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Analysis of a compressible Stokes-flow with degenerating and singular
viscosity

M. Hassan Farshbaf-Shaker, Marita Thomas

Abstract

In this paper we show the existence of a weak solution for a compressible single-phase Stokes flow with mass trans-
port accounting for the degeneracy and the singular behavior of a density-dependent viscosity. The analysis is based
on an implicit time-discrete scheme and a Galerkin-approximation in space. Convergence of the discrete solutions is ob-
tained thanks to a diffusive regularization of p-Laplacian type in the transport equation that allows for refined compactness
arguments on subdomains.

1 Introduction

Suspensions, i.e., flows of solid particles immersed in a viscous fluid appear in many aspects in nature and their un-
derstanding is of great importance for many technological processes, e.g., in the food, pharmaceutical, printing and oil
industries. For suspension flows two major regimes with substantially different rheological properties can be observed.
In the dilute regime the volume fractions of the solid particles are very small and mutual interaction between particles is
negligible. Instead, in the dense regime large volume fractions lead to rheological behaviors like shear thinning and dis-
continuous shear thickening, see e.g. [BJ14]. When a critical volume fraction of solid, rigid particles is reached, jamming
occurs, which means that the rheological behavior of the suspension turns into that of a solid.

The development of a continuum model for binary suspensions of solid and liquid phase applicable across different con-
centration regimes with substantially different rheology is of great importance to understand the applications but also very
challenging from a mathematical point of view. In [PTA+19], the authors construct a PDE model also suited for dense
suspensions using a gradient flow structure featuring a dissipative coupling between fluid and solid phase as well as differ-
ent driving forces. This approach leads to a general mathematical structure of variational type which is able to model the
different suspension regimes, from dilute to highly concentrated states up to jamming. This is done by taking into account
physically realistic but mathematically non-standard density-dependent constitutive relations, which degenerate for dilute
suspensions as the density of solid particles tends to zero and which get singular when reaching a critical value that stands
for jamming. Due to these degeneracy and singularity properties in these two extremal situations, the mathematical anal-
ysis of the derived model in [PTA+19] requires significant mathematical efforts and is very challenging. Concerning the
mathematical analysis of compressible viscous fluid models with density-dependent viscosities, we mention here a series
of papers [BDL03, BD06, BD07, BMZ19], where the authors investigate with great effort compressible Navier-Stokes fluid
models with density-dependent viscosities, which also appear in shallow water and lubrication models. The well-posedness
of the models is shown by introducing a new mathematical entropy identity, which is derived either by assuming a linear
dependence of the viscosity with respect to the density or by assuming a power-law structure of the viscosity µ(%) on
the mass density %. However, the non-standard form of the viscosity in [PTA+19] cannot be treated by the mathematical
methods developed in [BDL03, BD06, BD07, BMZ19, LT18a, LT18b], and references therein.

Our long-term goal is to investigate the full two-phase model for concentrated suspensions proposed in [PTA+19]. As a
first step towards this analysis, a single-phase model, which captures the above-described degeneracy and the singularity
properties, is investigated in this paper to understand the main difficulties and to pave the road for forthcoming analysis of
the full two-phase Stokes and Navier-Stokes system. Let [0, T ]×Ω ⊂ R×Rd denote the space-time cylinder with space
dimension d ∈ {2, 3} and final time T > 0 general but fixed. For the density % : Ω → R and the velocity u : Ω → Rd
as unknowns, the bulk equations of our model are given by

∂t%+ div(%u)− εdiv(|∇%|p−2∇%) = 0 in [0, T ]× Ω, (1.1a)

−div(µ(%)e(u)) +M(%)u+ κ|u|s−2u+ %∇D%E(%) = 0 in [0, T ]× Ω, (1.1b)
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with the symmetrized velocity gradient e(u) := 1
2 (∇u+∇u>) and the energy

E(%) =

∫
Ω

(
x2%+

ε̃

2
|%|2
)

dx. (1.1c)

The bulk problem (1.1) is complemented by suitable boundary and initial conditions, which are specified in Section 2.1.
By D%E(%) we indicate in (1.1b) the variational derivative of E(%) with respect to %. Moreover, the shear viscosity µ and
the friction M are material parameters, which are modeled as density-dependent functions. Equation (1.1a) is a continuity
equation with a diffusive regularization of p-Laplacian type. The Stokes equation (1.1b) contains a regularization in terms
of an Ls-nonlinearity, whose exponent s is closely connected to the exponent p appearing in p-Laplacian in the continuity
equation. Moreover, the first component in the energy functional is given by the gravitational force and the second convex
term of lower order is chosen as a further regularizing term. The prefactors ε, ε̃, κ > 0 of the regularizing terms may be
arbitrarily small but positive. The density % can be understood as the mass density of the system. Yet, setting % := %0φ
with constant mass density %0 it can be seen in direct relation with a phase indicator φ when extending the model (1.1)
to suspensions in the future. In both situations it will be important to obtain that a solution % of (1.1a) is non-negative and
bounded from above by a critical value %crit.

Structure of the paper. In Section 2, we state the precise assumptions and give the Definition of a weak solution to
system (1.1) with a first existence result. Moreover the diffusive regularization of p-Laplacian type in the transport equation
allows for refined compactness arguments on subdomains, discussed in Theorem 2.4. In Section 3 an implicit time-discrete
scheme combined with a Galerkin-approximation in space, see (3.2), is introduced and solved in Proposition 3. Moreover,
a priori estimates are investigated in Proposition 3.4 which lead to convergence results, given by Proposition 4.1 in the
final Section 4. There, we also establish the non-negativity and boundedness of weak solutions % of (1.1a).

2 Basic assumptions and main results

2.1 Notation and basic assumptions

Let Ω ⊂ Rd with d ∈ {2, 3} be a bounded Lipschitz domain with boundary Γ = ∂Ω and ~n the outer unit normal on Γ.
By Lm(B), we denote the m-dimensional Lebesgue measure of a set B ⊂ Rm, m ∈ N. Furthermore, we denote by
Lp(Ω), resp. W 1,p(Ω), for 1 ≤ p ≤ ∞ the Lebesgue-, resp. Sobolev-spaces on Ω. For a time interval (0, T ), T > 0
and a Banach spaceX we denote byLp(0, T ;X) the spaces of Bochner-integrable functions with values inX . Moreover,
for a Banach space X we denote its dual by X∗ and the duality pairing by 〈·, ·〉X . For Lp-spaces, we denote by p′ the
dual index defined by 1

p + 1
p′ = 1. ”Generic” positive constants are denoted by C or c and in estimates their particular

value may change from line to line. Moreover, for subsets of Rm defined by the values of a function f : Rm → R, m ∈ N
we shall use the following notation

[f � a] := {x ∈ Rm, f(x) � a} , (2.1)

where the symbol � is here used as a placeholder for one of the relation symbols, i.e., �∈ {<,>,=,≤,≥}.

