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Spatial decay of the vorticity field of time-periodic viscous flow
past a body

Thomas Eiter, Giovanni P. Galdi

Abstract

We study the asymptotic spatial behavior of the vorticity field associated to a time-periodic
Navier-Stokes flow past a body in the class of weak solutions satisfying a Serrin-like condition.
We show that outside the wake region the vorticity field decays pointwise at an exponential rate,
uniformly in time. Moreover, decomposing it into its time-average over a period and a so-called
purely periodic part, we prove that inside the wake region, the time-average has the same alge-
braic decay as that known for the associated steady-state problem, whereas the purely periodic
part decays even faster, uniformly in time. This implies, in particular, that “sufficiently far” from the
body, the time-periodic vorticity field behaves like the vorticity field of the corresponding steady-
state problem.

1 Introduction

Consider a (rigid) body, B, translating with constant nonzero velocity, v∞, in a viscous (Navier–Stokes)
liquid, L , that occupies the whole space outside B. Without loss of generality, we assume that v∞ is
directed along the positive x1-axis, namely, v∞ = λ e1 with λ > 0. We also assume that L is subject
to a body force and a distribution of boundary velocity, both being time-periodic of period T . Then, the
time-periodic dynamics of the liquid around the body are governed by the following set of equations

∂tu−∆u− λ∂1u+ u · ∇u+∇p = f in T× Ω,

div u = 0 in T× Ω,

u = u∗ on T× ∂Ω,

lim
|x|→∞

u(t, x) = 0 for t ∈ T,

(1.1)

where Ω := R3\B is the domain occupied by the liquid. Moreover, u : T×Ω→ R3 and p : T×Ω→
R are velocity and pressure fields of the liquid, f : T × Ω → R3 is the external body force, and
u∗ : T× ∂Ω→ R3 the velocity field at the boundary. The time-axis is given by the torus group T :=
R/T Z, which ensures that all functions appearing in (1.1) are time-periodic with a prescribed period
T > 0. Note that for a body at rest, that is, for λ = 0, the mathematical and physical characteristics
of the flow are very different from those for λ 6= 0. For this issue, we refer the reader to the recent
papers [13, 14].

Existence, uniqueness and spatial asymptotic behavior of solutions to (1.1) have been the object of
several recent researches [15, 16, 7]. In particular, under suitable assumptions on the data, these
results provide sharp pointwise algebraic decays for the velocity field and its first spatial derivatives;
see [7] and Theorem 6.1 below. However, as suggested by physical grounds, the vorticity field ω :=
curlu is expected to decay at an exponential rate, at least outside the “wake region"behind B. It is
just to this question that the present paper is devoted.
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T. Eiter, G. P. Galdi 2

More precisely, we shall study the asymptotic behavior of the vorticity field curlu(x, t) for |x| → ∞,
uniformly in time. In these regards, we recall that in the case of a steady-state flow, that is, when (v, p)
is a time-independent solution to (1.1), a famous result of CLARK [3] and BABENKO and VASIL’EV [1]
shows that for |x| sufficiently large one has

|curl v(x)| ≤ C|x|−3/2 e−αs(x) (1.2)

for some constants C, α > 0, where

s(x) := |x|+ x1.

In particular, this reflects the anisotropic behavior of the fluid flow and translates, in mathematical
terms, the presence of a “wake region"behind B. Estimate (1.2) implies that the vorticity, curl v,
decays exponentially fast on rays {x ∈ R3 | x1 = θ|x|} for θ ∈ (−1, 1], while inside parabolic
regions {x ∈ R3 | s(x) ≤ β}, β > 0, estimate (1.2) merely yields an algebraic decay rate. Since
time-independent solutions are trivially also time-periodic, one would expect a similar behavior in the
time-periodic case. As a matter of fact, we show that this is indeed true and that the vorticity field
associated to a time-periodic flow is subject to an analogus estimate.

Actually, as proved in [7], if we split u into its time average v and a purely periodic part w := u − v,
then the decay rates of v and ∇v are much slower than those of w and ∇w. Thus, also in the
problem at hand, it seems reasonable to derive separate pointwise estimates for the two parts curl v
and curlw of the vorticity curlu. In doing so, we are indeed able to show that the time-independent
part v satisfies (1.2) whereas the other part obeys the estimate

|curlw(t, x)| ≤ C|x|−9/2 e−αs(x) (1.3)

for all sufficiently large |x|, and therefore decays faster. It is worth emphasizing that we establish this
result for any weak solution to (1.1) (see Definition 3.1), whose purely periodic part only satisfies the
Serrin-like condition (3.3), provided the data are sufficiently smooth with f of bounded spatial support;
see Theorem 3.2.

A main tool in our approach is the introduction of a time-periodic fundamental solution associated
to the vorticity field curlu. The concept of time-periodic fundamental solutions in the field of fluid
dynamics is new and was recently introduced by KYED [20] and GALDI and KYED [16] in the case of a
three-dimensional Navier–Stokes flow, and further extended by EITER and KYED [9] to the general n-
dimensional case. The fundamental solution Γ λ introduced there consists of the fundamental solution
Γ λ

0 to the steady-state problem and a second so-called purely periodic part Γ λ
⊥. Analogously, we

define the time-periodic vorticity fundamental solution φλ as the sum of the corresponding steady-
state fundamental solution φλ0 and a purely periodic part φλ⊥.

After introducing these time-periodic fundamental solutions, our procedure parallels that of [4], where
DEURING and GALDI studied the vorticity field associated to the steady-state flow past a rotating body.
Note that this problem is directly related to the one investigated here since a time-independent solution
in the frame attached to the rotating body corresponds to a time-periodic solution in the inertial frame.
By means of the above time-periodic fundamental solutions we deduce representation formulas for
u and curlu, which enable us to express u as a fixed point of a nonlinear map FS of convolution
type; see eq. (6.12). We then establish the existence of a fixed point z = FS(z) of this map in a
class of functions such that curl z decays in the expected way; see Corollary 8.1 . Successively, we
show that this fixed point is, in fact, unique in the larger class of functions that merely satisfy the
pointwise estimates of u and∇u established in [7]; see Theorem 8.3. Since u is a fixed point of FS by
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Spatial decay of the vorticity field of time-periodic viscous flow past a body 3

construction, we thus conclude u = z and that u = v + w satisfies (1.2) and (1.3). Observe that, in
order to employ the contraction mapping principle, the existence of the fixed point z is established in a
class of functions that satisfy a slightly weaker estimate than that given in (1.3). However, by another
application of the representation formulas via the vorticity fundamental solution, we finally obtain the
asserted decay rates (1.2) and (1.3). The result just described is proved in the case where Ω is the
whole space R3. However, we show that it can be readily transferred to the case of an exterior domain
by a classical cut-off argument, provided u∗ and f are sufficiently smooth, with u∗ having zero total
net flux at ∂Ω. We leave it as an open question whether this condition can indeed be removed.

Finally, we observe that some of the intermediate results are contained in the first author’s PhD thesis
[6]. However, they were derived under the stringent assumption that both external force f and solution
u are of class C∞. In contrast, here we merely require summability assumptions on f and u (see (3.1)
and (3.3)) which represents a rather significant improvement

The paper is structured as follows. After introducing the basic notation in Section 2, we present our
main result on the decay of the vorticity field in Section 3. In Section 4 we recall the notion of a
time-periodic fundamental solution to the Navier–Stokes equations and introduce the concept of a
time-periodic vorticity fundamental solution. Section 5 is dedicated to the study of regularity of weak
solutions to the time-periodic Navier–Stokes problem. The introduced fundamental solutions are em-
ployed in Section 6 in order to conclude a suitable fixed-point equation. After the derivation of appro-
priate estimates for the terms in this equation in Section 7, we finish the proof of the main result in
Section 8.

2 Notation

Points in T× Ω for Ω ⊂ R3 are usually denoted by (t, x) and consist of a time variable t ∈ T and a
spatial variable x ∈ Ω. For a sufficiently regular function u : T×Ω→ R3 we write ∂ju := ∂xju, and
we set ∆u := ∂j∂ju and div u := ∂juj . Here we employ Einstein’s summation convention, which
we do frequently in the following. By δjk and εjk` we denote the Kronecker delta and the Levi-Civita
symbol, respectively.

For R > 0 and x ∈ R3 we set BR(x) := {y ∈ R3 | |x− y| < R} and BR(x) := {y ∈
R3 | |x− y| > R}, and in the case x = 0 we write BR := BR(0) and BR := BR(0). Moreover,
for R > r > 0 we set Br,R := BR ∩ Br. For vectors a, b ∈ R3 their vector product a ∧ b and their
tensor product a⊗ b are given by (a∧ b)j = εjk`akb` and (a⊗ b)jk = ajbk, respectively. Moreover,
we call a subset Ω ⊂ R3 an exterior domain, if it is the complement of a non-empty compact subset
of R3. Without loss of generality, we always assume that 0 is contained in the interior of R3 \ Ω.

In order to include the time periodicity in the formulation of the Navier–Stokes equations (1.1), we
formulated the system on T× Ω. In the case Ω = R3, which plays a prominent role in our approach,
the time-space domain is given by the locally compact Abelian group G := T × R3. The dual group
of G can be identified with Ĝ = Z× R3, the elements of which we denote by (k, ξ) ∈ Z× R3. We
equip the group T with the normalized Haar measure given by

∀f ∈ C(T) :

∫
T
f(t) dt =

1

T

∫ T
0

f(t) dt,

the group Z with the counting measure, and G and Ĝ with the corresponding product measures. The
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T. Eiter, G. P. Galdi 4

Fourier transform FG on G and its inverse F−1
G are formally given by

FG[f ](k, ξ) :=

∫
T

∫
R3

f(t, x) e−i
2π
T kt−ix·ξ dxdt,

F−1
G [f ](t, x) :=

∑
k∈Z

∫
R3

f(k, ξ) ei
2π
T kt+ix·ξ dξ.

