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1 INTRODUCTION

The problem of uniqueness and global regularity of solutions of the 3{dimensional Navier{

Stokes equations (3D NSE)

@u

@t
� ��u+ (u � r)u+rp = f; (1.1)

r � u = 0; (1.2)

u(x; t) = 0; x 2 @
; t � 0; (1.3)

u(x; 0) = u0(x); x 2 
 � R3; (1.4)

is one of the central open issues in Fluid Mechanics [1]{[3] and Partial Di�erential Equa-

tions [4], [5]. The fundamental unsolved question is whether or not solutions of 3D NSE

develop singularities and non-uniqueness. Recall that the classical Leray{Hopf small{

data{regularity theorem [6]{[8], [9] states that, for a given smooth domain 
 � R3 and a

given viscosity � > 0, there exists a small bounded set of data (u0; f) 2 V � L1(0;1;H)

generating unique solutions u 2 C([0;1);V )\L1(0;1;V )\L2
loc(0;1;V 2) of 3D NSE,|

such solutions are called globally regular Leray{Hopf solutions. (Here and below, H denotes

the space of divergence{free L2(
){vector �elds satisfying prescribed boundary conditions,

while V and V 2 stand for the subspaces of H consisting of H1(
){vector �elds and H2(
){

vector �elds, respectively.) The importance of this theorem is that it is the �rst result

which yields an example of a linear space X � Y such that an explicit construction of

data (u0; f) 2 X � Y generating solutions u = u(x; t), uniquely de�ned and bounded in

the norm of X for all times t 2 [0;1), can be given without any further a priori as-

sumptions on the solutions and/or the domain 
 � R3. In particular, it follows from

the Leray{Hopf small{data{regularity theorem that, for a �xed small force f 2 H, 3D

NSE generate a dynamical system1 on a small bounded subset of the space V . Later on,

1Recall [10]{[14] that a dynamical system S, or semigroup, or semiow, on a subset M of a complete

metric space W is a mapping � : [0;1) �M ! M; (t; w) 7! S(t)w 2 M , such that the folowing three

properties hold: 1) S(0)w = w, for all w 2 M ; 2) S(t)S(s)w = S(t+ s)w, for all w 2 M , s; t 2 [0;1); 3)

the mapping � : (0;1)�M !M is continuous.
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numerous results parallel to the Leray{Hopf small{data{regularity theorem were obtained

for other spaces X�Y and/or for other classes of domains 
 � R3 (see, e.g., [15]{[27]). A

general feature of all these results is that they yield bounded sets of data (u0; f) 2 X � Y

generating solutions u = u(x; t) uniquely de�ned and bounded in the norm of the space

X for all times t 2 [0;1), | such solutions are called globally X{regular (in particu-

lar, globally regular Leray{Hopf solutions are globally V {regular). As a result, 3D NSE

were known to generate a dynamical system only on some bounded subsets of the cor-

responding spaces X. Recently, under precisely the same hypotheses that are used in

the Leray{Hopf small{data{regularity theorem, a large unbounded open star{shaped set of

data (u0; f) 2 V � L1(0;1;H) generating unique globally regular Leray{Hopf solutions

has been constructed in [28]{[29] by using a new general method of �nding large sets of

data generating global solutions to nonlinear evolutionary equations (in the case of 3D

NSE, the method can also be adapted to other spaces X � Y and/or other classes of

domains 
 � R3). The construction of this unbounded open star{shaped set allows to

conclude that, for a �xed small force f 2 H, 3D NSE generate a dynamical system on a

large unbounded open star{shaped subset of V , and the existence of the compact global

attractor A � V of this dynamical system has been proven in [29]{[30]. Since a motivation

for the introduction of the notion of a global attractor in the dynamical systems theory is

to describe long{time behaviour of solutions of evolutionary equations (see, e.g., [10]{[14]),

one can say that the long{time behaviour of solutions generated by the large unbounded

open star{shaped set of initial functions u0 2 V has been shown to be described by a

small, compact, set A � V .