Throughout this work, we adopt the following assumptions:

(A1) The shear viscosity is given by

µ : R→ [0,∞], µ(%) = |%|η(%), (2.2a)

where

η(%) =


∞ if % < 0,

ν̃
(%crit−%)α if 0 ≤ % < %crit,

∞ if % ≥ %crit,

for α ≥ 2 and ν̃ > %crit. (2.2b)

As we shall see in Theorem 2.7 and lateron in Section 4.3 the singularity of power α ≥ 2 prevents solutions % of
(2.5a) to exceed the value %crit. In case of α > 2 one even finds that Ld([%(t) = %crit]) = 0 for all t ∈ [0, T ],
i.e., solutions attain the critical value at most on Ld-null sets.
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(A2) The friction coefficient M(%) is defined by a continuous function M : R→ R+
0 with the following growth property:

There exist constants M,M > 0 such that

M |%|2 ≤M(%) ≤M |%|2 for all % ∈ R. (2.2c)

(A3) The initial condition for the density fulfills

%0 ∈ L2(Ω). (2.2d)

(A4) The boundary conditions are given by

u = 0, and ε|∇%|p−2∇% · ~n = 0 on Γ. (2.2e)

(A5) Assumptions on the exponents p and s in (1.1):

{2, 3} 3 d < p < 6, and
1

2
+

1

s
+

1

p
= 1. (2.2f)

(A6) Assumptions on the regularization parameters ε, ε̃ and κ in (1.1):

0 < ε, ε̃ < 1, and κ > 0. (2.2g)

Remark 2.1. 1 In [PTA+19] the real constitutive material law for the solid phase is given by

η(%) = 1 +
5

2

%crit

%crit − %
+

(
µ1 +

µ2 − µ1

1 + I0(%crit − %)−2

)
%

(%crit − %)2
(2.3)

with the non-dimensional parameters, µ2 ≥ µ1 and I0. Our choice in (2.2b) captures the essential behavior of
(2.3) and is well tailored for the mathematical analysis in this paper.

2 By (2.2f), the dual indices p′ and s′ are given by 1
s′ = 1− 1

s = 1
2 + 1

p and 1
p′ = 1− 1

p = 1
2 + 1

s , respectively.

2.2 Basic notion of solution

Here, we specify our notion of solution for the system (1.1).

Definition 2.2 (Basic notion of weak solution). Suppose that the general assumptions (A1)-(A6) are fulfilled and let the
final time T > 0 general but fixed. A weak solution of system (1.1) is a quadruplet (%, u,Bµ, ζ) with the regularity

% ∈W 1,p′(0, T ;W 1,p(Ω)∗) ∩ Lp(0, T ;W 1,p(Ω)), u ∈ Ls(0, T ;Ls(Ω;Rd)), (2.4a)

Bµ ∈ Ls
′
(0, T ;W 1,2(Ω;Rd)∗), ζ ∈ Ls

′
(0, T ;Ls

′
(Ω;Rd)), (2.4b)

that satisfies

〈∂t%, ψ〉Lp(0,T ;W 1,p(Ω)) −
∫ T

0

∫
Ω

(%u− ε|∇%|p−2∇%) · ∇ψ dxdt = 0, (2.5a)

for all ψ ∈ Lp(0, T ;W 1,p(Ω)),

〈Bµ, v〉Ls(0,T ;W 1,2(Ω;Rd)) +

∫ T

0

∫
Ω

(M(%)u+ κζ + %∇D%E(%)) · v dxdt = 0, (2.5b)

for all v ∈ Ls(0, T ;W 1,2(Ω;Rd)).

We will show in Theorem 2.3 the existence of a weak solution in the sense of Definition 2.2. Moreover, in Theorem 2.4, it
will be possible to identify the limit elements Bµ and ζ in (2.5b) as the viscous stress and the Ls-nonlinearity generated
by the limit pair (%, u) on Lipschitz subdomains ΩLip

ν (t), where ν < %(t) < %crit − ν for a.a. t ∈ (0, T ) and for all ν > 0,
cf. (2.6a). A further refinement of the notion of weak solution will be deduced in Theorem 2.7: Given that the initial datum
%0 satisfies 0 ≤ %0 ≤ %crit a.e. in Ω one finds that also the weak solution % satisfies 0 ≤ % ≤ %crit a.e. in Ω for all
t ∈ [0, T ]. In this situation the identification of the limit elements Bµ and ζ as the viscous stress and the Ls-nonlinearity
generated by (%, u) can be shown to be valid even a.e. in [0 < % < %crit]. In dependence of the exponent α for the
singularity of the viscosity, cf. (2.2b), the results can be even further refined: In case of α > 2 and 0 ≤ %0 ≤ %crit − τ0
for τ0 > 0 sufficiently small, solutions even satisfy 0 ≤ %(t) < %crit a.e. in Ω for all t ∈ [0, T ] and the identification result
for Bµ and ζ can be shown to be valid even a.e. in [0 < %].

DOI 10.20347/WIAS.PREPRINT.2786 Berlin 2020
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2.3 Main results

In this section we present and discuss our main results.

Theorem 2.3. Suppose that the general assumptions (A1)-(A6) are fulfilled. Then (1.1) has a weak solution in the sense
of Definition 2.2.

The proof of Theorem 2.3 is carried out in Sections 3 and 4. In Section 3 a fully discrete (time-discrete Galerkin) scheme
together with a suitable regularization of the shear viscosity µ is devised and investigated. A priori estimates based on a
discrete energy estimate are derived. In Section 4 the a priori estimates are used to perform the limit from the discrete to
the continuous problem.

