in time: Consider a partition Πτ = {0 = t0τ < t1τ . . . < tNττ = T} of the time interval [0,T] with step
size τ = tkτ − tk−1

τ = T
Nτ

. For a sufficiently smooth function v : [0,T] → V we set vkτ = v(tkτ ) for tkτ ∈ Πτ and we
introduce the discrete approximations of the time derivatives by

Dτv
k
τ :=

vkτ − vk−1
τ

τ
, (22a)

D2
τv
k
τ :=

1

τ
(Dτv

k
τ − Dτv

k−1
τ ) =

vkτ − 2vk−1
τ + vk−2

τ

τ2
. (22b)

For the discretization of the external loadings we use an approximation

fkτ := f(tkτ ) (23)

and denote by fkτh the restriction of fkτ ∈ U∗ to Uh, where naturally

fkτh → fkτ strongly in U∗ as h→∞ for all k ∈ {1, . . . , Nτ} and τ > 0 fixed . (24)

Discrete approximation of (U,W,ZM ,V,K,RM , E): Keep the time step-size τ > 0 fixed. For the initial data
(z0, u0, u̇0) from (18) set z0

τ := z0, u0
τ := u0, and u−1

τ := u0 − τ u̇0. For all h ∈ N let (z0
τh)h, (u0

τh)h, (u−1
τh )h

with z0
τh ∈ Xh, u0

τh, u
−1
τh ∈ Uh be approximations of the inital data such that z0

τh → z0
τ in X, u0

τh → u0
τ in U, and

u−1
τh → u−1

τ in U as h → ∞. For each τ, h > 0 fixed, using the discrete intial data (z0
τh, u

0
τh, u

−1
τh ) our aim is to find

for every time step tkτ ∈ Πτ solutions zkτh ∈ Xh, ukτh ∈ Uh of the following staggered discrete Galerkin scheme:

0 = 〈DzE(tkτ , u
k−1
τh , zkτh) + DRMτ (Dτz

k
τh), ηn〉X∗,X for all ηn ∈ Yn , (25a)

0 =

∫
Ω

(
D2
τu

k
τh · vn +

[
D(zkτh)e(Dτu

k
τh) + C(zkτh)e(ukτh)

]
: e(vn)

)
dx (25b)

−
〈
fkτh, vn

〉
U∗,U

for all vn ∈ Un .

We state the two results of this section, the existence of solutions (ukτh, z
k
τh) for the Galerkin scheme (25) and their uniform

boundedness with respect to the index n ∈ N, cf. Propositions 3.1 and 3.2; the proofs will be carried out subsequently in
Subsections 3.1 and 3.2.

Proposition 3.1 (Existence of fully discrete solutions). Let the assumptions (12)–(19) be satisfied. Keep τ > 0, k ∈
{1, . . . , Nτ}, and n ∈ N fixed. Then there exists a solution (ukτh, z

k
τh) of the Galerkin scheme (25) corresponding to

system (U,W,ZM ,V,K,RM , E).

Note that, due to assumptions (13)–(14), the stored elastic energy is non-convex in z on the subinterval [z∗, z
∗]. Thus,

one cannot expect to obtain an energy-dissipation estimate alike (9d) via convexity arguments. Nevertheless, thanks to
assumptions (13b) and (14b), the following uniform a-priori bounds can be obtained for fully discrete solutions (ukτh, z

k
τh)n

for all k.
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Proposition 3.2 (Uniform a-priori bounds for fully discrete solutions). Let the assumptions of Theorem 3.1 be fulfilled.
Further assume that the discrete initial data (u0

τh)n, (u
−1
τh )n, and (z0

τh)n, are uniformly bounded. Then, the fully discrete
solutions (ukτh, z

k
τh) of problem (25) satisfy the following uniform a-priori bounds

‖ukτh‖U ≤ C̃ , (26a)

‖zkτh‖Z ≤ C̃ . (26b)

with a constant C̃ = C̃(f, u0, u̇0, z0, τ,M, `) depending on f, u0, u̇0, z0, τ,M, `, but independent of n ∈ N.

3.1 Proof of Proposition 3.1

In the following, τ > 0 and k ∈ {1, . . . , Nτ} are kept fixed. Using the notation introduced at the beginning of Section
3, the Galerkin scheme (25) can be rewritten as a system of (non-) linear equations for the coefficient vectors zkτh =
(zkτhi)

n
i=1 ∈ Rn, ukτh ∈ Rdh:

Testing in (25b) with basis elements ϕj for Uh, j = 1, . . . , dn, and multiplying with τ2 implies for all j ∈ {1, . . . , dh}

0 =

dn∑
i=1

ukτhi

(∫
Ω

ρϕi ·ϕj dx+

∫
Ω

(
τD(zkτh) + τ2C(zkτh)

)
e(ϕi) : e(ϕj) dx

)
+

∫
Ω

ρ (−2uk−1
τh + uk−2

τh ) ·ϕj − τD(zkτh)e(uk−1
τh ) : e(ϕj) dx− τ2〈fkτh,ϕj〉U∗,U .

This is rewritten as matrix-vector multiplication using the coefficient vector ukτh:[∫
Ω

ρϕi ·ϕj dx
]dh
i,j=1

ukτh +
[∫

Ω

(
τD(zkτh) + τ2C(zkτh)

)
e(ϕi) : e(ϕj) dx

]dh
i,j=1

ukτh (27a)

=
[∫

Ω

ρ (2uk−1
τh − u

k−2
τh ) ·ϕj + τD(zkτh)e(uk−1

τh ) : e(ϕj) dx+ τ2〈fkτh,ϕj〉U∗,U
]dh
j=1

which is a linear system of equations (M1 + M2)ukτh = b. It is solvable since the mass matrices M1 and M2 are
positively definite by the linear independence of the basis elements and thanks to the assumptions (13) on C,D. Thus,
finding a solution un amounts to solving the linear system of equations (27a) by directly inverting the mass matrices.

Testing (25a) with the basis elements ϕj of Zh, j = 1, . . . , n, and using the notation E := (ϕj)
n
j=1, leads to

0 =

∫
Ω

(1

2
C′(zkτh)e(uk−1

τh ) : e(uk−1
τh ) + Nτ

2
d
dzm

2
+(Dτz

k
τh)
)
E dx

+

[∫
Ω

(M
τ

+
1

`

)
ϕiϕj dx

]n
i,j=1

zkτh +

[∫
Ω

`∇ϕi · ∇ϕj dx

]n
i,j=1

zkτh

−
∫

Ω

(M
τ
zk−1
τh +

1

`

)
E dx

which is a nonlinear system of equations

g(zkτh) := f(zkτh) + M3z
k
τh + M4z

k
τh − p = 0 . (27b)

We show now that it posesses a solution for every fixed k, τ , h. To do so, we will make use of the following result:

Proposition 3.3 ([Zei86, Prop. 2.8, p. 53]). Consider the system of equations

g(z) = (gi(z))ni=1 = 0 where z ∈ Rn. (28)

Let BR(0) := {z ∈ Rn, ‖z‖ ≤ R} for fixed R > 0 and ‖ · ‖ a norm on Rn. Let gi : BR(0) → R be continuous for
i = 1, . . . , n. Further assume that

g(z) · z ≥ 0 for all z with ‖z‖ = R. (29)

Then (28) has a solution z with ‖z‖ ≤ R.
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In the following we thus verify that the nonlinear system (27b) satisfies the assumptions of Prop. 3.3. Here, we write
z =

∑n
i=1 ziϕi and z = (zi)

n
i=1. The continuity of g : Rn → Rn follows by the assumptions of Section 2. It remains to

check condition (29). For that, exploiting the positive definiteness of M3 and M4 one directly estimates

g(z) · z = f(z) · z + M3z · z + M4z · z− p · z ≥ f(z) · z + c1|z|2 − c2|z| , (30)

where the constant c1 = c1(Mτ , `) is given by the smallest eigenvalue of (M3 + M4) and c2 = c2(Mτ ,
1
` , z

k−1
τh )

originates from the term p =
∫

Ω

(
M
τ z

k−1
τh + 1

`

)
E dx. We now estimate in detail the nonlinear term f(z) · z that involves

the nonlinear functions C′ and d
dzm

2
+. For these terms we use that C′ takes its maximum value at z∗ by (14) and that in

view of (20)

d
dzm

2
+

(
1
τ (z − zk−1

τh )
)
E · z ≥ −2

τ

(
(1− 1

2ε
) |z|2 +

ε

2

∣∣zk−1
τh

∣∣2) (31)

with ε > 0 fixed but arbitrary such that (1− 1
2ε ) > 0. In this way we find

f(z) · z =

∫
Ω

1

2
C′(z)e(uk−1

τh ) : e(uk−1
τh )E · zdx+

∫
Ω

Nτ
2

d
dzm

2
+

(
1
τ (z − zk−1

τh )
)
E · z dx

≥ −
∫

Ω

1

2

∣∣C′(z∗)||e(uk−1
τh )|2|z

∣∣ dx−
∫

Ω

Nτ
τ

(
(1− 1

2ε
) |z|2 + ε

∣∣zk−1
τh

∣∣2
2

)
dx

≥ −c3 |z| −
Nτ
τ

(1− 1

2ε

)
|z|2 Ld(Ω)−

∫
Ω

ε
Nτ
2τ

∣∣zk−1
τh

∣∣2 dx

with c3 = c3(uk−1
τh ). Now, choose ε > 0 such that with c1 from (30) c4 := c1 − Nτ

τ (1 − 1
2ε )Ld(Ω) > 0. Then, with

Young’s inequality it follows that

c4 |z|2 − (c2 + c3) |z| ≥ c4
|z|2

2
− (c2 + c3)2

c4
.

Putting everything together and inserting it into (30) results in

g(z) · z ≥ c4
2
|z|2 − (c2 + c3)2

c4
− c5 (32)

with c5 = c5(τ, zk−1
τh ), more precisely

c5 = ε
Nτ
2τ

∫
Ω

∣∣zk−1
τh

∣∣2 dx

and ε with the specific choice from above. From this we see that (29) is satisfied for R ≥
√

2c5
c4

+ 2(c2+c3)2

c24
. �

3.2 Proof of Proposition 3.2

We proceed by induction and see that the assertion is satisfied for the initial step k = 0 thanks to the assumptions made
on the initial data. For any step k ∈ N, suppose that (uk−1

τh )n, (uk−2
τh )n and (zk−1

τh )n are uniformly bounded in their
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respective state spaces. Testing (25a), (25b) with the solutions zkτh and ukτh respectively, we estimate

0 =
〈
DzE(tkτ , u

k−1
τh , zkτh) + DRMτ (Dτz

k
τh), zkτh

〉
X∗,X

+

∫
Ω

ρD2
τu

k
τh · ukτh +

[
D(zkτh)e(Dτu

k
τh) + C(zkτh)e(ukτh)

]
: e(ukτh) dx

−
〈
fkτh, u

k
τh

〉
U∗,U

≥
∫

Ω

1

2
zkτhC′(zkτh)e(uk−1

τh ) : e(uk−1
τh )− 1

`
(1− zkτh)zkτh + `|∇zkτh|2 dx

+

∫
Ω

M(Dτz
k
τh)zkτh + Nτ

2
d
dzm

2
+(Dτz

k
τh)zkτh dx

+

∫
Ω

ρ

τ2

(
|ukτh|2 −

1

2
|ukτh|2 − 2|uk−1

τh |
2 − 1

2
|ukτh|2 −

1

2
|uk−2
τh |

2
)

dx

+

∫
Ω

1

τ

(
c0D|e(ukτh)|2 − c0D

2
|e(ukτh)|2 − c∗D

2

2c0D

∣∣e(uk−1
τh )

∣∣2)dx

+

∫
Ω

c0C|e(ukτh)|2 dx− ‖fkτh‖U∗‖ukτh‖U ,

(33)

where Hölder’s and Young’s inequalities where used to estimate the momentum term. Observe that the first term on the
right-hand side is non-negative since zkτhC′(zkτh) ≥ 0 by assumptions (14b) and (14c); it thus can be omitted to further
estimate from below. For the phase-field term we estimate∫

Ω

1
` (1− zkτh)zkτh dx ≥ 1

2`‖z
k
τh‖2L2(Ω) − 1

2`L
d(Ω) (34)

and for the viscous dissipation we find the lower bound∫
Ω

M(Dτz
k
τh)zkτh + Nτ

2
d
dzm

2
+(Dτz

k
τh)zkτh dx

≥
(
M
2τ −

Nτ
τ (1− 1

2ε )
)
‖zkτh‖2L2(Ω) − M

2τ ‖z
k−1
τh ‖

2
L2(Ω) − εNτ

2τ ‖z
k−1
τh ‖

2
L2(Ω) ,

(35)

where again the lower bound on the Yosida-term in (31) was used and ε > 0 was chosen such that c6 = c6(M, τ) :=(
M
2τ −

Nτ
τ (1− 1

2ε )
)
> 0. We set c7 = c7( 1

τ2 ) := εNτ
2τ with ε as above. The terms in the last line of (33) are estimated

by Korn’s inequality with constant cK and by Young’s inequality∫
Ω

c0C
∣∣e(ukτh)

∣∣2 dx−
∥∥fkτh∥∥U∗ ∥∥ukτh∥∥U ≥ (

c0C
c2K
− δ

2 )
∥∥ukτh∥∥2

U
− 1

2δ

∥∥fkτh∥∥2

U∗
, (36)

where δ :=
c0C
c2K

is chosen such that (
c0C
c2K
− δ

2 ) =
c0C

2c2K
. Using estimates (34)–(36) in (33) and putting all negative terms to

the left-hand side results in

1

2`
Ld(Ω) +

c2K
2c0C

∥∥fkτh∥∥2

U∗
+

ρ

τ2

(
2
∥∥uk−1

τh

∥∥2

L2 +
1

2

∥∥uk−2
τh

∥∥2

L2

)
+
(M

2τ
+ c7

)∥∥zk−1
τh

∥∥2

L2(Ω)
+

c∗D
2

2τc0D

∥∥e(uk−1
τh )

∥∥2

L2(Ω)

≥
(
c6 +

1

2`

)
‖zkτh‖2L2(Ω) + `‖∇zkτh‖2L2(Ω) +

c0C
2c2K

∥∥ukτh∥∥2

U
.

Since
∥∥fkτh∥∥U∗ ≤ C uniformly for all k, τ, n the above estimate gives a bound on (zkτh)n and (ukτh)n in Z and U

uniformly for all n ∈ N and fixed τ , k ∈ N, i.e., with a constant C̃ = C̃(f, u0, u̇0, z0, τ,M, `) as indicated in (26). �

4 Limit passage from the space-discrete to the space-continuous setting

In this section we keep the parameters M, τ > 0 fixed and pass to the limit n → ∞ with the space discretization. In
particular, we obtain the following result:
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Theorem 4.1 (Existence of solutions in the space-continuous setting). Let the assumptions of Proposition 3.1 and 3.2 be
satisfied. For all τ > 0, k ∈ {0, 1, . . . , Nτ}, n ∈ N let (ukτh, z

k
τh) be a solution of (25). Keep τ > 0 fixed. Then the

following statements hold true:

1 For each k ∈ {1, . . . , Nτ} there is a (not relabelled) subsequence (ukτh, z
k
τh)n and a limit pair (ukτ , z

k
τ ) ∈ U×X

such that the following convergence results hold true:

ukτh ⇀ ukτ weakly in U, (37a)

zkτh ⇀ zkτ weakly in X. (37b)

2 For each k ∈ {1, . . . , Nτ} the limit pair (ukτ , z
k
τ ) ∈ U×X is a solution of the time-discrete problem

0 = 〈DzE(tkτ , u
k−1
τ , zkτ ) + DRMτ (Dτz

k
τ ), η〉X∗,X for all η ∈ Y, (38a)

0 =

∫
Ω

(
D2
τu

k
τ · v +

[
D(zkτ )e(Dτu

k
τ ) + C(zkτ )e(ukτ )

]
: e(v)

)
dx−

〈
fkτ , v

〉
U∗,U

(38b)

for all v ∈ U .

3 Assume that the discrete initial data satisfy

u0
τh → u0

τ in U and u−1
τh → u−1

τ in U, (39a)

z0
τh → z0

τ in X. (39b)

Then, in addition to (37) for each k ∈ {1, . . . , Nτ} also the following improved convergence results hold true:

ukτh → ukτ strongly in U, (40a)

zkτh → zkτ strongly in X. (40b)

4 Suppose that z0
τh ∈ [0, 1]. Then, for each k ∈ {1, . . . , Nτ} the limit function zkτ satisfies

zkτ ∈ Y, in particular 0 ≤ zkτ ≤ 1 a.e. in Ω. (41)

5 LetL ∈ {1, . . . , Nτ}. The time-discrete solutions (ukτ , z
k
τ )Nτk=0 of (38) satisfy the following upper energy-dissipation

estimate:

K(Dτu
L
τ ) + E(tLτ , u

L
τ , z

L
τ ) +

L∑
k=1

τ2V(zkτ ;Dτu
k
τ ) +

L∑
k=1

τ2RMτ (Dτz
k
τ )

≤ K(Dτu
0
τ ) + E(t0τ , u

0
τ , z

0
τ )− τ

L∑
k=1

〈
Dτf

k
τ , u

k−1
τ

〉
U∗,U

(42)

Proof of Theorem 4.1. The weak convergence results (37) are direct consequences of the uniform a-priori bounds (26).
The proofs of the remaining statements (38)–(42) will be carried out subsequently in Subsections 4.1–4.5.

For solutions (ukτ , z
k
τ )Nτk=1 obtained by solving (38), piecewise constant interpolants v̄τ ,

¯
vτ , and affine-linear approxima-

tions vτ for v ∈ {u, z} are introduced, defined for t ∈ (tk−1
τ , tkτ ], k = 1, . . . Nτ , by

v̄τ (t) = vkτ , ¯
vτ (t) = vk−1

τ , vτ (t) =
t− tk−1

τ

τ
vkτ +

tkτ − t
τ

vk−1
τ . (43)

In addition, we set for any t ∈ (tk−1
τ , tkτ ]

t̄τ (t) := tkτ , ¯
tτ (t) := tk−1

τ , (44)
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and for the stored energy

Ê(t, u, z) :=

∫
Ω

(
1
2C(z)e(u) : e(u) +

(
1
2` (1− z)

2 + `
2 |∇z|

2
))

dx−
〈
f̂(t), u

〉
U∗,U

(45)

with Ê ∈ {Eτ , Ēτ , Ēτ} depending on the choice of the interpolant for the external force f̂ ∈ {fτ , f̄τ ,
¯
fτ}. In this way,

the time-discrete problem (38) as well as the upper energy-dissipation estimate (42) can be reformulated also for the
interpolants. Here, also discrete integration by parts is used

τ

L∑
k=1

∫
Ω

u̇kτ−u̇
k−1
τ

τ · vkτ dx =

∫
Ω

(
u̇Lτ · vLτ − u̇0

τ · v0
τ

)
dx− τ

L∑
k=1

∫
Ω

u̇k−1
τ · vτ

k−vk−1
τ

τ dx (46)

for any tuple (vkτ )Lk=0 ⊂ L2(0,T;L2(Ω)), to state the weak balance of momentum for the interpolants. Then, we have

0 = 〈DzĒτ (t,
¯
uτ (t), z̄τ (t)) + DRMτ (żτ (t)), η〉X∗,X for all η ∈ Y, (47a)

0 = ρ

∫
Ω

u̇τ (t) · v̄τ (t)− u̇τ (0) · v̄τ (0) dx− ρ
∫ t̄τ (t)

0

∫
Ω

u̇τ (r − τ)v̇τ (r) dxdr (47b)

+

∫ t̄τ (t)

0

∫
Ω

[
D
(
z̄τ (r)

)
e
(
u̇τ (r)

)
+ C

(
z̄τ (r)

)
e
(
ūτ (r)

)]
: e(v̄τ (r)

)
dx dr

−
∫ t̄τ (t)

0

〈
f̄τ (r), v̄τ (r)

〉
U∗,U

dr (47c)

for all tuples (vkτ )Nτk=0 ⊂ U setting v̄(s) := vkτ and vτ (s) :=
t−tk−1

τ

τ vkτ +
tkτ−t
τ vk−1

τ for s ∈ (tk−1
τ , tkτ ], and

K(u̇τ (t)) + Ēτ (t, ūτ (t), z̄τ (t)) +

∫ t̄τ (t)

0

2
(
V(z̄τ (r); u̇τ (r)) +RMτ (żτ (r))

)
dr

≤ K(u̇τ (0)) + E(0, ūτ (0), z̄τ (0))−
∫ t̄τ (t)

0

〈
ḟτ (t),

¯
uτ (t)

〉
U∗,U

.

