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Optimal stopping with signatures
Christian Bayer, Paul Hager, Sebastian Riedel, John G. M. Schoenmakers

Abstract

We propose a new method for solving optimal stopping problems (such as American option
pricing in finance) under minimal assumptions on the underlying stochastic process. We consider
classic and randomized stopping times represented by linear functionals of the associated rough
path signature, and prove that maximizing over the class of signature stopping times, in fact,
solves the original optimal stopping problem. Using the algebraic properties of the signature, we
can then recast the problem as a (deterministic) optimization problem depending only on the
(truncated) expected signature. The only assumption on the process is that it is a continuous
(geometric) random rough path. Hence, the theory encompasses processes such as fractional
Brownian motion which fail to be either semi-martingales or Markov processes.

1 Introduction

The theory of rough paths, see, for instance, [LCL07, FV10, FH14], provides a powerful and elegant
pathwise theory of stochastic differential equations driven by general classes of stochastic processes
– or, more precisely, rough paths. One of the benefits of the theory is that the resulting solution maps
are continuous rather than merely measurable as in the Itō version. This property has lead to many
important theoretical progresses, most notably perhaps Hairer’s theory for singular non-linear SPDEs.

In addition to the theoretical advances, tools – specifically, the path signature – from rough path anal-
ysis play an increasingly prominent role in applications, most notably in machine learning, see, e.g.,
[AGG+18]. Intuitively, the signature X<∞ of a path X : [0, T ] → Rd denotes the (infinite) collection
of all iterated integrals of all components of the path against each other, i.e., of the form∫

0<t1<···<tn<T
dX i1

t1 · · · dX
in
tn ,

i1, . . . , in ∈ {1, . . . , d}, n ≥ 0. To better understand the importance of the signature, let us first
recall that the signature X<∞ determines the underlying path X (up to “tree-like excursions”), which
was first proved in [HL10] for paths X of bounded variation and later extended to less regular paths.
This implies that, in principle, we can always work with the signature rather than the path. (A somewhat
dubious proposition, as we merely replace one infinite dimensional object by another one.) However,
the signature is not an arbitrary encoding of the path. Rather, Lyons’ universal limit theorem suggests
that the solution of a differential equation driven by a rough path X can be approximated with high
accuracy by relatively few terms of the signature X<∞. In that sense, an appropriately truncated
signature can be seen as a highly efficient compression of X , at least in the context of dynamical
systems. And, indeed, there is now ample evidence of the power of the signature as a feature in the
sense of machine learning.

This paper is motivated by another recent application of signatures, namely the solution of stochastic
optimal control problems in finance. We follow the presentation of [KLPA20], where a signature-based
approach for solving optimal execution problems is developed. In a nutshell, the strategy can be sum-
marized as follows:
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1 Trading strategies for execution of a position can be understood as (continuous) functionals
φ(X|[0,t]) of the price path, and, hence, as functionals θ(X<∞

0,t ) of the signature (at least ap-
proximately).

2 Taking advantage of the algebraic structure of the signature (see Section 2 below), we may
efficiently approximate continuous functionals θ(X<∞

0,t ) by linear functionals 〈l, X<∞
0,t 〉, which

further extends to the whole value function.

3 Taking advantage of the linearity, we may interchange the expectation with the linear functional,
thereby reducing the optimal control problem to a problem of maximizing l 7→ 〈l, E[X<∞

0,t ]〉
over some set of dual elements l.

4 Truncate the expected signature to a finite level N .

The above strategy, in principle, only imposes very mild conditions on the underlying process X ,
mainly that it is continuous but rough. In particular, X does not need to be a Markov process or a
semi-martingale. For this reason, we may consider the approach to be model-free.1 Note, however,
that the assumption of the existence of the expected signature E[X<∞

0,t ] is a rather strong assumption
– in particular, ruling out many stochastic volatility models, such as the Heston model.

[KLPA20] contains extensive numerical examples, indicating the method’s excellent performance in
various scenarios and models, often beating benchmark methods from the financial literature. On the
other hand, theoretical justification of the different approximation steps summarized above is largely
missing.

In this paper, we extend the method of [KLPA20] to another important control problem in finance,
namely the optimal stopping problem, or, in more financial terms, the pricing of American options.
More specifically, we are concerned with the problem of computing

sup
τ∈S

E [Yτ∧T ] , (1.1)

where Y denotes a process adapted to the filtration (Ft)t∈[0,T ] generated by a rough path process
(Xt)t∈[0,T ], and S denotes the set of all stopping times w.r.t. the same filtration. In a financial context,
Y usually denotes a reward process discounted with respect to some numéraire. At first glance the
optimal stopping problem (1.1) may seem unsuitable for the signature-based approach, as typical can-
didate stopping times are hitting times of sets, which are generally discontinuous w.r.t. the underlying
path. We solve this issue by using randomized stopping times, see [BTW20]. Note that extending the
set S to also include randomized stopping times does not change the value of (1.1). In the end, we are
able to prove that replacing proper stopping times by signature stopping times – i.e., stopping times
given in terms of linear functionals of the signature X<∞ – does not change the value of the optimal
stopping problem either. More precisely, we have

Theorem 1.1. Assume that E[‖Y ‖∞] <∞. Then,

sup
τ∈S

E[Yτ∧T ] = sup
τl

E[Yτl∧T ],

where the supremum on the right-hand-side ranges over stopping times τl := inf{t ∈ [0, T ] :

〈l, X̂<∞
0,t 〉 ≥ 1} connected with linear functionals l on the signature process X̂<∞

0,t (we refer to Sec-
tions 2 and 4 for precise definitions).

1The full expected signature E[X<∞] typically characterizes the distribution of the process X , see [CL16]. In that
sense, we would hesitate to regard methods relying on the full (rather than truncated) expected signature as “model-free”.
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The theorem is presented as Theorem 4.8 below. We note that, following [KLPA20], we extend the path
X by adding running time as an additional component. X̂<∞ denotes the signature of the extended
path.

In the next step we need to actually compute a maximizing signature stopping time. In this context, this
most importantly implies replacing the full signature X̂<∞ by a truncated version X̂≤N . Using some
further technical assumptions, Theorem 5.5 provides convergence of the corresponding approxima-
tions to the value of (1.1) as N →∞.

Finally, assuming that Y is a polynomial function ofX – or, more generally, of X<∞ – we can derive an
approximation formula in terms of an optimization problem involving linear functionals of the expected
signature E[X̂≤N ] rather than the expectation of some functional of the signature. See Corollary 5.6
for details.

Outline of the paper

Section 2 recalls basic definitions from the theory of rough paths and provides the algebraic and
analytic setting of signatures. A framework for studying stopped rough paths is presented in Section 3.
Finally, the optimal stopping problem based on signature stopping times is studied in Section 4. In
the following Section 5 we consider the numerical approximation of the optimal signature stopping
problem.

2 Preliminaries

We start by introducing the basic definitions needed for understanding signatures and their algebraic
and – in the context of rough paths – analytic properties. These definitions are standard in the rough
path literature, we refer to [LCL07, FH14, FV10] for a more detailed exposition.

2.1 The tensor algebra

Let V be a finite-dimensional R-vector space with basis {e1, . . . , ed}. The dual space is denoted by
V ∗ with dual basis {e∗1, . . . , e∗d}. We define the tensor algebra and the extended tensor algebra by
setting

T (V ) :=
∞⊕
n=0

V ⊗n and T ((V )) :=
∞∏
n=0

V ⊗n

where V ⊗n denotes the n-th tensor power of V with the convention V ⊗0 := R, V ⊗1 := V . Note that
there is a natural pairing between T ((V )) and T (V ∗) which we denote by

〈·, ·〉 : T (V ∗)× T ((V ))→ R.

We define sum and product of two elements a = (an)∞n=0,b = (bn)∞n=0 ∈ T ((V )) by setting

a + b := (an + bn)∞n=0,

a⊗ b := (
∑
i+j=n

ai ⊗ bj)∞n=0.

For λ ∈ R, we define λa := (λan)∞n=0. We also let 0 := (0, 0, . . .) and 1 := (1, 0, 0, . . .). Note that

1⊗ a = a⊗ 1 = a
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for every a ∈ T ((V )). The truncated tensor algebra is defined by

TN(V ) :=
N⊕
n=0

V ⊗n.

We define maps πn : T ((V ))→ V ⊗n and π≤N : T ((V ))→ TN(V ) by πn(a) = an and π≤N(a) =
(a0, . . . , aN) where a = (an)∞n=0. We will sometimes abuse notation and write 0 and 1 for the
elements π≤N(0) and π≤N(1) in the truncated tensor algebra.