An important for applications question is whether or not there exists a linear space (not

just a subset of a linear space!) X of initial functions u0 generating global in time solutions

u = u(t; x), t 2 [0;1), long{time behaviour of which can be described by a compact set

A � X. This question was left open. The reason for the di�culty in resolving this

question is that the uniqueness and global regularity problem is not solved yet. Because

no linear space X of initial functions u0 = u0(x); x 2 
 � R3, generating unique globally

X{regular solutions u = u(x; t); t 2 [0;1), is known to exist even for small forces, it is not

known whether there exists a linear space X of initial functions for which 3D NSE de�ne

a dynamical system on X. As a result, methods and concepts of the dynamical systems

theory cannot be directly applied to 3D NSE in an e�ective way. In particular, the notion of

a global attractor, used for description of long{time behaviour of solutions of evolutionary

equations generating dynamical systems, is not applicable to viscous incompressible uids

and all established results about global attractors are conditional in the sense that they

assume a priori, without justi�cation, that 3D NSE do generate a dynamical system on

a hypothetical linear space X of initial functions (usually, the space V is taken for the

hypothetical space X); see Sections 9.1 and 9.3 of [3], also [4], [14].

A purpose of the present paper is to address the above question and to establish uncon-

ditional results about global attractors for 3D NSE by bypassing the problem of unique-

ness and global regularity. In particular, we show that, for a large set of \good"forces, the

problem of uniqueness and global regularity is irrelevant for the long{time description of

viscous incompressible uids. In fact, we establish that, for any �xed force f 2 H belong-

ing to some large unbounded open star{shaped set, 3D NSE possess the compact global

attractor A � H of �nite Hausdor� dimension regardless of whether or not solutions of

3D NSE develop singularities and loose uniqueness. However, since the uniqueness and

global regularity problem is not solved yet, we cannot talk about a dynamical system

generated by 3D NSE on X = H; hence, in this situation, we cannot talk about global
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attractors in the framework of the dynamical systems theory. Therefore, the �rst issue we

need to resolve is to �nd an appropriate substitution for the notion of a dynamical system

so that to incorporate 3D NSE into the new notion. Second, we need to ensure that the

concept of a (global) attractor makes sense for the new notion. Only after having properly

generalized the basic concepts of the dynamical systems theory and developed the theory

of the new notions, are we eligible to apply them to 3D NSE. The criterion according to

which we have to choose the substitution for the concept of a dynamical system is that

the new notion should satisfy two opposite requirements:

1) it must be general enough; in particular, it must incorporate 3D NSE with initial

functions u0 = u0(x) forming a linear space (not just a subset of a linear space);

2) it must not be too general; in particular, it should not loose essential properties

of 3D NSE and the theory based on the new notion must be rich enough to allow

existence of the compact global attractor of �nite Hausdor� dimension for 3D NSE

with initial functions u0 = u0(x) forming a linear space.

Because of these two opposite requirements, many candidates for the desirable gen-

eralization of the notion of a dynamical system do not work. For example, the notion

of a multi{valued semigroup2 (set{valued, or multi{valued, mapping) [31]{[33] certainly

could satisfy the requirement 1), but it does not satisfy 2) because it looses some essential

properties of 3D NSE (see Remark 3.1 below).

We propose the notion of an energetic system, de�ned in Section 2, as a suitable

candidate for the generalization. This notion is capable of both incorporating 3D NSE and

adequate modelling of properties of 3D NSE. The idea behind the notion of an energetic

system is to de�ne and study such a set{valued mapping � on a metric space X that,

while � is not a dynamical system, its restriction on any bounded set K � X \becomes"a

dynamical system in a �nite time tK depending only on K. It is this property of becoming

a dynamical system in �nite time on any bounded set that is lost by the theory of multi{

valued semigroups when applied to 3D NSE. We develop the theory of energetic systems

in Section 2. Then, in Section 3, we apply this theory to 3D NSE. In particular, we show

that, for a large set of \good"forces f 2 H, 3D NSE do generate an energetic system

on the space H. This allows us to ask whether 3D NSE possess the global attractor

on H. Theorem 3.2 below answers this question by stating that, for \good"forces f 2
H, the energetic system generated by 3D NSE possesses the compact global attractor