(47d)

Estimate (47d) leads to the following uniform a priori estimates for the time-discrete interpolated solutions:

Proposition 4.2 (Uniform a-priori bounds for time-discrete solutions). Let the assumptions of Theorem 4.1 be satisfied. In
addition, suppose that we have z0

τ = z0, u0
τ = u0 and u−1

τ = u0−τ u̇0 for all τ > 0. For the interpolants constructed by
(43) with the time-discrete limit pairs (ukτ , z

k
τ )Nτk=1 found in (37), the following a priori estimates hold true with a constant

C > 0 independent of τ and M :

‖
¯
uτ‖L∞(0,T;U) + ‖ūτ‖L∞(0,T;U) ≤ C, (48a)

‖u̇τ‖L∞(0,T;L2(Ω,Rd)) ≤ C, (48b)

‖uτ‖H1(0,T;U) ≤ C, (48c)

‖Dτ u̇τ‖L2(0,T;U∗) ≤ C, (48d)

‖
¯
zτ‖L∞(0,T;X) + ‖z̄τ‖L∞(0,T;X) ≤ C, (48e)

‖żτ‖L2(0,T;L2(Ω)) ≤
C√
M

, (48f)

‖zτ‖H1(0,T;L2(Ω)) ≤
C√
M

, (48g)

‖
¯
zτ‖BV (0,T;L1(Ω)) + ‖z̄τ‖BV (0,T;L1(Ω)) ≤ C, (48h)

‖żτ‖L1(0,T;L1(Ω)) ≤ C. (48i)

The proof of Proposition 4.2 is carried out in detail in Section 4.6.
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4.1 Proof of (38b): Limit passage in the discrete momentum balance

We pass to the limit n → ∞ in the fully discrete momentum balance (25b). For this, let v ∈ U be a test function of
the space-continuous limit problem (38b) and (vh)h ⊂ U such that vh ∈ Uh for all h ∈ N are test functions for the
finite-dimensional problems (25b) with the property vh → v strongly in U. A sequence (vn)n with these properties does
exist, since ∪n∈NUn is dense in U by assumption. Now, for the limit passage in (25b), i.e., in

0 =

∫
Ω

ukτh−2uk−1
τh +uk−2

τh

τ2 · vn +
[
D(zkτh)e

(
ukτh−u

k−1
τh

τ

)
+ C(zkτh)e(ukτ )

]
: e(vn) dx

− 〈fkτh, vn〉U∗,U ,

we see that convergence of the first summand is ensured by the weak convergence of the displacements in U from
(37a) and the strong convergence vn → v in U. For the second and third summand, (37b) implies by compactness
that zkτh → zkτ strongly in L1(Ω), thus almost everywhere in Ω along a subsequence. Then, by continuity of C,D, cf.
assumption (14a), there follows

D(zkτh)e(vn)→ D(zkτ )e(v) and C(zkτh)e(vn)→ C(zkτ )e(v) pointwise a.e. in Ω .

Exploiting the uniform bounds on D and C in (15a) and (15b), we conclude the convergence of the integrals using the dom-
inated convergence theorem in a version with n-dependent majorants, cf. [RF17, Sec. 4.4, Thm. 19, p. 89]. Convergence
of the external loading term follows from the strong convergence of the test functions together with strong convergence
(24). This results in (38b). �

4.2 Proof of (38a): Limit passage in the discrete phase-field equation

We consider the limit passage n → ∞ in the discrete problem (25a). Let η ∈ Y be a test function for the space-
continuous phase-field equation (38a). Let (ηn)n ⊂ Xn such that ηn → η strongly in X and ‖ηn‖L∞(Ω) ≤ cη uniformly
for all n ∈ N. Using these test functions we now pass to the limit in (25a), i.e., in

0 = 〈DzĒτ (tkτ , u
k−1
τh , zkτh) + DRMτ

(
zkτh−z

k−1
τh

τ

)
, ηn〉X∗,X

=

∫
Ω

1

2
C′(zkτh)e(uk−1

τh ) : e(uk−1
τh )ηn dx+

∫
Ω

(
`∇zkτh · ∇ηn −

1

`
(1− zkτh)ηn

)
dx

+

∫
Ω

M
zkτh−z

k−1
τh

τ ηn dx+

∫
Ω

Nτ
2

d

dz
m2

+

(
zkτh−z

k−1
τh

τ

)
ηn dx .

For the second and the third integral term on the right-hand side, convergence follows by weak-strong convergence ar-
guments using (37b) together with the strong convergence of (ηn)n. For the fourth integral on the right-hand side, that is

the Yosida-regularization of the unidirectionality constraint, we find with (20) that Nτ2
d
dzm

2
+

( zkτh−zk−1
τh

τ

)
ηn convergences

pointwise almost everywhere in Ω. In addition,∣∣∣∣∣Nτ2 d

dz
m2

+

(zkτh − zk−1
τh

τ

)
ηn

∣∣∣∣∣ ≤
∣∣∣∣∣Nτ(zkτh − zk−1

τh

τ

)
ηn

∣∣∣∣∣ ,
which provides an admissible summable majorant. Based on this, one can pass to the limit using the dominated con-
vergence theorem [RF17, Sec. 4.4, Thm. 19, p. 89]. It remains to discuss the limit passage in the first integral on the
right-hand side. For this, observe that the assumptions (14) on wC imply together with the uniform bound on ηn that

|ηn|w′C(zkτh) ≤ cηw′C(z∗)

for all zkτh, and thus
|ηnC′(zkτh)e(uk−1

τh ) : e(uk−1
τh )| ≤ cηC′(z∗)e(uk−1

τh ) : e(uk−1
τh ) .

Arguing by the dominated convergence theorem with n-dependent majorants provides the convergence of the corre-
sponding integral term. Here we explicitly use the strong convergence uk−1

τh → uk−1
τ in U, cf. (40a), which is proved by

induction in Lemma 4.3 right below. All in all we obtain (38a). �
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4.3 Proof of (40): Improved convergence

In the following we verify the strong convergence (40) with the aid of two separate lemmata:

Lemma 4.3 (Strong convergence of (ukτh)n). Keep k ∈ N fixed. Assume that

uk−1
τh → uk−1

τ in U and uk−2
τh → uk−2

τ in U, (49a)

zkτh → zkτ in L2(Ω). (49b)

Then, the fully discrete solutions (ukτh)n satisfy the strong convergence result (40a).

Proof. In a first step we show that∫
Ω

(1

τ
D(zkτh) + C(zkτh)

)
e(ukτh) : e(ukτh) dx→

∫
Ω

(1

τ
D(zkτ ) + C(zkτ )

)
e(ukτ ) : e(ukτ ) dx . (50)

For this, we test (25b) with ukτh ∈ Un and rearrange the terms as follows∫
Ω

(1

τ
D(zkτh) + C(zkτh)

)
e(ukτh) : e(ukτh) dx

= 1
τ2

∫
Ω

−|ukτh|2 + 2uk−1
τh ·u

k
τh − uk−2

τh ·u
k
τh dx+

∫
Ω

1
τD(zkτh)e(uk−1

τh ) : e(ukτh) dx

+ 〈fkτh, ukτh〉U∗,U

(51)

As n → ∞ we obtain convergence of all three integrals on the right-hand side by the following arguments: For the
first integral we have convergence due to ukτh → ukτ strongly in L2(Ω) by (37a) and the compact embedding of U
in L2(Ω) together with convergence assumption (49a) on (uk−1

τh )n and (uk−2
τh )n. Moreover, the convergence of the

external loading-term is a consequence of the strong convergence of the external forces in (96c) and again (37a). The
limit passage in the dissipation term on the right-hand side is guaranteed by (49a) together with the uniform bound on
D, providing that 1

τD(zkτh)e(uk−1
τh ) → 1

τD(zkτ )e(uk−1
τ ) strongly in L2(Ω). With the above arguments and using weak

lower semicontinuity on the left-hand side of (51), we obtain the following chain of inequalities∫
Ω

(1

τ
D(zkτ ) + C(zkτ )

)
e(ukτ ) : e(ukτ ) dx

≤ lim inf
n→∞

∫
Ω

(1

τ
D(zkτh) + C(zkτh)

)
e(ukτh) : e(ukτh) dx

≤ lim sup
n→∞

∫
Ω

(1

τ
D(zkτh) + C(zkτh)

)
e(ukτh) : e(ukτh) dx

=
1

τ2

∫
Ω

−|ukτ |2 + 2uk−1
τ · ukτ − uk−2

τ · ukτ dx+

∫
Ω

1

τ
D(zkτ )e(uk−1

τ ) : e(ukτ ) dx

+ 〈fkτ , ukτ 〉U∗,U

=

∫
Ω

(1

τ
D(zkτ ) + C(zkτ )

)
e(ukτ ) : e(ukτ ) dx ,

(52)

where the last equality in (52) is due to the fact that solutions (ukτ , z
k
τ ) satisfy the weak balance of momentum (38b) with

the test function ukτ ∈ U. Hence, (50) is proved.

Now, (50) can be used to conclude the desired strong convergence (40a). Making use of the projection operatorPU
n : U→

Un, Korn’s inequality, and the positive definiteness of the tensors C and D, we estimate

c2K
∥∥ukτh − ukτ∥∥2

U
≤
∥∥e(ukτh)− e(ukτ )

∥∥2

L2(Ω)

≤ 2
∥∥e(ukτh)− e

(
PU
n (ukτ )

)∥∥2

L2(Ω)
+ 2

∥∥(PU
n (ukτ )

)
− e(ukτ )

∥∥2

L2(Ω)

≤ 2(c0D + c0C)−1

∫
Ω

(
D(zkτh) + C(zkτh)

)[
e(ukτh)− e

(
PU
n (ukτ )

)]
:
[
e(ukτh)− e

(
PU
n (ukτ )

)]
dx

+
∥∥e(PU

n (ukτ )
)
− e(ukτ )

∥∥2

L2 → 0 .
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The latter summand converges to 0 as an intrinsic property of the projection operator. The first summand on the rightmost
side converges to 0 as a consequence of (50) and further weak-strong convergence arguments. Thus, the assertion
follows.

Lemma 4.4 (Strong convergence of (zkτh)n). Keep k ∈ N fixed. Assume that the first of (49a) holds true and in addition
also

zk−1
τh → zk−1

τ in Z. (53)

Then, the fully discrete solutions (zkτh)n satisfy the strong convergence result (40b).

Proof. To find the desired strong convergence (40b) we will show that

‖∇zkτ ‖2L2(Ω) ≤ lim inf
n→∞

‖∇zkτh‖2L2(Ω) ≤ lim sup
n→∞

‖∇zkτh‖2L2(Ω) ≤ ‖∇z
k
τ ‖2L2(Ω) . (54)

Here, the first estimate in (54) follows by weak lower semicontinuity and weak convergence (37b) and the second estimate
is immediate. To verify the third estimate in (54) we will make use of the discrete equation (38a). More precisely, we test
(38a) with zkτh ∈ Zn and rearrange the terms as follows∫

Ω

`|∇zkτh|2 dx

= −
∫

Ω

1
2z
k
τhC′(zkτh)e(uk−1

τh ) : e(uk−1
τh ) dx

+

∫
Ω

(
1
` (1− zkτh)zkτh −M

zkτh−z
k−1
τh

τ zkτh − Nτ
2

d
dzm

2
+

(
zkτh−z

k−1
τh

τ

)
zkτh

)
dx .

(55)

We discuss the limit n → ∞ for the terms on the right-hand side of (55). Thanks to the convergence zkτh ⇀ zkτ in X by
(37b) and by the compact embedding of H1(Ω) into L2(Ω) we have zkτh → zkτ in L2(Ω). A similar result also holds true

for (zk−1
τh )n. Note that, by (20), d

dzm
2
+

(
zkτh−z

k−1
τh

τ

)
= 2(

zkτh−z
k−1
τh

τ ) for (zkτh − z
k−1
τh ) > 0 and d

dzm
2
+

(
zkτh−z

k−1
τh

τ

)
=

0 for (zkτh − z
k−1
τh ) ≤ 0, henceL2-convergence supplemented by dominated convergence is sufficient to pass to the limit

also in this term. With these arguments the convergence of the second integral on the right-hand side of (55) is ensured.
Instead, the first integral on the right-hand side (55) requires further investigation. Since there is no uniform L∞-bound
available for zkτh, we instead exploit the properties of the degradation function wC. More precisely, properties (14) imply
the estimate

0 ≤ zkτhw′C(zkτh) ≤ z∗w′C(z∗) for all zkτh ∈ R .

This further implies that

0 ≤ zkτhC′(zkτh)e(uk−1
τh ) : e(uk−1

τh ) ≤ z∗C′(z∗)e(uk−1
τh ) : e(uk−1

τh ) , (56)

and the right-hand side of (56) provides a convergent, integrable majorant thanks to (49a). Hence, we can pass to the limit
also in the first integral term on the right-hand side of (55) with the aid of the dominated convergence theorem [RF17, Sec.
4.4, Thm. 19, p. 89]. Since above arguments ensure the convergence of all the integral terms on the right-hand side of
(55), we are entitled to conclude that

lim sup
n→∞

∫
Ω

`|∇zkτh|2 dx

= −
∫

Ω

1

2
zkτC′(zkτ )e(uk−1

τ ) : e(uk−1
τ ) dx

+

∫
Ω

(1

`
(1− zkτ )zkτ −M

zkτ−z
k−1
τ

τ zkτh − Nτ
2

d
dzm

2
+

( zkτ−zk−1
τ

τ

)
zkτ

)
dx.

=

∫
Ω

`|∇zkτ |2 dx .

Here, the last equality stems from the fact that zkτ satisfies the time-discrete evolution equation (38a) with the specific test
function zkτ . In view of (54) the assertion is verified.
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Conclusion of (40) We argue with the aid of Lemmata 4.3, 4.4 by induction. For this, we note that prerequisites (49a)
and (53) are fulfilled by the initial data thanks to assumption (39) of Theorem 4.1. Moreover, for each k ∈ {1, . . . , Nτ}
prerequisite (49b) directly follows from weak convergence result (37b) by the compact embedding of Z = H1(Ω) into
L2(Ω). Hence, for k = 1 Lemmata 4.3, 4.4 provide the strong convergence of the fully discrete solutions (u1

τh, z
1
τh)n.

Now (40) follows by induction. �

4.4 Proof of (41): Boundedness of solutions zkτ in [0, 1]

We argue with a recursion argument by contradiction. For that, we will assume that zk−1
τ ∈ [0, 1] a.e. in Ω, but that

zkτ /∈ [0, 1] on a set B ⊂ Ω of strictly positive measure. To simplify the argument we will assume that zkτ (x) for a.a.
x ∈ B takes its values in one of the three intervals [z	, 0), (1, z∗] and (z∗, z⊕], see Fig. 1, and deduce a contradiction
separately in each of the three intervals. For this, we will test the time-discrete phase-field equation (38a) by a suitable
cut-off of a solution zkτ . More precisely, this will involve the composition of the Lipschitz-continuous functions max{·, ·}
and min{·, ·} with Sobolev functions z, g ∈ X = H1(Ω). We remark that, indeed max{z, g},min{z, g} ∈ X for
z, g ∈ X thanks to [MM79].

Case [z	, 0): Let z	 � 0 as in Fig. 1, p. 7. Suppose that there is a setB1 ⊂ Ω withLd(B1) > 0 such that z	 ≤ zkτ < 0
a.e. in B1. We define an admissible testfunction for (38a) by η̃ = −P[z	,0](z

k
τ ) = −min{0,max{z	, zkτ }}, which is

the projection onto [z	, 0] ⊂ R. Then

0 = 〈DzĒτ (tkτ , u
k−1
τ , zkτ ) + DRMτ (Dτz

k
τ ), η̃〉X∗,X

=

∫
{zkτ<z	}

− 1
` (1− zkτ )(−z	) + DRMτ (Dτz

k
τ )(−z	) dx

+

∫
{z	≤zkτ<0}

− 1
` (1− zkτ )(−zkτ )− `|∇zkτ |2 + DRMτ (Dτz

k
τ )(−zkτ ) dx

≤
∫
B1

− 1
` (1− zkτ )(−zkτ ) < 0 .

The last inequality is strict and thus by contradiction it follows that Ld(B1) = 0. Here and in the following, we also use the
notation {z < g} := {x ∈ Ω, z(x) < g(x)}.

Case (z∗, z⊕]: Let 1 < z∗ < z∗ < z⊕ as in Fig. 1. Assume that there is a set B2 ⊂ Ω with Ld(B2) > 0
such that z∗ < zkτ ≤ z⊕ a.e. in B2. As an admissible test function for (38a) we set η̃ = P[z∗,z⊕](z

k
τ ) − z∗ =

min{z⊕,max{z∗, zkτ }} − z∗. Then

0 =

∫
{z∗<zkτ≤z⊕}

− 1
` (1− zkτ )(zkτ − z∗) + `|∇zkτ |2 + DRMτ (Dτz

k
τ )(zkτ − z∗) dx

+

∫
{z⊕<zkτ }

− 1
` (1− zkτ )(z⊕ − z∗) + DRMτ (Dτz

k
τ )(z⊕ − z∗) dx

≥
∫
B2

− 1
` (1− zkτ )(z⊕ − z∗) dx > 0 ,

where the last inequality is strict by 1 < z∗ < z⊕ and the assumption onB2. We obtain by contradiction thatLd(B2) = 0.
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Case (1, z∗]: Suppose that there exists a set B3 ⊂ Ω such that Ld(B3) 6= 0 and 1 < zkτ ≤ z∗ a.e. in B3. Let
η̃ = −(P[1,z∗](z

k
τ )− 1) = −(min{z∗,max{1, zkτ }} − 1) be the test function for (38a), thus

0 =

∫
{1<zkτ≤z∗}

(
1
2C
′(zkτ )e(uk−1

τ ) : e(uk−1
τ )(1− zkτ )− 1

` (1− zkτ )(1− zkτ )− `|∇zkτ |2
)

dx

+

∫
{1<zkτ≤z∗}

DRMτ (Dτz
k
τ )(1− zkτ ) dx+

∫
{z∗<zkτ }

DRMτ (Dτz
k
τ )(1− z∗) dx

+

∫
{z∗<zkτ }

(
1
2C
′(zkτ )e(uk−1

τ ) : e(uk−1
τ )(1− z∗)− 1

` (1− zkτ )(1− z∗)
)

dx

≤
∫
B3

− 1
` (1− zkτ )2 dx < 0 ,

which leads us to conclude that Ld(B3) = 0.

Since we require in (18) for the initial datum that z0(x) ∈ [0, 1] for a.e. x ∈ Ω, it follows that the time-discrete, space-
continuous solutions for the phase-field variable are bounded with values in [0, 1] almost everywhere in Ω. �

4.5 Proof of (42): Upper energy dissipation estimate for (ukτ , z
k
τ )
Nτ
k=0

To deduce the upper energy-dissipation estimate (42), we first test the discrete momentum balance (38b) at time-step
k ∈ {1, . . . , Nτ} with Dτu

k
τ , i.e.,

0 = 〈ρD2
τu

k
τ + DuĒτ (tkτ , u

k
τ , z

k
τ ) + DV(zkτ ;Dτu

k
τ ),Dτu

k
τ 〉U∗,U . (57)

Here, all the terms involved in (57) are derivatives of convex functionals and we will thus further estimate each of the
terms separately by convexity arguments. We start with the elastic contribution contained in the energy given by the map
u 7→

∫
Ω

1
2C(zkτ )e(u) : e(u) dx. By convexity we estimate∫

Ω

C(zkτ )e(ukτ ) : e(Dτu
k
τ ) dx =

1

τ

∫
Ω

C(zkτ )e(ukτ ) : e(ukτ − uk−1
τ ) dx

≥ 1

τ

∫
Ω

(1

2
C(zkτ )e(ukτ ) : e(ukτ )− 1

2
C(zkτ )e(uk−1

τ ) : e(uk−1
τ )

)
dx

(58)

Since also the map u 7→
∫

Ω
ρ
2
|u|2
τ2 dx is convex, we can estimate the inertial term in (57) as follows

〈ρD2
τu

k
τ ,Dτu

k
τ 〉U∗,U =

∫
Ω

ρD2
τu

k
τ · Dτukτ dx=

∫
Ω

ρ

τ
Dτu

k
τ · (Dτukτ − Dτu

k−1
τ ) dx

≥ 1

τ

∫
Ω

(ρ
2
|Dτukτ |2 −

ρ

2
|Dτuk−1

τ |2
)

dx

(59)

Moreover, the term involving the external loading can be reformulated as

− 〈fkτ ,Dτukτ 〉U∗,U = −1

τ
〈fkτ , ukτ − uk−1

τ 〉U∗,U

= −1

τ
〈fkτ , ukτ 〉U∗,U +

1

τ
〈fk−1
τ , uk−1

τ 〉U∗,U +
1

τ
〈fkτ − fk−1

τ , uk−1
τ 〉U∗,U

(60)

Using relations (58)–(60) in (57) we arrive at

0 = 〈ρD2
τu

k
τ + DuĒτ (tkτ , u

k
τ , z

k
τ ) + DV(zkτ ;Dτu

k
τ ),Dτu

k
τ 〉U∗,U

≥ 1

τ

∫
Ω

(ρ
2
|Dτukτ |2 −

ρ

2
|Dτuk−1

τ |2
)

dx+

∫
Ω

D(zkτ )e(Dτu
k
τ ) : e(Dτu

k
τ ) dx

+
1

τ

∫
Ω

(1

2
C(zkτ )e(ukτ ) : e(ukτ )− 1

2
C(zkτ )e(uk−1

τ ) : e(uk−1
τ )

)
dx

−1

τ
〈fkτ , ukτ 〉U∗,U +

1

τ
〈fk−1
τ , uk−1

τ 〉U∗,U +
1

τ
〈fkτ − fk−1

τ , uk−1
τ 〉U∗,U .