Next, we consider norms on T ((V )) and T (V ∗). On V , we choose the l∞-norm, i.e. for v = λ1e1 +
. . .+λded, we set |v| := maxi |λi|. For elements in V ∗, we use the l1-norm, i.e. |v∗| := |λ1|+ . . .+
|λd| for v∗ = λ1e

∗
1+. . .+λde

∗
d. On the tensor powers of V resp. V ∗, we use the corresponding norms,

too. Note that the norms on the tensor products V ⊗n are admissible, meaning that if v = a1⊗. . .⊗ak
and σv := aσ(1) ⊗ . . .⊗ aσ(k) for a permutation σ, |σv| = |v|, and |v ⊗ w| ≤ |v||w|. We set

|a| := sup
i∈N0

|ai| ∈ [0,∞] for a = (ai)
∞
i=0 ∈ T ((V ))

and

|b| :=
∞∑
i=0

|bi| ∈ [0,∞) for b = (bi)
∞
i=0 ∈ T (V ∗).

Note that we always have

|〈b, a〉| ≤ |b||π≤N(a)| ≤ |b||a|

where N = max{i ∈ N0 : bi 6= 0}.

2.2 Shuffles

In the following, calculations will mainly be performed in the space T (V ∗). In order to simplify nota-
tions, we will replace expressions like e∗i1⊗· · ·⊗e

∗
in by the much simpler form i1 · · · in. More precisely,

letW(Ad) be the linear span of words composed by the letters in the dictionary Ad = {1, . . . , d}.
The empty word is denoted by ∅ ∈ W(Ad). We can naturally define the sum l1 + l2 and the scalar
product λl for elements l, l1, l2 ∈ W(Ad) and λ ∈ R. If w = i1 · · · in and v = j1 · · · jm are two
words, the concatenation is defined by

wv := i1 · · · inj1 · · · jm.

This operation is extended bi-linearly to elements inW(Ad). The basis elements {e∗i1 ⊗ · · · ⊗ e
∗
in :

i1, . . . , in ∈ {1, . . . , d}} in (V ∗)⊗n can be identified with words via the map

e∗i1 ⊗ · · · ⊗ e
∗
in 7→ i1 · · · in

which induces an isomorphism T (V ∗) ∼= W(Ad). We can also think of W(Ad) as the space of
non-commutative polynomials where the unknown are given by the letters {1, . . . , d}. For a word
w = i1 · · · in, set deg(w) := n and deg(∅) := 0. If l = λ1w1 + . . . + λnwn ∈ W(Ad) with
λ1, . . . , λn ∈ R \ {0} and w1, . . . , wn words, we define

deg(l) := max
i=1...,n

deg(wi).
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Apart from concatenation, there is a second important product defined on W(Ad) which is called
shuffle product : For a word w, we set

w�∅ := ∅� w := w.

If wi and vj are words and i, j ∈ Ad are letters, we recursively define wi� vj ∈ W(Ad) by

wi� vj := (w� vj)i+ (wi� v)j.

This operation is extended bi-linearly to a product � : W(Ad) ×W(Ad) → W(Ad). Note that �
is associative, commutative and distributive over +. If P ∈ R[x] is a commutative polynomial with
unknown variable x, i.e. P (x) = λ0 + λ1x + . . . λnx

n, we define P� : W(Ad) → W(Ad) by
setting

P�(l) := λ0∅ + λ1l + λ2(l� l) + . . .+ λnl
�n, (2.1)

where l�k denotes k-th shuffle product of l ∈ W(Ad) with itself.

We define

G(V ) := {a ∈ T ((V )) \ {0} : 〈l1� l2, a〉 = 〈l1, a〉〈l2, a〉 for every l1, l2 ∈ T (V ∗)} (2.2)

and call it the set of group-like elements. Note that π0(g) = 1 for every g ∈ G(V ). One can show
that (G(V ),⊗) is a group with identity 1 and inverse given by

g−1 =
∑
n≥0

(1− g)⊗n.

We also set GN(V ) := π≤N(G(V )) which is a free nilpotent group of order N with respect to
the “truncated multiplication” a⊗GN (V ) b := πN(a ⊗ b), for a,b ∈ GN(V ). However, we will not
distinguish between the multiplication symbols on GN(V ) and G(V ) and use ⊗ in both cases.

Remark 2.1. The relation 〈l1� l2, a〉 = 〈l1, a〉〈l2, a〉 for a ∈ G(V ) implies that

P (〈l, a〉) = 〈P�(l), a〉 (2.3)

for any polynomial P . This is really the justification for introducing the shuffle product, as it provides
an explicit linearization of polynomials in the signature.

2.3 Rough paths and their signatures

Now that the algebraic setting for signatures is developed (for the purposes of this paper), we can
finally consider the analytic properties of (rough) paths. More concretely, given a pathX : [0, T ]→ V
(of sufficient regularity), we will associate to it a function X taking values in the truncated tensor
algebra, which is the fundamental building block of rough path theory. Set ∆T := {(s, t) ∈ [0, T ]2 :
0 ≤ s ≤ t ≤ T}. For a map X : ∆T → TN(V ), we define its p-variation

‖X‖p−var;[s,t] := max
k=1,...,N

sup
D⊂[s,t]

(∑
ti∈D

|πk(Xti,ti+1
)|
p
k

) k
p

where the supremum ranges over all partitions D of [s, t]. We will use the notation ‖X‖p−var :=
‖X‖p−var;[0,T ]. For X,Y : ∆T → TN(V ), we define the p-variation distance

dp−var;[s,t](X,Y) := ‖X− Y‖p−var;[s,t]
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and set dp−var(X,Y) := dp−var;[0,T ](X,Y). A weakly geometric p-rough path X is a continuous path
X : [0, T ]→ Gbpc(V ) with X0 = 1 and ‖X‖p−var <∞ where we set Xs,t := X−1s ⊗ Xt for s ≤ t.
Note that Xt = X0,t. We denote the space of weakly geometric p-rough paths byWΩp

T and equip it
with the distance dp−var. If X : [0, T ] → V is a continuous path of bounded variation, we define its
signature X<∞ : [0, T ]→ T ((V )) by

πk(X<∞
t ) :=

∫
0<t1<...<tk<t

dXt1 ⊗ · · · ⊗ dXtk .

The truncated signature X≤N : [0, T ] → TN(V ) is defined by X≤N := π≤N(X<∞). It can be
checked that X<∞ takes values in G(V ) and we set X<∞

s,t := (X<∞
s )−1 ⊗ X<∞

t so that

πk(X<∞
s,t ) =

∫
s<t1<...<tk<t

dXt1 ⊗ · · · ⊗ dXtk .

One can also show that X≤N is an element inWΩp
T for every p ≥ 1 with N = bpc.

A geometric p-rough path X is a weakly geometric rough path X ∈ WΩp
T for which there exists a

sequence of piecewise smooth paths (Xn) such that dp−var(X,X≤bpcn )→ 0 as n→∞. The space
of geometric rough paths is denoted by Ωp

T . It can be shown that the inclusion Ωp
T ⊂ WΩp

T is strict
and that Ωp

T is a Polish space. From Lyons’ Extension theorem [LCL07, Theorem 3.7], every geometric
rough path X ∈ Ωp

T has a unique lift X<∞ which is a path in G(V ), satisfying ‖π≤N(X<∞)‖p−var <
∞ for every N ≥ 1 and π≤bpc(X<∞) = X. We call X<∞ the signature of the rough path X and
X≤N := π≤N(X<∞) its truncated signature.

Similarly, for V = R1+d, we define the space Ω̂p
T as the closure of rough path lifts X̂≤bpc in the

p-variation distance where X̂t = (t,Xt) ∈ R1+d and X is piecewise smooth. It follows that Ω̂p
T is

Polish.

Remark 2.2. Following the notation introduced above, the letter 1 corresponds to the running time
component t of the path X̂ , whereas the components of X correspond to the letters 2, . . . , d+ 1,
respectively.

Example 2.3 (Brownian motion as a rough path). Let X be a d-dimensional Brownian motion. In this
case a natural lift to a geometric rough path X ∈ Ωp

T with p ∈ (2, 3) is given by

Xs,t =

(
1, Xs,t,

∫ t

s

Xs,u ⊗ ◦dXu

)
, 0 ≤ s ≤ t ≤ T.

where Xs,t = Xt −Xs and for all i, j ∈ Ad the tensor valued Stratonovich integral is given by〈
ij,

∫ t

s

Xs,u ⊗ ◦dXu

〉
=

∫ t

s

X i
s,u ◦ dXj

u =

∫ t

s

X i
s,udX

j
u +

1

2
[X i, Xj]s,t.