A � H of �nite Hausdor� dimension. We emphasize that, for any value of viscosity

� > 0 and for any smooth bounded domain 
 � R3, the set of \good"forces is open and

star{shaped in H and it includes forces of arbitrarily large magnitudes jjf jj. (Here and

throughout the paper, jj � jj denotes the norm in H.) In Section 4, we consider the problem

of �nding a maximal dynamical subsystem (see de�nition below) of the energetic system

generated by 3D NSE. In the case of periodic boundary conditions on a thin domain


� = (0; l1)� (0; l2)� (0; �) � R3, 0 < � � l2 � l1 <1, we strengthen a result of Section

3, which describes an unbounded open star{shaped dynamical subsystem of the energetic

system generated by 3D NSE on a general bounded smooth domain 
 � R3 under the

assumption that f 2 H is small. Namely, a corollary from Theorem 4.1 below states that

if the domain 
� � R3 is thin then even for large forces f 2 H belonging to some open

convex neighborhood of zero in H, there exists a dynamical subsystem S� de�ned on a set

2Recall (see, e.g., [31], [32]) that a multi{valued semigroup on a Banach space E is a family fStgt�0 of

multi{valued operators St : E ! E such that St+sx � StSsx, or even St+sx = StSsx, for all x 2 E and

all t; s 2 [0;1). Here StK = [x2KStx, for all K � E.
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M� � H containing an unbounded open star{shaped neighborhood U� � V of the origin.

Theorem 4.2 yields an explicit construction of U�. Then, in the case of a bounded smooth

domain 
 � R3, we establish a necessary condition for a weak Leray{Hopf solution to be a

globally regular one. Because of the space limitation, we only state main results; detailed

proofs will appear elsewhere.

2 ELEMENTS OF THE ENERGETIC SYSTEMS THEORY

In this section, we introduce basic de�nitions and outline elements of the theory of energetic

systems.

DEFINITION 2.1. We will say that a set{valued mapping � : [0;1) �X ! 2X , (t; x) 7!
S�(t)x 2 2X , on a complete metric space X is an energetic system S� on X if the following

properties are satis�ed:

1) S�(0)x = x, for all x 2 X;

2) for any bounded set K � X, there exists a time tK 2 [0;1) such that, for all

x 2 S�(tK)K and all s; t 2 [0;1), one has

S�(t)x 2 X and S�(s)S�(t)x = S�(s+ t)x and S�(t+ tK)K = S�(t)S�(tK)K

and the restricted mapping � : (0;1) � S�(tK)K ! X is continuous. Here and

below, 2X is the set of non{empty subsets of X and S�(t)M := [x2MS�(t)x, for any

M � X, t 2 [0;1).

The time tK will be called the transition time for the set K. Clearly, if tK is a transition

time for K then any t > tK is so. From now on, we will always assume that S� denotes

an energetic system with a �xed choice of tK , for any bounded set K � X.

If N � X then we will denote the restricted mapping � : [0;1) � N 7! 2X by S�N
and call it the restriction of S� onto N . It can happen that, for some set M � X, the

restriction S = S�M of S� onto M is a dynamical system; in this case we call this restriction

the dynamical subsystem of S� de�ned on the set M and we write S < S�.

Clearly, every dynamical system is an energetic system with tK = 0, for any bounded set

K � X.

DEFINITION 2.2. A set L � X is a gate for S� if any bounded set K � X passes through

L, i.e. there exists a time t� = t�(K) � tK such that S�(t�)K � L.

Note that, in contrast to the dynamical systems theory concept of an absorbing set (which

has a natural generalization to the case of energetic systems), De�nition 2.2 does not

require that S�(t)K � L for t > t�(K).

A useful property of the notion of an energetic system is that many fundamental con-

cepts of the dynamical systems theory have straightforward generalizations in the frame-

work of the energetic systems theory. For example, we have the following generalizations

of the notions of an attractor and global attractor.

DEFINITION 2.3. A non-empty set A � X is an attractor of S� if:

1) A is an invariant set, i.e. S�(t)A = A; t � 0, and
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2) there exists an open neighborhood N � X of A such that, for every x 2 N , one has

dist(S�(t)x;A) def
= sup

y2S�(t)x

inf
z2A

dX(y; z)! 0 as t!1;

where dX is the distance function in X. The largest such neighborhood N is called

the basin of attraction of A and is denoted by B(A).