(61)
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Secondly, we test the time-discrete phase-field equation (38a) at time-step k ∈ {1, . . . , Nτ} with Dτz
k
τ , i.e.,

0 = 〈DzĒτ (tkτ , u
k−1
τ , zkτ ) + DRMτ (Dτz

k
τ ),Dτz

k
τ 〉X∗,X . (62)

We observe that DzE(tkτ , u
k−1
τ , zkτ ) stems from the following energy contributions: a convex map

z 7→
∫

Ω

( `
2
|∇z|2 +

1

2`
(z2 + 1)

)
dx,

the linear contribution z 7→
∫

Ω
− 1
` z dx and the contribution z 7→

∫
Ω

1
2C(z)e(uk−1

τ ) : e(uk−1
τ ) dx. For this third

contribution we observe that it is convex as well, if z ∈ [0, z∗] by (14d). Since even zkτ ∈ [0, 1] a.e. in Ω thanks to (41),
this convexity relation is available for estimates in (62). In this way, we may estimate the energy terms in (62) from below
by convexity and linearity as follows

0 = 〈DzĒτ (tkτ , u
k−1
τ , zkτ ) + DRMτ (Dτz

k
τ ),Dτz

k
τ 〉X∗,X

≥ 1

τ

∫
Ω

1

2

(
C(zkτ )e(uk−1

τ ) : e(uk−1
τ )− 1

2
C(zk−1

τ )e(uk−1
τ ) : e(uk−1

τ )
)

dx

+
1

τ

∫
Ω

( 1

2`
(1− zkτ )2 +

`

2
|∇zkτ |2 −

1

2`
(1− zk−1

τ )2 − `

2
|∇zk−1

τ |2
)

dx

+ 2RMτ (Dτz
k
τ ) ,

(63)

where we used that 〈DRMτ (Dτz
k
τ ),Dτz

k
τ 〉X∗,X = 2RMτ (Dτz

k
τ ) due to the quadratic growth of the terms involved.

Next, we add (61) and (63) and multiply by τ . Hereby, we also exploit the cancellation of the terms

±1

τ

∫
Ω

1

2
C(zkτ )e(uk−1

τ ) : e(uk−1
τ ) dx,

which appear in (61) and in (63) with opposite signs. This procedure results in

0 ≥
∫

Ω

ρ

2
|Dτukτ |2 −

ρ

2
|Dτuk−1

τ |2 dx

+ τ

∫
Ω

D(zkτ )e(Dτu
k
τ ) : e(Dτu

k
τ ) dx+ τ2RMτ (Dτu

k
τ )

+

∫
Ω

1

2
C(zkτ )e(ukτ ) : e(ukτ )− 1

2
C(zk−1

τ )e(uk−1
τ ) : e(uk−1

τ ) dx

+

∫
Ω

1

2`
(1− zkτ )2 +

`

2
|∇zkτ |2 dx−

∫
Ω

1

2`
(1− zk−1

τ )2 +
`

2
|∇zk−1

τ |2 dx

− 〈fkτ , ukτ 〉U∗,U + 〈fk−1
τ , uk−1

τ 〉U∗,U + τ〈Dτfkτ , uk−1
τ 〉U∗,U

= K(Dτu
k
τ ) + E(tkτ , u

k
τ , z

k
τ ) + τ

(
2V(zkτ ;Dτu

k
τ ) + 2RMτ (Dτz

k
τ )
)

−K(Dτu
k−1
τ )− E(tk−1

τ , uk−1
τ , zk−1

τ ) + τ〈Dτfkτ , uk−1
τ 〉U∗,U ,

(64)

Now we sum (64) over k = 1, . . . , L for some index L ∈ {1, . . . , Nτ}. Exploiting further cancellations in the resulting
telescopic sum ultimately leads to

0 ≥ K(Dτu
L
τ ) + E(tLτ , u

L
τ , z

L
τ ) +

L∑
k=1

τ
(
2V(zkτ ;Dτu

k
τ ) + 2RMτ (Dτz

k
τ )
)

−K(Dτu
0
τ ) + E(t0τ , u

0
τ , z

0
τ ) +

L∑
k=1

τ〈Dτfkτ , uk−1
τ 〉U∗,U ,

which is the time-discrete upper energy-dissipation estimate (42). �
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4.6 Proof of Proposition 4.2

The proof of the a-priori bounds (48) is based on the upper energy-dissipation estimate (47d). Note that on the left-hand
side in (47d) it appears the piecewise constant interpolant Ēτ of the stored energy while on the right-hand side (the time-
derivative of) the piecewise affine-linear interpolant (see definitions in (45)) is used. Both interpolants coincide on nodes
tkτ of a partition Πτ = {0 = t0τ < t1τ . . . < tNττ = T} of the time interval.

To find a uniform bound for the right-hand side of (47d) requires an energetic control of the power of the time-discrete
energy functional Eτ from (45),

There are constants c̃, ĉ such that for all (u, z) with E(0, u, z) <∞ it is

Eτ (·, u, z) ∈W 1,1(0,T), ∂tEτ (t, u, z) exists for a.a. t ∈ (0,T), and satisfies

|∂tEτ (t, u, z)| ≤ c̃
(
Eτ (t, u, z) + ĉ

) (65)

cf. also [MR15, Sec. 2] and [RT17a]. The control of the power (65) allows for the application of Gronwall’s inequality and
thus implies the estimates

Eτ (t2, u, z) ≤ (Eτ (t1, u, z) + ĉ) exp(c̃(t2 − t1))− ĉ , (66a)

|∂tEτ (t2, u, z)| ≤ c̃(Eτ (t1, u, z) + ĉ) exp(c̃(t2 − t1)) (66b)

for all t1 < t2 ∈ [0,T] and (u, z) ∈ U×X with E(0, u, z) <∞. This also provides the absolute continuity of the map
t 7→ E(t, u, z).

Indeed, it can be checked that assumptions (17) on f allow it to prove for the linear interpolant fτ constructed by (43) that
the control of the power (65) is satisfied, analogously to e.g. [Rou06, (8.72), (8.73), pp. 219–220].

Uniform bound on the energy based on (47d): Based on the above ideas we now deduce the uniform bound on the
energy following the lines of [MR15, Sec. 2]. For this we observe that estimate (64) together with (66b) provides

K(Dτu
k
τ ) + Eτ (tkτ , u

k
τ , z

k
τ ) + τ

(
2V(zkτ ;Dτu

k
τ ) + 2RMτ (Dτz

k
τ )
)

≤ K(Dτu
k−1
τ ) + Eτ (tk−1

τ , uk−1
τ , zk−1

τ )− τ〈Dτfkτ , uk−1
τ 〉U∗,U ,

≤ K(Dτu
k−1
τ ) + Eτ (tk−1

τ , uk−1
τ , zk−1

τ ) +

∫ tkτ

tk−1
τ

∂tEτ (s, uk−1
τ , zk−1

τ ) ds

≤ K(Dτu
k−1
τ ) + Eτ (tk−1

τ , uk−1
τ , zk−1

τ )

+

∫ tkτ

tk−1
τ

c̃(Eτ (tk−1
τ , uk−1

τ , zk−1
τ ) + ĉ) exp(c̃(s− tk−1

τ )) ds

≤ K(Dτu
k−1
τ ) + Eτ (tk−1

τ , uk−1
τ , zk−1

τ )

+
(
K(Dτu

k−1
τ ) + Eτ (tk−1

τ , uk−1
τ , zk−1

τ ) + ĉ
)(

exp(c̃(tkτ − tk−1
τ ))− 1

)
=
(
K(Dτu

k−1
τ ) + Eτ (tk−1

τ , uk−1
τ , zk−1

τ ) + ĉ
)

exp(c̃(tkτ − tk−1
τ ))− ĉ

(67)

By recursion we thus conclude for all k ∈ {1, . . . , Nτ}

K(Dτu
k
τ ) + Eτ (tkτ , u

k
τ , z

k
τ ) + ĉ

≤
(
K(Dτu

0
τ ) + Eτ (t0τ , u

0
τ , z

0
τ ) + ĉ

)
Πk
j=1 exp(c̃(tkτ − tk−1

τ ))

≤
(
K(Dτu

0
τ ) + Eτ (t0τ , u

0
τ , z

0
τ ) + ĉ

)
exp(c̃T )

(68)

Exploiting cancellations we also find for all k ∈ {1, . . . , Nτ}

K(Dτu
k
τ ) + Eτ (tkτ , u

k
τ , z

k
τ ) + ĉ+

k∑
j=1

τ
(
2V(zjτ ;Dτu

j
τ ) + 2RMτ (Dτz

j
τ )
)

≤
(
K(Dτu

0
τ ) + Eτ (t0τ , u

0
τ , z

0
τ ) + ĉ

)
exp(c̃T ) ≤ C̃

(69)

DOI 10.20347/WIAS.PREPRINT.2798 Berlin 2020



Dynamic phase-field fracture in visco-elastic materials 21

with some positive constant C̃ > 0 independent of τ,M thanks to the assumptions on the external loading (17) and on
the initial data required in Prop. 4.2.

A priori estimates (48): The uniform bound (69) puts us in the position to verify the a priori estimates (48). To this end,
note that

0 ≤ `

2
‖∇zkτ ‖2L2(Ω) +

∫
Ω

1

2`
(1− zkτ )2 dx ≤ `

2
‖∇zkτ ‖2L2(Ω) +

1

2`
Ld(Ω) (70)

for all k ∈ {1, . . . , Nτ} thanks to (41). Being non-negative, these terms can be neglected on the left-hand side of (69) for
the derivation of the uniform bounds related to the displacements. For this, coercivity estimate (15b) and the application of
Korn’s and Young’s inequality together with the boundedness of f from (17a) allows us to find constants c > 0, ε ∈ (0, 1),
Ĉ > 0 such that

c(1− ε)
∥∥ukτ∥∥2

U

≤ K(Dτu
k
τ ) + Eτ (tkτ , u

k
τ , z

k
τ ) + ĉ

+

k∑
j=1

τ
(
2V(zjτ ;Dτu

j
τ ) + 2RMτ (Dτz

j
τ )
)

+
1

cε
‖fτ‖2C([0,T ],U∗)

≤ Ĉ(1 + ‖f‖2C([0,T ],U∗)) ≤ C

(71)

for all k ∈ {0, . . . , Nτ}. This yields the uniform bound (48a) on ūτ ,
¯
uτ . Thanks to this we also read from (71) the bound

on the kinetic energy, which implies (48b) because of ρ > 0 and the definition of the interpolants. Again by the definition
of the interpolants estimate (71) also provides that

c0D

∫ T

0

∫
Ω

|e(u̇τ )|2 dxdr ≤
Nτ∑
j=1

τ
(
2V(zjτ ;Dτu

j
τ ) + 2RMτ (Dτz

j
τ )
)
≤ C , (72)

where we used thatRMτ (Dτz
j
τ ) ≥ 0 and the positive definiteness (15a) of D. Noting that (48a) implies that ‖uτ (t)‖U ≤

C for all t ∈ [0,T] by the definition of the interpolants, estimate (72) leads with (48b) to (48c).

We now verify the bound (48d) by a comparison argument. For this, we test the discrete momentum balance (38b) by
functions v ∈ C0([0,T],U). We estimate for Dτ u̇τ (t) = D2

τu
k
τ for t ∈ (tk−1

τ , tkτ ] that

‖ρDτ u̇τ‖L2(0,T;U∗) = sup
v∈C0([0,T];U)
‖v‖L2(0,T;U)=1

∫ T

0

∫
Ω

ρDτ u̇τ (t) · v(t) dxdt

≤ sup
v∈C0([0,T];U)
‖v‖L2(0,T;U)=1

∫ T

0

∣∣〈DuĒτ (t, ūτ (t), z̄τ (t)) + DV(z̄τ ; u̇τ (t)), v(t)〉U∗,U
∣∣dt

≤ ‖C(z̄τ )e(ūτ )‖L2(0,T;L2(Ω)) + ‖D(z̄τ )e(u̇τ )‖L2(0,T;L2(Ω)) + ‖f̄τ‖L2(0,T;U∗)

≤ c∗C‖ūτ‖L2(0,T;U) + c∗D‖u̇τ‖L2(0,T;U) + ‖f̄τ‖L2(0,T;U∗) ≤ Ĉ ,

(73)

where we used the growth property (15) of C,D, the assumptions (17) on the loading, and the already deduced estimates
(48a) and (48c). This proves the bound (48d) thanks to the density of C0([0,T];U) in L2(0,T;U).

We also observe that the bound (48e) on z̄τ and
¯
zτ now directly follows from (70) and (71). The bound (48f) on the time

derivative żτ follows from the bound on the viscous dissipation potential
∫ T

0
M‖żτ (t)‖2L2(Ω) dt ≤

∫ T

0
2RMτ (żτ (t)) dt ≤

C provided by (72) when taking into account the definition of the interpolants; we point out the dependence on the viscous
parameter M . The bound (48f) together with (48e) also yields (48g).

We now turn to the last two bounds (48h) and (48i), which remain active even if M → 0 and thus allow us to deduce a
rate-independent evolution for the phase-field variable in the limit. We start with (48h): The uniform bound on the viscous
dissipation given by (72) implies

C ≥ Nτ
2
‖
(
Dτzτ

)
+
‖2L2([0,T]×Ω) ≥

T

2τLd+1([0,T]× Ω)2
‖
(
Dτzτ

)
+
‖2L1([0,T]×Ω) , (74)
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where we applied Hölder’s inequality and used that Nτ = T
τ . Taking the square root and making use of the definition of

Dτzτ we deduce that

Ld+1([0,T]× Ω)

√
2Cτ

T
≥ ‖
(
Dτzτ

)
+
‖L1([0,T]×Ω) =

Nτ∑
k=1

‖(zkτ − zk−1
τ )+‖L1(Ω) . (75)

Hence, we have a control on z̄τ where the damage evolves in the “wrong” direction, i.e., where it increases.

Next, we expand the quadratic lower order term 1
2` (1− z)

2 = 1
2` (z

2 + 1)− 1
` z and use the linear contribution to deduce

an L1-estimate that depends on the parameter ` but not on M . In this way we obtain

C ≥
∫

Ω

z0
τ − zTτ dx =

Nτ∑
k=1

∫
Ω

zk−1
τ − zkτ dx

=

Nτ∑
k=1

( ∫
{zk−1
τ ≥zkτ }

∣∣zk−1
τ − zkτ

∣∣ dx−
∫

{zk−1
τ <zkτ }

∣∣zk−1
τ − zkτ

∣∣ dx
)

.

Together with (75) this implies

Nτ∑
k=1

∫
Ω

∣∣zk−1
τ − zkτ

∣∣ dx

=

Nτ∑
k=1

(∫
{zk−1
τ ≥zkτ }

∣∣zk−1
τ − zkτ

∣∣ dx+

∫
{zk−1
τ <zkτ }

∣∣zk−1
τ − zkτ

∣∣ dx
)

≤ C + 2

Nτ∑
k=1

∫
{zk−1
τ <zkτ }

∣∣zk−1
τ − zkτ

∣∣ dx ≤ C + 2Ld+1([0,T]× Ω)

√
2Cτ

T
.

Hence, the pointwise variation of z̄τ in time with values in L1(Ω) is uniformly bounded and thus (48h) follows as well as
(48i) by definition of the affine linear interpolants zτ . �

5 Limit passage from the time-discrete to the time-continuous setting

In this section we discuss the limit passage τ → 0 starting out from tuples of interpolated time-discrete solutions
(ūτ ,

¯
uτ , uτ , z̄τ ,

¯
zτ , zτ )τ of problem (47).

In the case that also M → 0 we obtain a solution of system (U,W,Z,V,K,R1, E), more precisely we deduce the
following

Theorem 5.1 (Existence of solutions in the rate-independent limit). Let the assumptions of Theorem 4.1 and Proposition
4.2 be satisfied, and assume that the one-sided variational inequality (10a) holds true at time t = 0 for the initial data
(u0, z0) ∈ U ×X. Consider the viscosity parameter M = M(τ) > 0 in (4) to depend on τ such that M(τ) → 0 as
τ → 0. For all τ > 0 let (ūτ ,

¯
uτ , uτ , z̄τ ,

¯
zτ , zτ ) be a tuple of interpolated solutions of problem (47) corresponding to

system

(U,W,ZM ,V,K,RM , E) .

Then the following results hold true:
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1 Then, there exist functions u : [0,T]→ U, z : [0,T]→ X such that following convergence statements are valid:

ūτ ,
¯
uτ

∗
⇁ u weakly-∗ in L∞(0,T;U) , (76a)

uτ ⇀ u weakly in H1(0,T;U) , (76b)

u̇τ
∗
⇁ u̇ weakly-∗ in L∞

(
0,T;L2(Ω,Rd)

)
, (76c)

ūτ (t),
¯
uτ (t) ⇀ u(t) weakly in U for all t ∈ [0,T] , (76d)

u̇τ (t) ⇀ u̇(t) weakly in L2(Ω,Rd) for all t ∈ [0,T] , (76e)

z̄τ (t),
¯
zτ (t) ⇀ z(t) weakly in X for all t ∈ [0,T], (76f)

z̄τ (t),
¯
zτ (t)→ z(t) strongly in L2(Ω) for all t ∈ [0,T] , (76g)

z̄τ ,
¯
zτ
∗
⇁ z weakly-∗ in L∞

(
0,T;X

)
. (76h)

2 The limit pair (u, z) is a solution of (U,W,Z,V,K,R, E) in the sense of Definition 1.3 and it is 0 ≤ z(t, x) ≤ 1
for a.a. x ∈ Ω and for all t ∈ [0,T]. In addition, the limit (u, z) also satisfies semistablility inequality (11) for a.e.
t ∈ (0,T).

3 The limit function u has the following regularity:

u ∈ H1(0,T;U) ∩ L∞(0,T;U) ∩W 1,∞(0,T;L2(Ω)) ∩ C0([0,T];U) , (77a)

ü ∈ L2(0,T;U∗) , and (77b)∫ t
s
〈ü(r), u̇(r)〉dr = 1

2‖u̇(t)‖2L2(Ω;Rd) −
1
2‖u̇(s)‖2L2(Ω;Rd) for all s, t ∈ [0,T] , (77c)

and, in addition to the regularity z ∈ BV (0,T;L1(Ω)) ∩ L∞(0,T;X) the limit function z even satisfies:

z ∈ C0,1/4([0,T);X) , (78)

i.e., z : [0,T) → X is Hölder-continuous with Hölder-exponent h = 1/4. Hence, (u, z) satisfies the one-
sided variational inequality (10a), semistability inequality (11), and the energy-dissipation balance (10d) even for all
t ∈ [0,T).

4 In addition to convergence results (76) also the following improved convergences hold true:

e(u̇τ )→ e(u̇) strongly in H1(0, T ;U) , (79a)

e(ūτ (t))→ e(u(t)) strongly in U for all t ∈ [0,T) , (79b)

z̄τ (t)→ z(t) strongly in X for all t ∈ [0,T) . (79c)

Proof. The proof of the convergence results (76) will be developed in Section 5.1. Subsequently the limit passage in the
defining properties of the solutions, cf. Def. 1.3, properties (10), is carried out in Section 5.2. The regularity (77) of u will be
discussed in Sec. 5.2.2 when passing to the limit in the weak momentum balance. The Hölder-continuity of z : [0,T)→ X
is developed in Sec. 5.3 and it relies on a general regularity result stated here below in Theorem 5.2. The continuity of
(u, z) in time allows it to conclude that the defining properties (10a), (11), and (10d) are valid even for all t ∈ [0,T).
Based on this, the improved convergences (79) are concluded in Section 5.4.