In the following Theorem we will provide, on subdomains, an identification for the objectsBµ and ζ appearing in (2.5b). To
this end, we define subdomains

Ων(t) := {x ∈ Ω | ν < %(t) < %crit − ν} for any ν > 0 and for a.a. t ∈ (0, T ), (2.6a)

and consider any

Lipschitz-subdomain ΩLip
ν (t) ⊂ Ων(t) for a.a. t ∈ (0, T ). (2.6b)

We note that Ων(t) is an open set in Ω due to the compact embedding W 1,p(Ω) ⊂ C0(Ω) thanks to p > d by
assumption (2.2f). Moreover, on the Lipschitz-domains ΩLip

ν (t) (reflexive) Sobolev spaces such as W 1,2(ΩLip
ν (t)) are well

defined and embedding theorems are valid, cf. [AF03]. Now, we have

Theorem 2.4. Let (%, u,Bµ, ζ) be a weak solution of system (1.1) obtained in Theorem 2.3. Then, for every δ > 0, there
exists a measurable set Iδ ⊂ (0, T ) such that L1((0, T )\Iδ) < δ and non-cylindrical domains

Qδν :=
⋃
t∈Iδ

{t} × ΩLip
ν (t) ⊂ (0, T )× Ω with ΩLip

ν (t) as in (2.6), for all ν > 0, (2.7)

such that for all v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν there holds∫ T

0

∫
Ω

µ(%(t))e(u) : e(v) dx dt+

∫ T

0

∫
Ω

(M(%)u+ κ|u|s−2u+ %∇D%E(%)) · v dxdt = 0 , (2.8)

i.e., it is

〈Bµ, v〉Ls(0,T ;W 1,2(Ω;Rd)) =

∫ T

0

∫
Ω

µ(%(t))e(u):e(v) dxdt and (2.9a)∫ T

0

∫
Ω

κ ζ · v dxdt =

∫ T

0

∫
Ω

κ|u|s−2u · v dxdt (2.9b)

for all v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν , for any Qδν from (2.7), for all δ, ν > 0.

Consequently, relations (2.8) and (2.9) hold true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v(t)) ⊂ [0 < %(t) < %crit] for a.a. t ∈ (0, T ) . (2.10)

The proof of Theorem 2.4 is given in detail in Section 4.2; we adress here the main ideas: The identification of Bµ and
ζ in terms of the limit velocity u can be achieved on subsets of the space-time cylinder (0, T ) × Ω where the values of
the limit density % and its approximants are strictly bounded away from zero and away from the singularity %crit. In space
this is ensured by retreating to the subdomains ΩLip

ν (t) from (2.6). Again, thanks to the assumption p > d there holds
W 1,p(Ω) ⊂ C0(Ω) compactly and the approximants converge uniformly in space to the limit density %. In this way, it can
be ensured for a.a. t ∈ (0, T ) that also the approximants are strictly bounded away from zero and away from %crit from
a particular index n(t) on. We point out that the regularity in time % ∈ W 1,p′(0, T ;W 1,p(Ω)∗) ∩ Lp(0, T ;W 1,p(Ω))
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given in (2.4), and similarly also for the approximating solutions, is too low in order to ensure continuity and uniform
convergence in time. Instead, one can only make use of almost uniform convergence, which will be deduced from strong
Lp(0, T ;Lp(Ω))-convergence together with Egorov’s theorem in Section 4. The almost uniform convergence in time
induces the measurable sets Iδ ⊂ (0, T ) from (2.7) where the sequences converge uniformly and this will allow it to find
both the limit density and the approximants strictly bounded away from zero and away from %crit on the non-cylindrical
domains Qδν . In order to carry out the identification argument we need compactness results in Banach spaces defined on
non-cylindrical sets. To this end, for Qδν from (2.7) we introduce the normed vector space

Ls(Qδν) :=

{
f : Qδν → R measurable, ‖f‖Ls(Qδν) :=

(∫
Iδ

‖f(t)‖s
Ls(ΩLip

ν (t))
dt

)1/s

<∞

}
. (2.11)

Lemma 2.5. Consider a non-cylindrical domain Qδν as in (2.7) and let s ∈ (1,∞). The normed vector space Ls(Qδν)
defined in (2.11) is a reflexive, separable Banach space.

Proof. Let Qδν be a non-cylindrical domain as in (2.7) and let s ∈ (1,∞).

1. We show that the normed vector space Ls(Qδν) is complete: Let (fn)n∈N ⊂ Ls(Qδν) be a Cauchy sequence. We
show that there exists an element f ∈ Ls(Qδν) such that fn → f in Ls(Qδν). To this end, we define for a.a. t ∈ Iδ

f̂n(t) :=

{
fn(t) on ΩLip

ν (t),

0 on Ω \ ΩLip
ν (t).

Indeed, we have for all n ∈ N that f̂n ∈ Ls(Iδ;L
s(Ω)) with ‖f̂n‖Ls(Iδ;Ls(Ω)) = ‖fn‖Ls(Qδν) and it follows that

(f̂n)n∈N is a Cauchy sequence in Ls(Iδ;Ls(Ω)). Due to the completeness of Ls(Iδ;Ls(Ω)), we conclude that there

exists an element f̂ ∈ Ls(Iδ;Ls(Ω)) such that

f̂n → f̂ in Ls(Iδ;L
s(Ω)). (2.12)

For a.a. t ∈ Iδ we set f(t) := f̂ |ΩLip
ν (t) and show for a.a. t ∈ Iδ that f̂(t)|Ω\ΩLip

ν (t) = 0. In view of (2.12), it follows

that there exists a subsequence (f̂nl)l∈N such that f̂nl(t, x) → f(t, x) pointwise for a.a. (t, x) ∈ Iδ × Ω. Because

of f̂nl(t, x) = 0 for a.a. (t, x) ∈ {t} × (Ω \ ΩLip
ν (t)) and for all l ∈ N, it follows f̂(t, x) = 0 for a.a. (t, x) ∈

{t} × (Ω \ ΩLip
ν (t)). We finally obtain

‖fn − f‖Ls(Qδν) = ‖f̂n − f̂‖Ls(Iδ;Ls(Ω)) → 0,

which proves that Ls(Qδν) is a Banach space.

2. We show that Ls(Qδν) is reflexive and separable: To this end, we define

V := {f̂ ∈ Ls(Iδ;Ls(Ω)) | for a.a. t ∈ Iδ : f̂(t) ≡ 0 on Ω \ ΩLip
ν (t)},

which is a closed subspace of Ls(Iδ;Ls(Ω)), and thus, a reflexive and separable Banach space. Moreover, we have
Ls(Qδν) ≡ V and due to isomorphism of the norms, we obtain that Ls(Qδν) is reflexive and separable, too. Further,
we note that the dual space of V is given by V ∗ := Ls

′
(Iδ;L

s′(Ω))|V . Due to Ls(Qδν) ≡ V , we also have V ∗ ≡
Ls(Qδν)∗ ≡ Ls′(Qδν).