DEFINITION 2.4. An attractor A � X of S� is global if A uniformly attracts all bounded

sets of X, i.e. for any bounded set K � X one has dist(S�(t)K;A)! 0 as t!1:

EXAMPLE 2.1. Let X = R. De�ne a set{valued mapping S� as follows.

S�(t)x0 :=

8>>>>><
>>>>>:

e�2tx0; if x0 2 [�1; 1]; t 2 [0;1);

e�2tx0; if x0 2 (1;1); t 2 [0; 1);

e�2(t�1) f�1; �2g ; if x0 2 (1;1); t 2 [1;1);

x0 + t; if x0 2 (�1;�1); t 2 [0;�1� x0];

�e�2(t+1+x0); if x0 2 (�1;�1); t 2 [�1� x0;1);

where �1 = e�2x0 +
1

2e2
, �2 = e�2x0 � 1

2e2
. Then S� is an energetic system on X = R.

Note that S� is not a dynamical system on R. For any a 2 (0; 1), the restriction S�(�a;a) is a

dynamical subsystem of S�. For any bounded set K � (1;1), the minimal transition time

is tK = 1+ 1
2
ln(e�2x�+ 1

2e2
), where x� = supx2K x. For any bounded set K � (�1;�1),

any time t > �1 � x� is a transition time for K, where x� = infx2K x. Despite the fact

that S� is not a dynamical system on R, the global attractor for S� exists. In fact, the set

f0g is the global attractor.

It is worthwhile to notice that, in general, if S is a dynamical system possessing a (global)

attractor A and, for some energetic system S�, one has S < S� then A may not be an

attractor of S� (see Example 2.2 below, which shows that this can occur even if S� is a

dynamical system). On the other hand, if an energetic system S� has the global attractor

A and S� happens to be a dynamical system then A is the global attractor of S� considered

as a dynamical system.

EXAMPLE 2.2. Let X = R2. Let S�(t)x0 = x(t;x0), t 2 [0;1); x0 2 R2, where x(�;x0) =
(x1(�); x2(�)) is the solution of the system of ordinary di�erential equations

_x1 = �x1 (2.1)

_x2 = x2 (2.2)

with initial condition x(0) = x0. Then S� is an energetic system on R2 which is a dynamical

system. The restriction S = S�M , whereM = fx 2 R2 : x2 = 0g, is a dynamical subsystem

of S� possessing the global attractor A = f0g. However, A is not an attractor of S�.

The following general result gives a su�cient condition for an energetic system to possess

the global attractor. In the next section, it will be used in a speci�c situation.

THEOREM 2.1. Let S� be an energetic system on X. Assume there exist a gate L � X

and a dynamical subsystem S < S� de�ned on a set N � X such that L � N . If the
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dynamical subsystem S < S� has an attractor A � N uniformly attracting L then A is

the global attractor of the energetic system S�.

We note that the set{theoretic relation of inclusion induces a partial order in the set of

dynamical subsystems of a given energetic system. An interesting intrinsic problem of the

theory of energetic systems is the following one.

PROBLEM. Given an energetic system S� on X, �nd its maximal dynamical subsystem

S < S�, that is a set N � X such that S�N is a dynamical system, but no other set

containing N possesses this property.

EXAMPLE 2.3. In the example 2.1 above, S�[�1;1] is the unique maximal dynamical subsys-

tem of S�.

3 APPLICATIONS OF THE ENERGETIC SYSTEMS THEORY: GLOBAL ATTRACTOR

OF FINITE HAUSDORFF DIMENSION FOR 3D NSE

In this section, we apply the theory of energetic systems to 3D NSE and we establish the

existence of the compact global attractor A � H. We remark that the existence of a (local)

attractor A � V with the small bounded basin B(A) � V follows from classical works of

Leray [6]{[8] and Hopf [9]. By restricting the class of domains 
 � R3 to the special case

of thin domains 
� = (0; l1) � (0; l2) � (0; �) � R3, 0 < � � l2 � l1 < 1, this result was

improved by Raugel and Sell in [22]{[24]; however, their method cannot be generalized to

non{thin domains 
 � R3 because it is based on a perturbation argument with respect to

the small parameter � > 0. Without the thinness assumption, the existence of a compact

attractor A � V with the large unbounded basin B(A) � V was established in [29]{[30].