The proof of the temporal Hölder-continuity of z relies on an adaption of a general regularity result for coupled rate-
dependent/rate-independent systems obtained in [RT17a, Thm. 3.8]. Let us point out that for purely rate-independent
systems temporal (Hölder-) continuity stems from enhanced convexity properties of the energy functional for the pair
(u, z), cf. [MT04, TM10] for more details. For damage models as in the current situation the energy functional is separately
convex, only, so that improved temporal regularity cannot be expected in a purely rate-independent setting. As can be seen
here in Theorem 5.2, in the coupled rate-dependent/rate-independent setting it is sufficient to have uniform convexity with
respect to the rate-independent variable z, because the good regularity of the rate-dependent variable u partially carries
over to z through estimates (90) or (91). In case of a unidirectional evolution of z as for damage it is even sufficient to have
such estimates available for a.e. t ∈ (0,T), only, because the information missing on a null-set N ⊂ [0,T) is filled by
unidirectionality to ultimately conclude regularity statement (78); see Sec. 5.3 for more details.
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Theorem 5.2 (Adaption of [RT17a, Thm. 3.8]). Let (U,W,Z,V,K,R, E) be a damped inertial system characterized
by Banach spaces U,Z, and a Hilbert space W, the kinetic energy K : W → [0,∞), a dissipation potential V :
Z × U → [0,∞), a positively 1-homogeneous dissipation potential R : Z → [0,∞], and an energy functional
E : [0,T] × U × Z → R ∪ {∞} such that for all t ∈ [0,T] the functional E(t, ·, ·) takes finite values on (a closed,
convex subset Du × Dz of) V ×X with X a Banach space such that X ⊂ Z compactly and V a Banach space such
that V ⊂ U continuously and densely. Further consider the following list of assumptions:

A1) The pair (u, z) : [0,T]→ U× Z satisfies a semistability inequality for a.a. t ∈ [0,T]:

E(t, u(t), z(t)) ≤ E(t, u(t), z̃) +R(z̃ − z(t)) for all z̃ ∈ Z . (80)

Accordingly, define the L1-null set

N :=
{
t̂ ∈ [0,T], (u(t̂), z(t̂)) does not satisfy semistability (80)

}
. (81)

A2) The pair (u, z) : [0,T]→ U× Z satisfies the following upper energy-dissipation estimate

K(u̇(t)) + E(t, u(t), z(t)) +R(z(t)− z(s)) +

∫ t

s

2V(z(r); u̇(r)) dr

≤ K(u̇(s)) + E(t, u(s), z(s)) +

∫ t

s

∂rE(r, u(r), z(r)) dr

(82)

for all subintervals [s, t] ⊂ [0,T] with s, t ∈ [0,T]\N .
A3) u ∈W 2,2(0,T;U∗) ∩H1(0,T;U) and t 7→ |〈ü(t), u̇(t)〉U| ∈ L1(0,T).
A4) The energy functional E complies with the following power control: There are constants c̃, ĉ such that for all (u, z) ∈

U× Z with E(0, u, z) <∞ it is E(·, u, z) ∈W 1,1(0,T), ∂tE(t, u, z) exists for a.a. t ∈ (0,T), and satisfies

|∂tE(t, u, z)| ≤ c̃
(
E(t, u, z) + ĉ

)
. (83)

A5) The functional E(t, u, ·) : Dz → R is Gâteaux-differentiable and uniformly convex, i.e.,

∃α ≥ 2 ∃C? > 0 ∀ t ∈ [0,T], ∀ (u, z0), (u, z1) ∈ Du × Dz,∀λ ∈ [0, 1],

setting zλ := λz1 + (1− λ)z0 :

E(t, u, zλ) + C?λ(1− λ)‖z1 − z0‖αS ≤ λE(t, u, z1) + (1− λ)E(t, u, z0) ,

(84)

with S a Banach space such that X ⊆ S continuously, that may or may not coincide with X or Z.
A6) The functional E(t, ·, z) : U→ R∪{∞} is Hölder-continuous, i.e., there are constants c? > 0, βu ∈ (0, 1] such

that for all s, t ∈ [0,T] and for all (u0, z1), (u1, z1) with supt∈[0,T] E(t, ui, z1) ≤ E, i ∈ {0, 1} we have∣∣E(t, u1, z1)− E(t, u0, z1)
∣∣ ≤ c?‖u1 − u0‖βuU . (85)

A7) The functional E(t, ·, z) : Du → R is Gâteaux-differentiable for all (t, z) ∈ [0,T]× Dz .
A8) The functional E(t, ·, z) : Du → R complies with the following gradient estimate: There exist constants Ĉ1, Ĉ2,

Ĉ3 > 0 and σ ∈ [1,∞) such that

‖DuE(t, u, z)‖σU∗ ≤ Ĉ1E(t, u, z) + Ĉ2‖u‖U + Ĉ3 (86)

for all (t, u, z) ∈ [0,T]×U×X with E(t, u, z) <∞.
A9) The pair (u, z) : [0,T]→ U× Z satisfies the weak momentum balance for all t ∈ [0,T]:

ρü(t) + DuE(t, u(t), z(t)) + Du̇V(z(t); u̇(t)) = 0 in U∗ . (87)

A10) The dissipation potential V : Z ×U → [0,∞) has quadratic growth, i.e., there are constants C̃1, C̃2 > 0 such
that for all (z, v) ∈ Z×U

V(z; v) ≥ C̃1‖v‖2U − C̃2 . (88)
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The following statements hold true:

1 Let assumptions A1) and A5) be valid. Then (u, z) satisfies the following improved semistability inequality

E(s, u(s), z(s)) + C?‖z(t)− z(s)‖αS ≤ E(s, u(s), z(t)) +R(z(t)− z(s)) (89)

for all s ∈ [0,T]\N and for all t ∈ [0,T].
2 Let assumptions A1)– A6) be valid. Then, z complies with the estimate

C?‖z(t)− z(s)‖αS ≤ C|t− s|+
∫ t

s

|〈ρü(r), u̇(r)〉U|dr + c?

(∫ t

s

‖u̇(r)‖U dr
)βu

(90)

for all subintervals [s, t] ⊂ [0,T] with s, t ∈ [0,T]\N .
3 Let assumptions A1)–A9) be valid. Then, z complies with the estimate

C?‖z(t)− z(s)‖αS ≤ C|t− s|+ c?

(∫ t

s

‖u̇(r)‖U dr
)βu

(91)

for all subintervals [s, t] ⊂ [0,T] with s, t ∈ [0,T]\N .
4 Let assumptions A1)– A6) be valid and let A1) and A2) be satisfied for all subintervals [s, t] ⊂ [s∗, t∗] ⊂ [0,T],

even for all s, t ∈ [s∗, t∗]. Then also estimate (90) is valid even for all s, t ∈ [s∗, t∗] and hence it implies that
z ∈ C0([s∗, t∗];S).

5 Let assumptions A1)–A9) be valid and let A1) and A2) be satisfied for all subintervals [s, t] ⊂ [s∗, t∗] ⊂ [0,T],
even for all s, t ∈ [s∗, t∗]. Then also estimate (91) holds true even for all s, t ∈ [s∗, t∗] and thus it implies that
z ∈ C0([s∗, t∗];S). Additionally assume that A10) is valid. Then

z ∈ C0,h([s∗, t∗];S) with the Hölder-exponent h =
βu

(2α)
< 1/2. (92)

Proof. In [RT17a, Thm. 3.8] the assumptions A1) and A2) are strengthened to hold for all s, t ∈ [0,T] and consequently it
only ensures statements 4 and 5 of above Thm. 5.2 with [s∗, t∗] = [0,T]. Moreover, in [RT17a, Thm. 3.8] also assumption
A10) on the rate-dependent dissipation is different: There, Ṽ : U → [0,∞) is independent of the rate-independent
variable z but allows for a general p-growth with p > 1 instead of p = 2 in (88). In this spirit, the viscous dissipation function∫ t
s

2V(z(r); u̇(r)) dr appearing in (82) is replaced in [RT17a] by De Giorgi’s expression
∫ t
s
Ṽ(u̇(r)) + Ṽ∗(−(ü(r) +

DuE(r, u(r), z(r)))) dr which involves the convex conjugate of the convex potential Ṽ : U → [0,∞). We do not
use this expression in (82) due to the quadratic, but z-dependent nature of V . A close perusal of the proof of [RT17a,
Thm. 3.8] reveals that above estimates (89), (90), and (91) can be deduced to hold for all s, t ∈ [0,T]\N under the
relaxed assumptions that semistability (11) and the upper energy-dissipation estimate (82) are valid for exactly these
s, t ∈ [0,T]\N. In this way, also statements 1 and 2 become valid. Moreover, since we here work in the setting of a

quadratic, z-dependent dissipation V : X × U → [0,∞) and use the dissipative term
∫ t
s

2V(z(r); u̇(r)) dr in (82),
certain estimates related to (91) can be carried out differently circumventing V∗. In this way, also statement 3 of above
Thm. 5.2 can be shown to hold for all s, t ∈ [0,T]\N. We also refer to Theorem 6.2 and in particular to estimates
(142)–(157) in its proof, where analogous arguments are carried out in the setting of a viscous dissipation potential RM
for z.

Remark 5.3 (Simultaneous limit and its connection to FE-approximations). It is possible to formulate the defining properties
(10), resp. (9) of solutions in the sense of Def. 1.3, resp. Def. 1.2, already on the fully discrete level. In this context the Yosida
regularization cannot have its full effect such that the discrete damage variable may take values outside of the interval [0, 1]
on sets of strictly positive measure. This entails that the discrete version of the functional z 7→

∫
Ω

1
2C(z)e(u) : e(u) dx

is non-convex even for fixed displacements u. Hence, an upper energy-dissipation estimate holds true only up to an error
generated by the non-convexity. In order to find compactness nevertheless, regions of non-convexity have to be controlled.
In [BMT+20, Section 4] we show that this is indeed possible. Therein, the space discretization is realized with a finite
element approximation in terms of P1 finite elements. Here, apart from the error due to the non-convexity also an error
caused by only approximately solving the nonlinear phase-field evolution equation (25a) becomes relevant. The control
of these error terms leads to additional conditions which can be regarded as stopping criteria for an algorithm solving
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the discrete problems. Moreover, the control of the non-convexity errors in the upper energy-dissipation estimate leads to
a coupling relation between time-step size and mesh-size of the FE-space. We mention that it is also possible to show
with an a-posteri argument the existence of a diagonal sequence converging to a solution in the sense of Def. 1.3, see
[BMT+20, Sec. 4].

5.1 Proof of Theorem 5.1, Item 1: Convergence statements (76).

Convergence statements (76a)–(76e) for the displacements: The convergence statements (76a)–(76c) for ūτ ,
¯
uτ , uτ and

u̇τ follow by standard compactness arguments from the uniform bounds (48a), (48b), and (48c), at first each of them
with a different limit function and it has to be shown that the limits coincide. For this, note that (48c) implies (u̇τ )τ to be
uniformly bounded in L2(0,T;U). Then, the identities

uτ (t)− ūτ (t) = (t− tkτ )u̇τ (t) and uτ (t)−
¯
uτ (t) = (t− tk−1

τ )u̇τ (t) (93)

allow us to conclude that the limit functions of (76a) and (76b) coincide. They also coincide with the limit obtained by
convergence (76c) as can be deduced from the uniqueness of weak limits when taking into account (76b).

For convergences (76d), which hold pointwise for all t ∈ [0,T], we realize that (uτ )τ is uniformly bounded inBV (0,T;U)
thanks to theH1(0,T;U)-bound from (48c) and the continuous embedding ofH1(0,T;U) inBV (0,T;U). By the def-
inition of the interpolants we also find that (ūτ )τ and (

¯
uτ )τ are uniformly bounded in BV (0,T;U). More precisely, we

have the following estimate:

Nτ∑
k=1

∥∥ukτ − uk−1
τ

∥∥
U

=

Nτ∑
k=1

τ

∥∥∥∥ukτ − uk−1
τ

τ

∥∥∥∥
U

=

∫ T

0

‖u̇τ (t)‖U dt

= ‖u̇τ‖L1(0,T;U) ≤
√
T ‖u̇τ‖L2(0,T;U) ≤ C ,

(94)

where the left-hand side of (94) gives the total variation of the interpolants ūτ and
¯
uτ . Then, an application of Helly’s

theorem for Banach spaces [MT04, Thm. 6.1] allows us to conclude the pointwise convergences in (76d) upon extraction
of a further subsequence. To conclude that (ūτ )τ and (

¯
uτ )τ have the same limit pointwise in time that coincides with u

we once more exploit the identities (93) together with the uniqueness of the weak limit already obtained in (76a).

For (76e) we adapt the arguments of [RT17b, p. 1536]. There, the key tool is an Aubin-Lions compactness argument,
cf. [Sim87, Cor. 5, p. 86], which now accordingly has to be replaced with a version suited for a time-discretization and
piecewise constant sequences in time (u̇τ )τ . This time-discrete analogon of the Aubin-Lions lemma is provided by [DJ12,
Thm. 1, p. 3073]. For the argument we observe that the spaces U = H1(Ω;Rd) ⊂ L2(Ω;Rd) ⊂ U∗ form an evolution
triple with U ⊂ L2(Ω;Rd) compactly. Hence, by [DJ12, Thm. 1, p. 3073] we conclude that

u̇τ → u̇ in L2(0,T;L2(Ω)) ∩ C0([0,T];U∗) . (95)

From this we infer (76e) with the following argument: For all t ∈ [0,T], every subsequence of (u̇τ (t))τ is bounded in
L2(Ω) and admits a further subsequence weakly converging in L2(Ω) to some limit vt. In view of (95) we have vt = u̇(t)
identified in U∗ for all t ∈ [0,T]. Since the limit does not depend on the extracted subsequence, we conclude (76e).

Convergence statements (76f)–(76h) for the damage variable: To verify convergence statements (76f)–(76h) we observe
that the uniform BV -bound (48h) justifies the use of a variant of Helly’s Theorem, cf. [MR15, Thm. 2.1.24, p. 72], since
‖·‖L1(Ω) defines a dissipation distance in the sense of [MR15, (D1) and (D2), p. 46]. This provides the existence of an

element z : [0,T]→ X with z ∈ BV
(
0,T;L1(Ω)

)
such that, along a (not relabelled) subsequence, z̄τ (t) ⇀ z(t) ∈ X

weakly even in X for all t ∈ [0,T], which is the first of (76f). By the compact embedding X ⊂ L2(Ω) we thus obtain
the first of (76g). Thanks to the uniform bound (48e) we now also conclude that the first of (76h) holds true. Hence, the
convergence statements (76f)–(76h) are verified for the sequence (z̄τ )τ .

Repeating above arguments for the sequence (
¯
zτ )τ starting from the uniform BV -bound (48h) we also find that (

¯
zτ )τ

converges to a limit function z : [0,T] → X in the topologies of (76f)–(76h) and now it has to be shown that z indeed
coincides with z. For this, we may follow the lines of [LRTT18, p. 1341]. We denote by Jz and Jz the countable jump sets
of the two limit functions z, z ∈ BV (0,T;L1(Ω)). Let t ∈ [0,T] \ (Jz1 ∪ Jz2). By the definition of the interpolants we
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have z̄τ (t − τ) =
¯
zτ (t) for all τ > 0 and thus as τ → 0 if follows z(t) = z(t) for all t ∈ [0,T] \ (Jz1 ∪ Jz2). Now,

let t ∈ Jz ∪ Jz and w.l.o.g. assume t ∈ Jz . Then there are sequences (t+j )j , (t−j )j ⊂ [0,T] \ (Jz ∪ Jz) such that

t+j ↘ t, t−j ↗ t. But since z(t±j ) = z(t±j ) for t+j , t
−
j ∈ [0,T] \ (Jz ∪ Jz), we find for the left limit that z−(t) =

limj→∞ z(t−j ) = limj→∞ z(t−j ) = z− and for the right limit that z+(t) = limj→∞ z(t+j ) = limj→∞ z(t+j ) = z+.
This implies that Jz = Jz . Thus, z = z on the whole interval [0,T] and hence convergence results (76f)–(76h) are
verified. �

5.2 Proof of Theorem 5.1, Item 2: Defining properties of the solutions and boundedness z ∈
[0, 1]

In this section we show that the limit pair (u, z) obtained through convergences (76) indeed is a solution of system
(U,W,Z,V,K,R1, E) in the sense of Definition 1.3. For this we will pass to the limit τ → 0 in problem (47) for the
interpolants (ūτ ,

¯
uτ , uτ , z̄τ ,

¯
zτ , zτ )τ using the convergence results (76) and thus conclude properties (10). For the limit

passage we will also make use of the following convergence results for the interpolants of the external forces:

f̄τ → f strongly in Lp
(
0,T;U∗

)
for all 1 ≤ p <∞. (96a)

f̄τ
∗
⇁ f weakly-* in L∞

(
0,T;U∗

)
. (96b)

f̄τ (t)→ f(t) strongly in U∗ for all t ∈ [0,T] . (96c)

fτ → f strongly in H1
(
0,T;U∗

)
(96d)

by assumption (17) on the regularity of the external load.

First, it is shown in Section 5.2.1 that z takes values bounded in [0, 1] and that it satisfies the unidirectionality property
(10b). Subsequently, Section 5.2.2 is devoted to the limit passage in the weak momentum balance (10c). We will further
verify in Section 5.2.3 that the one-sided variational inequality (10a) is valid for the limit pair (u, z). There, we also show
that solutions satisfy the semistability inequality (11). Moreover, Section 5.2.4 establishes the energy dissipation balance
(10d).

5.2.1 Proof of the boundedness of z and of the unidirectionality of the damage evolution (10b)

We first show the boundedness of z, i.e., that

z(t, x) ∈ [0, 1] for a.e. x ∈ Ω and all t ∈ [0,T]. (97)

Indeed, this can be concluded with the knowledge that the time-discrete approximants (z̄τ )τ satisfy z̄τ (t, x) ∈ [0, 1] for
a.e. x ∈ Ω and all t ∈ [0,T] by (41) in Theorem 4.1. The strong L2(Ω)-convergence (76g) provides convergence in
measure. Hence, assuming that z(t) 6∈ [0, 1] on a set B ⊂ Ω of strictly positive measure leads to a contradiction; thus
(97) is verified.

Unidirectionality (10b): We verify now that in the time-continuous limit the damage variable has a unidirectional evolution,
i.e., for all t1 < t2 ∈ [0,T] it is z(t1, x) ≥ z(t2, x) for a.a. x ∈ Ω, cf. (10b). For this, assume the contrary, i.e., suppose
that z(t1, x) < z(t2, x) for a.a. x ∈ E, with Ld(E) > 0. Hence

∫
E
z(t2) − z(t1) dx =: α > 0. But thanks to the

strong L2(Ω)-convergence pointwise in time, cf. (76g), and with the aid of the control (75) on the Yosida-regularization we
deduce

0 < α =

∫
E

(z(t2)− z(t1))+ dx = lim
τ→0

∫
E

(z̄τ (t2)− z̄τ (t1))+ dx

≤ lim
τ→0
‖(z̄τ (t2)− z̄τ (t1))+‖L1(Ω) ≤ lim

τ→0

Nτ∑
k=1

‖(zkτ − zk−1
τ )+‖L1(Ω)

≤ lim
τ→0
Ld+1([0,T]× Ω)

√
2Cτ

T
= 0 ,

which states a contradiction. Hence the assertion is proven. �
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5.2.2 Proof of the weak momentum balance (10c) for all t ∈ [0,T] and regularity (77) of the limit function u

Let
ṽ ∈ L2(0,T;U) ∩H1(0, T ;L2(Ω,Rd)) (98)

be a test function for the weak momentum equation in (10c). We define

vkτ :=
1

τ

∫ tkτ

tk−1
τ

v(r) dr (99)

and set the interpolants v̄τ and vτ as in (43). With this definition there holds

v̄τ → v strongly in L2(0,T;U) (100)

and
vτ → v strongly in H1(0,T;L2(Ω,Rd)). (101)

The latter implies vτ (t)→ v(t) strongly inL2(Ω,Rd) everywhere in [0,T]. Since (98) implies that v ∈ C([0,T], L2(Ω))
we conclude that also

v̄τ (t)→ v(t) strongly in L2(Ω,Rd). (102)

Limit passage in the weak balance of momentum: In the time-discrete balance of momentum (38b) the acceleration term
is now rewritten using the discrete integration-by-parts formula (46)

τ

L∑
k=1

∫
Ω

u̇kτ−u̇
k−1
τ

τ · vkτ dx =

∫
Ω

(
u̇Lτ · vLτ − u̇0

τ · v0
τ

)
dx− τ

L∑
k=1

∫
Ω

u̇k−1
τ · vτ

k−vk−1
τ

τ dx

to obtain

ρ

∫
Ω

u̇τ (t) · v̄τ (t)− u̇τ (0) · vτ (0) dx− ρ
∫ t̄τ (t)

0

∫
Ω

u̇τ (r − τ)v̇τ (r) dxdr

+

∫ t̄τ (t)

0

∫
Ω

[
D(z̄τ )e(u̇τ ) + C(z̄τ )e(ūτ )

]
: e(v̄τ ) dxdr =

∫ t̄τ (t)

0

〈
f̄τ , v̄τ

〉
U∗,U

dr .