Indeed, to see that X ∈ WΩp
T , on may readily check that Xs,t ∈ G2(V ) is an immediate conse-

quence of the product rule and the rough path regularity of X follows from a generalized Kolmogorov
criterion (see [FH14, Theorem 3.1]). As it is well known that the integral with respect to the piece-
wise linear approximation of Brownian motion converges to the Stratonovich integral, we also see
that X ∈ Ωp

T . The signature X<∞ of the enhanced Brownian motion X is then given by the iterated
integrals of all orders, i.e. for any word w = i1 · · · ik ∈ W(Ad) we have

〈i1 · · · ik,X<∞
0,t 〉 =

∫
0<t1<...<tk<t

◦dX i1
t1 · · · ◦ dX

ik
tk
.

DOI 10.20347/WIAS.PREPRINT.2790 Berlin 2020



Optimal stopping with signatures 7

An explicit form of the expected signature is also known due to Fawcett [Faw02]

E(X<∞
0,t ) = exp

(
1

2
t

d∑
i=1

ei ⊗ ei

)
=
∞∑
n=0

1

n!

tn

2n

(
d∑
i=1

ei ⊗ ei

)⊗n
.

Note that this construction of a geometric rough path works in principle for all continuous semimartin-
gales and we refer to [FV10, Section 14] for more detail.

Example 2.4 (Fractional Brownian motion). Let X be one-dimensional fractional Brownian motion
with Hurst parameter H ∈ (0, 1), i.e. X is a zero mean Gaussian process with covariance function

E(XsXt) =
1

2

(
|s|2H + |t|2H − |t− s|2H

)
, 0 ≤ s ≤ t.

Recall that the sample paths of X are (H − ε)-Hölder continuous for any ε > 0. In case H = 1/2
thenX is just a standard Brownian motion, in caseH 6= 1/2 thenX is not a Markov process and not
a semimartingale. However, since X is one-dimensional (V = R) there is a trivial lift to a geometric
rough path X ∈ Ωp

T for any p ∈ (1/H, 1 + 1/H) given by

Xs,t =

(
1, Xs,t,

1

2
(Xs,t)

⊗2, ...,
1

[p]!
(Xs,t)

⊗[p]
)
≡ exp[p](Xs,t) ∈ G[p](V ), 0 ≤ s ≤ t ≤ T.

As we will see in the next section, we are particulary interested in the process X̂ defined by X̂t =
(t,Xt) ∈ R2. Since the first component of X̂ is of locally bounded variation, there is a lift to a
geometric rough path X̂ ∈ Ω̂p

T (see [FV10, Theorem 9.26]). Intuitively speaking we can make use of

the abundant regularity of the first component X̂ in order to define iterated integrals by imposing the
integration by parts rule. More precisely in case p > 2 we have

〈12, X̂s,t〉 = 〈2, X̂s,t〉〈1, X̂s,t〉 − 〈21, X̂s,t〉 = Xs,t(t− s)−
∫ t

s

Xs,udu,

and the right hand side is clearly well defined. Using the shuffle identity, this reasoning can be carried
on to express all components of the signature X̂<∞ in terms of increments of X , finite-variation
integrals and products thereof.

3 The space of stopped rough paths

We will now consider rough paths Z defined on some intervals [0, s] ⊂ [0, T ]. In order to naturally
model the notion of adaptedness to a filtration, we will consider functionals of the restriction of a
rough path Z to a subinterval of its domain. Hence, the analysis of the corresponding control problem
requires us to define a distance of rough paths with different domains. Following [KLPA20], we will use
a distance motivated by Dupire’s functional Itō calculus, see [Dup19, CF10]. This means, when we
compare a path Z1 defined on [0, s] and another path Z2 defined on [0, t] with s < t, we will extend
Z1 to [0, t] by Z1

u := Z1
s for s ≤ u ≤ t. We will, in principle, use the same construction for rough

paths, but recall that we are considering paths u 7→ (u,Xu) in our framework, and extending the
time component of such a path in a constant way does not make much sense. Instead, we will apply
Dupire’s extension to the X-component, but use the linear extension (i.e., the exact one) for the time
component.

More precisely, let Z|[0,s] ∈ Ω̂p
s and s ≤ t. By definition, there exists a sequence Zn

u = (u,Xn
u )

where Xn : [0, s] → Rd is a piecewise smooth path such that dp−var;[0,s](Z|[0,s],Zn;≤bpc) → 0 as
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n→∞. Set X̃n
u := Xn

u∧s for u ∈ [0, t] and Z̃n
u := (u, X̃n

u ). One can check that Z̃n;≤bpc is a Cauchy
sequence in Ω̂p

t , and we denote the limit by Z̃|[0,t]. One can also check that the definition of Z̃|[0,t]
does not depend on the choice of the sequence Xn. By construction we have that Z̃|[0,s] = Z|[0,s],
which motivates the following definition.

Definition 3.1. For T > 0, we set ΛT :=
⋃
t∈[0,T ] Ω̂

p
t and call it the space of stopped rough paths.

We equip it with the metric

d(X|[0,t],Y|[0,s]) := dp−var;[0,t](X|[0,t], Ỹ|[0,t]) + |t− s|

where we assume s ≤ t and Ỹ|[0,t] is the stopped rough path constructed as explained above.

Let us mention that ΛT is Polish. For this and related simple technical facts about the topology of ΛT ,
we refer to the appendix. Later on we will use that 1{τ(ω)≤t} can be represented as a measurable map
of the restricted signature.

Lemma 3.2. Let X̂ be a stochastic process in Ω̂p
T and set Ft := σ(X̂0,s : 0 ≤ s ≤ t) = σ(X̂|[0,t]).

Let τ be a stopping time with respect to (Ft). Then there is a Borel measurable map θ : ΛT → {0, 1}
such that

θ(X̂(ω)|[0,t]) = 1{τ(ω)≤t}

for every ω ∈ Ω.

Proof. For every t ∈ [0, T ], {τ ≤ t} is σ(X̂|[0,t])-measurable, hence there is a set At ∈ B(Ω̂p
t )

such that (X̂|[0,t])−1(At) = {τ ≤ t}. It follows that

1{τ(ω)≤t} = 1At(X̂(ω)|[0,t]) (3.1)

for every ω ∈ Ω. Define φ : ΛT → [0, T ] × Ω̂p
T as φ(X|[0,t]) = (t, X̃|[0,T ]) where X̃|[0,T ] de-

notes the stopped process defined in Definition 3.1 . Note that φ is continuous, thus measurable.
Define f : [0, T ] × Ω̂p

T → R as f(t, X̂) := 1At(X̂|[0,t]). For fixed t, X̂ → X̂|[0,t] is continuous

and X̂|[0,t] 7→ 1At(X̂|[0,t]) is measurable, therefore X̂ 7→ f(t, X̂) is measurable. For n ∈ N, define
Ink := [k/2nT, (k+1)/2nT ) for k = 0, . . . , 2n−2, In2n−1 := [(2n−1)/2nT, T ] and tnk := k/2nT .
Set

fn(t, X̂) :=
2n−1∑
k=0

f(tnk , X̂)1Ink (t)

which is measurable for every n ∈ N. Set

f̃(t, X̂) := lim sup
m→∞

lim sup
n→∞

fn(t+ 1/m, X̂) and θ(X̂|[0,t]) := (f̃ ◦ φ)(X̂|[0,t]).

The map θ is thus measurable and satisfies

θ(X̂(ω)|[0,t]) = lim sup
m→∞

lim sup
n→∞

2n−1∑
k=0

1{τ(ω)≤tnk}1I
n
k
(t+ 1/m) = 1{τ(ω)≤t}.

Definition 3.3. We set T := C(ΛT ,R) and call it the space of continuous stopping policies. The
space of signature stopping policies Tsig ⊂ T is defined as

Tsig =
{
θ ∈ T : ∃l ∈ T ((R1+d)∗) such that θ(X̂|[0,t]) = 〈l, X̂<∞

0,t 〉 ∀X̂|[0,t] ∈ ΛT

}
.
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Optimal stopping with signatures 9

Note that every l ∈ T ((R1+d)∗) defines a θ ∈ T by setting θ(X̂|[0,t]) = 〈l, X̂<∞
0,t 〉. The important

result about Tsig is the following:

Lemma 3.4. Let P be a probability measure on (Ω̂p
T ,B(Ω̂p

T )). Then, for every ε > 0, there is a

compact set K ⊂ Ω̂p
T such that

1 P(K) > 1− ε,

2 Tsig, restricted of K, is dense in T . More precisely, for every θ ∈ T there is a sequence
θn ∈ Tsig such that

sup
X̂∈K; t∈[0,T ]

|θn(X̂|[0,t])− θ(X̂|[0,t])| → 0

as n→∞.

Proof. [KLPA20, Lemma B.3].

4 Signature stopping rules

In the next step, we convert the stopping policies defined above into actual stopping times. Of course,
for a given stopping time, there is no reason why it should be representable by a continuous stopping
policy, or even a signature stopping policy. Indeed, relevant stopping times – such as hitting times
of even nice sets – are often discontinuous functions of the underlying path. We will see, however,
that stopping times, in particular the optimal stopping times for our problem, can be approximated
by stopping times induced by signatures stopping policies, in the sense that the corresponding value
functions converge.