This defines an isomorphism FG : S (G) → S (Ĝ) with inverse F−1
G , provided that the Lebesgue

measure dξ is normalized appropriately. Here S (G) is the so-called Schwartz–Bruhat space, which
is a generalization of the classical Schwartz space in the Euclidean setting; see [2, 8]. By duality, this
yields an isomorphism FG : S ′(G)→ S ′(Ĝ) between the corresponding dual spaces S ′(G) and
S ′(Ĝ), the spaces of tempered distributions.

For an open set Ω ⊂ R3 or Ω ⊂ T×R3 and q ∈ [1,∞], m ∈ N, we denote the classical Lebesgue
and Sobolev spaces by Lq(Ω) and Wm,q(Ω), respectively. Moreover, L1

loc(Ω) is the set of all locally
integrable functions, and W1,1

loc(Ω) is the subset of L1
loc(Ω) with locally integrable weak derivatives.

For an open subset Ω ⊂ R3, homogeneous Sobolev spaces are denoted by

Dm,q(Ω) :=
{
u ∈ L1

loc(Ω)
∣∣∇mu ∈ Lq(Ω)

}
,

where∇mu denotes the collection of all m-th weak derivatives of u. We further set

C∞0,σ(Ω) := {ϕ ∈ C∞0 (Ω)3 | divϕ = 0},

where C∞0 (Ω) is the class of compactly supported smooth functions on Ω. For q ∈ [1,∞] and a
(semi-)normed vector space X , Lq(T;X) denotes the corresponding Bochner–Lebesgue space on
T, and

W1,2,q(T× Ω) :=
{
u ∈ Lq(T; W2,q(Ω))

∣∣ ∂tu ∈ Lq(T× Ω)
}
.

We further define the projections

Pf(x) :=

∫
T
f(t, x) dt, P⊥f := f − Pf,

which decompose f ∈ L1
loc(T × Ω) into a time-independent steady-state part Pf and a remainder

purely periodic part P⊥f . One readily sees that P and P⊥ are bounded operators on Lq(T× Ω) for
all q ∈ [1,∞] and that

Pf = F−1
G

[
δZ(k)FG[f ]

]
, P⊥f = F−1

G

[
(1− δZ(k))FG[f ]

]
,

where δZ is the delta distribution on Z.

The letter C always denotes a generic positive constant, the value of which may change from line
to line. When we want to specify the dependence of the constant C on quantities a, b, . . ., we write
C(a, b, . . .).

3 Main result

As emphasized earlier on, our focus is the pointwise estimates of the vorticity field curlu associated to
a solution (u, p) of (1.1). More precisely, we study the vorticity field of weak solutions to (1.1) defined
as follows.
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Spatial decay of the vorticity field of time-periodic viscous flow past a body 5

Definition 3.1. Let f ∈ L1
loc(T×Ω)3. A function u ∈ L1

loc(T×Ω)3 is called weak solution to (1.1) if

i. ∇u ∈ L2(T× Ω)3×3, u ∈ L2(T; L6(Ω))3, div u = 0 in T× Ω, u = u∗ on T× ∂Ω,

ii. P⊥u ∈ L∞(T; L2(Ω))3,

iii. the identity∫
T×Ω

[
− u · ∂tϕ+∇u : ∇ϕ− λ∂1u · ϕ+ (u · ∇u) · ϕ

]
d(t, x) =

∫
T×Ω

f · ϕ d(t, x)

holds for all test functions ϕ ∈ C∞0,σ(T× Ω).

Let us explain the choice of the functional class for weak solutions. When Ω = R3, condition i. is
equivalent to u ∈ L2(T; D1,2

0,σ(R3)), where D1,2
0,σ(R3) is the closure of C∞0,σ(R3) with respect to the

homogeneous norm ‖∇·‖2. In this case, the class of solutions from Definition 3.1 is the same as
considered in [16] and [7], where the asymptotic behavior of the velocity field u and its gradient ∇u
was investigated. Moreover, for any f ∈ L2(T; D−1,2

0 (R3))3 the existence of a weak solution in the
above sense was shown by KYED [19]. Therefore, this class of solutions is a natural candidate for
further investigation of the associated vorticity field curlu.

The goal of the present article is to prove the following result.

Theorem 3.2. Let Ω ⊂ R3 be an exterior domain with boundary of class C2, and let λ > 0. Let f
and u∗ be such that

∀q ∈ (1,∞) : f ∈ Lq(T× Ω)3, supp f bounded, (3.1)

u∗ ∈ C(T; C2(∂Ω))3 ∩ C1(T; (∂Ω))3,

∫
∂Ω

u∗ · n dS = 0, (3.2)

where n denotes the unit outer normal at ∂Ω. Let u be a weak time-periodic solution to (1.1) in the
sense of Definition 3.1, which satisfies

∃r ∈ (5,∞) : P⊥u ∈ Lr(T× Ω)3. (3.3)

Then there exist constants C1 > 0 and α = α(λ, T ) > 0 such that

|curlPu(x)| ≤ C1|x|−3/2 e−αs(x), (3.4)

|curlP⊥u(t, x)| ≤ C1|x|−9/2 e−αs(x) (3.5)

for all t ∈ T and x ∈ Ω.

Remark 3.3. The constant C1 depends on Ω, λ and on norms of the solution u which, in turn, can
be estimated in terms of the body force f . So, ultimately, C1 depends on Ω, λ and f . If not specified
otherwise, this may always be the case for all other constants C , Ci that we will introduce throughout
the paper.

Remark 3.4. In our proof, we need the zero-flux condition (3.2)4 on the boundary velocity u∗, which,
instead, is not needed in the particular case of steady-state solutions [3, 1]. Though it is probable
that our result continues to hold if the flux is only “sufficiently small,ït is not clear whether the same
conclusion may be drawn for flux of arbitrary magnitude.

Remark 3.5. Condition (3.3) is merely a technical assumption. As pointed out in [16] for the case
Ω = R3, it leads to additional local regularity of the solution but does not improve its spatial decay
properties.

Remark 3.6. If f is time-independent, then u ≡ Pu, and our result reduces to that of CLARK [3] and
BABENKO and VASIL’EV [1]. Actually –as it becomes clear from our proof– in such a case, we do not
need the assumptions (3.2), and (3.3).
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4 Time-periodic fundamental solutions

In this section, we consider the so-called Oseen linearization of (1.1) in the whole space given by{
∂tu−∆u− λ∂1u+∇p = f in T× R3,

div u = 0 in T× R3 (4.1)

for λ > 0. In [16, 9], a velocity fundamental solution Γ λ to the time-periodic problem (4.1) was
introduced such that

u = Γ λ ∗ f

with convolution taken with respect to the locally compact abelian group G = T× R3. It is given by

Γ λ := Γ λ
0 ⊗ 1T + Γ λ

⊥, (4.2)

where

Γ λ
0 : R3 \ {0} → R3×3, Γ λ

0,j`(x) :=
1

4πλ

[
δj`∆− ∂j∂`

] ∫ s(λx)/2

0

1− e−τ

τ
dτ, (4.3)

Γ λ
⊥ := F−1

G

[
1− δZ(k)

|ξ|2 + i(2π
T k − λξ1)

(
I − ξ ⊗ ξ

|ξ|2

)]
, (4.4)

the symbol 1T denotes the constant 1 distribution, and s(x) = |x| + x1 as above. In particular, the
fundamental solution Γ λ decomposes into a steady-state part Γ λ

0 and a purely periodic part Γ λ
⊥. The

steady-state part Γ λ
0 is the fundamental solution to the steady-state Oseen problem{

−∆v − λ∂1v +∇p = f in R3,

div v = 0 in R3;
(4.5)

see [12, Section VII.3]. This function shows strongly anisotropic behavior, which is reflected in the
pointwise estimates

∀α ∈ N3
0 ∀ε > 0 ∃C > 0 ∀|x| ≥ ε : |Dα

xΓ
λ
0 (x)| ≤ C

[
|x|(1 + s(λx))

]−1− |α|
2 ; (4.6)

see [10, Lemma 3.2]. For the purely periodic part Γ λ
⊥ one can show the estimates

∀α ∈ N3
0 ∀r ∈ [1,∞) ∀ε > 0 ∃C > 0 ∀|x| ≥ ε : ‖Dα

xΓ
λ
⊥(·, x)‖Lr(T) ≤ C|x|−3−|α|; (4.7)

see [9]. Observe that estimate (4.7) does not have an anisotropic character and that the purely periodic
part Γ λ

⊥ decays faster than the steady-state part Γ λ
0 .

In order to derive estimates of the solution u from those of the fundamental solution Γ λ, one thus has
to study convolutions of functions that satisfy pointwise estimates similar to those in (4.6) and (4.7).
Convolutions of the first type were examined by FARWIG [10, 11] in dimension n = 3, and later by
KRAČMAR, NOVOTNÝ and POKORNÝ [18] in the general n-dimensional case. We collect some of their
results in the following theorem, which gives estimates of convolutions with Γ λ

0 and∇Γ λ
0 .