Remark 2.6. Thanks to the properties of Ls(Qδν) verified in Lemma 2.5 and Eberlein-Šmuljan’s theorem, each bounded
sequence in Ls(Qδν) contains a subsequence that converges weakly to a limit in Ls(Qδν).

The above results for Banach spaces on the non-cylindrical domains Qδν will allow us to carry out the identification argu-
ment in Section 4.2. We mention that our use of non-cylindrical domains is motivated by the works [Sal85, Sal88], where
Banach spaces on non-cylindrical domains are introduced at first using very general sets Ω̂ :=

⋃
t∈(0,T ){t} × Ω(t).

Yet, lateron, in the course of the analysis, higher regularity assumptions, i.e., C3-regularity for the boundary of Ω̂, are
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required in [Sal85]. This is in line with the fact that many works dealing with the analysis of PDEs related to fluid flow on
moving domains [SS07, NRL16, AET18, Saa07] postulate higher regularity assumptions for the flow map, which is used
to map the current domain Ω(t) to a fixed reference domain Ω0. Translating these assumptions to our situation shows
that higher temporal regularity would be needed for the density % and its approximating solutions and in some cases also
volume conservation for the set {x ∈ Rd, %(t, x) ∈ (0, %crit)} in order to apply the methods of the works mentioned
above. Instead here, we can only expect % ∈ W 1,p′(0, T ;W 1,p(Ω)∗) ∩ Lp(0, T ;W 1,p(Ω)). In difference to the above
mentioned works, the non-cylindrical domains Qδν used in our context are induced by the solution %, so that good regular-
ity of the sets cannot be expected in general. As approved by Remark 2.6, we shall solely use the Ls(Qδν)-spaces for a
compactness argument in the a posteriori identification of the limit elements.

With a suitable adaption of the non-cylindrical domains and via a contradiction argument, it is possible to deduce the non-
negativity of the density % and its boundedness in terms of the critical value %crit. We point out that % = 0 is not excluded
on subsets of (0, T ) × Ω of positive measure. Moreover, the behavior of solutions % at the singularity %crit depends on
the exponent α: Only for α ∈ (2, 3] it is shown that solutions cannot attain the value %crit on sets of positive Ld-measure.
Thanks to these properties of %, it is also possible to refine the identification of Bµ and ζ from (2.9) as the viscosity and
the Ls-nonlinearity generated by (%, u):

Theorem 2.7 (Non-negativity & boundedeness of the limit density %, refinement of (2.8) & (2.9)). Let the assumptions of
Theorem 2.4 be valid and let (%, u,Bµ, ζ) be a weak solution obtained in Theorems 2.3 and 2.4.

1 Further assume for the initial datum

%0 ∈ L2(Ω) such that 0 ≤ %0 ≤ %crit a.e. in Ω . (2.13)

Then the density % from (2.5a) also satisfies

0 ≤ %(t) ≤ %crit a.e. in Ω , for all t ∈ [0, T ]. (2.14)

Moreover, identification relations (2.8) and (2.9) hold true for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v(t)) ⊂ [0 < %(t)] for a.a. t ∈ (0, T ) . (2.15)

2 Let α > 2 in (2.2b). Further assume for the initial datum that there is a constant τ0 > 0 sufficiently small, so that

%0 ∈ L2(Ω) with 0 ≤ %0 ≤ %crit − τ0 a.e. in Ω . (2.16)

Then the density % from (2.5a) satisfies

0 ≤ %(t) < %crit a.e. in Ω , for all t ∈ [0, T ]. (2.17)

and identification relations (2.8) and (2.9) hold true for all test functions as in (2.15).

3 Existence of discrete solutions

For final time T general but fixed, we define a partition of the time interval [0, T ]

0 = t0Nτ < . . . < tNτNτ = T with tkNτ − t
k−1
Nτ

=
T

Nτ
=: τ,

and a sequence of finite-dimensional subspaces Un,Xn such that, for all n ∈ N

Xn ⊂ Xn+1 and
⋃
n∈N

Xn dense in X := W 1,p(Ω) with span{ej ; j = 1, . . . , n} = Xn, (3.1a)

Un ⊂ Un+1 and
⋃
n∈N

Un dense in U := W 1,2(Ω;Rd) with span{ej ; j = 1, . . . , dn} = Un, (3.1b)

where ej ∈ X for j = 1, . . . , n, resp. ej ∈ U for j = 1, . . . , dn, are linearly independent.

DOI 10.20347/WIAS.PREPRINT.2786 Berlin 2020
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Remark 3.1. This motivates us to define two different projectors: The projector PX
n : X→ Xn such that PX

n (X) = Xn

and the projector PU
n : U→ Un such that PU

n (U) = Un. For PU
n we claim that it is selfadjoint (note that U is a Hilbert

space) and ‖PU
n ‖L(U,U) is bounded independently of n. Hence, such a projector PU

n with the mentioned properties
exists, cf. [Rou05, Remark 8.41, p. 238]. Above, we use the notation L(U,U) := {A : U→ U linear and continuous}.

Now, we consider the fully discrete Galerkin scheme corresponding to (1.1) for k ∈ {1, . . . , Nτ} and n ∈ N∫
Ω

%kτn − %k−1
τn

τ
ψ dx−

∫
Ω

(%kτnu
k
τn − ε|∇%kτn|p−2∇%kτn) · ∇ψ dx = 0, (3.2a)

for all ψ ∈ Xn,∫
Ω

µτ (%kτn)e(ukτn) : e(v) dx+

∫
Ω

(M(%kτn)ukτn + κ|ukτn|s−2ukτn + %kτn∇D%E(%kτn)) · v dx = 0, (3.2b)

for all v ∈ Un,

where the regularized viscosity µτ is defined by

µτ (%) = |%|ητ (%) + τβ for β > 0 and with ητ (%) =


ν̃
%αcrit

+ 1
τα |%| if % < 0,

ν̃
(%crit−%)α if 0 ≤ % < %crit − τ,

ν̃|%|
τα|%crit−τ | if % ≥ %crit − τ,

(3.3a)

for α ≥ 2 and ν̃ > %crit.