Because the uniqueness and global regularity problem is not solved in the space V (as

well as in any linear space of initial functions u0!), there is no linear space X of initial

functions for which 3D NSE are known to generate a dynamical system on X. Therefore,

there is no linear space X of initial functions for which we are eligible to talk about global

attractors of 3D NSE in the framework of the dynamical systems theory (note that the

spaces WLH and W constructed by Sell in [13] cannot be taken as linear spaces of initial

functions u0 = u0(x) because both W and WLH contain functions depending on time t

and, moreover, no linear space of functions u = u0(x) independent of time is contained in

W or WLH). We emphasize that for the applications (see, e.g., [34], [35]) it is important

to know if there exists a linear space X of initial functions u0 = u0(x) such that the long{

time behaviour of solutions of 3D NSE can be described by a compact set in X of �nite

Hausdor� dimension. Because of the above di�culties of the dynamical systems theory,

neither such space X nor the desired compact set in X are known to exist even in the

case of small forces f . Theorem 3.2 below gives the answer to this question in the case

of arbitrarily large forces f belonging to some special unbounded open star{shaped set

F sitting in the space Y = H. Before we formulate Theorem 3.2, we state Theorem 3.1

which makes us eligible to talk about global attractors for 3D NSE in the framework of

the energetic systems theory. More precisely, Theorem 3.1 below describes an energetic

system on H generated by 3D NSE.

We need some notation. Given a metric space Y , we let BY (0; a) denote the open ball

fy 2 Y : dY (0; y) < ag of radius a > 0. Given a self-adjoint operator A =
R
1

�1
� dE� in a
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Hilbert space and a number r > 0, we let Lr(A) denote the projection de�ned by

Lr(A)
def
=

Z
�r

dE�; �r
def
= [�r; r]:

If A is the Stokes operator A = �P�, where P : L2(
)! H is the orthogonal projection,

then we write Lr for Lr(A) and we denote the �rst eigenvalue of A by �1. Recall [4]{[5]

that, in the case of the Dirichlet non{slip boundary conditions (1.3) on a smooth bounded

domain 
 � R3, one has H = ClL2(
)fu 2 C1
0 (
) : r � u = 0g, V = ClH1(
)fu 2

C1
0 (
) : r � u = 0g, V 2 = ClH2(
)fu 2 C1

0 (
) : r � u = 0g, and 3D NSE (1.1){(1.4) can

be rewritten in the equivalent form of the evolutionary equation

u0 + �Au+B(u; u) = f; (3.1)

u(0) = u0 (3.2)

on the space H, where B(u; v)
def
= P (u � r)v.

Given f 2 H, we let S�(t)u0 � 2H denote the set of values of all weak Leray{Hopf

solutions at time t � 0, which are generated by the initial function u0 2 H (these values

are well{de�ned since weak Leray{Hopf solutions belong to the space Cw(0;1;H); cf.

remark after De�nition 8.5 on p. 71 of [4] or remark after the statement of Problem 2.1

in Section 2 of [5]). Let p and s be arbitrary positive numbers such that p < 3=16 and

s < 3=4.

THEOREM 3.1. For any 3-dimensional bounded smooth domain 
 � R3 and any viscosity

� > 0, let � > 0, � > 0, and r0(�;
; �; �; p; s) > 0 be as in Theorem 1 of [29] and satisfy

��2(��1
1 + 1)� < �=2: Let r � r0(�;
; �; �; p; s) be so large that rs�1 < �. Let f 2 Fr,

where

Fr
def
= ff 2 H : jjLrf jj2 < � and jj(I � Lr)f jj2 < rsg:

Then S� is an energetic system on H possessing a dynamical subsystem S < S� de�ned

on a set Mr � H containing an open convex set Ur � V of radius rp=2. If jjf jj2 < �

then S is de�ned on a set M � H containing the large, unbounded open star{shaped,

set U � V given by U = [r�r0Ur. In either case, the ball BV (0;
p
�) � Ur � U is

a gate for S�, and any bounded set K � H passes through BV (0;
p
�) no later than

the moment t = 2(��)�1a2, where a > 0 is such that K � BH(0; a); in particular, tK �
2(��)�1 supfjju0jj2 : u0 2 Kg. Moreover, for any u0 2 H, there exists tu0 < 2(��)�1jju0jj2

such that S�(tu0)u0 � BV (0;
p
�). Furthermore, the dynamical subsystem S�M\V < S� is

generated by strong solutions of 3D NSE, that is, for any u0 2M \ V , S�M\V (t)u0 2 V is

the value of the unique globally regular Leray{Hopf solution at time t � 0, generated by

u0.