Let (Ω,F ,P) be a probability space. In this section, X̂ denotes a stochastic process in Ω̂p
T and

Y : [0, T ] × Ω → R is a real-valued continuous stochastic process adapted to the filtration (Ft),
Ft = σ(X̂0,s : 0 ≤ s ≤ t). We are trying to solve the optimal stopping problem for Y , i.e., in a
financial context Y corresponds to a cash-flow process. For simplicity, we assume that X0 = 0.

In this section, we will encounter various flavors of stopping times. In particular, as already indicated
above, proper stopping times are often difficult to approximate. We will, instead, consider randomized
stopping times, which relax proper stopping times and lead to much more regular approximation prob-
lems. We note that similar techniques have been used in [BTW20] in the context of numerical methods
for American option pricing.

Definition 4.1.

1 By S , we denote the space of all (Ft)-stopping times.

2 Let Z be a non-negative random variable independent of X̂ and such that P(Z = 0) = 0. For
a continuous stopping policy θ ∈ T , we define the randomized stopping time

τ rθ := inf

{
t ≥ 0 :

∫ t∧T

0

θ(X̂|[0,s])2 ds ≥ Z

}
(4.1)

where inf ∅ = +∞.

3 Let l ∈ T ((R1+d)∗) and Z as in (ii). Then we define the randomized signature stopping time

τ rl := inf

{
t ≥ 0 :

∫ t∧T

0

〈l, X̂<∞
0,s 〉2 ds ≥ Z

}
. (4.2)
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Next we prove that stopping times can be approximated by randomized stopping times based on
continuous stopping policies.

Proposition 4.2. For every stopping time τ ∈ S , there exists a sequence θn ∈ T such that the
randomized stopping times τ rθn satisfy τ rθn → τ almost surely as n→∞. In particular, if E[‖Y ‖∞] <
∞, then

sup
θ∈T

E[Yτrθ∧T ] = sup
τ∈S

E[Yτ∧T ].

Proof. Let τ be a stopping time. From Lemma 3.2, we know that there is a measurable map θ : ΛT →
{0, 1} such that

θ(X̂|[0,t]) = 1{τ≤t}.

Using [Wiś94, Theorem 1], we can find a sequence of continuous functions θ̃n ∈ T such that
θ̃n(X̂|[0,t])→ 1{τ≤t} almost surely w.r.t. λ|[0,T ]⊗P where λ|[0,T ] denotes the Lebesgue measure on

[0, T ]. W.l.o.g, we may assume that 0 ≤ θ̃n ≤ 1. Set θn := (2θ̃n)n. Then

lim
n→∞

θn(X̂|[0,t])→

{
+∞ if t ≥ τ

0 if t < τ.

It follows that τ rθn → τ almost surely as n → ∞. Using the dominated convergence theorem, this
implies that

sup
θ∈T

E[Yτrθ∧T ] ≥ sup
τ∈S

E[Yτ∧T ].

To show the converse inequality, take θ ∈ T . From independence,

E[Yτrθ∧T | X̂] =

∫ ∞
0

Yτz∧T PZ(dz)

where

τz := inf

{
t ≥ 0 :

∫ t∧T

0

θ(X̂|[0,s])2 ds ≥ z

}
.

Note that this is a stopping time for every z ≥ 0. Taking expectation, it follows that

E[Yτrθ∧T ] =

∫ ∞
0

E[Yτz∧T ]PZ(dz) ≤ sup
τ∈S

E[Yτ∧T ]

which implies the claim.

Note that we cannot generally assume that θn → θ implies τ rθn → τ rθ , as is shown by the following
counter-example. So even randomized stopping times are not continuous w.r.t. the underlying stopping
policies.

Example 4.3. Consider ϑ, ϑn : [0, 3]→ [0,∞) defined by

ϑ(t) =


1− t if t ∈ [0, 1]

0 if t ∈ [1, 2]

t− 2 if t ∈ [2, 3]

and ϑn(t) =


(1− 1

n
)(1− t) if t ∈ [0, 1]

0 if t ∈ [1, 2]

t− 2 if t ∈ [2, 3].
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Although ϑn → ϑ as n→∞, we have

inf

{
t ≥ 0 :

∫ t∧3

0

ϑ(s) ds ≥ 1

2

}
= 1 and inf

{
t ≥ 0 :

∫ t∧3

0

ϑn(s) ds ≥ 1

2

}
> 2

for all n ≥ 1.

As mentioned above, randomized stopping times regularize the optimal stopping problem. Indeed,
given a randomized stopping time τ rθ defined in terms of an independent random variable Z as in
Definition 4.1, if we integrate the stopped process Yτrθ∧T w.r.t. Z , we obtain a smooth function of θ –
which is clearly not true without regularization, see Remark 4.5 below.

Lemma 4.4. Let S be an (Ft)-stopping time and let FZ denote the cumulative distribution function of
Z . Then

E[Yτrθ∧S | X̂] =

∫ S

0

Yt dF̃ (t) + YS(1− F̃ (S)) =

∫ S

0

(1− F̃ (t)) dYt + Y0

where the second integral is implicitly defined by integration by parts and

F̃ (t) := FZ

(∫ t

0

θ(X̂|[0,s])2 ds
)
.

In particular, if Z has a density %,

E[Yτrθ∧S] = E
[∫ S

0

Ytθ(X̂|[0,t])2%
(∫ t

0

θ(X̂|[0,s])2 ds
)
dt+ YS(1− F̃ (S))

]
.

Proof. Recall that τ rθ ∈ [0, T ] ∪ {∞}. For t ∈ [0,∞), we have

P(τ rθ ≤ t | X̂) = P
(∫ t∧T

0

θ(X̂|[0,s])2 ds ≥ Z | X̂
)

= FZ

(∫ t∧T

0

θ(X̂|[0,s])2 ds
)

= F̃ (t)

and

P(τ rθ =∞| X̂) = P
(∫ T

0

θ(X̂|[0,s])2 ds < Z | X̂
)

= 1− F̃ (T ).

It follows that for f : [0,∞]→ R integrable,

E[f(τ rθ ) | X̂] =

∫ T

0

f(t) dF̃ (t) + f(∞)(1− F̃ (T ))

and therefore

E[Yτrθ∧S | X̂] =

∫ T

0

Yt∧S dF̃ (t) + YS(1− F̃ (T )) =

∫ S

0

Yt dF̃ (t) + YS(1− F̃ (S)).

Remark 4.5. In the deterministic case Z = z > 0 almost surely, we have

F̃ (t) = 1[z,∞)

(∫ t

0

θ(X̂|[0,s])2 ds
)
,

thus

E[Yτrθ∧T ] = E
[∫ T

0

1[0,z)

(∫ t

0

θ(X̂|[0,s])2 ds
)
dYt

]
+ E[Y0].
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Using the regularization by randomization, we can now prove that randomized stopping times induced
by continuous stopping policies can, in fact, be approximated by randomized signature stopping times,
in the sense of convergence of the optimal stopping problems.

Proposition 4.6. Assume that Z has a continuous density % and that E[‖Y ‖∞] <∞. Then

sup
θ∈T

E[Yτrθ∧T ] = sup
θ∈Tsig

E[Yτrθ∧T ].

It follows that

sup
θ∈T

E[Yτrθ∧T ] = sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ].

Proof. It is enough to show that supθ∈T E[Yτrθ∧T ] ≤ supθ∈Tsig E[Yτrθ∧T ]. Let θ ∈ T . From Lemma

3.4, we know that for every ε > 0, there is a compact set K ⊂ Ω̂p
T such that for A := {X̂ ∈ K}, we

have P(A) ≥ 1− ε, and a sequence θn ∈ Tsig such that

lim
n→∞

sup
X∈K;t∈[0,T ]

|θn(X|[0,t])− θ(X|[0,t])| = 0. (4.3)

Let K be such a compact set, the precise choice will be made later. Set

F̃n(t) = FZ

(∫ t

0

θn(X̂|[0,s])2 ds
)

and F̃ (t) = FZ

(∫ t

0

θ(X̂|[0,s])2 ds
)
.

Then,

|E[YT (1− F̃n(T )) ; A]− E[YT (1− F̃ (T )) ; A]|
≤ E[|YT ||F̃n(T )− F̃ (T )| ; A]

≤ E[|YT |] sup
X∈K

∣∣∣∣FZ (∫ T

0

θn(X|[0,s])2 ds
)
− FZ

(∫ T

0

θ(X|[0,s])2 ds
)∣∣∣∣ .