Theorem 4.1. Let A ∈ [2,∞) and B ∈ [0,∞), and let g ∈ L∞(R3) such that |g(x)| ≤ M(1 +
|x|)−A(1+s(x))−B . Then there exists a constantC = C(A,B, λ) > 0 with the following properties:
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Spatial decay of the vorticity field of time-periodic viscous flow past a body 7

1 If A+ min{1, B} > 3, then∣∣|Γ λ
0 | ∗ g(x)

∣∣ ≤ CM
[
(1 + |x|)

(
1 + s(λx)

)]−1
. (4.8)

2 If A+ min{1, B} > 3 and A+B ≥ 7/2, then∣∣|∇Γ λ
0 | ∗ g(x)

∣∣ ≤ CM
[
(1 + |x|)

(
1 + s(λx)

)]−3/2
. (4.9)

Proof. These are special cases of [18, Theorems 3.1 and 3.2].

An analogous result for convolutions with Γ λ
⊥ and∇Γ λ

⊥ was derived in [7].

Theorem 4.2. Let A ∈ R and g ∈ L∞(T× R3) such that |g(t, x)| ≤M(1 + |x|)−A. Then for any
ε > 0 there exists a constant C = C(A, λ, T , ε) > 0 with the following properties:

1 If A > 3, then
∀|x| ≥ ε :

∣∣|Γ λ
⊥| ∗G g(t, x)

∣∣ ≤ CM(1 + |x|)−3. (4.10)

2 If A > 4, then

∀|x| ≥ ε :
∣∣|∇Γ λ

⊥| ∗G g(t, x)
∣∣ ≤ CM(1 + |x|)−4. (4.11)

Proof. We refer to [7, Theorem 3.3].

Next we derive a fundamental solution for the vorticity field curlu. For u = Γ λ∗f a direct computation
yields

(curlu)m = εmhj∂hΓ
λ
0,j` ∗ Pf` + εmhj∂hΓ

λ
⊥,j` ∗ f` = εmh`∂hφ

λ
0 ∗ Pf` + εmh`∂hφ

λ
⊥ ∗ f`

with

φλ0(x) :=
1

4π|x|
e−s(λx)/2, (4.12)

φλ⊥ := F−1
G

[
1− δZ(k)

|ξ|2 − iλξ1 + i2π
T k

]
. (4.13)

In conclusion, we obtain

curlu(t, x) =

∫
G

∇φλ(t− s, x− y) ∧ f(s, y) d(s, y), (4.14)

where
φλ := φλ0 ⊗ 1T + φλ⊥. (4.15)

We have thus found an integral formula for the vorticity curlu. We call φλ the vorticity fundamental so-
lution. As for the velocity fundamental solution Γ λ, the vorticity fundamental solution φλ decomposes
into a steady-state and a purely periodic part, which can be analyzed separately. A direct computation
leads to the the following estimate of∇φλ0 .

Theorem 4.3. There exists C = C(λ) > 0 such that for all x ∈ R3 \ {0} it holds

|∇φλ0(x)| ≤ C
(
|x|−2 + |x|−3/2s(λx)1/2

)
e−s(λx)/2 . (4.16)
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Proof. The estimate follows directly by taking derivatives in (4.12) and using the identity |∇[s(λx)]|2 =
2λ2s(x)/|x|.

The remainder of this section is dedicated to the derivation of an analogous estimate of ∇φλ⊥. More
precisely, we show the following result.

Theorem 4.4. There exist constants C = C(λ, T , q, γ) > 0 and C3 = C3(λ, T ) > 0 such that for
all γ ∈ (0, 1), q ∈ [1, 1

1−γ ) and x ∈ R3 \ {0} it holds

‖φλ⊥(·, x)‖Lq(T) ≤ C|x|−(1+2γ) e−C3|x|, (4.17)

‖∇φλ⊥(·, x)‖Lq(T) ≤ C|x|−(2+2γ) e−C3|x| . (4.18)

For the proof of Theorem 4.4 we represent φλ⊥ in a different way. From F−1
G = F−1

T ⊗ F−1
R3 we

conclude the identity

φλ⊥(t, x) = F−1
T
[
k 7→

(
1− δZ(k)

)
Γ

2π
T k,λ

H (x)
]
(t), (4.19)

where

Γ η,λ
H := F−1

R3

[
1

|ξ|2 − iλξ1 + iη

]
is the fundamental solution to the equation

iη v −∆v − λ∂1v = f in R3. (4.20)

This function is explicitly given by

Γ η,λ
H : R3 \ {0} → C, Γ η,λ

H (x) =
1

4π|x|
ei
√
−µ|x|−λ

2
x1 (4.21)

for η 6= 0 and µ := µ(η, λ) := (λ/2)2 + iη ∈ C \ R; see [9, Lemma 3.3]. Here
√
z is the square

root of z with nonnegative imaginary part. We first derive pointwise estimates of Γ η,λ
H .

Lemma 4.5. Let η0 > 0. Then there exists C4 = C4(λ, η0) > 0 such that

|Γ η,λ
H (x)| ≤ C|x|−1 e−C4|η|

1
2 |x|, (4.22)

|∇Γ η,λ
H (x)| ≤ C

(
|x|−2 + |η|

1
2 |x|−1) e−C4|η|

1
2 |x|, (4.23)

for all η ∈ R with |η| > η0 and x ∈ R3 \ {0}.

Proof. As in [9, Lemma 3.2], we show the existence of a constant C4 = C4(λ, η0) > 0 such that

Im(
√
−µ)− |λ|

2
≥ C4|η|

1
2

for |η| ≥ η0 and µ = (λ/2)2 + iη. We thus have∣∣∣ei√−µ|x|−λ2 x1 ∣∣∣ ≤ e− Im(
√
−µ)|x|+ |λ|

2
|x| ≤ e−C4|η|

1
2 |x| .

This directly implies (4.22). Computing derivatives and employing this estimate again, we further de-
duce ∣∣∇Γ η,λ

H (x)
∣∣ ≤ C

(
|x|−2 + |x|−1(|

√
−µ|+ |λ|)

)
e−C4|η|

1
2 |x|,

which implies (4.23) by using |λ| ≤ 2|
√
−µ| ≤ C|η|

1
2 for |η| ≥ η0.
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Spatial decay of the vorticity field of time-periodic viscous flow past a body 9

Now let χ ∈ C∞(R), 0 ≤ χ ≤ 1, with χ(η) = 0 for |η| ≤ 1
2

and χ(η) = 1 for |η| ≥ 1. For α ∈ N3
0

with |α| ≤ 1, γ ∈ (0, 1) and x ∈ R3 \ {0} define the function

mα,x : R→ R, mα,x(η) := χ(η)|η|γDαΓ
2π
T η,λ

H (x). (4.24)

We show that mα,x is an Lq(R) multiplier and give an estimate of the multiplier norm by means of the
Marcinkiewicz Multiplier Theorem.

Lemma 4.6. Letα ∈ N3
0 with |α| ≤ 1, γ ∈ (0, 1) and x ∈ R3\{0}. Thenmα,x is an Lq(R) multiplier

for any q ∈ (1,∞), and there exist constants C = C(λ, T , q, α, γ) > 0 and C5 = C5(λ, T ) > 0
such that ∥∥F−1

R
[
mα,xFR[f ]

]∥∥
Lq(R)

≤ C|x|−1−|α|−2γ e−C5|x|‖f‖Lq(R).

Proof. At first, let α = 0. From (4.22) we conclude

|m0,x(η)| ≤ Cχ(η)|η|γ|x|−1 e−C4| 2πT η|
1
2 |x| ≤ C|x|−1−2γ e−C4| 2πT η|

1
2 |x|/2

for |η| ≥ 1
2
. Moreover, differentiating Γ

2π
T η,λ

H with respect to η, we obtain∣∣∂ηΓ 2π
T η,λ

H (x)
∣∣ ≤ C|∂η

√
−µ| |x|

∣∣Γ 2π
T η,λ

H (x)
∣∣ ≤ C|η|−

1
2 |x|

∣∣Γ 2π
T η,λ

H (x)
∣∣,

so that (4.22) yields

|η∂ηm0,x(η)| ≤
∣∣χ′(η)|η|γ+1Γ

2π
T η,λ

H (x)
∣∣+
∣∣χ(η)γ|η|γΓ

2π
T η,λ

H (x)
∣∣+
∣∣χ(η)|η|γ+1∂ηΓ

2π
T η,λ

H (x)
∣∣

≤ C
(
|η|γ|x|−1 + |η|γ+ 1

2
)

e−C4| 2πT η|
1
2 |x| ≤ C|x|−1−2γ e−C4| 2πT η|

1
2 |x|/2

for |η| ≥ 1
2
. Collecting these estimates and utilizing m0,x(η) = 0 for |η| ≤ 1

2
, we have

|m0,x(η)|+ |η∂ηm0,x(η)| ≤ C|x|−1−2γ e−C5|x| (4.25)

with C5 =
√
π/T C4/2 for all η ∈ R.