In contrast to µ from (2.2), µτ is continuous for every fixed τ and can be estimated from below, i.e.,

there is a constant cµ > 0 such that µτ (%) ≥ cµ|%|2 + τβ for all % ∈ R and for all τ > 0. (3.3b)

Moreover, we have

µτ (%)→ µ(%) as τ → 0, for all % ∈ R. (3.3c)

Proposition 3.2 (Existence of discrete solutions). Let the assumptions (A1)-(A6) be satisfied and T > 0 general but
fixed. Also keep τ > 0 and n ∈ N fixed. Then the following statements hold true:

1. For all k ∈ {1, . . . , Nτ} there exists a solution (%kτn, u
k
τn) ∈ Xn ×Un for problem (3.2).

2. For all K ∈ {1, . . . , Nτ} the discrete solutions (%kτn, u
k
τn)Nτk=1 satisfy the following discrete energy-dissipation

estimate:

E(%Kτn) +

K∑
k=1

τ

∫
Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx+

K∑
k=1

τ

∫
Ω

M(%kτn)|ukτn|2 dx

+ κ

K∑
k=1

τ

∫
Ω

|ukτn|s dx+
εε̃

p

K∑
k=1

τ‖∇%kτn‖
p
Lp(Ω;Rd)

≤ E(%0
τn) +

εε̃1−p

p
Ld(Ω× (0, T )).

(3.4)

The proof of Proposition 3.2 will be carried out in Section 3.1 below.

Using the discrete solutions (%kτn, u
k
τn)Nτk=1 obtained in Prop. 3.2, Item 1., we define suitable approximating solutions by

interpolation in time. More precisely, we introduce the piecewise constant left-continuous interpolants

%τn(t) := %kτn, uτn(t) := ukτn, for t ∈ (tk−1
Nτ

, tkNτ ], k = 1, . . . , Nτ , (3.5a)
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M.H. Farshbaf-Shaker, M. Thomas 8

as well as the piecewise linear interpolant

%τn(t) :=
t− tk−1

Nτ

τ
%kτn +

tkNτ − t
τ

%k−1
τn , for t ∈ (tk−1

Nτ
, tkNτ ], k = 1, . . . , Nτ . (3.5b)

Moreover, by (3.5b), the time derivative of the piecewise linear interpolant is given by

Dτ%τn(t) :=
%kτn − %k−1

τn

τ
, for t ∈ (tk−1

Nτ
, tkNτ ], k = 1, . . . , Nτ . (3.5c)

Additionally, we will also use the following notation for the time

tτ (t) := tkNτ for t ∈ (tk−1
Nτ

, tkNτ ], k = 1, . . . , Nτ . (3.5d)

Using (3.5), we will rewrite (3.2). For this, also note that
⋃
n∈N C

0([0, T ];Xn) is dense in Lp(0, T ;X) for any 1 ≤
p ≤ ∞, cf. [GGZ74, Lemma 1.12., p. 144]. Hence, for any ψ ∈ Lp(0, T ;X) there exists a sequence (ψn)n such that
ψn ∈ Lp(0, T ;Xn) for each n ∈ N and ψn → ψ in Lp(0, T ;X) as n → ∞. For any ψ ∈ C0([0, T ];X) we use
nodal projection and subsequent constant interpolation in time, i.e., we introduce the operator Pτ : C0([0, T ];X) →
Lp(0, T ;X), Pτψ(t) := ψ(tkNτ ) = ψ(t) for all t ∈ (tk−1

Nτ
, tkNτ ], where we used the notation (3.5a) for the piecewise

constant, left-continuous interpolant. Based on this, we define a projector for the space Lp(0, T ;X) to piecewise contant
functions in time with values in the finite-dimensional subspaces Xn by making use of the approximating sequences
(ψn)n with ψn ∈ C0([0, T ],Xn) for all n ∈ N. More precisely, we introduce

Pτn : Lp(0, T ;X)→ Lp(0, T ;Xn), where Pτn(ψ) := PX
n (Pτ (ψ)) := ψn , (3.6)

with the notation from (3.5a). In a similar manner we also define a projection for the space Ls(0, T ;U) and we denote
the corresponding projector by PU

n (Pτ (ψ)) : Ls(0, T ;U)→ Ls(0, T ;Un). Now, we have

〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)
−
∫ T

0

∫
Ω

%τnuτn · ∇Pτl(ψ) dxdt+ 〈Ap(%τn), Pτl(ψ)〉Lp(0,T ;Xl)
= 0, (3.7a)

for all n ≥ l, for all ψ ∈ Lp(0, T ;X),〈
Aµ(%τn, uτn), PU

n (Pτ (v))
〉
Ls(0,T ;Un)

+

∫ T

0

∫
Ω

M(%τn)uτn · PU
n (Pτ (v)) dxdt

+κ

∫ T

0

∫
Ω

|uτn|s−2uτn · PU
n (Pτ (v)) dx dt+

∫ T

0

∫
Ω

%τn∇D%E(%τn) · PU
n (Pτ (v)) dxdt = 0, (3.7b)

for all v ∈ Ls(0, T ;U),

where we abbreviated

〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)
:=

∫ T

0

∫
Ω

Dτ%τnPτl(ψ) dx dt, (3.7c)

〈Ap(%τn), Pτl(ψ)〉Lp(0,T ;Xl)
:= ε

∫ T

0

∫
Ω

|∇%τn|p−2∇%τn · ∇Pτl(ψ) dxdt, (3.7d)

〈
Aµ(%τn, uτn), PU

n (Pτ (v))
〉
Ls(0,T ;Un)

:=

∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(PU
n (Pτ (v))) dx dt. (3.7e)

Remark 3.3. Using the projector Pτl (instead of Pτn) with l ≤ n in (3.7a), gives us more flexibility in showing a priori
estimates and convergence results. This is carried out by first sending n to infinity by holding l fixed and in a second step
letting l to∞.

In a similar fashion also the discrete energy-dissipation estimate (3.4) can be rewritten in the notation of the interpolants
(3.5), i.e., for all t ∈ [0, T ] there holds

E(%τn(t)) +

∫ tτ (t)

0

∫
Ω

µτ (%τn(r))e(uτn(r)) : e(uτn(r)) dxdr +

∫ tτ (t)

0

∫
Ω

M(%τn(r))|uτn(r)|2 dx dr

+

∫ tτ (t)

0

∫
Ω

|uτn(r)|s dx dr +
εε̃

p

∫ tτ (t)

0

‖∇%τn(r)‖p
Lp(Ω;Rd)

dr

≤ E(%0
τn) +

εε̃1−p

p
Ld(Ω× (0, T )).