Since FZ is continuous and uniformly continuous on compact sets,

sup
X∈K

∣∣∣∣FZ (∫ T

0

θn(X|[0,s])2 ds
)
− FZ

(∫ T

0

θ(X|[0,s])2 ds
)∣∣∣∣→ 0

as n→∞. Indeed: we first show that

sup
X∈K;t∈[0,T ]

|θn(X|[0,t])2 − θ(X|[0,t])2| → 0 (4.4)

as n → ∞. Since supn≥1 supX∈K;t∈[0,T ] |θn(X|[0,t])| < ∞, the functions θ and θn take their values
in a compact set, hence (4.4) follows from (4.3). Property (4.3) also implies that

sup
X∈K

∣∣∣∣∫ T

0

θn(X|[0,s])2 ds−
∫ T

0

θ(X|[0,s])2 ds
∣∣∣∣→ 0

as n→∞. Using continuity of FZ and uniform continuity on compact sets implies the claim. It follows
that

lim
n→∞

|E[YT (1− F̃n(T )) ; A]− E[YT (1− F̃ (T )) ; A]| = 0.
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Since |F̃n(T )− F̃ (T )| ≤ 2,

|E[YT (1− F̃n(T )) ; Ac]− E[YT (1− F̃ (T )) ; Ac]| ≤ 2E[|YT | ; Ac]

and this quantity can me made arbitrarily small by the choice of K.

With the same arguments, we can show that∣∣∣∣E [∫ T

0

Yt

(
θn(X̂|[0,t])2%

(∫ t

0

θn(X̂|[0,s])2 ds
)
− θ(X̂|[0,t])2%

(∫ t

0

θ(X̂|[0,s])2 ds
))

dt

]∣∣∣∣
→ 0

as n→∞ which implies the claim.

Finally, we note that we do not need randomization for the approximation by stopping times based on
signature stopping policies to work.

Definition 4.7. We define a signature stopping time as the hitting time of a closed half-plane, i.e. for
l ∈ T ((R1+d)∗), we set

τl := inf
{
t ∈ [0, T ] : 〈l, X̂<∞

0,t 〉 ≥ 1
}
.

Theorem 4.8. Given E[‖Y ‖∞] <∞, we have

sup
l∈T ((R1+d)∗)

E[Yτl∧T ] = sup
τ∈S

E[Yτ∧T ].

Proof. Using Proposition 4.2 and 4.6, it suffices to show that

sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ] ≤ sup
l∈T ((R1+d)∗)

E[Yτl∧T ].

Choose l ∈ T ((R1+d)∗). Then

E[Yτrl ∧T | X̂] =

∫ ∞
0

Yτz∧T PZ(dz)

where

τz := inf

{
t ≥ 0 :

∫ t∧T

0

〈l, X̂<∞
0,s 〉2 ds ≥ z

}
= inf

{
t ∈ [0, T ] : 〈(l� l)1/z, X̂<∞

0,t 〉 ≥ 1
}

which is a signature stopping time for every z > 0. Taking expectation, we obtain

E[Yτrl ∧T ] =

∫ ∞
0

E[Yτz∧T ]PZ(dz) ≤ sup
`∈T ((Rd)∗)

E[Yτ`∧T ]

as claimed.

Remark 4.9. In the case of X being a standard Markov process in Rd and Yt = G(t,Xt) for a
continuous function G, it is known that

sup
τ∈S

E[Yτ∧T ] = sup
τ∈D

E[Yτ∧T ]

where D denotes the set of all hitting times of closed sets in R1+d of the process t 7→ (t,Xt)
[Shi08, Corollary 3 on p. 129]. Our Theorem can be seen as an extension of this classical result to
non-Markovian processes.
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5 Approximation of the stopping problem

In this section, we will study randomized signature stopping times for Z ∼ Exp(1). In the former
section, we have seen that

sup
τ∈S

E[Yτ∧T ] = sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ] = sup
l∈T ((R1+d)∗)

E
[∫ T

0

exp

(
−
∫ t

0

〈l, X̂<∞
0,s 〉2 ds

)
dYt

]
+E[Y0].

(5.1)

Recall that for group-like elements a ∈ G(V ) as defined in (2.2), polynomials of linear functionals in a
can be expressed in terms of shuffle products of the linear functionals themselves, see (2.3). Consider
the main term on the right-hand side of (5.1): we have

� The innermost term 〈l, X̂<∞
0,s 〉2 is a polynomial of a linear functional of the signature. It can,

therefore, be expressed as a linear functional of the signature, more precisely, 〈l, X̂<∞
0,s 〉2 =

〈l� l, X̂<∞
0,s 〉.

� Given an element of the signature, integrating against a component of the underlying path
produces another element of the signature. Concretely,∫ t

0

〈l, X̂<∞
0,s 〉2ds = 〈(l� l)1, X̂<∞

0,t 〉,

recalling that the time-component of our driving path X̂t = (t,Xt) was associated with the
letter 1, see Remark 2.2.

� Next we need to apply the exponential function to 〈(l � l)1, X̂<∞
0,t 〉. Unfortunately, the expo-

nential function is not a polynomial, so we cannot directly apply the shuffle product. However,
as we shall see below, there is a corresponding exponential shuffle, which comes with certain
restrictions. Nonetheless, we shall see that we will still obtain a linear functional of the signature
for our purposes.

� Finally, we integrate against Y and take the expectation. If Y can itself be represented as a
linear functional of the signature, integrating another linear functional of the signature against Y
will result in yet another linear functional of the signature. In this case, we can finally interchange
the expectation, and the right-hand side of (5.1) can be represented as a sup over a linear
functional of the expected signature E[X̂<∞

0,T ] of X̂ .

In the remainder of this section, we will follow through with this program.

We start with a definition of an exponential function based on the shuffle product.

Definition 5.1. Let V be finite-dimensional R-vector space. For l ∈ T (V ∗) with l = a0∅ + l̃ and

〈l̃,1〉 = 0 we define the exponential shuffle

exp�(l) := exp(a0) exp�(l̃), where exp�(l̃) :=
∞∑
r=0

1

r!
l̃�r. (5.2)

Since obviously π≤N(l̃�r) = 0 for r > N, the infinite sum is well defined as an element in the ex-

tended tensor algebra T ((V ∗)).One may straightforwardly check that exp�(l̃1+l̃2) = exp�(l̃1) exp�(l̃2)

for l̃1, l̃2 ∈ T (V ∗) such that 〈l̃1,1〉 = 〈l̃2,1〉 = 0. Thus, in particular, one has

exp�(l1 + l2) = exp�(l1) exp�(l2) for all l1, l2 ∈ T (V ∗). (5.3)
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We can now prove that the exponential shuffle linearizes the exponential function for group-like ele-
ments. In this context, keep in mind that exp�(l) /∈ T (V ∗) and, hence, it is not a well-defined linear
functional on T ((V )). It is, however, trivially well-defined as a linear functional on T (V ), and, hence,
can be applied to any projection π≤N(v), v ∈ T ((V )). In addition, as the lemma shows, we can
apply exp�(l) to group-like elements.

Lemma 5.2. Let l ∈ T (V ∗) and g ∈ G(V ). One then has

|exp(〈l,g〉)− 〈exp�(l), π≤N(g)〉| ≤ 4 exp(〈l, 1〉)
(
|l||π≤deg(l)(g)|

)bN/deg(l)c+1

(bN/ deg(l)c+ 1)!

for N > 2 deg(l)|l||π≤deg(l)(g)|.

Proof. Let us write l = a0∅ + l̃ with 〈l̃,1〉 = 0, where for mutually different words w1, ..., wn,

l̃ = λ1w1 + ...+ λnwn, and set M := deg(l) = max
1≤i≤n

deg(wi), m := min
1≤i≤n

deg(wi) ≥ 1.

We then have

π≤N

(
exp�(l̃)

)
=

bN/Mc∑
r=0

l̃�r

r!
+ πN

 bN/mc∑
r=bN/ deg(l)c+1

l̃�r

r!

 ∈ TN(V ∗) for any N ≥ 1.

Hence,

〈π≤N (exp�(l)) ,g〉 = exp(a0)

bN/Mc∑
r=0

〈l̃,g〉r

r!
+ exp(a0)

bN/mc∑
r=bN/Mc+1

1

r!
〈πN

(
l̃�r
)
,g〉

=: exp(a0)

bN/Mc∑
r=0

〈l̃,g〉r

r!
+R

(1)
N ,

and since g ∈ G(V ) it holds that

〈π≤N
(
l̃�r
)
,g〉 =

n∑
i1,...,ir=1

deg(wi1 )+...+deg(wir )≤N

λi1 ...λir 〈wi1 � ...� wir ,g〉

=
n∑

i1,...,ir=1
deg(wi1 )+...+deg(wir )≤N

〈λi1wi1 ,g〉 ... 〈λirwir ,g〉 .