(103)

Then, passing to the limit we conclude by weak-strong convergence arguments with the aid of convergences (76e) and
(100) that

ρ

∫
Ω

u̇τ (t) · v̄τ (t)− u̇τ (0) · vτ (0) dx→ ρ

∫
Ω

u̇(t) · v(t)− u̇(0) · v(0) dx for all t ∈ [0,T] (104)

Moreover, convergences (76b) and (101) lead to

ρ

∫ t̄τ (t)

0

∫
Ω

u̇τ (r − τ) · v̇τ (r) dx dr → ρ

∫ t

0

∫
Ω

u̇(r) · v̇(r) dxdr , (105)

where the convergence of the translated functions u̇τ follows by an ε
3 -argument using the density of smooth and compactly

supported functions in L2(0,T;U). In addition, by (96a) we also have f̄τ → f in Lp(0,T;U∗) for 1 ≤ p < ∞, and
thus ∫ t̄τ (t)

0

〈
f̄τ (r), v̄τ (r)

〉
U∗,U

dr →
∫ t

0

〈f(r), v(r)〉U∗,U dr

follows as well. For the convergence of the quadratic terms, we first realize that convergence (76g) implies by the dominated
convergence theorem that

z̄τ → z strongly in L2
(
0,T;L2(Ω)

)
.

From this together with (100), and with the isometric isomorphism

L2
(
0,T;L2(Ω,Rm)

) ∼= {ũ : [0, T ]× Ω→ Rm,
∫ T

0

(∫
Ω
|ũ(t, x)|2 dx

)
dt <∞} ,
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where m = d2 + 1 it follows that, up to a subsequence,

(z̄τ (t, x), e(v̄τ (t, x)))→ (z(t, x), e(v(t, x)))

pointwise for almost all (t, x) ∈ [0,T]× Ω. Then, by continuity of | · |, D and C, cf. (14a), we obtain for a.a. t ∈ [0,T]∣∣[D(z̄τ (t)
)

+ C
(
z̄τ (t)

)
]e
(
v̄τ (t)

)∣∣→ ∣∣[D(z(t))+ C
(
z(t)

)
]e
(
v(t)

)∣∣
pointwise almost everywhere in Ω. In view of (15a) and (15b) a summable L2-majorant is given by (c∗D + c∗D) |e(v̄τ (t))|
and we conclude by a version of the dominated convergence theorem with τ -dependent majorants, cf. [RF17, Sec. 4.4,
Thm. 19, p. 89], that

[D
(
z̄τ (t)

)
+ C

(
z̄τ (t)

)
]e
(
v̄τ (t)

)
→ [D

(
z(t)

)
+ C

(
z(t)

)
]e
(
v(t)

)
strongly in L2((0,T)× Ω;Rd×d). In view of (76a) and (76b), which imply that e(ūτ ) ⇀ e(u) as well as e(u̇τ ) ⇀ e(u̇)
weakly in L2(0,T;L2(Ω,Rd×d)), it can be concluded by symmetry of D and C, and again by weak-strong convergence
arguments, that∫ t̄τ

0

∫
Ω

[
D(z̄τ )e(u̇τ ) + C(z̄τ )e(ūτ )

]
:e(v̄τ ) dxdt→

∫ t

0

∫
Ω

[
D(z)e(u̇) + C(z)e(u)

]
:e(v) dxdt .

Altogether we conclude that (10c) is satisfied for all t ∈ [0,T]. �

Regularity (77) of the limit function u: So far, convergences (76a)–(76c) provide

u ∈ H1(0,T;U) ∩ L∞(0,T;U) ∩W 1,∞(0,T;L2(Ω)) .

In view of [Bre73, Appendix, p. 140] this implies that u : [0,T]→ U is absolutely continuous and hence we also have

u ∈ C0([0,T];U) .

This provides regularity statement (77a). We now turn to regularity statement (77b) for ü: From the a priori bound (48d) we
infer the existence of a subsequence (u̇τ )τ and of an element ξ ∈ L2(0,T;U∗) such that Dτ u̇τ ⇀ ξ in L2(0,T;U∗).
In view of the strong convergences (101) & (102) of the approximating test functions, the discrete integration-by-parts
formula (46) and of the already deduced limits (104) and (105), we see that∫ t̄τ

0

〈ρDτ u̇τ (r), v̄τ (r)〉U∗,U dr

= ρ

∫
Ω

(
u̇τ (t) · v̄τ (t)− u̇τ (0) · vτ (0)

)
dx− ρ

∫ t̄τ (t)

0

∫
Ω

u̇τ (r − τ)v̇τ (r) dx dr

↓∫ t

0

〈ρ ξ(r), v(r)〉U∗,U dr

= ρ

∫
Ω

(
u̇(t) · v(t)− u̇(0) · v(0)

)
dx− ρ

∫ t

0

∫
Ω

u̇(r) · v̇(r) dxdr

(106)

for all test functions v ∈ H1(0,T;L2(Ω)) ∩ L2(0,T;U). This shows that

ξ = ü ∈ L2(0,T;U∗) ,

and (106) states an integration by parts formula for the limit function u. Moreover, since the spaces U ⊂ L2(Ω;Rd) ⊂
U∗ form an evolution triple, in view of e.g. [Rou06, Lemma 7.3, p. 191] we also have an integration-by-parts formula for u̇∫ t

s

〈ü(r), u̇(r)〉U∗,U =
1

2
〈u̇(t), u̇(t)〉U∗,U −

1

2
〈u̇(s), u̇(s)〉U∗,U

=
1

2
‖u̇(t)‖2L2(Ω;Rd) −

1

2
‖u̇(s)‖2L2(Ω;Rd) .

This concludes the proof of statements (77). �
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5.2.3 Rate-independent evolution of the phase-field variable (10a) & (11)

We first show that the limit pair (u, z) satisfies the one-sided variational inequality (10a) for a.a. t ∈ (0,T), which provides
a rate-independent evolution law for z. From this, we will deduce by convexity arguments that also semistability inequality
(11) is valid.

Proof of the one-sided variational inequality (10a). We test the time-discrete evolution equation (47a) with functions
η ∈ Y with the property η ≤ 0 a.e. in Ω. Then, omitting the negative term

∫
Ω
Nτ (żτ (t))+η dx, one obtains after

rearranging ∫
Ω

[
−1

`

(
1− z̄τ (t)

)
+Mżτ (t)

]
η + `∇z̄τ (t) · ∇η dx

≥
∫

Ω

[1
2
C′
(
z̄τ (t)

)
e
(
¯
uτ (t)

)
: e
(
¯
uτ (t)

)]
(−η) dx ≥ 0 .

(107)

To pass to the limit in this inequality we want to make use of lower semicontinuity arguments on the right-hand side and
upper semicontinuity on the left-hand side. For this we note that the term

∫
Ω
Mżτ (t)η dx cannot be handled pointwise in

time. Hence, in the following we consider an arbitrary measureable set I ⊂ [0, T ]. We integrate (107) over I∫
I

∫
Ω

[
−1

`

(
1− z̄τ (t)

)
+Mżτ (t)

]
η + `∇z̄τ (t) · ∇η dxdt

≥
∫
I

∫
Ω

[1
2
C′
(
z̄τ (t)

)
e
(
¯
uτ (t)

)
: e
(
¯
uτ (t)

)]
(−η) dxdt ,

(108)

and aim to pass to the limit in (108) using lower and upper semicontinuity arguments.

We first discuss the limit passage on the left-hand side by upper semicontinuity. In fact, the limes superior of the left-hand
side of (108) is further estimated by

lim sup
τ→0

∫
I

∫
Ω

[
−1

`

(
1− z̄τ (t)

)
+Mżτ (t)

]
η + `∇z̄τ (t) · ∇η dxdt

≤ lim sup
τ→0

∫
I

∫
Ω

Mżτ (t)η dxdt+ lim sup
τ→0

∫
I

∫
Ω

[
−1

`

(
1− z̄τ (t)

)
η + `∇z̄τ (t) · ∇η

]
dx dt .

(109)

For the first term on the right-hand side of (109) we exploit the bound (48f) that provides

√
M‖żτ‖L2(0,T ;L2(Ω)) ≤ C,

and also use that M(τ)→ 0 as τ → 0. In this way we obtain

lim sup
τ↓0

∣∣∣∣∫
I

∫
Ω

Mżτ (t)η dx dt

∣∣∣∣ ≤ lim sup
τ↓0

M ‖żτ‖L2(I,L2(Ω)) ‖η‖L2(Ω) L
1(I)

1
2

≤ lim sup
τ↓0

√
M C ‖η‖L2(Ω) L

1(I)
1
2 = 0 .

(110)

For the second term on the right-hand side of (109) we find with convergence (76h)

lim
τ↓0

∫
I

∫
Ω

[
−1

`

(
1− z̄τ (t)

)]
η + `∇z̄τ (t) · ∇η dx dt

=

∫
I

∫
Ω

[
−1

`

(
1− z(t)

)]
η + `∇z(t) · ∇η dx dt .

(111)

Thus (110) and (111) provide an estimate for the limit superior of the left-hand side of (108).

We now aim to pass to the limit on the right-hand side of (108) by weak lower semicontinuity. For this we observe that
property (14b) for the degradation function implies that C′(z) is positive definite. Hence,−ηC′(z) is positive semidefinite
thanks to −η ≥ 0 a.e. in Ω. Invoking the lower semicontinuity result [Dac12, Thm. 3.4, p. 74] we conclude that the
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functional (z, ξ) 7→
∫

Ω
(−η)C′(z)e(ξ) : e(ξ) dx is lower semi-continuous with respect to convergences (76d) and

(76g). Hence,

lim inf
τ↓0

∫
Ω

[1
2
C′
(
z̄τ (t)

)
e
(
¯
uτ (t)

)
: e
(
¯
uτ (t)

)]
(−η) dx

≥
∫

Ω

[1
2
C′
(
z(t)

)
e
(
u(t)

)
: e
(
u(t)

)]
(−η) dx ≥ 0

for all t ∈ [0,T]. Then Fatou’s lemma yields

lim inf
τ↓0

∫
I

∫
Ω

[1
2
C′
(
z̄τ (t)

)
e
(
¯
uτ (t)

)
: e
(
¯
uτ (t)

)]
(−η) dx dt

≥
∫
I

∫
Ω

[1
2
C′
(
z(t)

)
e
(
u(t)

)
: e
(
u(t)

)]
(−η) dx dt .

(112)

Putting together (108)–(112) it follows for the limit that∫
I

∫
Ω

[1
2
C′
(
z(t)

)
e
(
u(t)

)
: e
(
u(t)

)
− 1

`

(
1− z(t)

)]
η + `∇z(t) · ∇η dxdt ≥ 0

holds for every measurable set I ⊂ [0,T]. This implies that∫
Ω

([1
2
C′
(
z(t)

)
e
(
u(t)

)
: e
(
u(t)

)
− 1

`

(
1− z(t)

)]
η + `∇z(t) · ∇η

)
dx ≥ 0 (113)

for almost every t ∈ (0,T) and for all test functions η ∈ Y with η ≤ 0 a.e. in Ω, that is (10a). �

Proof of the semistability inequality (11). The one-sided variational inequality (10a) is now used to show semistability
(11). Thanks to (97) we have 0 ≤ z(t) ≤ 1 a.e. in Ω for all t ∈ [0,T]. By assumptions (14d) the interval [0, 1] is
contained in the convexity regime of the degradation function, so that the functional E(t, ·, u(t)) is convex. Hence, for any
test function z̃ with 0 ≤ z̃ ≤ z(t) a.e. in Ω it follows from (10a) by convexity

0 ≥ 〈−DzE(t, u(t), z(t)), z̃ − z(t)〉X∗,X ≥ E
(
t, u(t), z(t)

)
− E(t, u(t), z̃) (114)

for a.e. t ∈ (0,T). In view of the definition ofR in (5) this implies

E
(
t, u(t), z(t)

)
≤ E(t, u(t), z̃) +R

(
z̃ − z(t)

)
(115)

for all z̃ ∈ X with 0 ≤ z̃ ≤ 1 a.e. in Ω for a.e. t ∈ (0,T). �

5.2.4 Proof of the energy-dissipation balance (10d) for a.e. t ∈ (0,T).

We first pass to the limit in the time-discrete upper energy dissipation estimate (47d) by exploiting weak lower semicon-
tinuity arguments on its left-hand side and the well-preparedness of the given data on its right-hand side. Secondly, the
energy-dissipation balance (10d) will be concluded by exploiting the already deduced weak momentum balance (10c) and
semistability (11) for the limit pair (u, z) in a Riemann-sum argument as commonly used for rate-independent systems, cf.
e.g., [DMFT05, MR06, MR15]. Note that our proofs provide the weak momentum balance to hold for all t ∈ [0,T], cf. Sec.
5.2.2, whereas the semistability inequality so far has been deduced in Sec. 5.2.3 to hold for a.e. t ∈ (0,T), only. This is
why we here as a first step find the energy-dissipation balance (10d) to be valid for a.e. t ∈ (0,T), only. Yet, this gives the
basis to apply the regularity result stated in Theorem 5.2 to obtain the temporal continuity of z and thus to conclude that
(10d) holds true for all t ∈ [0,T]; we refer to the subsequent Sec. 5.3 for this proof.

Proof of an upper energy-dissipation estimate for all t ∈ [0,T]: We pass to the limit in (47d) by adapting the
arguments of [LRTT18, Lemma 4.4]. We first discuss the limit passage on the left-hand side of (47d) exploiting the weak
lower semicontinuity and positivity of the functionals involved. In difference to [LRTT18] in (47d) there also appears the
viscous contribution of the damage evolution. For all τ > 0 this term is non-negative, so that we estimate it from below by

DOI 10.20347/WIAS.PREPRINT.2798 Berlin 2020



M. Thomas, S. Tornquist 32

∫ t
0

2RMτ (żτ (r)) dr ≥ 0. For the viscous dissipation of the displacements we argue by weak lower semicontinuity. For
this, we realize that the map (z, ξ) 7→ D(z)e(ξ) : e(ξ) is continuous and that the map ξ 7→ D(z)e(ξ) : e(ξ) is convex
for all (z, ξ) ∈ R×Rd×d by the assumptions on regularity and positive definiteness of D in (13) and (14). Thus, [Dac12,
Theorem 3.4, p. 74] provides the lower semicontinuity of the functional V with respect to the topologies given by (76e) and
76g), so that we find lim infτ→0 V(z̄τ (r); u̇τ (r)) ≥ V(z(r); u̇(r)) ≥ 0 for all r ∈ [0,T], also thanks to the positive
definiteness of D. This justifies the application of Fatou’s lemma, so that we conclude

lim inf
τ→0

∫ t̄τ (t)

0

2V(z̄τ (r); u̇τ (r)) dr ≥
∫ t

0

lim inf
τ→0

2V(z̄τ (r); u̇τ (r)) dr

≥
∫ t

0

2V(z(r);u(r)) dr ,

where we also used that t̄τ (t) ≥ t for all t ∈ [0,T] by construction (44).

For the kinetic energy we also have lim infτ→0K(uτ (t)) ≥ K(u(t)) for all t ∈ [0,T] by the weak convergence (76e)
and thanks to the weak lower semicontinuity of the L2(Ω,Rd)-norm.

We now comment on the weak lower semi-continuity of Ēτ : With the same arguments as for V, making use of [Dac12,
Theorem 3.4, p. 74], we deduce that the stored elastic energy (z, u) 7→

∫
Ω

1
2C(z)e(u) : e(u)dx is lower semicontinuous

with respect to the topologies given by (76d) and (76g) and also that the phase-field energy (z, ξ) 7→
∫

Ω
`
2 |ξ|

2 + 1
2` (1−

z)2 dx is lower semicontinuous with respect to the topologies (76f) and (76g). Additionally, the convergence of the external
loading term follows from the strong convergence (96c) together with the weak convergence (76d). In this way, we pass to
the limit on the left-hand side of (47d).

As for the right-hand side of (47d), we realize that K(uτ ) + Ēτ (0, ūτ (0), z̄τ (0)) = K(u̇0) + Ēτ (0, u0, z0) is constant
for all τ > 0. In the power of the external loadings we pass to the limit using that t̄τ (t) ≥ t for all t ∈ [0,T] and also
with the strong H1(0,T;U∗)-convergence (96d) of (fτ )τ guaranteed by the regularity assumption (17), and the weak
L∞(0,T;U)-convergence of (

¯
uτ )τ . In this way we conclude the upper energy dissipation estimate for the limit system

(U,W,Z,V,K,R1, E)

K(u̇(t)) + E(t, u(t), s(t)) +

∫ t

0

2V(z(r); u̇(r)) dr

≤ K(u̇0) + E(0, u0, z0) +

∫ t

0

∂tE
(
r, u(r), z(r)

)
dr .

(116)

for all t ∈ [0,T]. �

Proof of the energy-dissipation balance (10d) for a.e. t ∈ (0,T). We now discuss that (116) even holds as an equality
for a.e. t ∈ (0,T). For this, we follow standard arguments for rate-independent systems, cf. e.g. [DMFT05, MR06, MR15]
and also [RT17a] for abstract results on coupled rate-independent/rate-dependent systems, which deduce a lower energy-
dissipation estimate opposite to (116) by exploiting a Riemann-sum argument using the momentum balance (10c) and the
semistability inequality (11) of the limit system. We only point out here the main ingredients and refer to [LRTT18, Sec.
4.3] for the details of the calculation.

So far, semistability inequality (11) is valid a.e. in (0,T), only. Hence, let t ∈ (0,T) be such that (11) holds true. Moreover,
it is possible to choose a sequence of partitions (Πθ)θ with Πθ = {0 = t0θ < t1θ < . . . < tNθθ = t} of the interval [0, t]
such that (11) also holds true for the collection of nodes and such that also

lim
θ↓0

Nθ∑
k=1

∫ tkθ

tk−1
θ

∫
Ω

C
(
z(tkθ)

)
e
(
u(r)

)
: e
(
u̇(r)

)
dx dr

=

∫ t

0

∫
Ω

C
(
z(r)

)
e
(
u(r)

)
: e
(
u̇(r)

)
dx dr ;

(117)

for this, see also Remark 6.3. Semistability inequality (11) for the limit pair (u, z) at time tk−1
θ is now tested with zkθ , which

is a bounded test function by (41) and ensures thatR(zkθ − z
k−1
θ ) = 0 by unidirectionality property (10b). Summing up
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over k ∈ {1, . . . , Nθ} and taking the limit as θ ↓ 0 results in

E
(
0, u(0), s(0)

)
≤ E

(
t, u(t), z(t)

)
−
∫ t

0

∫
Ω

C
(
z(r)

)
e
(
u(r)

)
: e
(
u̇(r)

)
dxdr

+

∫ t

0

〈f(r), u̇(r)〉U∗,U dr −
∫ t

0

∂tE(r, u(r), s(r)) dr .

(118)

where one also uses (117) and that −
〈
ḟ(r), u(r)

〉
U∗,U

= ∂tE(r, u(r), s(r)).

Secondly, the weak momentum balance (10c) at time t is tested by u̇. This is admissible thanks to the regularity statements
(77) already deduced in Sec. 5.2.2. Applying the integration-by-parts formula (77c) to the kinetic term then results in

ρ

2
‖u̇(t)‖2L2(Ω,Rd) +

∫ t

0

∫
Ω

[
D(s)e(u̇) + C(s)e(u)

]
: e(u̇) dxdr

=
ρ

2
‖u̇(0)‖2L2(Ω,Rd) +

∫ t

0

〈f(r), u̇(r)〉U∗,U dr

(119)

Summing up (118) and (119) ultimately yields

E
(
0, u(0), z(0)

)
≤ E

(
t), u(t), z(t)

)
+
ρ

2
‖u̇(t)‖2L2(Ω,Rd) −

ρ

2
‖u̇(0)‖2L2(Ω,Rd)

+

∫ t

0

∫
Ω

D(z(r))e(u̇(r)) : e(u̇(r)) dxdr −
∫ t

0

∂rE(r, u(r), s(r)) dr ,

which is the estimate opposite to (116). In this way, the energy-dissipation balance (10d) is deduced to hold for a.e.
t ∈ (0,T). �

5.3 Proof of the temporal Hölder-continuity z ∈ C0,1/4([0,T);X) and validity of properties
(10a), (11) & (10d) for all t ∈ [0,T)

To deduce that the limit z has the temporal Hölder-regularity (78) assumptions A1)-A8) of Theorem 5.2 have to be checked.
To this end, we collect the corresponding properties of E from (8) and V from (6) in the following

Lemma 5.4. Let E and V be given as in (8) and (6) such that assumptions (12)–(18) hold true. The following statements
are valid for the energy functional E :

1 Let Dc := {z̃ ∈ X, 0 ≤ z̃ ≤ z∗ a.e. in Ω} denote the convexity regime of E(t, u, ·) in accordance with (14).
Then for all t ∈ [0,T] and u : [0,T] → U a solution of (10c) the energy functional E(t, u(t), ·) : Dc → R is
uniformly convex. More precisely, it satisfies inequality (84) with the constants α = 2, C? = min

{
`
2 ,

1
2`

}
, and the

Banach space S = X.
2 The functional E(t, ·, z) : U→ R satisfies Hölder estimate (85) with βu = 1 and a constant c? = c?(E, f) > 0.
3 The functional E(t, ·, z) : U → R is Gâteaux-differentiable and it satisfies the gradient estimate (86) with the

exponent σ = 2.