(3.8)
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Based on this, we establish a priori estimates for discrete solutions given by Proposition 3.2.

Proposition 3.4 (A priori estimates). Let the assumptions of Proposition 3.2 be satisfied and consider a sequence
(%τn, uτn)τn of solutions for system (3.7). Then there exists a constant C > 0 such that the following statements
hold true uniformly with respect to n ∈ N and τ > 0

‖
√
µτ (%τn) e(uτn)‖L2(0,T ;L2(Ω;Rd×d)) ≤ C, (3.9a)

τβ‖e(uτn)‖2L2(0,T ;L2(Ω;Rd×d)) ≤ C, (3.9b)

cµ‖%τne(uτn)‖2L2(0,T ;L2(Ω;Rd×d)) ≤ C, (3.9c)

M‖%τnuτn‖2L2(0,T ;L2(Ω;Rd)) ≤ C, (3.9d)

‖uτn‖Ls(0,T ;Ls(Ω;Rd)) ≤ C, (3.9e)

‖%τn(t)‖L2(Ω) ≤ C for all t ∈ [0, T ], , (3.9f)

‖∇%τn‖Lp(0,T ;Lp(Ω;Rd)) ≤ C. (3.9g)

In addition, also the following estimates are valid uniformly with respect to n ∈ N and τ > 0

‖%τn‖Lp(0,T ;W 1,p(Ω)) ≤ C, (3.9h)

‖div(%τnuτn)‖L2(0,T ;L2(Ω)) ≤ C, (3.9i)

‖Dτ%τn‖(Lp(0,T ;Xl))∗ ≤ C for any l ∈ N, for all n ≥ l, (3.9j)

‖Ap(%τn)‖(Lp(0,T ;X))∗ ≤ C (3.9k)

‖Dτ%τn‖Lp′ (0,T ;W 2,2(Ω)∗) ≤ C, (3.9l)

‖Aµ(%τn, uτn)‖Ls′ (0,T ;W 1,2(Ω;Rd)∗) ≤ C, (3.9m)

‖|uτn|s−2uτn‖Ls′ (0,T ;Ls′ (Ω;Rd)) ≤ C. (3.9n)

3.1 Proof of Proposition 3.2

Throughout the proof, τ > 0 and n ∈ N are kept fixed.

To Proposition 3.2, Item 1.: To show the existence of discrete solutions, we observe that the Galerkin scheme (3.2)
can be rewritten as a system of nonlinear equations for the coefficient vectors −→% kτn = (%kτn,i)

n
i=1 ∈ Rn, −→u kτn =

(ukτn,i)
dn
i=1 ∈ Rdn:

M
τ

(−→% kτn −−→% k−1
τn ) +−→u kτnB−→% kτn + εMp(%

k
τn)−→% kτn = 0, (3.10a)

Mµ(%kτn)−→u kτn + M%(%
k
τn)−→u kτn + κMs(u

k
τn)−→u kτn + X−→% kτn + B−→% kτn ⊗−→% kτn = 0, (3.10b)
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and the matrices appearing in (3.10) are defined with the aid of the basis elements {ei, i = 1, . . . , n} and {ei, i =
1, . . . , dn} from (3.1) as follows

M :=

(∫
Ω

eiej dx

)
i,j

∈ Rn×n, (3.10c)

B :=

(∫
Ω

eiej · ∇el dx
)
i,j,l

∈ Rdn×n×n, (3.10d)

Mp(%
k
τn) :=

(∫
Ω

∇ei · ∇ej |∇%kτn|p−2 dx

)
i,j

∈ Rn×n, (3.10e)

Mµ(%kτn) :=

(∫
Ω

µτ (%kτn)e(ei) : e(ej) dx

)
i,j

∈ Rdn×dn, (3.10f)

M%(%
k
τn) :=

(∫
Ω

M(%kτn)ei · ej dx

)
i,j

∈ Rdn×dn, (3.10g)

X :=

(∫
Ω

∇x2ei · ej dx

)
i,j

∈ Rdn×n, (3.10h)

Ms(u
k
τn) :=

(∫
Ω

|ukτn|s−2ei · ej dx

)
i,j

∈ Rdn×dn. (3.10i)

We show in the following that for every k ∈ {1, . . . , Nτ} the nonlinear system of equations given by (3.10) has a solution
(−→% kτn,−→u kτn) ∈ Rn × Rdn. For this, we make use of the following classical result:

Proposition 3.5 ([Zei86, Prop. 2.8, p. 53]). Consider the system of equations

~g(~z) = (gi(~z))
m
i=1 = ~0 for ~z ∈ Rm. (3.11)

Let BR(0) := {~z ∈ Rm, ‖~z‖ ≤ R} for fixed R > 0 and ‖ · ‖ a norm on Rm. Let gi : BR(0) → R be continuous for
i = 1, . . . ,m. Further assume that

~g(~z) · ~z ≥ 0 for all ~z with ‖~z‖ = R. (3.12)

Then (3.11) has a solution ~z with ‖~z‖ ≤ R.

In the following we verify that the nonlinear system (3.10) satisfies the assumptions of Proposition 3.5.

We first show the continuity of ~g given by (3.10). For this, let ~z := (−→% kτn,−→u kτn) ∈ Rm with m := n+ dn and consider
a sequence (~z`)`∈N with ~z` := (−→% kτn`,

−→u kτn`) ∈ Rm and such that

~z` → ~z as `→∞ . (3.13a)

We aim to show that also
~g(~z`)→ ~g(~z) as `→∞ . (3.13b)

A close perusal of (3.10) reveals, that the maps (−→% kτn`,
−→u kτn`) 7→

M
τ (−→% kτn` −

−→% k−1
τn ) +−→u kτn`B

−→% kτn` and −→% kτn` 7→
X−→% kτn` + B−→% kτn` ⊗

−→% kτn` can be rewritten as polynomials of the components of ~z`. Hence, these terms constitute
continuous functions. We now discuss the continuity properties of the remaining terms Mp(%

k
τn)−→% kτn, Mµ(%kτn)−→u kτn,

M%(%
k
τn)−→u kτn, and Ms(u

k
τn)−→u kτn. For this, we first observe that convergence (3.13a) implies that as `→∞