Hence we have∣∣∣〈π≤N (l̃�r) ,g〉∣∣∣ ≤ n∑
i1,...,ir=1

|〈λi1wi1 ,g〉| ... |〈λirwir ,g〉| =

(
n∑
i=1

|〈λiwi,g〉|

)r

≤ |l̃|r
∣∣π≤deg(l)(g)

∣∣r , and so

∣∣∣R(1)
N

∣∣∣ ≤ exp(a0)
∞∑

r=bN/Mc+1

|l̃|r
∣∣π≤deg(l)(g)

∣∣r
r!

≤ 2 exp(a0)

(
|l̃||π≤deg(l)(g)|

)bN/Mc+1

(bN/Mc+ 1)!
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forN > Nl,g := 2M ||l̃|π≤deg(l)(g)|. One further has (note that g0 = 1), due to a similar estimation,

exp(〈l,g〉) = exp(a0) exp(〈l̃,g〉) = exp(a0)

bN/Mc∑
r=0

〈l̃,g〉r

r!
+R

(2)
N with

∣∣∣R(2)
N

∣∣∣ ≤ 2 exp(a0)

∣∣∣〈l̃,g〉∣∣∣bN/Mc+1

(bN/Mc+ 1)!
≤ 2 exp(a0)

(∣∣∣l̃∣∣∣ |π≤deg(l)(g)|
)bN/Mc+1

(bN/Mc+ 1)!

for N > Nl,g. Finally, by noting that 〈π≤N (exp�(l)) ,g〉 = 〈exp�(l), π≤N (g)〉 , and then taking
all together we obtain the stated result.

Remark 5.3. The equation 〈exp�(l),g〉 = exp(〈l,g〉) is confusing at first glance, because g 7→
〈exp�(l),g〉 seems linear, whereas g 7→ exp(〈l,g〉) clearly is not. Note, however, that exp�(l) ∈
T ((V ∗)) and, hence, does not define a linear map on T ((V )). Indeed, the group G(V ) is not closed
under linear combination, and, hence, Lemma 5.2 does simply not apply to a linear combination of
elements g1,g2 ∈ G(V ).

The exponential shuffle satisfies a differential equation, which we shall use later. Note that terms of
the form 〈exp�(l1), X̂≤N0,t 〉 are (classically) differentiable in t.

Lemma 5.4. For every polynomial l = λ1w1 + . . .+ λnwn ∈ T ((R1+d)∗),

d

dt
〈exp�(l1), X̂≤N0,t 〉 =

n∑
i=1

〈λiwi, X̂<∞
0,t 〉〈exp�(l1), X̂≤N−deg(wi)−10,t 〉.

Proof. Note that

d

dt
〈w1, X̂<∞

0,t 〉 =
d

dt

∫ t

0

〈w, X̂<∞
0,s 〉 ds = 〈w, X̂<∞

0,t 〉

for every word w. Hence, for l = λ1w1 + . . .+ λnwn, one always has 〈l1,1〉 = 0 and so by (5.2),

d

dt
〈exp�(l1), X̂≤N0,t 〉

=
d

dt

∑
0≤k1 deg(w11)+...+kn deg(wn1)≤N

〈λ1w11, X̂<∞
0,t 〉k1

k1!
· · ·
〈λnwn1, X̂<∞

0,t 〉kn

kn!

=
∑

0≤k1 deg(w11)+...+kn deg(wn1)≤N

〈λ1w1, X̂<∞
0,t 〉
〈λ1w11, X̂<∞

0,t 〉k1−1

(k1 − 1)!

〈λ2w21, X̂<∞
0,t 〉k2

k2!
· · ·
〈λnwn1, X̂<∞

0,t 〉kn

kn!

+ . . .+ 〈λnwn, X̂<∞
0,t 〉
〈λ1w11, X̂<∞

0,t 〉k1

k1!
· · ·
〈λn−1wn−11, X̂<∞

0,t 〉kn−1

kn−1!

〈λnwn1, X̂<∞
0,t 〉kn−1

(kn − 1)!

and ∑
0≤k1 deg(w11)+...+kn deg(wn1)≤N

〈λ1w11, X̂<∞
0,t 〉k1−1

(k1 − 1)!

〈λ2w21, X̂<∞
0,t 〉k2

k2!
· · ·
〈λnwn1, X̂<∞

0,t 〉kn

kn!

=
∑

0≤(k1+1) deg(w11)+...+kn deg(wn1)≤N

〈λ1w11, X̂<∞
0,t 〉k1

k1!

〈λ2w21, X̂<∞
0,t 〉k2

k2!
· · ·
〈λnwn1, X̂<∞

0,t 〉kn

kn!

= 〈exp�(l1), X̂≤N−deg(w11)
0,t 〉.
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We are now ready to formulate the main result of this section. Consider the optimization problem (5.1),
which we modify by expressing the exponential by the exponential shuffle. Then we obtain conver-
gence to the value of the optimal stopping problem. The proof requires us to localize w.r.t. the rough
path metric. Other than that, the below formulation is now essentially implementable: In particular, the
result is formulated in terms of truncated signatures, which is necessary also from a numerical point
of view.

Theorem 5.5. For given κ > 0, we define the stopping time

S = Sκ = inf{t ≥ 0 : ‖X̂‖p−var;[0,t] ≥ κ} ∧ T.

Assume Z ∼ Exp(1) and E [‖Y ‖∞] <∞. Then

sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ] = lim
κ→∞

lim
K→∞

lim
N→∞

sup
|l|+deg(l)≤K

E
[∫ Sκ

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt
]

+ E[Y0]

(5.4)

where the first two limit signs may be interchanged.

Proof. To ease notation, assume that Y0 = 0. Since

|Yτl∧T − Yτl∧S| ≤ sup
|t−s|≤T−S

|Yt − Ys| → 0

for every l as κ→∞ and

lim
K→∞

sup
|l|+deg(l)≤K

E[Yτl∧Ŝ] = sup
l∈T ((R1+d)∗)

E[Yτl∧Ŝ],

with Ŝ being either S or T , it follows that

sup
l∈T ((R1+d)∗)

E[Yτl∧T ] = lim
κ→∞

lim
K→∞

sup
|l|+deg(l)≤K

E[Yτl∧S] = lim
K→∞

lim
κ→∞

sup
|l|+deg(l)≤K

E[Yτl∧S]. (5.5)

Now fix κ, K and l with |l|+ deg(l) ≤ K . Recall the estimate∣∣∣∣∫ T

0

f(s) dg(s)

∣∣∣∣ ≤ T‖f ′‖∞‖g‖∞ + |f(T )g(T )− f(0)g(0)|.

Note that

exp

(
−
∫ t

0

〈l, X̂<∞
0,s 〉2 ds

)
= exp(−〈(l� l)1, X̂<∞

0,t 〉).

Fix N . Then∣∣∣∣E [∫ S

0

exp(−〈(l� l)1, X̂<∞
0,t 〉) dYt

]
− E

[∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt
]∣∣∣∣

≤ (1 + T )E
[
‖Y ‖∞‖ exp(−〈(l� l)1, X̂<∞

0,· 〉)− 〈exp�(−(l� l)1), X̂≤N0,· 〉‖C1[0,S]
]
.

Using Lemma 5.2,

‖ exp(−〈(l� l)1, X̂<∞
0,· 〉)− 〈exp�(−(l� l)1), X̂≤N0,· 〉‖∞;[0,S] ≤ 4 sup

t∈[0,S]

(|(l� l)1||X̂≤2 deg(l)+1
0,t |)M

M !
.
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C. Bayer, P. Hager, S. Riedel, J. Schoenmakers 18

where M = bN/(2 deg(l) + 1)c + 1 provided N is sufficiently large. Clearly, |(l � l)1| ≤ CK .
Using Lyons’ Extension theorem [LCL07, Theorem 3.7], we can estimate

sup
t∈[0,S]

|X̂≤2 deg(l)+1
0,t | ≤ ‖X̂≤2 deg(l)+1‖p−var;[0,S] ≤ C(1 + ‖X̂‖p−var;[0,S])2K+1 = C(1 + κ)2K+1.

Therefore, we obtain an estimate of the form

‖ exp(−〈(l� l)1, X̂<∞
0,· 〉)− 〈exp�(−(l� l)1), X̂≤N0,· 〉‖∞;[0,S] ≤

CM

M !

for a deterministic constant C .

Next, we consider the derivatives. Set l̃ = −(l� l) and assume l̃ = λ1w1 + . . .+ λkwk. Clearly,

d

dt
exp(〈l̃1, X̂<∞

0,t 〉) = 〈l̃, X̂<∞
0,t 〉 exp(〈l̃1, X̂<∞

0,t 〉)

and Lemma 5.4 shows that

d

dt
〈exp�(l̃1), X̂≤N0,t 〉 =

k∑
i=1

〈λiwi, X̂<∞
0,t 〉〈exp�(l̃1), X̂≤N−deg(wi)−10,t 〉.