Next consider the case α = ej for some j ∈ {1, 2, 3}. Then (4.23) leads to

|mα,x(η)| ≤ Cχ(η)|η|γ
(
|x|−2 + |η|

1
2 |x|−1) e−C4| 2πT η|

1
2 |x| ≤ C|x|−2−2γ e−C4| 2πT η|

1
2 |x|/2

for |η| ≥ 1
2
. Moreover, a straightforward calculation yields∣∣∂η∂jΓ 2π

T η,λ

H (x)
∣∣ ≤ C

(
|µ|−

1
2 + |x|

)∣∣Γ 2π
T η,λ

H (x)
∣∣ ≤ C

(
|η|−

1
2 + |x|

)∣∣Γ 2π
T η,λ

H (x)
∣∣,

so that we can employ Lemma 4.5 to estimate

|η∂η∂jmα,x(η)| ≤
∣∣χ′(η)|η|γ+1∂jΓ

2π
T η,λ

H (x)
∣∣+
∣∣χ(η)γ|η|γ∂jΓ

2π
T η,λ

H (x)
∣∣

+
∣∣χ(η)|η|γ+1∂η∂jΓ

2π
T η,λ

H (x)
∣∣

≤ C
(
|η|γ|x|−2 + |η|γ+ 1

2 |x|−1 + |η|γ+1) e−C4| 2πT η|
1
2 |x|

≤ C|x|−2−2γ e−C4| 2πT η|
1
2 |x|/2

for |η| ≥ 1
2
. Collecting these estimates and utilizing mα,x(η) = 0 for |η| ≤ 1

2
, we have

|mα,x(η)|+ |η∂ηmα,x(η)| ≤ C|x|−2−2γ e−C5|x| (4.26)

with C5 =
√
π/T C4/2 as above.

By the Marcinkiewicz Multiplier Theorem (see [17, Corollary 5.2.5]), the assertion is now a direct
consequence of (4.25) and (4.26).
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Using this result, we establish the pointwise estimates of φλ⊥ asserted in Theorem 4.4 by means of the
so-called transference principle for Fourier multipliers.

Proof of Theorem 4.4. It suffices to consider q ∈ (1,∞). Due to (4.19), we have

Dα
xφ

λ
⊥(·, x) = F−1

T
[
Mα,xFT[ϕγ]

]
(4.27)

with

Mα,x(k) :=
(
1− δZ(k)

)
|k|γDα

xΓ
2π
T k,λ

H (x), ϕγ := F−1
T
[
k 7→

(
1− δZ(k)

)
|k|−γ

]
.

First, note that Mα,x = mα,x|Z. Since mα,x is a continuous Lq(R) multiplier by Lemma 4.6, the
transference principle (see [5, Theorem B.2.1] or [8, Theorem 2.15]) implies that Mα,x is an Lq(T)
multiplier for any q ∈ (1,∞) and that

‖F−1
T
[
Mα,xFT[f ]

]
‖Lq(T) ≤ C|x|−1−|α|−2γ e−C3|x|‖f‖Lq(T).

Moreover, we have ϕγ ∈ Lq(T) provided q < 1/(1 − γ), which is a direct consequence of [17,
Example 3.1.19] for example. Finally, the assertion follows from (4.27).

5 Regularity results

Here we collect some results concerning the regularity of weak solutions to (1.1) and its linearization,
which is given by 

∂tu−∆u− λ∂1u+∇p = f in T× Ω,

div u = 0 in T× Ω,

u = u∗ on T× ∂Ω.

(5.1)

First of all, we derive the following regularity theorem for solutions to (5.1) in the case Pf = 0.

Lemma 5.1. Let Ω ⊂ R3 be an exterior domain of class C2, let u∗ be as in (3.2), and let f ∈
Lq(T × Ω) for some q ∈ (1,∞). Assume Pf = 0 and that u is a weak solution to (5.1), that is,
u = u∗ on T× ∂Ω, div u = 0 and∫

T×Ω

[
− u · ∂tϕ+∇u : ∇ϕ− λ∂1u · ϕ

]
d(t, x) =

∫
T×Ω

f · ϕ d(t, x) (5.2)

for all ϕ ∈ C∞0,σ(T × Ω). Assume that u ∈ L∞(T; L2(Ω))3 and ∇u ∈ L2(T × Ω)3×3. Then
u ∈ W1,2,q(T × Ω)3, and there exists p ∈ Lq(T; D1,q(Ω)) such that (u, p) is a strong solution to
(5.1).

Proof. First of all, using classical arguments (see [12, Section III.3] for example) one can show the
existence of a function U ∈W1,2,q(T×Ω)3 such that U = u∗ on T×∂Ω and divU = 0. Moreover,
since Pf = 0, by [15, Theorem 5.1] there exist z ∈W1,2,q(T× Ω)3 and p ∈ Lq(T; D1,q(Ω)) such
that 

∂tz −∆z − λ∂1z +∇p = f − ∂tU −∆U − λ∂1U in T× Ω,

div z = 0 in T× Ω,

z = 0 on T× ∂Ω.

(5.3)
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Then (ũ, p) := (z + U, p) solves (5.1), and for the completion of the proof it remains to show u = ũ.
For this purpose, we employ a duality argument. Let ψ ∈ C∞0 (T × Ω)3. By [15, Theorem 5.1] there
exist functions w ∈W1,2,2(T×Ω)3∩W1,2,q′(T×Ω)3 and q ∈ L2(T; D1,2(Ω))∩Lq

′
(T; D1,q′(Ω)),

where q′ = q/(q − 1), which satisfy
∂tw −∆w + λ∂1w +∇q = P⊥ψ in T× Ω,

divw = 0 in T× Ω,

w = 0 on T× ∂Ω.

(5.4)

By a standard density argument one shows that we can let ϕ = w in the weak formulation (5.2). Then,
by an integration by parts, we get∫

T×Ω

(u− ũ) · P⊥ψ d(t, x) =

∫
T×Ω

(u− ũ) ·
(
∂tw −∆w + λ∂1w +∇q

)
d(t, x)

=

∫
T×Ω

[
u · ∂tw +∇u : ∇w − λ∂1u · w

]
d(t, x)

−
∫
T×Ω

(
∂tũ−∆ũ− λ∂1ũ+∇p

)
· w d(t, x)

=

∫
T×Ω

f · w −
∫
T×Ω

f · w = 0.

Since Pu = Pũ = 0, we thus conclude∫
T×Ω

(u− ũ) · ψ d(t, x) =

∫
T×Ω

(u− ũ) · Pψ d(t, x) +

∫
T×Ω

(u− ũ) · P⊥ψ d(t, x) = 0

for arbitrary ψ ∈ C∞0 (T× Ω)3, which implies u = ũ and completes the proof.

Based on this result for the linearized problem (5.1), we can now show that the additional integrability
condition assumed in (3.3) leads to higher regularity of the weak solution.

Lemma 5.2. In the hypotheses of Theorem 3.2 we have u = v + w, with v = Pu, w = P⊥u such
that

∀q ∈ (1,∞) : v ∈ D2,q(Ω), ∀r ∈ (
4

3
,∞] : v ∈ D1,r(Ω), ∀s ∈ (2,∞] : v ∈ Ls(Ω), (5.5)

∀q ∈ (1,∞) : w ∈W1,2,q(T× Ω). (5.6)

Moreover, there exists a pressure field p with

∀q ∈ (1,∞) : p ∈ Lq(T; D1,q(Ω)) (5.7)

such that (1.1) is satisfied in the strong sense.

Proof. At first, observe that v is a weak solution to the steady-state Navier–Stokes problem
−∆v − λ∂1v + v · ∇v +∇p = Pf − P [w · ∇w] in Ω,

div v = 0 in Ω,

v = Pu∗ on ∂Ω.

(5.8)
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Hölder’s inequality and Definition 3.1 yield w ·∇w ∈ L1(T; L3/2(Ω))∩L2(T; L1(Ω)). Therefore, we
have Pf − P(w · ∇w) ∈ L1(Ω) ∩ L3/2(Ω), and [12, Lemma X.6.1] implies

∀q ∈ (1,
3

2
] : v ∈ D2,q(Ω), ∀r ∈ (

4

3
, 3] : v ∈ D1,r(Ω), ∀s ∈ (2,∞) : v ∈ Ls(Ω) (5.9)

and the existence of p ∈ D1,q(Ω) for all q ∈ (1, 3
2
] such that (5.8) is satisfied in the strong sense.

Moreover, w is a weak solution to
∂tw −∆w − λ∂1w +∇q = P⊥f − v · ∇w − w · ∇v − P⊥(w · ∇w) in T× Ω,

divw = 0 in T× Ω,

w = P⊥u∗ on T× ∂Ω.

(5.10)

By a standard interpolation argument, the assumptions from Definition 3.1 imply w ∈ L10/3(T× Ω).
Since v ∈ L10/3(Ω) by (5.9) and∇u ∈ L2(T× Ω) by assumption, this implies

P⊥f − v · ∇w − w · ∇v − P⊥(w · ∇w) ∈ Ls(T× Ω) (5.11)

for s = 5/4. Now Lemma 5.1 shows that there exists q such that

w ∈W1,2,5/4(T× Ω), q ∈ L5/4(T; D1,5/4(Ω)), (5.12)

and (5.10) holds in a strong sense. Starting from (5.12), we now employ a boot-strap argument to
conclude the proof.