COROLLARY. For any force f belonging to the unbounded open star{shaped set F � H

given by

F def
=

[
r�r0

Fr;

3D NSE generate an energetic system on H.

REMARK 3.1. The fact that 3D NSE generate an energetic system on the linear space H

of initial functions u0 = u0(x) refers, in particular, to the property 2) of De�nition 2.1.
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Note that this property would be lost by saying that 3D NSE generate a multi{valued

semigroup (set{valued mapping).

Proof of Theorem 3.1 follows from the properties of the set Q = Q(�;�;p;s) constructed in

[29]. Here, we will show only that the ball BV (0;
p
�) is a gate for S�. Indeed, consider

the energy inequality

1

2

d

dt
jju(t)jj2 + �jjA

1

2u(t)jj2 � jhf; u(t)ij;

satis�ed by all weak Leray{Hopf solutions (see, e.g., Remark 3.3 in [5]). An application of

the Young inequality to the term jhf; u(t)ij = jhA�
1

2 f;A
1

2u(t)ij and subsequent integration
of the obtained inequality yield

�

Z t

0
jjA

1

2ujj2ds � jju0jj2 +
1

�
jjA�

1

2 f jj2t:

By applying the projection Lr and using the Poincar�e inequality jjA�
1

2Lrf jj2 � ��1
1 jjLrf jj2

and the inequality jjA�
1

2 (I � Lr)f jj2 � r�1jj(I � Lr)f jj2, we obtain that

�

Z t

0
jjA

1

2ujj2ds � jju0jj2 +
1

�

�
��1
1 jjLrf jj2 + r�1jj(I � Lr)f jj2

�
t;

which yields, according to our choice of �, �, r, and f , the following estimate

�

Z t

0
jjA

1

2ujj2ds < jju0jj2 +
1

�

�
��1
1 � + r�1rs

�
t < jju0jj2 +

1

2
��t:

Therefore, for T =
2jju0jj

2

��
, we obtain

1

T

Z T

0
jjA

1

2ujj2ds < �;

which implies the existence of t0 2 [0; T ) such that jjA
1

2u(t0)jj2 = jju(t0)jj2V < �. QED.

Now, having established that 3D NSE generate an energetic system onH, we are eligible to

raise the issue about existence of the global attractor in H for 3D NSE. By using Theorem

2.1, we obtain the following result.

THEOREM 3.2. For any bounded smooth domain 
 � R3 and any viscosity � > 0, let �; �

satisfy assumptions of Theorem 3.1. Let f 2 F . Then the energetic system S� constructed

in Theorem 3.1 possesses the compact global attractor A � H. Moreover, A is compact

in V , bounded in V 2 = D(A), and has �nite Hausdor� dimension both in H and in V .

4 LOOKING FOR A MAXIMAL DYNAMICAL SUBSYSTEM

In this section, we address the problem of �nding a maximal dynamical subsystem of the

energetic system S� generated by 3D NSE. From the previous section, we already know

that, in the case of a small force f 2 H, the energetic system generated by 3D NSE

supplemented with the Dirichlet boundary conditions on an arbitrary smooth bounded

domain 
 � R3 possesses a dynamical subsystem S = S�M de�ned on a set M � H
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containing the large unbounded open star{shaped neighborhood U � V of the origin.

Here, in subsection 4.1, we show that if the 3{dimensional domain 
 = 
� is thin (i.e.

the height of the domain is a small number � > 0) and boundary conditions are periodic,

then even for large forces f 2 H forming an open convex neighborhood of the zero in

H , S� possesses the dynamical subsystem de�ned on a set M� � H containing a large

unbounded open star{shaped neighborhood U� � V of the origin. This result follows from

Theorem 4.1 below, while Theorem 4.2 provides information allowing one to construct the

neighborhood U� explicitly.
Since the problem of �nding a maximal dynamical subsystem of the energetic system

generated by 3D NSE is closely related to the global regularity problem for 3D NSE, we are

interested in necessary conditions for a weak Leray{Hopf solution to be globally regular.