Thus for t ∈ [0, S],∣∣∣∣ ddt (exp(〈l̃1, X̂<∞
0,t 〉)− 〈exp�(l̃1), X̂≤N0,t 〉

)∣∣∣∣
≤

k∑
i=1

|〈λiwi, X̂<∞
0,t 〉|

∣∣∣exp(〈l̃1, X̂<∞
0,t 〉)− 〈exp�(l̃1), X̂≤N−deg(wi)−10,t 〉

∣∣∣ .
Using Lyons’ Extension theorem,

|〈λiwi, X̂<∞
0,t 〉| ≤ C|λi|‖X̂‖deg(wi)p−var;[0,S] ≤ C|λi|

for a deterministic constant C > 0. Lemma 5.2 implies that for N sufficiently large,∣∣∣exp(〈l̃1, X̂<∞
0,t 〉)− 〈exp�(l̃1), X̂≤N−deg(wi)−10,t 〉

∣∣∣ ≤ CM

M !

for a deterministic constant C > 0 and M →∞ as N →∞. It follows that also∥∥∥∥ ddt (exp(−〈(l� l)1, X̂<∞
0,t 〉)− 〈exp�(−(l� l)1), X̂≤N0,t 〉

)∥∥∥∥
∞;[0,S]

≤ CM

M !
.

This implies that

sup
|l|+deg(l)≤K

∣∣∣∣E [∫ S

0

exp(−〈(l� l)1, X̂<∞
0,t 〉) dYt

]
− E

[∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt
]∣∣∣∣→ 0

as N →∞ and, in particular,

lim
N→∞

sup
|l|+deg(l)≤K

E
[∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt
]

= sup
|l|+deg(l)≤K

E
[∫ S

0

exp(−〈(l� l)1, X̂<∞
0,t 〉) dYt

]
= sup
|l|+deg(l)≤K

E[Yτrl ∧S].

Together with (5.5), this proves (5.4).
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Often, one is interested to solve the stopping problem for specific functionals of the underlying process
X . In the next corollary, we consider a particular example. To simplify the exposition, we will consider
the case d = 1 only. The generalization to arbitrary dimensions d is straightforward.

Corollary 5.6. Assume d = 1 and that

Yt = G(Xt) +

∫ t

0

L(Xs) ds

for polynomials G and L. Then

sup
l∈T ((R1+d)∗)

E[Yτrl ∧T ]

= lim
κ→∞

lim
K→∞

lim
N→∞

sup
|l|+deg(l)≤K

〈(exp�(−(l� l)1)�G
′
�(2))2 + (exp�(−(l� l)1)� L�(2))1,E[X̂≤N0,S ]〉

+ E[Y0].

In particular, if d = 1 and X0 = 0,

sup
l∈T ((R2)∗)

E[Xτrl ∧T ] = lim
κ→∞

lim
K→∞

lim
N→∞

sup
|l|+deg(l)≤K

〈exp�(−(l� l)1)2,E[X̂≤N0,S ]〉. (5.6)

Proof. We have∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt =

∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉G′(Xt) dXt

+

∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉L(Xt) dt.

Since G′ is a polynomial,∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉G′(Xt) dXt =

∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉〈G
′
�(2), X̂<∞

0,t 〉 dXt

=

∫ S

0

〈π≤N(exp�(−(l� l)1))�G
′
�(2), X̂<∞

0,t 〉 dXt

=

∫ S

0

〈π≤N+deg(G′)(exp�(−(l� l)1)�G
′
�(2)), X̂<∞

0,t 〉 dXt

= 〈(exp�(−(l� l)1)�G
′
�(2))2, X̂≤N+deg(G′)+1

0,S 〉.

Similarly, since V is a polynomial,∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉L(Xt) dt = 〈(exp�(−(l� l)1)� L�(2))1, X̂≤N+deg(V )+1
0,S 〉.

Taking expectation, we obtain

E
[∫ S

0

〈exp�(−(l� l)1), X̂≤N0,t 〉 dYt
]

= 〈(exp�(−(l� l)1)�G
′
�(2))2,E[X̂≤N+deg(G′)+1

0,S ]〉

+ 〈(exp�(−(l� l)1)� L�(2))1,E[X̂≤N+deg(V )+1
0,S ]〉.

Using Theorem 5.5, we can deduce the result.
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Remark 5.7. Note that similar formulas are available whenever Y is roughly given as a polynomial of
the signature. We restrict ourselves to a representative class of examples below. We note here that
payoffs of American options usually cannot be exactly represented in such a way. In particular, for the
standard American (put) option, we have Yt = (K −Xt)+ for some K > 0, where X denotes the
underlying asset price process. If we want to price American options using signature stopping rules,
we have two possible remedies. We can approximate the payoff function by polynomials, which would
allow us to directly apply Corollary 5.6. Alternatively, we can attach Y to the path X , i.e., consider
X̃t ≡ (t,Xt, Yt). Then, the corollary applies trivially, but at the price of increasing the dimension of
the state space. The same strategy also works for more complicated functionals of the rough path X̂.
For instance, Y can be of the form Yt = g(t, Ỹt) where Ỹ solves a rough differential equation

dỸt = b(Ỹt) dt+ σ(Ỹt) dXt.

If g is sufficiently smooth, Y is controlled by X (cf. [FH14]) which guarantees that X̃t ≡ (t,Xt, Yt)
can be lifted to a rough paths valued process.

Remark 5.8 (A note on numerical implementation). For actual applications, the final formulas pre-
sented in Theorem 5.5 and Corollary 5.6 need to be implemented. In this context, several approxima-
tion steps will routinely apply.

1 The processes X , Y and, possibly, Ỹ (see Remark 5.7) need to be simulated, which may
require discretization of stochastic / rough differential equations.

2 Given paths of X , we need to compute truncated signatures X≤N0,t . Fortunately, packages for
this task are readily available. See, for instance, the iisignature library [RG20].

3 If the setting allows to pose the optimization problem in terms of the expected signature only, as
in the context of Corollary 5.6, then we next need to compute the expected truncated signature
E[X≤N0,T ]. This can be done with the Monte Carlo method. The big advantage is, of course, that
we only need to compute the expected signature once, and can then apply the optimization
algorithm of our choice to a deterministic optimization problem.

4 Alternatively, if we rely on the formula of Theorem 5.5, then we need to apply MC simulation for
each iteration of the optimization algorithm.

5 Finally, as already alluded to above, we solve an optimization problem in l restricted to a com-
pact subset of T (V ∗) as seen in Theorem 5.5 or Corollary 5.6, respectively. We apply general
state-of-the-art iterative optimization algorithms.

Remark 5.9. The method presented in Theorem 5.5 actually computes not just the value of the opti-
mal stopping problem, but it also provides a (randomized) stopping time corresponding to this value.
Indeed, suppose that l∗ = l∗N,K,κ ∈ T (V ∗) is a maximizer for the maximization problem on the
r.h.s. of (5.4). Recalling Definition 4.1, let Z ∼ Exp(1) denote a r.v. independent of X, Y , and set

τ rl∗ := inf

{
t ∈ [0, T ∧ S] :

∫ t

0

〈l∗, X<∞
0,s 〉ds ≥ Z

}
.

Noting that τ rl∗ is a randomized stopping time, we can conclude that

E
[
Yτr

l∗∧T

]
≤ sup

τ∈S
E [Yτ∧T ] ,

see Proposition 4.2. Hence, a Monte Carlo approximation of E
[
Yτr

l∗∧T

]
is a low-biased estimator for

supτ∈S E [Yτ∧T ], provided that it is based on samples of Y that are independent of the samples used
to construct l∗.
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6 Outlook: The dual problem

The optimal stopping problem has a dual formulation which is of the form

sup
τ∈S

E[Yτ∧T ] = inf
M∈H1

0

E[ sup
t∈[0,T ]

(Yt −Mt)] (6.1)

where H1
0 is the space of (Ft)-martingales which satisfy M0 = 0 and E[‖M‖∞] < ∞, cf. [Rog02,

Theorem 2.1]. We believe that our approach can also be applied to the dual problem, at least under
some additional assumptions. In this section, we give a sketch of how we believe this could be done.

Assume that we can define a Brownian motion B on the filtration (Ft). We can parameterize a sub-
class of local martingales by the map

ΛT 3 θ 7→
∫ ·
0

θ(X̂|[0,s]) dBs

where the integral is understood in Itō-sense. If we restrict ourselves to the subclass

TM :=

{
θ ∈ T : E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

θ(X̂|[0,s]) dBs

∣∣∣∣
]
<∞

}
,

we obtain a subclass of true martingales. We believe that this class of martingales is sufficiently large
to close the duality gap in 6.1, i.e. that we can restrict the infimum over this class of martingales. One
strategy to prove this is to show that every progressively measurable process can be approximated
(in a certain way) by stochastic processes of the form t 7→ θ(X̂|[0,t]). To see this, we can use similar
ideas as in Lemma 3.2 and Proposition 4.2. Using the Martingale Representation Theorem [KS91,
Theorem 4.15] should then be sufficient to prove the equality in (6.1).