If w ∈W1,2,q(T× Ω) for some q ∈ (1, 15/8), then the embedding theorem from [15, Theorem 4.1]
implies∇w ∈ L5q/(5−q)(T×Ω). In virtue of (3.3) and (5.9), this impliesw ·∇w, v ·∇w ∈ Ls(T×Ω)
for 1

s
= 1

q
+ 1

r
− 1

5
. Moreover, [15, Theorem 4.1] yields w ∈ L5q/(5−q)(T; L15q/(15−8q)(Ω)), so that

w · ∇v ∈ Ls by (5.9). In total, we thus obtain (5.11) for 1
s

= 1
q

+ 1
r
− 1

5
, and Lemma 5.1 leads to the

implication

∃ q ∈
(
1,

15

8

)
: w ∈W1,2,q(T×Ω) =⇒ ∀ 1

s
∈
[1
q

+
1

r
− 1

5
,
1

q

]
: w ∈W1,2,s(T×Ω). (5.13)

Ifw ∈W1,2,q(T×Ω) for some q ∈ [5/3, 5/2), then [15, Theorem 4.1] yieldsw ∈ L5q/(5−2q)(T×Ω)
and ∇w ∈ L5q/(5−q)(T × Ω), which implies w · ∇w ∈ Ls1(T × Ω) for all 1

s1
∈ [2

q
− 3

5
, 2
q
].

Hence we have P(w · ∇w) ∈ Ls1(Ω), and another application of [12, Lemma X.6.1] in view of (5.9)
yields ∇v ∈ Lt(Ω) for all t ∈ [4/3, 15/4] and v ∈ Lt(Ω) for all t ∈ (2,∞]. We thus conclude
w · ∇v ∈ Ls2(T×Ω) for 1

s2
∈ [1

q
− 2

15
, 1
q

+ 3
4
] and v · ∇w ∈ Ls3(T×Ω) for 1

s3
∈ [1

q
− 1

5
, 1
q

+ 1
2
].

In particular, we obtain (5.11) for 1
s

= 2
q
− 3

5
if q ≤ 15/7, and 1

s
= 1

q
− 2

15
if q ≥ 15/7. By Lemma

5.1, this implies

∃ q ∈
(5

3
,
15

7

]
: w ∈W1,2,q(T× Ω) =⇒ ∀ 1

s
∈
[2
q
− 3

5
,
1

q

]
: w ∈W1,2,s(T× Ω), (5.14)

∃ q ∈
[15

7
,
5

2

)
: w ∈W1,2,q(T× Ω) =⇒ ∀ 1

s
∈
[1
q
− 2

15
,
1

q

]
: w ∈W1,2,s(T× Ω). (5.15)

Arguing in a similar fashion, one shows the further implications

∃ q ∈
[5
2
, 5) : w ∈W1,2,q(T× Ω) =⇒ ∀ 1

s
∈
(1

q
− 1

5
,
1

q

]
: w ∈W1,2,s(T× Ω), (5.16)

∃ q ∈ [5,∞) : w ∈W1,2,q(T× Ω) =⇒ ∀ s ∈ [q,∞) : w ∈W1,2,s(T× Ω). (5.17)
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Using now (5.12) as starting point, we can iteratively employ (5.13)–(5.17) to obtain w ∈W1,2,s(T×
Ω) for all s ∈ [5/4,∞). Firstly, this yields w ·∇w ∈ L∞(T×Ω), so that Pf−P(w ·∇w) ∈ Lq(Ω)
for all q ∈ [1,∞). Now (5.5) is a direct consequence of [12, Theorem X.6.4]. Secondly, this shows
that (5.11) holds for all s ∈ [1,∞), whence Lemma 5.1 implies (5.6). Finally, the claimed regularity
(5.7) of p = p+ q is a direct consequence. This completes the proof.

6 The fixed-point problem

In this section we derive a suitable fixed-point equation satisfied by weak solutions in the whole space,
and we introduce the necessary functional framework. More precisely, the main focus of the subse-
quent analysis lies on the study of problem (1.1) when Ω = R3, namely,

∂tu−∆u− λ∂1u+ u · ∇u+∇p = f in T× R3,

div u = 0 in T× R3,

lim
|x|→∞

u(t, x) = 0 for t ∈ T .
(6.1)

The case of an exterior domain will be treated at the end of the last section.

We begin to observe that asymptotic properties of weak solutions to (6.1) were studied in [16] and [7],
where the following decay estimates of u and∇u were derived.

Theorem 6.1. Let λ > 0 and f ∈ Lq(T × R3)3 for all q ∈ (1,∞) and let supp f be compact. Let
u be a weak solution to (6.1) that satisfies (3.3) for Ω = R3. Then there is C2 > 0 such that for all
(t, x) ∈ T× R3 the function u satisfies

|Pu(x)| ≤ C2

[(
1 + |x|

)(
1 + s(λx)

)]−1
, (6.2)

|∇Pu(x)| ≤ C2

[(
1 + |x|

)(
1 + s(λx)

)]− 3
2 , (6.3)

|P⊥u(t, x)| ≤ C2

(
1 + |x|

)−3
, (6.4)

|∇P⊥u(t, x)| ≤ C2

(
1 + |x|

)−4
. (6.5)

Proof. Under the assumption f ∈ C∞0 (T × R3)3, this result was shown in [7, Theorem 4.5] based
on estimates of the velocity field u derived in [16]. However, a careful study of the proofs shows that
these results continue to be valid under the stated weaker assumption on f .

To derive a suitable fixed-point equation, we exploit the following representation formulas that result
from the time-periodic fundamental solutions introduced in the previous section.

Proposition 6.2. Let u be a weak solution as in Theorem 6.1. Then

Dα
xu = Dα

xΓ
λ ∗ [f − curlu ∧ u] (6.6)

for all α ∈ N3
0 with |α| ≤ 1. In particular, the steady-state part v := Pu and the purely periodic part

w := P⊥u satisfy

Dα
xv = Dα

xΓ
λ
0 ∗
[
Pf − curl v ∧ v − P(curlw ∧ w)

]
, (6.7)

Dα
xw = Dα

xΓ
λ
⊥ ∗
[
P⊥f − curl v ∧ w − curlw ∧ v + P⊥(curlw ∧ w)

]
. (6.8)
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Moreover, we have

curlu(t, x) =

∫
G

∇φλ(t− s, x− y) ∧
[
f − curlu ∧ u

]
(s, y) d(s, y), (6.9)

and

curl v(x) =

∫
R3

∇φλ0(x− y) ∧
[
Pf − curl v ∧ v − P(curlw ∧ w)

]
(y) dy, (6.10)

as well as

curlw(t, x) =

∫
G

∇φλ⊥(t− s, x− y) ∧
[
P⊥f − curl v ∧ w

− curlw ∧ v − P⊥(curlw ∧ w)
]
(s, y) d(s, y).

(6.11)

Proof. Since u·∇u = 1
2
∇
(
|u|2
)
+curlu∧u and Γ λ∗∇

(
|u|2
)

= div
(
Γ λ∗|u|2

)
= 0, the equations

(6.6), (6.7) and (6.8) are direct consequences of [7, Proposition 4.8]. The remaining identities follow
by applying the curl operator to both sides of these formulas and repeating the computations from
Section 4.

Remark 6.3. In view of Proposition 6.2 and the pointwise estimates of φλ from Theorem 4.3 and
Theorem 4.4, we can explain, at this point, the origin of the pointwise estimates stated in Theorem
3.2. Comparing (3.4) and (4.16), we see that the asserted decay rates of the steady-state parts curl v
and∇φλ0 coincide, which is the optimal result one can expect to derive from equation (6.10) for general
f ∈ C∞0 (G)3. In contrast, the asserted decay rates of the purely periodic parts curlw and Γ λ

⊥ given in
(3.5) and (4.18), respectively, do not coincide. The reason is due to the presence of the term curl v∧w
in (6.11). By assuming the—to some extent—optimal decay rate (3.4) for curl v, the pointwise estimate
of w from (6.4) implies

|curl v ∧ w|(t, x) ≤ C|x|−9/2 e−αs(λx) .

In the end, this term dominates the decay of the right-hand side of (6.11) and thus the pointwise
estimates of curlw. As a result, the decay of curlw is slower than that of ∇φλ⊥ but, however, still
faster than the decay rate of the steady-state vorticity field curl v.

Proposition 6.2 yields fixed-point equations for u and curlu and the respective steady-state and purely
periodic parts, which we now decompose in an appropriate way. Let χ ∈ C∞0 (R; [0, 1]) with χ(s) = 1
for |s| ≤ 5/4 and χ(s) = 0 for |s| ≥ 7/4. For S > 0 define χS ∈ C∞0 (R3; [0, 1]) by χS(x) :=
χ(S−1|x|), and fix S0 > 0 such that supp f ⊂ T× BS0 . For S ∈ [2S0,∞) we express (6.6) as the
sum of two terms, namely

u = Γ λ ∗
[
− (1− χS) curlu ∧ u

]
+ Γ λ ∗

[
f − χS curlu ∧ u

]
.