Moreover, the dissipation potential V has p-growth for p = 2, i.e.,

V(z; v) ≥ c0D
2C2

K

‖v‖2U for all (z, v) ∈ Z×U , (120)

with Korn’s constant CK > 0 and c0D > 0 from coercivity assumption (15a).

Proof. To Item 1., uniform convexity: Recall that the stored elastic energy functional z 7→
∫

Ω
1
2C(z)e(u) : e(u) dx is

convex for all z ∈ Dc by assumption (14). Moreover, for the phase-field functional z 7→
∫

Ω
`
2 |∇z|

2 + 1
2` |z|

2dx we see
that the quadratic map a 7→ c|a|2 satisfies for all a1, a2 ∈ K ∈ {R,Rd} and for all λ ∈ [0, 1]

c|λa1 + (1− λ)a2|2 = λc|a1|2 + (1− λ)c|a2|2 − λ(1− λ)c|a1 − a2|2
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From that we conclude the statement when setting ai = ∇zi with c = `
2 and ai = (1 − zi) with c = 1

2` , for i = 1, 2,
and by adding the two results.

To Item 2., Hölder-continuity of E : Let (ui, z1) so that supt∈[0,T] E(t, ui, z1) ≤ E for i = 0, 1. In view of assumptions
(15b) on C and (17) on f we find for all t ∈ [0,T]∣∣E(t, u1, z1)− E(t, u0, z1)

∣∣
=
∣∣∣ ∫

Ω

1

2
C(z1)

(
e(u1)) : e(u1))− e(u0)) : e(u0))

)
dx− 〈f(t), u1 − u0〉U∗,U

∣∣∣
≤ c∗C

2

(
‖u1‖U + ‖u0‖U

)
‖u1 − u0‖U + sup

t∈[0,T]

‖f(t)‖U∗‖u1 − u0‖U ≤ c?‖u1 − u0‖U ,

Here we also checked that ‖u1‖U + ‖u0‖U ≤ 2
(
E +

c2K
2c0C

supt∈[0,T] ‖f(t)‖2U∗
)1/2

by repeating the calculations for a

priori bound (71).

To Item 3., Gâteaux-differentiability of E and gradient estimate (86): Gâteaux-differentiability of the functional u 7→
E(t, u, z) =

∫
Ω

1
2C(z)e(u) : e(u) dx − 〈f(t), u〉U is clear and we now deduce gradient estimate (86). For this,

we calculate

‖DuE(t, u, z)‖U∗ = sup
v∈U
‖v‖U=1

〈DuE(t, u, z), v〉U∗,U

≤ sup
v∈U
‖v‖U=1

(c∗C
2
‖e(u)‖L2(Ω)‖e(v)‖L2(Ω) + sup

t∈[0,T]

‖f(t)‖U∗‖v‖U
)

≤ c∗C
2

(4CK

c0C

(∫
Ω

1

2
C(z)e(u) : e(u) dx− 〈f(t), u〉U

))1/2

+ sup
t∈[0,T]

‖f(t)‖U∗

≤ max
{c∗C

2
, sup
t∈[0,T]

‖f(t)‖U∗
}(4CK

c0C

(∫
Ω

1

2
C(z)e(u) : e(u) dx− 〈f(t), u〉U

)
+ 1
)1/2

,

which shows that ‖DuE(t, u, z)‖2U∗ ≤ c̃(ĉ E(t, u, z) + 1) and thus establishes (86) with the exponent σ = 2.

Consider now the pair (u, z) : [0,T]→ U× Z obtained by convergences (76). Recall that the results of Sec. 5.2.3 and
5.2.4 already provide the semistability inequality (11) and the energy-dissipation balance (10d) to hold for a.e. t ∈ [0,T],
i.e., for all t ∈ [0,T]\N with the L1-null setN as in (81). Balance (10d) also directly implies the upper energy-dissipation
estimate (82) to be valid for all subintervals [s, t] ⊂ [0,T] with s, t ∈ [0,T]\N . Thus, assumptions A1) and A2) of
Theorem 5.2 are satisfied. Moreover, regularity assumption A3) for u is clearly ensured by regularity statements (77a) &
(77b). In Section 5.2.2 we already verified that the weak momentum balance (10c) holds true for all t ∈ [0,T], which gives
A9). We further note that above Lemma 5.4 also provides the validity of assumptions A5)–A8), and A10) while the power
control A4) can be proven using coercivity of the system energy and the uniform bound on ḟ . Consequently, we are now
in the position to conclude the temporal Hölder-continuity z ∈ C0,1/4([0,T);X) and the validity of properties (10a), (11),
and (10d) on all of [0,T) as a corollary:

Corollary 5.5. Let the assumptions of Lemma 5.4 be satisfied and let the variational inequality (10a) hold true for the
initial datum (u0, z0). Then the functionals E and V comply with the assumptions A1)–A10) of Theorem 5.2 and thus, for
the pair (u, z) obtained by convergences (76), inequalities (90) and (91) are valid for all subintervals [s, t] ⊂ [0,T] with
s, t ∈ [0,T]\N .

1 For all t̂ ∈ N ∩ (0,T) there are sequences (t±n )n ⊂ [0,T]\N such that t−n ↗ t̂, t+n ↘ t̂ as n → ∞ and,
z− = limn→∞ z(t−n ) = limn→∞ z(t+n ) = z+ in X thanks to the validity of inequalities (90) and (91) for
[t−n , t

+
n ], n ∈ N.

2 Further let R as in (5) encode a unidirectional evolution of the rate-independent variable. Then z(t+n ) ≤ z(t̂) ≤
z(t−n ) for all n ∈ N and like in the proof of the continuity in the viscous case after (160) at first z− = z(t̂) = z+

in X, and then with a similar argumentation z ∈ C0([0,T);X).
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3 In addition, let u ∈ C0([0,T],U), as guaranteed by (77a). Then, the one-sided variational inequality (10a),
semistability inequality (11), and the energy-dissipation balance (10d) are valid even for all t ∈ [0,T). Con-
sequently, also estimate (91) is valid for all t ∈ [0,T) and thus ensures the temporal Hölder-continuity z ∈
C0,h([0,T);X) with the Hölder-exponent h = βu

2α = 1
4 for βu = 1 and α = 2 obtained in Lemma 5.4.

We point out that the initial time t = 0 is a (Hölder-) continuity point of z, since the variational inequality (10a) and thus
semistability (11) are satisfied by assumption. Hence, 0 ∈ [0,T]\N and one obtains the validity of the inequalities (90)
and (91) for intervals [0, t] with t ∈ [0,T]\N . With the arguments of Cor. 5.5, Item 1., one can consider the limit t ↗ 0
and thus conclude that z0 = limt→0 z(t) in X thanks to (90) and (91). Instead, for the final time T it may happen that
T ∈ N, so that (90) and (91) are not guaranteed. Since one can only consider the limit from the left for sequences t↘ T,
but not from the right, it is thus possible for z ∈ BV ([0,T], L1(Ω)) that z−T := limt→T z(t) > z(T) with z(T) the
value extracted by convergences (76). A solution of (10) that is (Hölder-) continuous on all of [0,T] can be rendered by
replacing z(T) with z−T . �

5.4 Proof of Theorem 5.1, Item 4: Improved convergence (79c)

For the proof of the strong convergence (79a) for the sequence (u̇τ )τ we refer to [LRTT18, L. 4.8].

To conclude the strong convergences (79b) and (79c) we shall exploit the validity of the energy-dissipation balance (10d)
at all t ∈ [0,T) for the limit pair (u, z). More precisely, in view of the weak convergence results ūτ (t) ⇀ u(t) in U and
z̄τ (t) ⇀ z(t) in X by (76d) and (76f) in the separable, reflexive Banach spaces U,X the strong convergence of the
sequences can be concluded if also their norms can be shown to converge, i.e., if it can be shown that

‖u(t)‖2U ≤ lim inf
τ→0

‖ūτ (t)‖2U ≤ lim sup
τ→0

‖ūτ (t)‖2U ≤ ‖z(t)‖2U , (121a)

‖z(t)‖2X ≤ lim inf
τ→0

‖z̄τ (t)‖2X ≤ lim sup
τ→0

‖z̄τ (t)‖2X ≤ ‖z(t)‖2X . (121b)

While the first set of inequalities in (121) is due to weak convergence and the weak lower semicontinuity of the norms, the
last set of inequalities in (121) will now be concluded with the aid of the energy-dissipation balance of the limit system.

We first carry out the argument for (z̄τ )τ to deduce the last inequality in (121b). For this, at any time t ∈ [0,T), we
rearrange the discrete energy-dissipation inequality (42) as follows

∫
Ω

( 1

2`

(
1− z̄τ (t)

)2
+
`

2
|∇z̄τ (t)|2

)
dx

≤ K(u̇0) + E(0, u0, z0)−
∫ t̄τ (t)

0

〈ḟτ (r),
¯
uτ (r)〉U∗,U dr

−K(u̇τ (t))−
∫

Ω

1

2
C(z̄τ (t))e

(
ūτ (t)

)
: e(ūτ (t)) dx+

〈
f̄τ (t), ūτ (t)

〉
U∗,U

−
∫ t̄τ (t)

0

2RM (żτ (r)) dr −
∫ t̄τ (t)

0

2V(z̄τ (r); u̇τ (r)) dr ,

(122)

and we take the limit superior as τ → 0 on both sides of (122). By making use of convergences (76), we can pass
to the limit on the right-hand side by weak lower semicontinuity and weak-strong convergence arguments, essentially
by repeating the argumentation of Sec. 5.2.4 for the upper energy-dissipation estimate, and we also use the estimate
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−
∫ t̄τ (t)

0
2RM (żτ (r)) dr ≤ 0. In this way we find

lim sup
τ↓0

∫
Ω

( 1

2`

(
1− z̄τ (t)

)2
+
`

2
|∇z̄τ (t)|2

)
dx

≤ K(u̇0) + E(0, u0, z0)−
∫ t

0

〈ḟ(r), u(r)〉U∗,U dr −K(u̇(t))

−
∫

Ω

1

2
C(z(t))e(u(t)) : e(u(t)) dx+ 〈f(t), u(t)〉U∗,U −

∫ t

0

2V(z(r); u̇(r)) dr

=

∫
Ω

( 1

2`

(
1− z(t)

)2
+
`

2
|∇z(t)|2

)
dx

for all t ∈ [0,T), where the last equality follows from the validity of the energy-dissipation balance (10d) of the limit. This
provides (121b).

To deduce (121a) we repeat the above line of arguments. Accordingly, in the analogon of (122) we keep the stored-elastic-
energy term on the left-hand side and move the phase-field term to the right-hand side. In this term we can also pass to
the limit via convergences (76) and weak lower semicontinuity, as already argued in Sec. 5.2.4. Thus, we obtain

lim sup
τ↓0

∫
Ω

1

2
C(z̄τ (t))e(ūτ (t)) : e(ūτ (t)) dx

≤ K(u̇0) + E(0, u0, z0)−
∫ t

0

〈ḟ(r), u(r)〉U∗,U dr −
∫ t

0

2V(z(r); u̇(r)) dr

−K(u̇(t))−
∫

Ω

( 1

2`

(
1− z̄τ (t)

)2
+
`

2
|∇z̄τ (t)|2

)
dx+ 〈f(t), u(t)〉U∗,U

=

∫
Ω

1

2
C(z(t))e(u(t)) : e(u(t)) dx .

(123)

From this, (121a) is concluded with the aid of the following lemma:

Lemma 5.6 (Adaption of [LRTT18, L. 4.7]). Given two constants C1, C2 with 0 < C1 ≤ C2, let TC1,C2
denote the class

of tensors C ∈ Rd×d×d×d that are symmetric, i.e.,

Cijkl = Cjikl = Cijlk = Cklij ,

positive definite and bounded:

C1|A|2 ≤ CA : A ≤ C2|A|2 for every A ∈ Rd×dsym . (124)

Let In be the functional defined by

In(e) :=

∫
Ω

Cn(x)e(x) : e(x) dx for every e ∈ L2(Ω;Rd×d) ,

where Cn ∈ L∞(Ω; TC1,C2
) are such that

Cn(x)→ C∞(x) for a.e. x ∈ Ω , (125a)

en ⇀ e∞ weakly in L2(Ω;Rd×d) , (125b)

lim sup
n→∞

In(en) ≤ I∞(e∞) , (125c)

and I∞ is defined by

I∞(e) :=

∫
Ω

C∞(x)e(x) : e(x) dx for every e ∈ L2(Ω;Rd×d) .

Then, limn→∞ In(en) = I∞(e∞) and

en → e∞ strongly in L2(Ω;Rd×d) . (126)

Note that [LRTT18, L. 4.7] states the result for tensors C ∈ L∞((0,T) × Ω; TC1,C2
) that additionally depend on time

and for functions e ∈ L2((0,T) × Ω;Rd×d), so that the functionals In, I are defined by additionally integrating over
(0,T). Accordingly, [LRTT18, L. 4.7] provides strong convergence of (en)n in L2((0,T)×Ω;Rd×d). But the arguments
of the proof remain valid, if we drop the time-dependence as here in Lemma 5.6. �
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6 Limit passage in the viscous case

We now discuss the limit from time-discrete to time-continuous to obtain solutions for system

(U,W,ZM ,V,K,RM , E)

with a viscous evolution of the phase-field variable, when the parameter M > 0 is kept fixed in the limit passage:

Theorem 6.1 (Existence of solutions in the viscous limit). Let the assumptions of Theorem 4.1 and Proposition 4.2 be
satisfied and assume that the one-sided variational inequality (9a) holds true at t = 0 for the initial datum (u0, z0) ∈
U×X. Let the viscosity parameter M > 0 in (4) be fixed and let τ → 0. For all τ > 0 let (ūτ ,

¯
uτ , uτ , z̄τ ,

¯
zτ , zτ ) be a

tuple of interpolated solutions of problem (47) corresponding to system (U,W,ZM ,V,K,RM , E). Then there holds:

1 There exists a pair (uM , zM ) : [0,T] → U × Z such that, up to a (not relabeled) subsequence, the solutions
(ūτ ,

¯
uτ , uτ , z̄τ ,

¯
zτ , zτ )τ converge to (uM , zM ) in the topologies of (76) and additionally also in the following

sense:

zτ ⇀ zM weakly in H1(0, T ;ZM ) . (127)

2 The limit pair (uM , zM ) is a solution of (U,W,ZM ,V,K,RM , E) in the sense of Definition 1.2 and it is 0 ≤
zM (t, x) ≤ 1 for a.a. x ∈ Ω and for all t ∈ [0,T].

3 The limit function uM complies with the regularity properties (77). The limit function zM the has regularity properties

zM ∈ H1
(
0,T;L2(Ω)

)
∩ L∞(0,T;X) ∩ C0

(
(0,T);X

)
. (128)

4 In addition to the convergence results stated in Item 1, also the following improved convergence statements hold
true:

e(u̇τ )→ e(u̇M ) strongly in H1(0,T;U) , (129a)

e(ūτ (t))→ e(uM (t)) strongly in U for all t ∈ [0,T) , (129b)

z̄τ (t)→ zM (t) strongly in X for all t ∈ [0,T) . (129c)

Proof. The proof of Theorem 6.1 is discussed in Section 6.2 by mainly pointing out the differences to the rate-independent
case given in Theorem 5.1. The proof of the continuity of zM in the interval [0,T) with values in X is based on a similar
argumentation as the improved regularity the rate-independent setting, cf. Theorem 5.2. We state the abstract result for
the viscous evolution below in Theorem 6.2 and verify regularity statement (128) in Section 6.4.

The proof of the continuity-result stated in Theorem 6.2 below will be elaborated in detail in Section 6.1. Compared to
the regularity result in [RT17a, Thm. 3.8], the situation here is different due to a quadratic dissipation RM instead of
a 1-homogeneous rate-independent potential and due to the state-dependence of the viscous dissipation V . The result
is based on the one-sided variational inequality (9a), which is valid for a.e. t ∈ (0,T), only, due to the appearance of
żM ∈ L2(0,T;ZM ). To estimate this expression we will make use of a Riemann-sum approach relying on a sequence
of partitions Π := ({tnk , k = 0, . . . n})n for which (9a) holds true in each of the nodes tnk , see Thm. 6.2, Item 4 and also
Remark 6.3. An outcome of this will be the term

VarαΠ,S(z; [s, t]) := lim
n→∞

n∑
k=1

‖z(tnk )− z(tnk−1)‖αS , α > 1, (130)

with the exponent α > 1 and the Banach space S given by the uniform convexity property (84). We remark that the
expression VarαΠ,S(z; [s, t]) resembles a variation of power α, which appears in stochastics for α = 2, but differently to
a true variation, in (130) it is not possible to consider the supremum over all the partitions of [s, t].

Theorem 6.2 (Improved temporal regularity). Let (U,W,ZM ,V,K,RM , E) be a damped inertial system characterized
by Banach spaces U,ZM , and a Hilbert space W, the kinetic energy K : W → [0,∞), a dissipation potential
V : ZM × U → [0,∞), a quadratic dissipation potential RM : ZM → [0,∞], and an energy functional E :
[0,T]×U× ZM → R ∪ {∞} such that for all t ∈ [0,T] the functional E(t, ·, ·) is coercive and takes finite values on
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(a closed, convex subset of) V×X with X a Banach space such that X ⊂ ZM compactly and V a Banach space such
that V ⊂ U continuously and densely. Moreover, let S be a Banach space such that X ⊆ S ⊆ ZM continuously, which
may or may not coincide with X or ZM . Further consider the list of assumptions A1)–A10) from Theorem 5.2, where A1)
and A2) are now replaced by:

Ã1) The pair (u, z) : [0,T]→ U×X satisfies the one-sided variational inequality (131) for a.a. t ∈ [0,T]:

〈DzE(t, u(t), z(t)) + DRM (ż(t)), η〉X∗,X ≥ 0 for all η ∈ K(t) (131)

with K(t) ⊂ X a closed, convex subset of X. Define the L1-null set

Ñ :=
{
t̂ ∈ [0,T] | (u(t̂), z(t̂)) does not satisfy (131)

}
. (132)

Ã2) The pair (u, z) : [0,T]→ U×X satisfies the following upper energy-dissipation estimate

K(u̇(t)) + E(t, u(t), z(t)) +

∫ t

s

2(V(z(r); u̇(r)) +RM (ż(r))) dr

≤ K(u̇(s)) + E(s, u(s), z(s)) +

∫ t

s

∂rE(r, u(r), z(r)) dr

(133)

for all subintervals [s, t] ⊂ [0,T] with s, t ∈ [0,T]\Ñ .

The following statements hold true:

1 Let assumptions Ã1) and A5) be valid. Then (u, z) satisfies

E(s, u(s), z(s)) + C? ‖z(t)− z(s)‖αS
≤ E(s, u(s), z(t)) + 〈DRM (ż(s)), z(t)− z(s)〉X∗,X

(134)

for all s ∈ [0,T]\Ñ and for all t ∈ [0,T] such that (z(t)− z(s)) ∈ K(s).

2 Let assumptions Ã1), Ã2), and A3)–A6) be valid. Then, z complies with the following estimate

C? ‖z(t)− z(s)‖αS ≤ c?
(∫ t

s

‖u̇(r)‖U dr
)βu

+ C(t− s) +

∫ t

s

∣∣∣〈ρü(r), u̇(r)〉U∗,U
∣∣∣ dr

+ 〈DRM (ż(s)), z(t)− z(s)〉X∗,X −
∫ t

s

2RM (ż(r)) dr

(135)

for all subintervals [s, t] ⊂ [0,T] with s, t ∈ [0,T]\Ñ and (z(t)− z(s)) ∈ K(s).

3 Let assumptions Ã1), Ã2) and A3)–A9) be valid. Then, z complies with the estimate

C? ‖z(t)− z(s)‖αS ≤ Ĉ
∫ t

s

‖u̇(r)‖U dr + c?