We would like to add B as a component to our underlying rough path process. To do this, we need to
make sense of integrals of the form ∫ t

0

Xs ◦ dBs (6.2)

pathwise. The symbol ◦ indicates that these integrals should satisfy the usual rules of calculus, oth-
erwise their products can not be described with the shuffle algebra and the signature would not be
a group-like element. In case of X being a semi-martingale, we can use Itō’s theory of stochastic
integration to define such integrals. However, for general rough paths valued processes X, there is
no canonical notion of a joint integral we can use here. To illustrate this issue, let us consider the
case of X being a fractional Brownian motion with Hurst index H ∈ (0, 1) in which case we can
assume thatB is the Brownian motion used to defineX through its kernel representation. In the case
H > 1/2, we can use Young’s integration theory to make sense of 6.2. Note that this integral will
coincide with the Itō-integral now. For H < 1/2, things are getting much more complicated. In fact,
one can show that the naive Riemann sum approximation to (6.2) does not converge in this case.
However, it turns out that a suitable renormalization procedure can be used to obtain a candidate for
6.2 for H < 1/2, too, but this will require much more work [BFG+20]. To keep the discussion simple,
we will assume from now on that X is a one-dimensional continuous stochastic process with sample
paths of finite p-variation for some p ∈ [1, 2). This covers, for instance, the fractional Brownian mo-
tion with Hurst parameter H > 1/2. In this case, X̂ denotes the joint rough paths lift of the process
t 7→ X̂t = (t,Xt, Bt) which is then canonically defined.
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We aim to find a sufficient condition under which Tsig ⊂ TM . This will follow if we can prove that

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈l, X̂<∞
0,s 〉 dBs

∣∣∣∣
]
<∞

for every l ∈ T ((R1+2)∗). This, in turn, can be deduced if

E

[
sup
t∈[0,T ]

∣∣∣∣∫
0<t1<...<tk<t

dX̂t1 ⊗ · · · ⊗ dX̂tk

∣∣∣∣
]
<∞

for every k ∈ N. From Lyons’ Extension theorem, this is the case if

E
[
‖X̂‖kq−var

]
<∞

for every k ∈ N where q > 2 is chosen such that 1
p

+ 1
q
> 1. From the estimate

‖X̂‖q−var . ‖B‖q−var + ‖X‖p−var

where B is the Stratonovich lift of the Brownian motion, we see that if E[‖X‖kp−var] < ∞ for every
k ≥ 1, we can conclude that Tsig ⊂ TM . Note that this holds in case of a fractional Brownian motion.

In the remaining parts, we assume that Y = X . We want to calculate

inf
θ∈Tsig

E

[
sup
t∈[0,T ]

(Xt −
∫ t

0

θ(X̂|[0,s]) dBs)

]
.

Note that

inf
θ∈Tsig

E

[
sup
t∈[0,T ]

(Xt −
∫ t

0

θ(X̂|[0,s]) dBs)

]
= inf

l∈T ((R1+2)∗)
E

[
sup
t∈[0,T ]

(Xt −
∫ t

0

〈l, X̂<∞
0,s ) dBs)

]

= inf
l∈T ((R1+2)∗)

E

[
sup
t∈[0,T ]

〈2− l3, X̂<∞
0,t 〉

]
.

For given κ > 0, we can consider the stopping time

S = inf{t ≥ 0 : ‖X̂‖p−var;[0,t] ≥ κ} ∧ T

and prove that

inf
l∈T ((R1+2)∗)

E

[
sup
t∈[0,T ]

〈2− l3, X̂<∞
0,t 〉

]
= lim

κ→∞
lim
K→∞

inf
|l|+deg(l)≤K

E

[
sup
t∈[0,S]

〈2− l3, X̂<∞
0,t 〉

]

= lim
K→∞

lim
κ→∞

inf
|l|+deg(l)≤K

E

[
sup
t∈[0,S]

〈2− l3, X̂<∞
0,t 〉

]
.

To approximate the supremum, we may use that for a continuous function f ,

sup
t∈[0,T ]

f(t) ≈ 1

n
log

(
1

T

∫ T

0

exp(nf(t))dt

)
≈ 1

n
log

(∫ T

0

exp(nf(t))dt

)
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for large n. Since we are interested in upper bounds, we could also use the more precise estimate

sup
t∈[0,T ]

f(t) ≤ 1

n
log

(
1

T

∫ T

0

exp(nf(t))dt

)
+

1

n
log n+ ‖f‖α T

αn−α

which holds for every n ∈ N. In any case, we expect that

sup
t∈[0,S]

〈2− l3, X̂<∞
0,t 〉 ≈

1

n
log

(∫ S

0

exp(n〈2− l3, X̂<∞
0,t 〉) dt

)
≈ 1

n
log
(
〈exp�(n(2− l3))1, X̂<∞

0,S 〉
)

for large n. Let (Pm) be a series of polynomials which approximate the logarithm uniformly on compact
sets. Then,

log
(
〈exp�(n(2− l3))1, X̂<∞

0,S 〉
)
≈ 〈P�m (exp�(n(2− l3))1), X̂<∞

0,S 〉.

Eventually, we expect that

inf
M∈H1

0

E[ sup
t∈[0,T ]

(Yt −Mt)] ≈ inf
|l|+deg(l)≤K

〈P�m (exp�(n(2− l3))1),E[X̂≤N0,S ]〉

for large N,m, n,K and κ.
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A Technical aspects of stopped rough paths

Lemma A.1. The topology on ΛT coincides with the final topology induced by the map ϕ : [0, T ] ×
Ω̂p
T → ΛT , ϕ(t, X̂) = X̂|[0,t]. Moreover, ΛT is Polish.

Proof. A set U ⊂ ΛT is open with respect to the final topology if and only if ϕ−1(U) is open in
[0, T ] × Ω̂p

T . One can easily check that ϕ is continuous for the topology induced by d, therefore
ϕ−1(U) is open for every open set U ⊂ ΛT . Now assume that ϕ−1(U) is open for a set U ⊂ ΛT .
Let X|[0,t] ∈ U and choose Y|[0,s] ∈ ΛT with d(X|[0,t],Y|[0,s]) < ε. Our goal is to prove that
Y|[0,s] ∈ U for ε chosen sufficiently small. Note that

ϕ−1(X|[0,t]) = {(t, X̃) : X̃|[0,t] = X|[0,t]}.

Assume s ≥ t first. Then d(X|[0,t],Y|[0,s]) < ε implies that

|t− s| < ε and dp−var;[0,s](X̃|[0,s],Y|[0,s]) < ε

where X̃|[0,s] is the stopped path defined on [0, s] as explained in Definition 3.1. Let X̃ = X̃|[0,T ] ∈ Ω̂p
T

be the stopped path defined on the whole time interval [0, T ]. Since (t, X̃) ∈ ϕ−1(X|[0,t]) ⊂ ϕ−1(U)

and ϕ−1(U) is open, there is a δ > 0 such that whenever u ∈ (t−δ, t+δ) and dp−var;[0,T ](X̃, Ỹ) <

δ, we have (u, Ỹ) ∈ ϕ−1(U). Choosing ε sufficiently small, we can assume that s ∈ (t− δ, t + δ).
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Define Ỹ = Ỹ|[0,T ] ∈ Ω̂p
T as in Definition 3.1. Then (s, Ỹ) ∈ ϕ−1(Y|[0,s]) and

dp−var;[0,T ](X̃, Ỹ) ≤ Cp(dp−var;[0,s](X̃, Ỹ) + dp−var;[s,T ](X̃, Ỹ))

= Cpdp−var;[0,s](X̃|[0,s],Y|[0,s]) ≤ Cpε.

Choosing ε small, we conclude (s, Ỹ) ∈ ϕ−1(U) and thus Y|[0,s] ∈ U . For s ≤ t, we can argue
similarly which proves that both topologies indeed coincide. Concerning the second statement, sepa-
rability follows from the separability of [0, T ] × Ω̂p

T and the fact that ϕ is a continuous surjection. To
prove that ΛT is complete with respect to the metric d is straightforward and follows from the fact that
[0, T ] and Ω̂p

T are complete.

Corollary A.2. Let Z be any topological space. A map g : ΛT → Z is continuous if and only if the
map [0, T ]× Ω̂p

T 3 (t, X̂) 7→ g(X̂|[0,t]) ∈ Z is continuous.

Proof. Follows from the universal property of the final topology.
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