Due to supp(1− χS) ⊂ BS , this yields

u|T×BS = FS(u|T×BS) +HS, (6.12)

where
FS(z) :=

(
Γ λ ∗

[
− (1− χS) curl z ∧ z

])
|T×BS ,

HS :=
(
Γ λ ∗

[
f − χS curlu ∧ u

])
|T×BS .
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We setA(z) := − curl z ∧ z and

A0(z) := PA(z) = − curl z0 ∧ z0 − P(curl z⊥ ∧ z⊥), (6.13)

A⊥(z) := P⊥A(z) = − curl z0 ∧ z⊥ − curl z⊥ ∧ z0 − P⊥(curl z⊥ ∧ z⊥), (6.14)

with z0 := Pz and z⊥ := P⊥z. For (t, x) ∈ T× BS from Proposition 6.2 we then obtain

Dα
xPFS(z)(x) = Dα

xΓ
λ
0 ∗
[
(1− χS)A0(z)

]
(x), (6.15)

Dα
xP⊥FS(z)(t, x) = Dα

xΓ
λ
⊥ ∗
[
(1− χS)A⊥(z)

]
(t, x), (6.16)

curlPFS(z)(x) =

∫
R3

∇φλ0(x− y) ∧
[
(1− χS)A0(z)

]
(y) dy, (6.17)

curlP⊥FS(z)(t, x) =

∫
T×R3

∇φλ⊥(t− s, x− y) ∧
[
(1− χS)A⊥(z)

]
(s, y) d(s, y), (6.18)

and

Dα
xPHS(x) = Dα

xΓ
λ
0 ∗
[
Pf + χSA0(u)

]
(x), (6.19)

Dα
xP⊥HS(t, x) = Dα

xΓ
λ
⊥ ∗
[
P⊥f + χSA⊥(u)

]
(t, x), (6.20)

curlPHS(x) =

∫
R3

∇φλ0(x− y) ∧
[
Pf + χSA0(u)

]
(y) dy, (6.21)

curlP⊥HS(t, x) =

∫
T×R3

∇φλ⊥(t− s, x− y) ∧
[
P⊥f + χSA⊥(u)

]
(s, y) d(s, y). (6.22)

In the next step we introduce the functional framework for the analysis of the fixed-point equation
(6.12). Let ε ∈ (0, 1

4
) and fix a radius S > S0. We define the following (semi-)norms, which take into

account different decay rates of the steady-state and the purely periodic parts:

MS(z) := ess sup
x∈BS

[
|x|(1 + s(x))|Pz(x)|+

[
|x|(1 + s(x))

]3/2|∇Pz(x)|
]

+ ess sup
(t,x)∈T×BS

[
|x|3|P⊥z(t, x)|+ |x|4|∇P⊥z(t, x)|

]
,

Nε
S(z) := ess sup

x∈BS
|x|3/2 e

s(Kx)
1+S |curlPz(x)|

+ ess sup
(t,x)∈T×BS

|x|9/2−ε e
s(Kx)
1+S |curlP⊥z(t, x)|,

where K := 1
4

min{λ,C3} with C3 from Theorem 4.4. The function spaces associated to these
(semi-)norms are given by

MS :=
{
z ∈W1,1

loc(T× BS)
∣∣MS(z) <∞

}
,

N ε
S :=

{
z ∈MS

∣∣ Nε
S(z) <∞

}
,

which are Banach spaces with respect to the norms

‖z‖MS
:= MS(z), ‖z‖N εS := MS(z) + Nε

S(z),

respectively.
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Remark 6.4. Let us explain the terms appearing in these definitions. The definition of MS(z) is chosen
to capture the asymptotic behavior of u and ∇u described in Theorem 6.1. A justification for the
denominator 1 + S in the exponential term in the definition of Nε

S(z) is given by Lemma 7.1 below.
The choice of the constant K ensures the validity of the inequalities

e2s(Kx) ≤ es(λx)/2, e2s(Kx) ≤ eC3|x|, (6.23)

so that the exponential term can be related with the exponential terms in the decay rates of∇φλ0 and
∇φλ⊥ from Theorem 4.3 and Theorem 4.4, respectively. Moreover, the second term in the definition

of Nε
S(z) contains the factor |x|9/2−ε instead of |x|9/2, which one would expect, in view of the as-

serted estimate (3.5). Later on we shall see that this discrepancy is necessary to ensure that FS is a
contraction in the underlying function space.

7 Estimates

In this section, we collect estimates of HS and FS(z) with respect to the (semi-)norms introduced
above, which ensure that z 7→ FS(z) + HS is a contractive self-mapping when we choose S suf-
ficiently large. We begin with the following elementary lemma, which explains the term 1 + S in the
definition of Nε

S(z).

Lemma 7.1. Let a, S > 0. If x, y ∈ R3 with |y| ≤ 2S, then

e−s(a(x−y)) ≤ e4a e−
s(ax)
1+S , (7.1)

e−a|x−y| ≤ e2a e−
a|x|
1+S . (7.2)

Proof. For |y| ≤ 2S we have s(ay)/(1 + S) ≤ 2a|y|/(1 + S) ≤ 4a. Together with s(a(x− y)) ≥
s(ax)− s(ay), this implies

e−s(a(x−y)) ≤ e−
s(a(x−y))

1+S ≤ e−
s(ax)
1+S e

s(ay)
1+S ≤ e−

s(ax)
1+S e4a .

Similarly, we have |y|/(1 + S) ≤ 2, which implies

e−a|x−y| ≤ e−
a|x−y|
1+S ≤ e−

a|x|
1+S e

a|y|
1+S ≤ e−

a|x|
1+S e2a .

This completes the proof.

We further employ the following lemma in order to estimate convolutions of functions with anisotropic
decay behavior.

Lemma 7.2. Let A ∈ (2,∞), B ∈ [0,∞) with A + min{1, B} > 3. Then there exists C =
C(A,B) > 0 such that for all x ∈ R3 it holds∫

R3

[
(1 + |x− y|)(1 + s(x− y))

]−3/2
(1 + |y|)−A(1 + s(y))−B dy ≤ C(1 + |x|)−3/2.

Proof. See [4, Theorem 5].

The next lemma treats convolutions of functions that are homogeneous in space.
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Lemma 7.3. Let A ∈ (0, 3), B ∈ (0,∞), α ∈ (0,∞). Then there exists a constant C =
C(A,B, α) > 0 such that for all x ∈ R3 it holds∫

R3

|x− y|−A e−α|x−y|(1 + |y|)−B dy ≤ C(1 + |x|)−B.

Proof. For x = 0 the integral is finite, so that it remains to consider x 6= 0. We split the integral into
two parts

I1 :=

∫
B|x|/2(x)

|x− y|−A e−α|x−y|(1 + |y|)−B dy,

I2 :=

∫
B|x|/2(x)

|x− y|−A e−α|x−y|(1 + |y|)−B dy,

which we estimate separately. On the one hand, since |x− y| ≤ |x|/2 implies |y| ≥ |x|−|x− y| ≥
|x|/2, we have

I1 ≤ C(1 + |x|)−B
∫
R3

|x− y|−A e−α|x−y| dy ≤ C(1 + |x|)−B,

where the integral is finite due to A < 3. On the other hand, we obtain

I2 ≤ C e−α|x|/4
∫
R3

e−α|x−y|/2 dy ≤ C e−α|x|/4 ≤ C(1 + |x|)−B.

This completes the proof.

Since our assumptions do not provide pointwise information on the body force f , we estimate the
convolutions of the fundamental solutions with f in a different way, which leads to the following lemma.

Lemma 7.4. There exists a constant C > 0 such that for α ∈ N0, |α| ≤ 1, we have∣∣Dα
xΓ

λ
0 ∗ Pf(x)

∣∣ ≤ C
[
|x|
(
1 + s(λx)

)]−1− |α|
2 , (7.3)∣∣Dα

xΓ
λ
⊥ ∗ P⊥f(t, x)

∣∣ ≤ C|x|−3−|α|, (7.4)∣∣∫
R3

∇φλ0(x− y) ∧ Pf(y) dy
∣∣ ≤ C|x|−3/2 e

− s(λx)
4(1+S0) , (7.5)∣∣∫

T×R3

∇φλ⊥(t− s, x− y) ∧ P⊥f(s, y) d(s, y)
∣∣ ≤ C|x|−9/2 e

− C3|x|
2(1+S0) . (7.6)

for all t ∈ T and |x| ≥ 2S0.

Proof. For |x| ≥ 2S0 ≥ 2|y| we have

(1 + 2λS0)(1 + λs(x− y)) ≥ 1 + λs(x) + 2λS0 − λs(y) ≥ 1 + λs(x)

and |x− y| ≥ |x| − |y| ≥ |x|/2 ≥ S0. Therefore, (4.6) and supp f ⊂ T× BS0 imply∣∣Dα
xΓ

λ
0 ∗ Pf(x)

∣∣ ≤ C

∫
BS0

[
|x− y|

(
1 + λs(x− y)

)]−1− |α|
2 |Pf(y)| dy

≤ C
[
|x|
(
1 + λs(x)

)]−1− |α|
2

∫
BS0

|Pf(y)| dy,
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which yields (7.3). Using Hölder’s inequality in time and (4.7), for any q ∈ (1,∞) we obtain in a similar
way

∣∣Dα
xΓ

λ
⊥ ∗ P⊥f(t, x)

∣∣ ≤ ∫
BS0

(∫
T
|Dα

xΓ
λ
⊥(s, x− y)|

q
q−1 ds

) q−1
q
(∫

T
|P⊥f(s, y)|q ds

)1/q

dy

≤ C

∫
BS0

|x− y|−3−|α|
(∫

T
|P⊥f(s, y)|q ds

)1/q

dy

≤ C|x|−3−|α|
(∫

T

∫
BS0

|P⊥f(s, y)|q dsdy

)1/q

,

which shows (7.4). In virtue of the estimates (4.16) and (4.18) and Lemma 7.1, for |x| ≥ 2S0 ≥ 2|y|
we further derive

|∇φλ0(x− y)| ≤ C|x− y|−3/2 e−s(λ(x−y))/4 ≤ C|x|−3/2 e
− s(λx)

4(1+S0) ,

‖∇φλ⊥(·, x− y)‖Lq(T) ≤ C|x− y|−9/2 e−C3|x−y|/2 ≤ C|x|−9/2 e
− −C3|x|

2(1+S0) .