One such condition is given in subsection 4.2 (Theorem 4.3).

4.1 3D NSE on thin domains

Given a set K � V � L1(0;1;H), we will say that K generates globally regular Leray{

Hopf solutions if, for any (u0; f) 2 K, 3D NSE (3.1){(3.2) possess a (unique) globally

regular Leray{Hopf solution.

In the case of a domain 
� = (0; l1) � (0; l2) � (0; �) � R3, 0 < � � l2 � l1 < 1,

with a su�ciently small height � > 0, it was shown [22]{[24] by using a perturbation

argument with respect to the parameter � > 0 that, for 3D NSE with periodic boundary

conditions on 
�, there exists a bounded set R(�) � S(�) � V � L1(0;1;H) generating

globally regular Leray{Hopf solutions and such that the radius of R(�) � S(�) in V �
L1(0;1;H) is proportional to ��s, where 0 < s < 1

2
is some number. By combining

the perturbation method of [22]{[24] with the method [29] of �nding large sets of data

generating global solutions to nonlinear evolutionary equations, one can show that, under

the same hypotheses that are used in [22]{[24], there exists an unbounded open star{

shaped set generating globally regular Leray{Hopf solutions and containing R(�) � S(�).
In particular, the following theorem holds.

THEOREM 4.1. For any viscosity � > 0 and any su�ciently thin domain 
� = (0; l1)�
(0; l2)� (0; �) � R3, 0 < � � l2 � l1 <1, there exists a large unbounded star-shaped set

Q(�) � V � L1(0;1;H) generating unique globally regular Leray{Hopf solutions to 3D

NSE supplemented with periodic boundary conditions on 
�. Moreover, R(�)� S(�) �
Q(�) and

Q(�) =
[
p2<0

Qp2(�);

where, for each p2 < 0, Qp2 � V � L1(0;1;H) is a convex set equal to the closure of its

own interior. Furthermore, for any f 2 S(�), the f{section U(�) = fu0 : (u0; f) 2 Q(�)g
of Q(�) is a large unbounded star{shaped set in V which is independent of f , contains

R(�), and is represented by

U(�) =
[
p2<0

Up2(�);

where, for each p2 < 0, Up2(�) � V is a convex neighborhood of zero, coinciding with the

closure of its own interior.

COROLLARY. Let � > 0 and 
� = (0; l1)� (0; l2)� (0; �) � R3 be su�ciently thin. For any

f 2 S(�)\H, the energetic system S� generated by 3D NSE on 
� possesses a dynamical
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subsystem S�M�
de�ned on a set M� � H containing a large unbounded open star{shaped

neighborhood U� � V of the origin. The dynamical subsystem S�M�\V
is generated by

strong solutions of 3D NSE.

REMARK. The set S(�)\H is a convex bounded neighborhood of the origin inH coinciding

with the closure of its own interior and the radius of the set S(�) \ H in H increases

unboundedly as � ! 0, cf. [22]{[24]. In particular, for small � > 0, S(�) \ H contains

forces f of large magnitudes jjf jj.

The construction of the sets Qp2(�) and Up2(�), p2 < 0, is given in Theorem 4.2 below. To

formulate this theorem, we need more notation.

Let Q3 = (0; l1) � (0; l2) � (0; 1) � R3. The dilation (x1; x2; x3) ! (x1; x2; �x3),

(x1; x2; x3) 2 Q3 induces the bijective linear map J� between the set of measurable func-

tions on Q3 and the set of measurable functions on 
�, which is given by J�u(y1; y2; y3) =

u(y1; y2; �
�1y3), (y1; y2; y3) 2 
� [22]{[24]. Let P� be the orthogonal projection which maps

L2(Q3) onto the L2{closure H� of smooth periodic functions u on Q3 satisfying the con-

ditions
R
Q3

u dx = 0 and r�u
def
= @1u1 + @2u2 + ��1@3u3 = 0. Then, by composing P� with

J�1
� and applying the composition P�J

�1
� to 3D NSE, one obtains the dilated evolutionary

NSE on the space H� [22]{[24]

ut + �A�u+B�(u; u) = P�f; (4.1.1)

u(0) = u0; (4.1.2)

where A� = �P��� = �P�(@21 + @22 + ��2@23)(with periodic boundary conditions) and