%kτn` =

n∑
i=1

%kτn,i,`ei → %kτn =

n∑
i=1

%kτn,iei in W 1,p(Ω) , (3.14a)

ukτn` =

nd∑
i=1

ukτn,i,`ei → ukτn =

nd∑
i=1

ukτn,iei in W 1,2(Ω;Rd) , (3.14b)
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again with the basis elements {ei, i = 1, . . . , n} and {ei, i = 1, . . . , dn} from (3.1). Next, we note that the p-Laplacian
Ap : W 1,p(Ω)→ (W 1,p(Ω))∗, defined in (3.7d), is a Nemyckii operator, hence continuous. In view of (3.14a), this yields
that Mp(%

k
τn`)
−→% kτn,` → Mp(%

k
τn)−→% kτn. In a similar manner, we also see that u 7→

∫
Ω
|u|s−2udx as a map from

Ls(Ω) to Ls
′
(Ω) is a Nemyckii operator, and thus continuous. This provides that Ms(u

k
τn`)
−→u kτn` → Ms(u

k
τn)−→u kτn.

Finally, to conclude that Mµ(%kτn`)
−→u kτn` →Mµ(%kτn)−→u kτn and that M%(%

k
τn`)
−→u kτn` →M%(%

k
τn`)
−→u kτn`, we observe

that (3.14a) implies that the sequence (%kτn`)` is uniformly bounded in Ω and hence the dominated convergence theorem
provides the result. This verifies (3.13b) and thus we conclude the continuity of the map ~g.

Now we deduce (3.12). Testing (3.10) by ~z = (−→% kτn,−→u kτn) we obtain

~g(~z) · ~z

=

∫
Ω

%kτn − %k−1
τn

τ
%kτn dx+ ε‖∇%kτn‖

p
Lp(Ω;Rd)

+

∫
Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx+

∫
Ω

M(%kτn)|ukτn|2 dx

+ κ‖ukτn‖sLs(Ω;Rd) − |1− ε̃|
∫

Ω

%kτnu
k
τn · ∇%kτn dx+

∫
Ω

%kτnu
k
τn · ∇x2 dx

≥
‖%kτn‖2L2(Ω)

2τ
−
‖%k−1
τn ‖2L2(Ω)

2τ
+ ε‖∇%kτn‖

p
Lp(Ω;Rd)

+ τβ‖e(ukτn)‖2L2(Ω;Rd×d) + cµ‖%kτne(ukτn)‖2L2(Ω;Rd×d)

+M‖%kτnukτn‖2L2(Ω;Rd) + κ‖ukτn‖sLs(Ω;Rd) − |1− ε̃|
∫

Ω

|%kτnukτn||∇%kτn|dx−
∫

Ω

|%kτnukτn| |∇x2|︸ ︷︷ ︸
=1

dx

≥
‖%kτn‖

2
L2(Ω)

2τ −
‖%k−1
τn ‖

2
L2(Ω)

2τ + ε
(

1− 2
p

)
‖∇%kτn‖

p
Lp(Ω;Rd)

+ τβ‖e(ukτn)‖2L2(Ω;Rd×d) + cµ‖%kτne(ukτn)‖2L2(Ω;Rd×d)

+ M
2 ‖%

k
τnu

k
τn‖2L2(Ω;Rd) + κ‖ukτn‖sLs(Ω;Rd) +

(
p−2
p

)(
|1−ε̃|2
M

)p/(p−2)

ε−2/(p−2)Ld(Ω) + 1
MLd(Ω) .

(3.15)

Above, in the first inequality we have exploited the convexity of the L2-norm together with (3.3b) and (2.2c). Moreover, to
arrive at the second estimate, by virtue of (2.2f), (2.2g), Hölder’s and Young’s inequality, we have

|1− ε̃|
∫

Ω

|%kτnukτn||∇%kτn|dx ≤
M
4 ‖%

k
τnu

k
τn‖2L2(Ω) + 2ε

p ‖∇%
k
τn‖

p
Lp(Ω;Rd)

+
(
p−2
p

)(
|1−ε̃|2
M

)p/(p−2)

ε−2/(p−2)Ld(Ω),

and

∫
Ω

|%kτnukτn| |∇x2|︸ ︷︷ ︸
=1

dx ≤M4 ‖%
k
τnu

k
τn‖2L2(Ω) + 1

MLd(Ω).

Using that span{ej ; j = 1, . . . , n} = Xn and span{ej ; j = 1, . . . , dn} = Un, we further estimate the norms in (3.15)
via Young’s inequality as follows

‖∇%kτn‖
p
Lp(Ω;Rd)

≥ min
i=1,...,n

‖∇ei‖pLp(Ω;Rd)
‖−→% kτn‖

p
lp ≥ n

1−p min
i=1,...,n

‖∇ei‖pLp(Ω;Rd)
‖−→% kτn‖

p
l1 ,

− ‖%k−1
τn ‖2L2(Ω) ≥ − max

i=1,...,n
‖ei‖2L2(Ω;Rd)‖

−→% k−1
τn ‖

p
l2 ≥ −

1

n
max

i=1,...,n
‖ei‖2L2(Ω;Rd)‖

−→% k−1
τn ‖2l1 ,

‖ukτn‖sLs(Ω;Rd) ≥ min
i=1,...,dn

‖ei‖sLs(Ω;Rd)‖
−→u kτn‖sls ≥ (dn)1−s min

i=1,...,dn
‖ei‖sLs(Ω;Rd)‖

−→u kτn‖sl1 ,

and finally obtain

~g(~z) · ~z

≥ min

{
ε
(

1− 1
p

)
n1−p min

i=1,...,n
‖∇ei‖pLp(Ω;Rd)

, κ(dn)1−s min
i=1,...,dn

‖ei‖sLs(Ω;Rd)

}(
‖−→% kτn‖

p
l1 + ‖−→u kτn‖sl1

)
− 1

2τn
max

i=1,...,n
‖ei‖2L2(Ω;Rd)‖

−→% k−1
τn ‖2l1 .

DOI 10.20347/WIAS.PREPRINT.2786 Berlin 2020



M.H. Farshbaf-Shaker, M. Thomas 12

For this we see that condition (3.12) is satisfied when choosing

R :=

1
2τn max

i=1,...,n
‖ei‖2L2(Ω;Rd)‖

−→% k−1
τn ‖2l1

min

(
ε(1− 1

p )n1−p min
i=1,...,n

‖∇ei‖pLp(Ω;Rd)
, κ(dn)1−s min

i=1,...,dn
‖ei‖sLs(Ω;Rd)

) .