(∫ t

s

‖u̇(r)‖U dr
)βu

+ C(t− s)

+ 〈DRM (ż(s)), z(t)− z(s)〉X∗,X −
∫ t

s

2RM (ż(r)) dr

(136)

for all subintervals [s, t] ⊂ [0,T] with s, t ∈ [0,T]\Ñ and (z(t)− z(s)) ∈ K(s).
4 Let [s∗, t∗] ⊂ [0,T] and consider a sequence of partitions Π := (Πn)n∈N with Πn = {s∗ = tn0 < tn1 < . . . <
tnn = t∗} such that(

z(tnk )− z(tnk−1)
)
∈ K(tnk−1) for all k ∈ {1, . . . , n} and n ∈ N , (137a)

lim
n→∞

n∑
k=1

〈
DRM (ż(tnk−1)), z(tnk )− z(tnk )

〉
X∗,X

−
∫ t∗

s∗

2RM (ż(r)) dr = 0 . (137b)

Set

VarαΠ,S(z; [s∗, t∗]) := lim
n→∞

n∑
k=1

∥∥z(tnk )− z(tnk−1)
∥∥α
S
. (138)
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Further suppose for the nodes of Π that tnk ∈ [0,T] \ Ñ for all k ∈ {0, . . . , n}, and n ∈ N. Assume that estimate
(135) is valid with βu = 1 in all the nodes of Π. Then,

C?VarαΠ,S(z; [s∗, t∗]) ≤ c?
∫ t∗

s∗

‖u̇(r)‖U dr + C(t∗ − s∗) +

∫ t∗

s∗

∣∣∣〈ρü(r), u̇(r)〉U∗,U
∣∣∣ dr . (139a)

If estimate (136) is valid with βu = 1 in all the nodes of Π, then,

C?VarαΠ,S(z; [s∗, t∗]) ≤ (Ĉ + c?)

∫ t∗

s∗

‖u̇(r)‖U dr + C(t∗ − s∗) . (139b)

If in addition also assumption A10) is valid, then

C?VarαΠ,S(z; [s∗, t∗]) ≤ (Ĉ + c?)(t∗ − s∗)
1
2 ‖u̇‖L2(s∗,t∗;U) + C(t∗ − s∗) . (139c)

5 Let the conditions of Item 4 be valid and assume that one of (139a), (139b) holds true. For all t̂ ∈ Ñ ∩ (0,T) there

are sequences (t̂±l )l∈N ⊂ (0,T)\Ñ such that

t̂−l ↗ t̂, t̂+l ↘ t̂, and ‖z(t̂+l )− z(t̂−l )‖S → 0 ,

z−
t̂

= lim
l→∞

z(t̂−l ) = lim
l→∞

z(t̂+l ) = z+
t̂

in S as l→∞ .
(140)

6 Assume that RM , resp. the closed, convex subset K(t), t ∈ [0,T], encodes a unidirectionality constraint, i.e.,
(z(t̂) − z(t)) ∈ K(t) for all t̂, t ∈ [0,T] with t̂ ≥ t. Let the prerequisites of Item 5 be valid. Suppose that
ZM = Lp(Ω) and that S ∈ {Lp̃(Ω),Wm,p̃(Ω)} with p, p̃ > 1 and m ∈ N, and such that X ⊆ S ⊆ ZM
continuously. Then, it is z−

t̂
= z(t̂) = z+

t̂
in S for all t̂ ∈ (0,T) and for the left- and right-continuous limits of the

sequence (140). Moreover, there even holds z ∈ C0((0,T);S).

Proof. The proof is carried out in Section 6.1 below.

Remark 6.3 (Approximation by Riemann sums). For a Banach space V , every f ∈ L1(0, T ;V ) can be approximated by
Riemann sums, i.e. there exists a sequence of partitions Πn = {0 = tn0 < tn1 < . . . < tnNn} such that

lim
n→∞

max
1≤k≤Nn

tnk − tnk−1 = 0 (141)

and limn→∞
∑Nn
k=1

∫ tnk
tnk−1
‖f(tnk )− f(r)‖ dr = 0 [DMFT05, Lemma 4.12, p. 26]). There is even a freedom of choice

in the selection of the partition because the approximation property also holds true if one takes into account almost all
sequences of partitions with the property (141), cf. [MR15, footnote 35, p. 604]. This may be justified by applying for the
L1(0,T)-integrable functions ‖f(·)‖V : [0,T] → [0,∞) the definition of gauge integrals, e.g. in the sense of Denjoy-
Perron [Maw97, p. 349] or Henstock-Kurzweil [ebPM16, Ch. 4], and the fact that every Lebesgue-integrable function is
gauge-integrable in the sense of Denjoy-Perron [Maw97, p. 385f] or Henstock-Kurzweil [Sch09]. In this way one may
restrict the partitions to those with nodes in [0,T]\Ñ and thus ensure the prerequisites of Thm. 6.2, Item 4.

6.1 Proof of Theorem 6.2: Improved temporal regularity for the internal variable

To Item 1, estimate (134): Based on Ã1), we test the variational inequality (131) at time s ∈ [0,T] \ Ñ by z̃ − z(s) ∈
K(s) with z̃ ∈ X suitably. By the Gâteaux-differentiablility and convexity of E(t, u, ·) ensured by A5), one finds

0 ≤ 〈DzE(s, u(s), z(s)) + DRM (ż(s)), z̃ − z(s)〉X∗,X
≤ E(s, u(s), z̃)− E(s, u(s), z(s)) + 〈DRM (ż(s)), z̃ − z(s)〉X∗,X .

(142)

Let now z0, z1 ∈ X such that zi− z(s) ∈ K(s) for i ∈ {0, 1} and λ ∈ (0, 1). Then, for z̃ = λz1 + (1−λ)z0 in (142),
it is z̃ − z(s) ∈ K(s). Exploiting the uniform convexity estimate (84), it follows

0 ≤E(s, u(s), z̃)− E(s, u(s), z(s)) + 〈DRM (ż(s)), z̃ − z(s)〉X∗,X
≤λE(s, u(s), z1) + (1− λ)E(s, u(s), z0)− λ(1− λ)C? ‖z1 − z0‖αS − E(s, u(s), z(s))

+ λ 〈DRM (ż(s)), z1 − z(s)〉X∗,X + (1− λ) 〈DRM (ż(s)), z0 − z(s)〉X∗,X .

(143)
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Now, the choice z0 := z(s) in (143), where clearly z(s)− z(s) = 0 ∈ K(s), leads to

0 ≤λ
[
E(s, u(s), z1)− E(s, u(s), z(s))− (1− λ)C? ‖z1 − z(s)‖αS
+ 〈DRM (ż(s)), z1 − z(s)〉X∗,X

]
.

Dividing by λ > 0 and letting λ ↓ 0 one arrives at

C? ‖z1 − z(s)‖αS ≤ E(s, u(s), z1)− E(s, u(s), z(s)) + 〈DRM (ż(s)), z1 − z(s)〉X∗,X .

The choice z1 := z(t) for t ∈ [0,T] such that (z(t)− z(s)) ∈ K(s) shows the validity of Theorem 6.2, Item 1, that is

C? ‖z(t)− z(s)‖αS ≤ E(s, u(s), z(t))−E(s, u(s), z(s))+ 〈DRM (ż(s)), z(t)− z(s)〉X∗,X (144)

To Item 2, estimate (135): Let now also t ∈ [0,T]\Ñ . In a first step, the right-hand side of (144) by adding and
subtracting terms, can be rewritten as

(144) = E(t, u(t), z(t))− E(s, u(s), z(s)) +

∫ t

s

2RM (ż(r)) dr

+ E(s, u(s), z(t))− E(t, u(t), z(t))

+ 〈DRM (ż(s)), z(t)− z(s)〉X∗,X −
∫ t

s

2RM (ż(r)) dr .

(145)

In view of the upper energy-dissipation estimate (133) ensured in Ã2) for s, t ∈ [0,T]\Ñ one obtains

(145) ≤ K(u̇(s))−K(u̇(t))−
∫ t

s

2V(z(r); u̇(r)) dr +

∫ t

s

∂rE(r, u(r), z(r)) dr

+ E(s, u(s), z(t))− E(t, u(t), z(t))

+ 〈DRM (ż(s)), z(t)− z(s)〉X∗,X −
∫ t

s

2RM (ż(r)) dr .

(146)

Now the terms on the right-hand side of (146) will be further estimated from above individually. In view of assumption A3)
on the regularity of u, the result [Rou06, Lemma 7.3, p. 191] together with the non-negativity of V(z(r); u̇(r)), provides
that

K(u̇(s))−K(u̇(t))−
∫ t

s

2V(z(r); u̇(r)) dr ≤
∫ t

s

∣∣ 〈ρü(r), u̇(r)〉U∗,U
∣∣dr . (147)

In addition, we make use of the absolute continuity of r 7→ E(r, u, z) and Hölder-estimate (85) for E(t, ·, z(t)) provided
by A6), to deduce that

E(s, u(s), z(t))− E(t, u(t), z(t))

= E(s, u(s), z(t))− E(t, u(s), z(t)) + E(t, u(s), z(t))− E(t, u(t), z(t))

≤ −
∫ t

s

∂rE(r, u(s), z(t)) dr + c? ‖u(s)− u(t)‖βuU ,

(148)

and by the absolute continuity of u we further note that

c? ‖u(s)− u(t)‖βuU ≤ c?
∥∥∥∥∫ t

s

u̇(r) dr

∥∥∥∥βu
U

≤ c?
(∫ t

s

‖u̇(r)‖U dr
)βu

. (149)

In summary, we conclude for all s, t ∈ [0,T] \ Ñ with (z(t)− z(s)) ∈ K(s) that

C? ‖z(t)− z(s)‖αS ≤
∫ t

s

∣∣ 〈ρü(r), u̇(r)〉U∗,U
∣∣ dr + c?

(∫ t

s

‖u̇(r)‖U dr
)βu

+

∫ t

s

(
∂rE(r, u(r), z(r))− ∂rE(r, u(s), z(t))

)
dr

+ 〈DRM (ż(s)), z(t)− z(s)〉X∗,X −
∫ t

s

2RM (ż(r)) dr ,

(150)
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where the term involving the partial time derivatives of E can be further estimated from above by the power control (83)
provided in assumption A4) as follows∣∣∣∣∫ t

s

∂rE(r, u(r), z(r))− ∂rE(r, u(s), z(t)) dr

∣∣∣∣
≤
∫ t

s

(
|∂rE(r, u(r), z(r))|+ |∂rE(r, u(s), z(t))|

)
dr

≤
∫ t

s

c̃
[
E(r, u(r), z(r)) + E(r, u(s), z(t)) + 2ĉ

]
dr ≤ C(t− s) .

(151)

Note here that the uniform bound on E(r, u(r), z(r)) + E(r, u(s), z(t)) is guaranteed by the upper energy-dissipation
estimate (133) and the coercivity of E(t, ·, ·) on (a closed, convex subset of) V×X as claimed in the general assumptions

of Thm. 6.2. Inserting (151) into (150) proves the validity of estimate (135) for all s, t ∈ [0,T]\Ñ such that (z(t)−z(s)) ∈
K(s), that is Thm. 6.2, Item 2.

To Item 3, estimate (136): To deduce (136) we return to estimate (146) and, instead of using (147), we argue as
follows: Again, by assumption A3) on the regularity of u and [Rou06, Lemma 7.3, p. 191] we have K(u̇(s))−K(u̇(t)) =

−
∫ t
s
〈ρü(r), u̇(r)〉U∗,U dr. Moreover, E(r, ·, z(r)) is Gâteaux-differentiable by A7) and the weak momentum balance

(87) holds true by assumption A9). We thus test (87) by u̇ to obtain the identity∫ t

s

〈ρü(r) + DuE(r, u(r), z(r)), u̇(r)〉U∗,U dr = −
∫ t

s

2V(z(t); u̇(r)) dr .

Hence, the kinetic and the viscous terms on the right-hand side of (146) amount to

K(u̇(s))−K(u̇(t))−
∫ t

s

2V(z(r); u̇(r)) dr

=

∫ t

s

〈−ρü(r) + ρü(r) + DuE(r, u(r), z(r)), u̇(r)〉U∗,U dr

=

∫ t

s

〈DuE(r, u(r), z(r)), u̇(r)〉U∗,U dr .

(152)

This term is now further estimated with the aid of the gradient estimate (86) provided in A8) in the following way:∣∣∣∣∫ t

s

〈DuE(r, u(r), z(r)), u̇(r)〉U∗,U dr

∣∣∣∣ ≤ ∫ t

s

‖DuE(r, u(r), z(r))‖U∗ ‖u̇(r)‖U dr

≤
∫ t

s

(
Ĉ1E(r, u(r), z(r)) + Ĉ2 ‖u(r)‖U + Ĉ3

)1/σ ‖u̇(r)‖U dr ≤ Ĉ
∫ t

s

‖u̇(r)‖U dr ,

(153)

where the uniform boundedness of u ∈ H1(0,T;U) claimed in A3) was used together with the uniform bound on the
energy provided by the upper energy-dissipation estimate (82). Putting together estimates (146), (148), (149), (151), and
(153) results in

C? ‖z(t)− z(s)‖αS ≤ Ĉ
∫ t

s

‖u̇(r)‖U dr + c?

(∫ t

s

‖u̇(r)‖U dr
)βu

+ C(t− s)

+ 〈DRM (ż(s)), z(t)− z(s)〉X∗,X −
∫ t

s

2RM (ż(r)) dr ,

(154)

which finishes the proof of estimate (136) for all s, t ∈ [0,T]\Ñ with (z(t)− z(s)) ∈ K(s), i.e., Thm. 6.2, Item 3.

To Item 4, estimates (139): Consider now a sequence of partitions Π = (Πn)n∈N, Πn := {s∗ = tn0 < tn1 < . . . <

tnn = t∗} with the properties (137) and such that tnk ∈ [0,T]\Ñ for all the nodes of Π. First, assume that estimate (135)
is valid with βu = 1 for all the nodes of Π. Hence, using s = tnk−1, t = tnk and βu = 1 in (135), summing up from k = 1
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to n, and letting n→∞, gives

C?VarαΠ,S(z; [s∗, t∗]) ≤ c?
∫ t∗

s∗

‖u̇(r)‖U dr + C(t∗ − s∗) +

∫ t∗

s∗

∣∣∣〈ρü(r), u̇(r)〉U∗,U
∣∣∣ dr

+ lim
n→∞

n∑
k=1

〈
DRM (ż(tnk−1)), z(tnk )− z(tnk−1)

〉
X∗,X

−
∫ t∗

s∗

2RM (ż(r)) dr

= c?

∫ t∗

s∗

‖u̇(r)‖U dr + C(t∗ − s∗) +

∫ t∗

s∗

∣∣∣〈ρü(r), u̇(r)〉U∗,U
∣∣∣ dr

(155)

by assumption on the convergence of the Riemann sum in (137b). This shows (139a). Analogously one obtains from
estimate (136) with βu = 1 that

C?VarαΠ,S(z; [s∗, t∗]) ≤ Ĉ
∫ t∗

s∗

‖u̇(r)‖U dr + c?

∫ t∗

s∗

‖u̇(r)‖U dr + C(t∗ − s∗)

+ lim
n→∞

n∑
k=1

〈
DRM (ż(tnk−1)), z(tnk )− z(tnk−1)

〉
X∗,X

−
∫ t∗

s∗

2RM (ż(r)) dr

= (Ĉ + c?)

∫ t∗

s∗

‖u̇(r)‖U dr + C(t∗ − s∗) ,

(156)

that is (139b). For estimate (139c) we observe from the quadratic growth (88) of V claimed in A10) that we may use
Hölder’s inequality with power p = 2 for the first term on the right-hand side of (139b), resp. above in (156). Thus,

C?VarαΠ,S(z; [s∗, t∗]) ≤ (Ĉ + c?)

∫ t∗

s∗

‖u̇(r)‖U dr + C(t∗ − s∗)

≤ (Ĉ + c?)(t∗ − s∗)
1
2 ‖u̇‖L2(s∗,t∗;U) + C(t∗ − s∗) ,

(157)

which is (139c).

To Item 5, existence of S-convergent sequences (140): Let t̂ ∈ Ñ ∩ (0,T) and consider a sequence ε ↘ 0 with

ε > 0 and such that t̂ − ε, t̂ + ε ∈ [0,T] \ Ñ . This is possible in view of Remark 6.3. Assume that one of (139a),
(139b) is valid. Without loss of generality we here carry out the proof under the assumption that (139b) is valid together
with growth property (88) from A10); the proof based on (139a) or without (88) proceeds in an analogous way. Then, by
assumption, there exists partitions (Πε

n)n∈N = {t̂− ε = tεn0 < tεn1 < . . . < tεnn = t̂+ ε} with nodes tεnk ∈ [0,T]\Ñ .
Hence, (139b), resp. (156) above, together with (88) yields that

VarαΠ,S(z; [t̂− ε, t̂+ ε]) = lim
n→∞

n∑
k=1

∥∥z(tεnk )− z(tεnk−1)
∥∥α
S

≤ 1

C?

(
(Ĉ + c?)(2ε)

1
2 ‖u̇‖L2(0,T;U) + C2ε

+ lim
n→∞

n∑
k=1

〈
DRM (ż(tnk−1)), z(tnk )− z(tnk−1)

〉
X∗,X

−
∫ t∗

s∗

2RM (ż(r)) dr
)
,

where we also divided by C? and used that [t̂− ε, t̂+ ε] ⊂ [0,T]. In view of (137b), for all ν > 0 and each ε > 0 there
is an index n(ν, ε) ∈ N such that

n∑
k=1

〈
DRM (ż(tnk−1)), z(tnk )− z(tnk−1)

〉
X∗,X

−
∫ t∗

s∗

2RM (ż(r)) < ν (158)

for all n ≥ n(ν, ε) such that Πε
n is an admissible partition of [t̂− ε, t̂+ ε]. In particular, also the choice ν = ε is possible.

In this way, for each ε > 0 we have found an index n(ε) = n(ε, ε) ∈ N marking the partition Πε
n(ε) and constants
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C1, C2 > 0 such that

n(ε)∑
k=1

∥∥z(tεnk )− z(tεnk−1)
∥∥α
S
≤ 1

C?

(
(Ĉ + c?)(2ε)

1
2 ‖u̇‖L2(0,T;U) + C2ε+ ε

)
≤ C1(2ε)

1
2 + C2ε .

(159)

Moreover, there is an index k(ε) ∈ {1, . . . , n(ε)} such that t̂ ∈ [tεnk(ε)−1, t
εn
k(ε)]. Hence,

∥∥∥z(tεnk(ε))− z(t
εn
k(ε)−1)

∥∥∥α
S
≤
n(ε)∑
k=1

∥∥z(tεnk )− z(tεnk−1)
∥∥α
S
≤ C1(2ε)

1
2 + C2ε .

Choosing now a subsequence (εl)l∈N with εl → 0 as l → ∞, and t̂−l := tεlnk(εl)−1 as well as t̂+l := tεlnk(εl)
proves

the existence of sequences (t̂±l )l∈N ⊂ [0,T] \ Ñ such that t̂−l ↗ t̂ and t̂+l ↘ t̂, and such that also ‖z(tεnk(ε)) −
z(tεnk(ε)−1)‖S → 0, and thus z−

t̂
= liml→∞ z(t̂−l ) = liml→∞ z(t̂+l ) = z+

t̂
, i.e., with properties (140). This finishes the

proof of Thm. 6.2, Item 5.

To Item 6, continuity of the internal variable: Given the prerequisites of Item 5, for every t̂ ∈ (0, T ) we find sequences
(t̂−l )l∈N, (t̂+l )l∈N such that t̂−l ↗ t̂ and t̂+l ↘ t̂, and such that z−

t̂
= liml→∞ z(t̂−l ) = liml→∞ z(t̂+l ) = z+

t̂
in S.

Like in Corollary 5.5, we now exploit the unidirectionality ofRM to show that indeed

z−
t̂

= lim
l→∞

z(t̂−l ) = z(t̂) = lim
l→∞

z(t̂+l ) = z+
t̂

in S . (160)

For this, we argue as follows: Since S ⊂ ZM continuously, we also have z−
t̂

= z+
t̂

in ZM . Moreover, by the unidi-

rectionality constraint we have (z(t̂) − z(t̂−l )) ∈ K(t̂−l ), (z(t̂+l ) − z(t̂−l )) ∈ K(t̂−l ) and (z(t̂+l ) − z(t̂)) ∈ K(t̂).
Hence z(t̂−l ) � z(t̂) � z(t̂+l ) for all l ∈ N, where � indicates the symbol for the unidirectionality relation. Thus
z−
t̂
� z(t̂) � z+

t̂
= z−

t̂
, which implies

z−
t̂

= z(t̂) = z+
t̂
, first in ZM = Lp(Ω) . (161)

By assumption, it is S = Wm,p̃(Ω) with X ⊆ S ⊆ ZM . Hence, equality (161) also holds true in S if m = 0. Moreover,
for m > 0 we also find equality (161) to hold true in S by the uniqueness of weak derivatives. This proves (160).