B�(u; v) = P�(u �r�)v. Recall also that [23]{[24] make use of bounded monotone functions

�i(�) de�ned for 0 < � � 1, i = 1; 2; 3; 4, and negative constants p, q1, q2, r satisfying the

following Hypothesis H*:

1) r > �2; p > �29
24
, q1 > � 5

12
, q2 > � 5

12
,

2) there exist positive constants �i, �i such that, for small � > 0,

�i � ��1
i (�) � (� ln �)�i ; i = 1; 2; 3; 4:

Now, if the Fourier series expansion of a function u 2 L2(Q3) is

u(x) =
X
k2Z3

cke2�ika�x;

where a = (a1; a2; a3) = (l�1
1 ; l�1

2 ; 1) and ka = (k1a1; k2a2; k3a3), k = (k1; k2; k3) 2 Z3,

then we set, for any integer K � 0,

MKu(x) =
X

k2Z3;jk3j�K

cke2�ika�x:

It can be shown that, for any integer K � 0, MK is an orthogonal projection on L2(Q3)

commuting with r� and A�. We note that the projection MK generalizes the projection

M used in [22]{[24]; in fact, M0 =M . De�ne jjf jj1 := ess sup0<t<1 jjf(t)jj.
Let �2 = �2(�) be a bounded monotone function de�ned for 0 < � � 1 such that there

exist positive constants �, � satisfying, for small � > 0,

� � ��1
2 (�) � (� ln �)�:
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Then we have the following theorem.

THEOREM 4.2. Let �i, i = 1; 2; 3; 4; p; q1;q2; and r satisfy the Hypothesis H� and let �2 be

as above. Then there exists a number �� > 0 such that, for any � 2 (0; ��) and any p2 < 0,

there exists a number K0 = K0(�; p2) > 0 with the property that (4.1.1){(4.1.2) have a

unique globally regular (strong) solution

u 2 C([0;1);D(A
1

2
� )) \ L1(0;1;D(A

1

2
� )) \ L2

loc(0;1;D(A�))

whenever K0(�; p2) satisfy

jjA
1

2
� v0jj2 � �q1��2

1 jjMP�f jj21 � �q2��2
2 ; (4.1.3)

jjA
1

2
� w1;0jj2 � �p��2

3 jj(MK �M)P�f jj21 � �r��2
4 ; (4.1.4)

jjA
1

2
� w2;0jj2 � �p2��2

2 jj(I �MK)P�f jj21 � �r��2
4 ; (4.1.5)

where v0 =Mu0, w1;0 = (MK �M)u0; w2;0 = (I �MK)u0.

This theorem yields an explicit construction of the desired sets Qp2(�) and Up2(�), for any
p2 < 0 and any � 2 (0; ��). Indeed, Up2(�) is given by the image (under the map J�) of

the set of initial functions described by the left inequalities in (4.1.3){(4.1.5), while Qp2(�)

is the Cartesian product of Up2(�) with the image (under the map J�) of the set of forces

described by the right inequalities in (4.1.3){(4.1.5).

4.2 A necessary condition for global regularity of a weak Leray{Hopf solution

Necessary conditions for global regularity of weak solutions yield upper bound estimates for

maximal dynamical subsystems of energetic systems generated by 3D NSE. The following

theorem gives a necessary condition in terms of some uniform inequalities.

THEOREM 4.3. Let � > 0 be a positive number and 
 � R3 a bounded smooth domain.

If, for some � � 0, a weak Leray{Hopf solution u = u(x; t) of 3D NSE is regular on the

interval [�;1), (i.e. u 2 C([�;1);V )\L1(�;1;V )\L2
loc(�;1;V 2)) then, for any  > 0,

there exists r� > 0 such that

jj(I � Lr)A
1

2u(t)jj2 � ; t 2 [�;1); r � r�:

Moreover, for any r � r�, there exists time T1 = T1(r) � � such that

jj(I � Lr)A
1

2u(t)jj2 � Dr�
1

2 ; t 2 [T1;1); r � r�;

where D > 0 is a constant independent of t and r.
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