From these estimates we conclude (7.5) and (7.6) with the same argument as above.

After these preparations, we show in the next two lemmas that the norm of HS in bothMS and N ε
S

is bounded by a constant independent of S ≥ 2S0.

Lemma 7.5. There exists a constant C6 > 0 such that for all S ∈ [2S0,∞) we have

MS(HS) ≤ C6.

Proof. From the decay estimates of u and∇u from Theorem 6.1 we conclude∣∣χS(x)A0(u)(x)
∣∣ ≤ C

[
(1 + |x|)(1 + s(x))

]−5/2
, (7.7)∣∣χS(x)A⊥(u)(t, x)

∣∣ ≤ C(1 + |x|)−9/2. (7.8)

By Theorem 4.1 and Theorem 4.2, these estimates and the formulas (6.19) and (6.20) together with
Lemma 7.4 imply

|PHS(x)| ≤ C
[
(1 + |x|)(1 + s(x))

]−1
,

|∇PHS(x)| ≤ C
[
(1 + |x|)(1 + s(x))

]−3/2
,

|P⊥HS(t, x)| ≤ C(1 + |x|)−3,

|∇P⊥HS(t, x)| ≤ C(1 + |x|)−4

for all t ∈ T and |x| ≥ S0. Collecting these, we arrive at the claimed estimate.

Lemma 7.6. There exists a constant C7 > 0 such that for all S ∈ [2S0,∞) we have

Nε
S(HS) ≤ C7.

Proof. At first, let x ∈ R3 with |x| ≥ 2S. For |y| ≤ 7S/4 we have

|x− y| ≥ |x| − |y| ≥ |x| − 7S/4 ≥ |x| − 7|x|/8 = |x|/8 ≥ S/4 ≥ S0/2.
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From (4.16) and Lemma 7.1, we then conclude

|∇φλ0(x− y)| ≤ C
(
|x− y|−2 + |x− y|−3/2s(λ(x− y))1/2

)
e−s(λ(x−y))/2

≤ C
(
1 + |x− y|−3/2(1 + s(λ(x− y))

)−3/2)
e−s(λ(x−y))/4

≤ C
[
(1 + |x− y|)

(
1 + s(λ(x− y))

)]−3/2
e−

s(λx)
4(1+S) .

In virtue of (6.21), (7.5) and (7.7) we thus obtain

|curlPHS(x)| ≤ C

∫
B7S/4

∣∣∇φλ0(x− y)
∣∣ ∣∣Pf + χSA0(u)

∣∣(y) dy

≤ C|x|−3/2 e
− s(λx)

4(1+S0)

+ C e−
s(λx)
4(1+S)

∫
R3

[(
1 + |x− y|

)(
1 + s(x− y)

)]−3/2[
(1 + |y|)(1 + s(y))

]−5/2
dy

for |x| ≥ 2S ≥ 4S0. By estimating the remaining integral with the help of Lemma 7.2 and employing
(6.23), we deduce

|curlPHS(x)| ≤ C e−
s(Kx)
1+S |x|−3/2 (7.9)

for |x| ≥ 2S. If S ≤ |x| ≤ 2S, then Lemma 7.5 yields

|curlPHS(x)| ≤ C|∇PHS(x)| ≤ C
[
(1 + |x|)(1 + s(x))

]−3/2 ≤ C|x|−3/2.

Since |x| ≤ 2S implies s(Kx)/(1 + S) ≤ 2|Kx|/(1 + S) ≤ 4KS/(1 + S) ≤ 4K, we have
1 ≤ e4K e−s(Kx)/(1+S), so that (7.9) also holds for S ≤ |x| ≤ 2S.

Now let us turn to curlP⊥HS . From (4.18) and (7.2), for |y| ≤ 2S we conclude∫
T
|∇φλ⊥(t− s, x− y)| ds ≤ C|x− y|−5/2 e−

C3|x−y|
2 e−

C3|x|
2(1+S) ,

so that (6.22), (7.6) and (7.8) lead to

|curlP⊥HS(t, x)| ≤ C

∫
B7S/4

∫
T

∣∣∇φλ⊥(t− s, x− y)
∣∣ ∣∣P⊥f + χSA⊥(u)

∣∣(s, y) dsdy

≤ C|x|−9/2 e
− C3|x|

2(1+S0) +C e−
C3|x|
2(1+S)

∫
R3

|x− y|−5/2 e−C3|x−y|/2(1 + |y|)−9/2 dy.

The remaining integral can be estimated with Lemma 7.3. Further using (6.23), we end up with

|curlP⊥HS(t, x)| ≤ C e−
C3|x|
2(1+S) |x|−9/2 ≤ C e−

s(Kx)
1+S |x|−9/2+ε

for |x| ≥ S ≥ 2S0 and t ∈ T. A combination of this estimate with (7.9) finishes the proof.

In the next two lemmas we provide appropriate estimates of FS(z). Observe that, in contrast to HS ,
this term depends on the (unknown) function z. In order to eventually obtain a contraction for large S,
we factor out the term S−ε in the estimates.

Lemma 7.7. There exists a constant C8 > 0 such that for all S ∈ [2S0,∞) and all z1, z2 ∈MS we
have

MS(FS(z1)) ≤ C8S
−εMS(z1)2, (7.10)

MS(FS(z1)−FS(z2)) ≤ C8S
−ε(MS(z1) + MS(z2)

)
MS(z1 − z2). (7.11)
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Proof. For z ∈MS we immediately deduce∣∣(1− χS(x))A0(z)(x)
∣∣ ≤ CMS(z)2(1− χS(x))

[
(1 + |x|)(1 + s(x))

]−5/2

≤ CS−εMS(z)2(1 + |x|)−5/2+ε(1 + s(x))−5/2,∣∣(1− χS(x))A⊥(z)(t, x)
∣∣ ≤ CMS(z)2(1− χS(x))(1 + |x|)−9/2

≤ CS−εMS(z)2(1 + |x|)−9/2+ε

for |x| ≥ S. By Theorem 4.1 and Theorem 4.2, from these estimates and the formulas (6.15) and
(6.16) we conclude

|PFS(z)(x)| ≤ CS−εMS(z)2
[
(1 + |x|)(1 + s(x))

]−1
,

|∇PFS(z)(x)| ≤ CS−εMS(z)2
[
(1 + |x|)(1 + s(x))

]−3/2
,

|P⊥FS(z)(t, x)| ≤ CS−εMS(z)2(1 + |x|)−3,

|∇P⊥FS(z)(t, x)| ≤ CS−εMS(z)2(1 + |x|)−4.

Collecting these estimates, we obtain (7.10). The inequality (7.11) is proved in the same fashion.

Lemma 7.8. There exists a constant C9 > 0 such that for all S ∈ [2S0,∞) and all z1, z2 ∈ N ε
S we

have

Nε
S(FS(z1)) ≤ C9S

−εMS(z1)Nε
S(z1), (7.12)

Nε
S(FS(z1)−FS(z2)) ≤ C9S

−ε(‖z1‖N εS + ‖z2‖N εS
)
‖z1 − z2‖N εS . (7.13)

Proof. For z ∈ N ε
S we have∣∣(1− χS(x))A0(z)(x)

∣∣ ≤ CMS(z)Nε
S(z)(1− χS(x))|x|−5/2(1 + s(x))−1 e−

s(Kx)
1+S

≤ CS−εMS(z)Nε
S(z)|x|−5/2+ε(1 + s(x))−1 e−

s(Kx)
1+S ,

(7.14)

∣∣(1− χS(x))A⊥(z)(t, x)
∣∣ ≤ CMS(z)Nε

S(z)(1− χS(x))|x|−9/2 e−
s(Kx)
1+S

≤ CS−εMS(z)Nε
S(z)|x|−9/2+ε e−

s(Kx)
1+S

(7.15)

for |x| ≥ S. Exploiting the representation formula (6.17), we can employ (4.16) and (7.14) to estimate

|curlPFS(z)(x)| ≤ C

∫
R3

∣∣∇φλ0(x− y)
∣∣ ∣∣(1− χS(y))A0(z)(y)

∣∣ dy
≤ CS−εMS(z)Nε

S(z)
(
I1 + I2

)
,

where

I1 :=

∫
BS∩BS0 (x)

|x− y|−2 e−
s(λ(x−y))

4 |y|−5/2+ε(1 + s(y))−1 e−
s(Ky)
1+S dy,

I2 :=

∫
BS∩BS0 (x)

[
|x− y|s(λ(x− y))

]−3/2
e−

s(λ(x−y))
4 |y|−5/2+ε(1 + s(y))−1 e−

s(Ky)
1+S dy.

To give estimates of these integrals, we first note that by s(λ(x− y)) ≥ s(λx)− s(λy) and (6.23),
we have

e−
s(λ(x−y))

4 e−
s(Ky)
1+S ≤ e−

s(λx)
4(1+S) e

s(λy)
4(1+S) e−

s(Ky)
1+S ≤ e−

s(Kx)
1+S (7.16)
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for all x, y ∈ R3. On the one hand, exploiting this estimate and that |x− y| ≤ S0 ≤ |x|/2 implies
|y| ≥ |x| − |x− y| ≥ |x| − S0 ≥ |x|/2, we conclude

I1 ≤ C e−
s(Kx)
1+S |x|−5/2+ε

∫
BS0 (x)

|x− y|−2 dy ≤ C e−
s(Kx)
1+S |x|−3/2

for |x| ≥ S ≥ 2S0. On the other hand, due to (7.16) and the fact that |y| ≥ S ≥ 2S0 implies
|y| ≥ C(1 + |y|), we obtain

I2 ≤ C e−
s(Kx)
1+S

∫
R3

[
(1 + |x− y|)s(x− y)

]−3/2
(1 + |y|)−5/2+ε(1 + s(y))−1 dy

≤ C e−
s(Kx)
1+S |x|−3/2

by Lemma 7.2. From the estimates of I1 and I2 we deduce

|curlPFS(z)(x)| ≤ CS−εMS(z)Nε
S(z) e−

s(Kx)
1+S |x|−3/2.