The convergence (160) along the special sequences (t̂±l )l∈N ⊂ [0,T]\Ñ will be used now to show continuity of z in
(0,T). For that, consider a general sequence

(ŝl)l∈N ⊂ (0, T ) such that ŝl → t̂ as l→∞ , (162a)

i.e., here in particular also sl ∈ Ñ is allowed, and we aim to prove that also

z(ŝl)→ z(t̂) as l→∞ . (162b)

Now, let (t̂j)j∈N ⊂ (0, T ) \ Ñ denote the special sequence (t̂−l )l∈N with (160) obtained by the construction in Item 5,
i.e., we have

t̂j → t̂ and z(t̂j)→ z(t̂) . (163)

By construction of Item 5, for each j ∈ N there is a partition Πε
n(j) such that t̂j = t

εn(j)
k−1 and t̂ ∈ [t

εn(j)
k−1 , t

εn(j)
k ] for some

k ∈ {1, . . . , n(j)} and such that

n(j)∑
k=1

〈
DRM (ż(tnk−1)), z(tnk )− z(tnk−1)

〉
X∗,X

−
∫ t̂−ε

t̂+ε

2RM (ż(r)) < ε , (164)

since n(j) ≥ n(ε, ε) in view of (158). Similarly, for each ŝl, for all l ∈ N there is also a special sequence (ŝli)i∈N ⊂
(0, T ) \ Ñ such that

ŝli → ŝl as i→∞ and z(ŝli)→ z(ŝl) .
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Let ε̃ ∈ (0, ε] be general but fixed. Then, for all l ∈ N there is an index i(l, ε̃) ∈ N and there is an index j(ε̃) ∈ N such
that

for all i > i(l, ε̃) :
∥∥z(ŝli)− z(ŝl)∥∥S < ε̃ , (165a)

for all j > j(ε̃) :
∥∥z(t̂j)− z(t̂)∥∥S < ε̃ . (165b)

Now we also fix j > j(ε̃) and we know that there is a partition Πε
n(j) such that t̂j coincides with one of its nodes, in

particular t̂j = t
εn(j)
k−1 by construction. Then, one finds l ∈ N large enough such that ŝl ∈ [t

εn(j)
k−1 , t

εn(j)
k ] and also

ŝli ∈ [t
εn(j)
k−1 , t

εn(j)
k ], in addition to (165a). Thanks to this, we estimate∥∥z(ŝl)− z(t̂)∥∥

S
≤
∥∥z(ŝl)− z(ŝli)∥∥S +

∥∥z(ŝli)− z(t̂)∥∥S
≤ ε̃+

∥∥∥z(ŝli)− z(tεn(j)
k−1 )

∥∥∥
S

+
∥∥∥z(tεn(j)

k−1 )− z(t̂)
∥∥∥
S

≤ 2ε̃+
∥∥∥z(ŝli)− z(tεn(j)

k−1 )
∥∥∥
S
,

where we again used (165). From this, it follows∥∥z(ŝl)− z(t̂)∥∥α
S
≤ 2α−1

(
(2ε̃)α +

∥∥∥z(ŝli)− z(tεn(j)
k−1)

∥∥∥α
S

)
, (166)

and it remains to deduce an estimate for the term ‖z(ŝli)− z(t
n(j)
k−1)‖αS. Thanks to ŝli, t

n(j)
k−1 ∈ (0,T) \ Ñ this can be

achieved with the aid of (136), keeping in mind that here βu = 1. Hence, it follows that

C?

∥∥∥z(ŝli)− z(tεn(j)
k−1 )

∥∥∥α
S
≤ (Ĉ + c?)

∫ ŝli

t
εn(j)
k−1

‖u̇(r)‖U dr + C(ŝli − t
εn(j)
k−1 )

+
〈

DRM (ż(t
εn(j)
k−1 )), z(ŝli)− z(t

εn(j)
k−1 )

〉
X∗,X

−
∫ ŝli

t
εn(j)
k−1

2RM (ż(r)) dr .

(167)

In order to further estimate (167) from above, we once more make use of the unidirectionality constraint. For this, we
need to distinguish the following two cases: decay, i.e., for all t1 < t2 ∈ [0,T] it is z(t1) ≥ z(t2) a.e. ∈ Ω together
with ż ≤ 0 a.e. in (0,T) × Ω, and growth, i.e., for all t1 < t2 ∈ [0,T] it is z(t1) ≤ z(t2) a.e. ∈ Ω together with

ż ≥ 0 a.e. in (0,T) × Ω. We evaluate these two cases for the times tεn(j)
k−1 ≤ ŝli ≤ t

εn(j)
k . In case of decay we

thus have z(tεn(j)
k−1 ) ≥ z(ŝli) ≥ z(t

εn(j)
k ) and hence 0 ≥ z(ŝli) − z(t

εn(j)
k−1 ) ≥ z(t

εn(j)
k ) − z(tεn(j)

k−1 ). Together with

DRM (ż(t
εn(j)
k−1 )) ≤ 0 we see that

0 ≤
〈

DRM (ż(εt
εn(j)
k−1 )), z(ŝli)−z(t

εn(j)
k−1 )

〉
X∗,X

≤
〈

DRM (ż(t
εn(j)
k−1 )), z(t

εn(j)
k )−z(tεn(j)

k−1 )
〉
X∗,X

.
(168)

Analogously, in case of growth we have z(tεn(j)
k−1 ) ≤ z(ŝli) ≤ z(t

εn(j)
k ) and hence 0 ≤ z(ŝli)− z(t

εn(j)
k−1 ) ≤ z(tεn(j)

k )−
z(t

εn(j)
k−1 ). Together with DRM (ż(t

εn(j)
k−1 )) ≥ 0 we again observe (168) to hold true.

Inserting (168) into (167) and exploiting the additivity of the integral gives

C?

∥∥∥z(ŝli)− z(tεn(j)
k−1 )

∥∥∥α
S
≤ (Ĉ + c?)

∫ t
εn(j)
k

t
εn(j)
k−1

‖u̇(r)‖U dr + C(t
εn(j)
k − tεn(j)

k−1 )

+
〈

DRM (ż(t
εn(j)
k−1 )), z(t

εn(j)
k )− z(tεn(j)

k−1 )
〉
X∗,X

−
∫ t

εn(j)
k

t
εn(j)
k−1

2RM (ż(r)) dr

+

∫ t
εn(j)
k

ŝli

2RM (ż(r)) dr .

(169)
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We add the analogous estimates (136) for each of the nodes k̃ 6= k ∈ {1, . . . , n(j)} to (169) and divide the result by
C?. In this way we obtain∥∥∥z(ŝli)− z(tεn(j)

k−1 )
∥∥∥α
S
≤
∥∥∥z(ŝli)− z(tεn(j)

k−1 )
∥∥∥α
S

+

n(j)∑
k̃=1
k̃ 6=k

∥∥∥z(tεn(j)
k )− z(tεn(j)

k−1 )
∥∥∥α
S

≤ 1

C?

(
(Ĉ + c?)

n(j)∑
k̃=1

∫ t
εn(j)

k̃

t
εn(j)

k̃−1

‖u̇(r)‖U dr + C

n(j)∑
k̃=1

(t
εn(j)

k̃
− tεn(j)

k̃−1
)

+

n(j)∑
k̃=1

(〈
DRM (ż(t

εn(j)

k̃−1
)), z(t

εn(j)

k̃
)− z(tεn(j)

k̃−1
)
〉
X∗,X

−
∫ t

εn(j)

k̃

t
εn(j)

k̃−1

2RM (ż(r)) dr
)

+

∫ t
εn(j)
k

ŝli

2RM (ż(r)) dr
)

≤ 1

C?

(
(Ĉ + c?)

∫ t̂+ε

t̂−ε
‖u̇(r)‖U dr + C2ε+ ε+

∫ t
εn(j)
k

ŝli

2RM (ż(r)) dr
)

≤ C1(2ε)1/2 + C2ε+
1

C?

∫ t
εn(j)
k

ŝli

2RM (ż(r)) dr .

Here we used (164) and growth estimate (88), similarly as for (159). Putting this together with (166) we find∥∥z(ŝl)− z(t̂)∥∥α
S
≤ 2α−1

(
(2ε̃)α +

∥∥∥z(ŝli)− z(tn(j)
k−1)

∥∥∥α
S

)
≤ 2α−1

(
(2ε̃)α + C1(2ε)1/2 + C2ε+

1

C?

∫ t
εn(j)
k

ŝli

2RM (ż(r)) dr
)
,

(170)

where ε̃ ∈ (0, ε] and [ŝli, t
εn(j)
k ] ⊂ [t

εn(j)
k−1 , t

εn(j)
k ] ⊂ [t̂− ε, t̂+ ε]. Hence, by the absolute continuity of the integral, the

right-hand side of (170) can be made arbitrarily small as ε→ 0. This shows that indeed (162) holds true for any sequence
(ŝl)l ⊂ (0,T) with ŝl → t̂ ∈ (0,T) as l→∞. Thus we are now in the position to conclude that z ∈ C0((0,T);S). �

6.2 Proof of Theorem 6.1: Viscous case

We carry out the proof of Thm. 6.1 following the lines of Sections 5.1–5.4, by pointing out the arguments which have
to be done in a different way due to the presence of the quadratic dissipation potential RM : ZM → [0,∞). In
particular, in view of the uniform a priori bounds (48), the convergence of a subsequence of the interpolated solutions
(ūτ ,

¯
uτ , uτ , z̄τ ,

¯
zτ , zτ )τ to a limit pair (uM , zM ) in the topologies (76) is concluded in the same way as already done in

Section 5.1. Also the boundedness 0 ≤ zM (t, x) ≤ 1 for a.e. x ∈ Ω and for all t ∈ [0,T] is concluded here like in Sec-
tion 5.2.1 from the knowledge of this bound for the approximants (z̄τ (t))τ together with the strong L2(Ω)-convergence
of this sequence ensured by (76g) for all t ∈ [0,T].

Proof of Theorem 6.1, Item 1: Convergence statement (127). For fixed M > 0 the uniform a priori bound

‖zτ‖H1(0,T;L2(Ω)) ≤ C/
√
M

provided in (48g) implies the existence of z̃ ∈ H1(0,T;ZM ) such that, up to a subsequence, zτ ⇀ z̃ weakly in
H1(0,T;ZM ). It has to be concluded that z̃ coincides in with zM , the latter already obtained by convergences (76f)–
(76h). Indeed, by the definition of the interpolants (43) it is zτ (t)− z̄τ (t) = (t− tkτ )żτ (t) for any t ∈ (tk−1

τ , tkτ ], and in
view of the bound (48g) it thus follows∫ T

0

∫
Ω

(
z̃ − zM

)
v dxdt = lim

τ→0

∫ T

0

∫
Ω

(
zτ (t)− z̄τ (t)

)
v(t) dxdt

≤ lim
τ→0

∫ T

0

∫
Ω

(
τ żτ
)
v(t) dx dt ≤ lim

τ→0
τ‖żτ‖L2((0,T)×Ω)‖v‖L2((0,T)×Ω) = 0
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for all v ∈ L2((0,T)× Ω), which proves the assertion. �

Proof of Theorem 6.1, Item 2: Defining properties (9) of the solution. As τ → 0 the weak balance of momentum
(9c) is obtained from its time-discrete version (47b) thanks to convergences (76) by repeating the lines of Section 5.2.2.
Also an upper energy-dissipation estimate for all t ∈ [0,T] can be deduced following the arguments of Section 5.2.4

by exploiting the lower semicontinuity properties of the functionals K, E(t, ·, ·), and
∫ t

0
2V(·; ·)dr with respect to conver-

gences (76), the non-negativity of the Yosida-term
∫ t

0

∫
Ω
Nτ
2 (żτ )+ dxdr ≥ 0, together with the lower semicontinuity of

the quadratic dissipation
∫ t

0

∫
Ω
M
2 (·) dx dr with respect to the weak L2((0,T)×Ω)-convergence obtained in (127). For

all t ∈ [0,T] this results in the upper energy-dissipation estimate

K(u̇M (t)) + E(t, uM (t), zM (t)) +

∫ t

0

2
(
V(zM ; u̇M ) +RM (żM )

)
dr

≤ K(u̇0) + E(0, u0, z0) +

∫ t

0

∂tE
(
r, u(r), z(r)

)
dr .

(171)

The opposite inequality will be deduced below in (173) with the aid of a Riemann-sum argument once the one-sided
variational inequality (9a) is verified.

Unidirectionality (9b). The deduction of the a priori bounds (48) was carried out in Section 4.6 and also led to the esti-

mates (72) and (74). The latter yields
∫ T

0

∫
Ω
|(żτ )+|2 dxdr ≤ C

Nτ
= Cτ for all τ > 0. Hence, by lower semi-continuity

of the map z 7→
∫ T

0

∫
Ω
|(z)+|2 dxdr with respect to weak L2((0,T)×Ω)-convergence, it follows by convergence (127)

0 = lim
τ→0

Cτ = lim inf
τ→0

∫ T

0

∫
Ω

|(żτ (r))+|2 dxdr ≥
∫ T

0

∫
Ω

|(żM (r))+|2 dxdr . (172)

Since
∫

Ω
|(żM (r))+|2 dx ≥ 0 for all r ∈ [0,T], by the non-negativity of the integrand |(żM (r))+|2 we conclude from

(172) that there has to hold
∫

Ω
|(żM (r))+|2 dx = 0 for a.a. r ∈ [0,T], and also

∫
Ω

(żM (r))+ dx = 0 for a.a. r ∈ [0,T]
by Hölder’s inequality. Consider now any interval [s, t] ⊂ [0,T]. Then, by the convexity of the function (·)+ and Jensen’s
inequality we deduce∫

Ω

(
zM (t)− zM (s)

)
+

dx =

∫
Ω

( ∫ t

s

żM (r) dr
)

+
dx ≤

∫ t

s

∫
Ω

(żM (r))+ dxdr = 0 ,

which proves that zM (t) ≤ zM (s) a.e. in Ω for all s < t ∈ [0,T].

Viscous phase-field evolution (9a) for a.a. t ∈ [0,T). Also the limit passage in the time-discrete damage evolution
(47a) to the viscous evolution (9a) is proven similar to the rate-independent case. We thus proceed along the lines of
Section 5.2: Testing (47a) with η ∈ Y such that η ≤ 0 a.e. in Ω, omitting the negative term

∫
Ω
Nτ (żτ )+η dx, and

integrating over an arbitrary measurable set I ⊂ [0,T] one arrives at the inequality (108), i.e.,∫
I

∫
Ω

[
−1

`

(
1− z̄τ (t)

)
+Mżτ (t)

]
η + `∇z̄τ (t) · ∇η dxdt

≥
∫
I

∫
Ω

[1
2
C′
(
z̄τ (t)

)
e
(
¯
uτ (t)

)
: e
(
¯
uτ (t)

)]
(−η) dx dt .

To pass to the limit one uses the lower and upper semicontinuity arguments from (109)–(112). Yet, for the limit passage in
the viscous term the argument from (110) is replaced in view of weak convergence (127) by the following∫

I

∫
Ω

Mżτ η dxdr →
∫
I

∫
Ω

MżM η dxdr .

In this way one obtains the time-integrated one-sided variational inequality∫
I

∫
Ω

[1
2
C′
(
zM (t)

)
e
(
uM (t)

)
: e
(
uM (t)

)
− 1

`

(
1− zM (t)

)
+MżM

]
η dxdt

+

∫
I

∫
Ω

`∇zM (t) · ∇η dxdt ≥ 0
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to hold for every measurable set I ⊂ [0,T]. From this, we conclude the assertion, i.e., that the one-sided variational
inequality (9a) holds true for a.e. t ∈ [0,T).

Energy-dissipation balance (9d) for a.a. t ∈ [0,T). In view of (171) it now remains to show the opposite estimate

K(u̇M (t)) + E(t, uM (t), zM (t)) +

∫ t

0

2
(
V(zM ; u̇M ) +RM (żM )

)
dr

≥ K(u̇0) + E(0, u0, z0) +

∫ t

0

∂tE
(
r, u(r), z(r)

)
dr .

(173)

Like for the rate-independent setting in Section 5.2.4 we will first obtain (173) to hold for a.e. t ∈ [0,T), only. In analogy
to these arguments the proof for (173) also uses a Riemann-sum argument applied to the one-sided variational inequality
(9a) that was shown above to be valid for a.e. t ∈ [0,T), only. Let Ñ ⊂ [0,T] denote the L1-null set for which (9a)

does not hold and consider any t ∈ (0,T]\Ñ . Then, thanks to Remark 6.3 we find a sequence of (not necessarily
uniform) partitions Πθ = {0 = t0θ < t1θ < . . . < tNθθ = t} with (possibly variable) step-size θk = tkθ − tk−1

θ ,

θ = maxk∈{1,...,Nθ}
∣∣tkθ − tk−1

θ

∣∣ and θ ↓ 0 as Nθ →∞ such that tkθ ∈ [0,T)\Ñ and such that

Nθ∑
k=1

θk

∫
Ω

(
1
2C(zM (tkθ))

|e(uM (tk−1
θ ))|2−|e(uM (tkθ ))|2

θk
+MżM (tk−1

θ )
zM (tkθ )−zM (tk−1

θ )

θk

)
dx dr

↓ θ → 0∫ T

0

∫
Ω

(
− C

(
zM (r)e(uM (r)) : e(u̇M (r))

)
+M |żM (r)|2

)
dxdr .

(174)

Now we test the one-sided variational inequality (9a) at time tk−1
θ by zkθ , sum up over k ∈ {1, . . . , Nθ} and take the limit

θ → 0. Thanks to the convergence of the Riemann-sums (174) this results in

E
(
0, u(0), s(0)

)
≤ E

(
t, u(t), z(t)

)
+

∫ t

0

2RM (żM (r)) dr

−
∫ t

0

∫
Ω

C
(
z(r)

)
e
(
u(r)

)
: e
(
u̇(r)

)
dxdr

+

∫ t

0

〈f(r), u̇(r)〉U∗,U dr −
∫ t

0

∂tE(r, u(r), s(r)) dr ,

which is the viscous analogon of (118). This is combined with (119), the latter obtained by testing the weak momentum
balance (9c) by u̇. This procedure yields (173) and thus proves the energy-dissipation balance to hold for a.e. t ∈ [0,T).

Proof of Theorem 6.1, Item 3: Regularity & energy-dissipation balance (9d) for all t ∈ [0,T), and Item 4: Improved
convergence (129). For the regularity statements (77) for the displacements we point to Section 5.2.2, where assertion
was obtained based on the convergence results (76a)–(76c) and a priori bound (48d) in L2(0,T;U∗). Similary, also
the regularity z ∈ H1(0,T;L2(Ω)) ∩ L∞(0,T;X) in (128) is a direct consequence of convergence results (76f)–
(76h) together with the weak H1(0,T;ZM )-convergence (127). We now discuss the last statement of (128), i.e., z ∈
C0([0,T);X). For this, we consult Theorem 6.2. The above discussed regularity for u provides assumption A3). We

further note that assumption Ã1) is satisfied by (9a) with the closed, convex set

K(t) := {η ∈ Y, −1 ≤ η ≤ 0 a.e. in Ω} for all t ∈ [0,T]\Ñ .

Similarly, also the upper energy dissipation estimate (133) claimed in assumption Ã2) is valid on [0,T]\Ñ thanks to (9d).

Moreover, the weak momentum balance (9c) holds true for all t ∈ [0,T] and thus yields A9). As already checked in
Section 5.3, in view of Lemma 5.4 also the properties claimed in assumptions A4)-A8) and A10) apply to system
(U,W,ZM ,V,K,RM , E). Thus, in view of Lemma 5.4 all statements of Theorem 6.2 are valid for

(U,W,ZM ,V,K,RM , E) .

In particular, estimates (134) and (139) are valid with α = 2, S = X, and βu = 1. Since the dissipation potential RM
encodes a unidirectionality condition we conclude that z ∈ C0((0,T);X) by Theorem 6.2. The continuity in t = 0 stems
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from the fact that 0 ∈ [0,T]\Ñ by assumption so that one can deduce continuity from the right following the lines of the
proof of Items 5 and 6. Now, by the continuity properties of (u, z) ∈ C([0,T];U)×C([0,T);X) we see that the validity

of the energy balance can be carried over from [0,T]\Ñ to all of [0,T). We summarize these results in the following

Corollary 6.4. Let the assumptions of Theorem 6.1 be satisfied and let the one-sided variational inequality (9a) hold true
for the initial datum (u0, z0). Then system (U,W,ZM ,V,K,RM , E) complies with the assumptions Ã1), Ã2), A3)–
A10) of Theorem 6.2. Hence, a pair (u, z) obtained by convergences (76) is continuous with respect to time, in particular
(u, z) ∈ C([0,T];U)× C([0,T);X), and it complies with the energy dissipation balance (9d) for all t ∈ [0,T).

Based on the energy dissipation balance (9d) also the improved, strong convergence statements (129) can be concluded
for all t ∈ [0,T) by repeating the arguments of Section 5.4. �
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[Rou06] T. Roubíček. Nonlinear Partial Differential Equations with Applications. International Series of Numerical Mathematics.
Birkhäuser Basel, 2006.

DOI 10.20347/WIAS.PREPRINT.2798 Berlin 2020



M. Thomas, S. Tornquist 50
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