Now let us turn to the purely periodic part P⊥FS(z). From (4.18) (with q = 1 and γ = 1/4) we
conclude ∫

T
|∇φλ⊥(t− s, x− y)| ds ≤ C|x− y|−5/2 e−C3|x−y| .

With formula (6.18) and estimate (7.15) we thus obtain

|curlP⊥FS(z)(t, x)| ≤ C

∫
T

∫
R3

∣∣∇φλ⊥(t− s, x− y)
∣∣ ∣∣(1− χS(y))A⊥(z)(s, y)

∣∣ dyds

≤ CS−εMS(z)Nε
S(z)

∫
BS
|x− y|−5/2 e−C3|x−y| |y|−9/2+ε e−

s(Ky)
1+S dy.

By (6.23) we have

e−
C3|x−y|

2 e−
s(Ky)
1+S ≤ e−s(K(x−y)) e−

s(Ky)
1+S ≤ e−

s(K(x−y))
1+S e−

s(Ky)
1+S ≤ e−

s(Kx)
1+S .

This yields

|curlP⊥FS(z)(t, x)|

≤ CS−εMS(z)Nε
S(z) e−

s(Kx)
1+S

∫
R3

|x− y|−5/2 e−
C3|x−y|

2 (1 + |y|)−9/2+ε dy.

Employing Lemma 7.3 to estimate the remaining integral, we end up with

|curlP⊥FS(z)(t, x)| ≤ CS−εMS(z)Nε
S(z) e−

s(Kx)
1+S |x|−9/2+ε.

In total, we have thus shown (7.12). Estimate (7.13) is derived in the same way.

8 Conclusion of the proof

After the preparatory results from the previous section, we now prove the existence of a function
z ∈ N ε

S satisfying the fixed-point equation

z = FS(z) +HS
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provided S ≥ 2S0 is chosen sufficiently large. Afterwards, we show uniqueness of this fixed point in
the function classMS . Since u|T×BS is another solution to this fixed-point equation and belongs to
MS by Theorem 6.1, we then conclude that z coincides with u|T×BS . This yields the decay rate of
the vorticity field asserted in Theorem 3.2 up to a factor |x|−ε for the purely periodic part. Returning
to the representation formula (6.11), we finally omit this factor and complete the proof of Theorem 3.2.

To begin with, for S ∈ [2S0,∞) consider the closed subset

BS :=
{
z ∈ N ε

S

∣∣ ‖z‖N εS ≤ C6 + C7 + 1
}

of the Banach spaceN ε
S . Choose S1 ∈ [2S0,∞) so large that for all S ∈ [S1,∞) we have

(C8 + C9)(C6 + C7 + 1)2S−ε ≤ 1,

(C8 + C9)(C6 + C7 + 1)S−ε ≤ 1

4
.

Thus, we obtain the existence of a fixed point of z 7→ FS(z) +HS .

Corollary 8.1. For any S ∈ [S1,∞) there is a function zS ∈ BS with zS = FS(zS) +HS .

Proof. By the Lemma 7.5, Lemma 7.6, Lemma 7.7 and Lemma 7.8 and the choice of S1, the mapping

FS : BS → BS, FS(z) := FS(z) +HS

is a well-defined contractive self-mapping for any S ≥ S1. The contraction mapping principle thus
implies the existence of the asserted fixed point zS ∈ BS of FS .

Next we show that zS coincides with u|T×BS for S sufficiently large. This yields pointwise estimates of
u.

Lemma 8.2. There exists S2 ∈ [S1,∞) such that for all S ∈ [S2,∞) we have

|curlPu(x)| ≤ (C6 + C7 + 1)|x|−3/2 e−
s(Kx)
1+S ,

|curlP⊥u(t, x)| ≤ (C6 + C7 + 1)|x|−9/2+ε e−
s(Kx)
1+S

for all t ∈ T and x ∈ BS .

Proof. For S ≥ 2S0 we set US := u|T×BS . By Theorem 6.1 we know US ∈MS with MS(U) ≤ C2,
and by (6.12) we have US = FS(US) +HS for any S ≥ 2S0. Now let S ≥ S1 and let zS ∈ BS be
the function from Corollary 8.1. Then Lemma 7.7 implies

MS(zS − US) = MS(FS(zS)−FS(US)) ≤ C8S
−ε(MS(zS) + MS(US)

)
MS(zS − US)

≤ C8S
−ε(C6 + C7 + 1 + C2

)
MS(zS − US).

Choosing S2 ∈ [S1,∞) such that for all S ∈ [S2,∞) we have

C8

(
C6 + C7 + 1 + C2

)
S−ε ≤ 1

2
,

we conclude MS(zS − US) ≤ MS(zS − US)/2 and hence MS(zS − US) = 0 for all S ∈ [S2,∞).
This implies zS = US = u|T×BS . In particular, we have Nε

S(u|T×BS) = Nε
S(zS) ≤ C6 + C7 + 1 for

all S ∈ [S2,∞). This completes the proof.
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Another application of the convolution formula (6.11) enables us to omit the term ε in the estimate of
curlP⊥u, which yields the estimates from Theorem 3.2 in the case Ω = R3.

Theorem 8.3. Let λ > 0 and let f ∈ Lq(T × R3)3 for all q ∈ (1,∞) have bounded support. Let
u be a weak time-periodic solution to (6.1) in the sense of Definition 3.1, which satisfies (3.3). Then
there exist constants C1 > 0 and α = α(λ, T ) > 0 such that the estimates (3.4) and (3.5) hold for
all (t, x) ∈ T× R3.

Proof. We decompose u = v+w into steady-state part v := Pu and purely periodic partw := P⊥u.
Since curlu is bounded by Theorem 6.1, Lemma 8.2 implies

|curl v(x)| ≤ C(1 + |x|)−3/2 e−αs(x),

|curlw(t, x)| ≤ C(1 + |x|)−9/2+ε e−αs(x)
(8.1)

for all (t, x) ∈ T × R3, where α = (1 + S2)−1K . In particular, this implies (3.4), and for (3.5) it
remains to remove ε in the second inequality. Due to Theorem 6.1, the estimates (8.1) further yield∣∣curl v(y) ∧ w(s, y) + curlw(s, y) ∧ v(y) + P⊥[curlw ∧ w](s, y)

∣∣ ≤ C(1 + |y|)−9/2 e−αs(λy)

for all (t, x) ∈ T× R3. Moreover, by Theorem 4.4 we have∫
T
|∇φλ⊥(t− s, x− y)| ds ≤ C|x− y|−5/2 e−C3|x−y| .

Using these estimates and (7.6) in the representation formula (6.11), we conclude

|curlw(t, x)| ≤ C|x|−9/2 e
− C3|x|

2(1+S0) +C

∫
R3

|x− y|−5/2 e−C3|x−y|(1 + |y|)−9/2 e−αs(λy) dy.

Due to 2s(Kx) ≤ C3|x|, we have

1

2
C3|x− y|+ αs(λy) ≥ s(K(x− y)) +

s(Ky)

1 + S2

≥ s(Kx)

1 + S2

= αs(x),

and we obtain

|curlw(t, x)| ≤ C(1 + |x|)−9/2 e−αs(x)

+ C e−αs(x)

∫
R3

|x− y|−5/2 e−C3|x−y|/2(1 + |y|)−9/2 dy,

where we used (6.23). We estimate the remaining integral with Lemma 7.3, which leads to (3.5) and
completes the proof.

Finally, we employ a classical cut-off argument to extend the result to an exterior domain and to finish
the proof of Theorem 3.2.

Proof of Theorem 3.2. First of all, Lemma 5.2 implies the existence of a pressure field p such that
(u, p) is a strong solution to (1.1) satisfying (5.5)–(5.7). Fix radii R > r > 0 such that ∂Ω ⊂ Br, and
let χ ∈ C∞(R3) be a cut-off function such that χ(x) = 0 for |x| ≤ r and χ(x) = 1 for |x| ≥ R. By
the divergence theorem, div u = 0 and (3.2), we have∫

Br,R

u · ∇χ dx =

∫
BR

div
(
u(χ− 1)

)
dx = −

∫
∂Ω

u · n dS = 0.
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Therefore, there exists a function V with V ∈ W1,2,q(T × R3)3 for all q ∈ (1,∞) and suppV ⊂
T × Br,R such that div V = u · ∇χ; see [12, Section III.3] for example. We define U := χu − V
and P := χp. Then U ∈ Lr(T× R3) for some r ∈ (5,∞) and U is a weak solution to

∂tU −∆U − λ∂1U + U · ∇U +∇P = F in T× R3,

divU = 0 in T× R3,

lim
|x|→∞

U(t, x) = 0 for t ∈ T,
(8.2)

in the sense of Definition 3.1, where F ∈ Lq(T × R3)3 for all q ∈ (1,∞), and suppF is compact.
Now the assertion follows from Theorem 8.3 and the identity U(t, x) = u(t, x) for |x| > R.
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