To Proposition 3.2, Item 2.: Testing (3.2a) by D%E(%kτn) and (3.2b) by ukτn, respectively, gives

0 =

∫
Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx+

∫
Ω

M(%kτn)|ukτn|2 dx+ κ

∫
Ω

|ukτn|s dx

+

∫
Ω

%kτn − %k−1
τn

τ
D%E(%kτn) dx+ ε

∫
Ω

|∇%kτn|p−2∇%kτn · ∇(x2 + ε̃%kτn) dx

≥
∫

Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx+

∫
Ω

M(%kτn)|ukτn|2 dx+ κ

∫
Ω

|ukτn|s dx+
1

τ
(E(%kτn)− E(%k−1

τn ))

+
εε̃

p
‖∇%kτn‖

p
Lp(Ω;Rd)

− εε̃1−p

p
Ld(Ω),

(3.16)

where we exploited the convexity of E(%kτn), and Hölder’s and Young’s inequalities in the form

ε

∫
Ω

(
|∇%kτn|p−2∇%kτn · ∇(x2 + ε̃%kτn)

)
dx ≥ εε̃

p

∫
Ω

|∇%kτn|p dx− εε̃1−p

p
Ld(Ω).

Now we multiply (3.16) by τ und sum up from k = 0 to K to find (3.4). �

3.2 Proof of Proposition 3.4

To a priori estimates (3.9a)–(3.9g): The estimates (3.9a), (3.9d)–(3.9g) are immediate consequences of the discrete
energy-dissipation inequality (3.8) for the interpolated solutions of system (3.7). Furthermore, we also deduce estimates
(3.9b) and (3.9c) from (3.8) by exploiting the growth property (3.3b) of µτ , i.e.,

Nτ∑
k=1

τ

∫
Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx ≥ τβ
Nτ∑
k=1

τ‖e(ukτn)‖2L2(Ω;Rd×d) + cµ

Nτ∑
k=1

τ‖%kτne(ukτn)‖2L2(Ω;Rd×d) .

To a priori estimates (3.9h)–(3.9n): Estimate (3.9h) follows from (3.9f) and (3.9g) together with a generalized Poincaré
inequality, see [Rou05, Theorem 1.32, p. 21]. Thanks to (3.9c), (3.9e), (3.9g), Hölder’s and Young’s inequalities, and the
relations (2.2f) for the exponents p and s, we obtain (3.9i):

‖div(%τnuτn)‖2L2(0,T ;L2(Ω)) ≤ ‖e(%τnuτn)‖2L2(0,T ;L2(Ω;Rd))

≤ 2‖%kτne(ukτn)‖2L2(0,T ;L2(Ω;Rd×d)) + 2

∥∥∥∥ukτn ⊗∇%kτn +∇%kτn ⊗ ukτn
2

∥∥∥∥2

L2(0,T ;L2(Ω;Rd×d))

≤ 2‖%kτne(ukτn)‖2L2(0,T ;L2(Ω;Rd×d)) +
2

p
‖∇%kτn‖

p
Lp(0,T ;Lp(Ω;Rd))

+
2

s
‖ukτn‖sLs(0,T ;Ls(Ω;Rd)) ≤ C,

where the bounds on the above three terms are provided by the immediate estimates (3.9c), (3.9g) and (3.9e). To find
(3.9j) we argue by comparison in the discrete transport equation (3.7a), which reads

〈Dτ%τn, Pl(ψ)〉Lp(0,T ;Xl)
=

∫ T

0

∫
Ω

%τnuτn · ∇Pl(ψ) dxdt− 〈Ap(%τn), Pl(ψ)〉Lp(0,T ;Xl)

=: 〈RH−Ap(%τn), Pl(ψ)〉Lp(0,T ;Xl)
,

(3.17)
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for any test function ψ ∈ Lp(0, T ;X) projected to Xl by Pl. Now, to find that ‖Dτ%τn‖(Lp(0,T ;Xl))∗ is bounded, we
show that each of the terms on the right-hand side of (3.17) is uniformly bounded. In particular, we have for all n ≥ l:

‖Dτ%τn‖(Lp(0,T ;Xl))∗ = sup
Pl(ψ)∈Lp(0,T ;Xl)

∣∣∣〈Dτ%τn, Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣
‖Pl(ψ)‖Lp(0,T ;Xl)

, (3.18)

and by (3.17) ∣∣∣〈Dτ%τn, Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣ =
∣∣∣〈(RH−Ap(%τn)), Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣ .
Now, the terms on the right-hand side are estimated via Hölder’s inequality as follows

∣∣∣〈RH, Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω

%τnuτn · ∇Pl(ψ) dxdt

∣∣∣∣∣ (3.19)

≤ ‖%τnuτn‖L2(0,T ;L2(Ω))‖∇Pl(ψ)‖L2(0,T ;L2(Ω;Rd))

≤ C‖Pl(ψ)‖Lp(0,T ;Xl),∣∣∣〈Ap(%τn), Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣ =

∣∣∣∣∣ε
∫ T

0

∫
Ω

|∇%τn|p−2∇%τn · ∇Pl(ψ) dx dt

∣∣∣∣∣ (3.20)

≤ ε‖∇%τn‖
p−1
Lp(0,T ;Lp(Ω;Rd))

‖∇Pl(ψ)‖Lp(0,T ;Lp(Ω;Rd))

≤ C‖Pl(ψ)‖Lp(0,T ;Xl) .

For the last inequality of (3.19) and (3.20) we used (3.9d) and (3.9g), respectively. This finally yields (3.9j). Estimate (3.9k)
then follows by repeating the calculations of (3.20) for 〈Ap(%τn), ψ〉Lp(0,T ;X), realizing that this expression is well-defined
for any ψ ∈ Lp(0, T ;X) thanks to a priori estimate (3.9g).

In preparation of showing (3.9l), we define a sequence of finite-dimensional subspaces Yn such that, for all n ∈ N

Yn ⊂ Yn+1 and
⋃
n∈N

Yn dense in Y := W 2,2(Ω).

By [Rou05, Remark 8.41, p. 238], we define a selfadjoint projector

PY
n : Y → Y such that PY

n (Y) = Yn and ‖PY
n ‖L(Y,Y) is bounded independently of n. (3.21)

In view of [GGZ74, Lemma 1.12., p. 144], there also holds that
⋃
n∈N C

0([0, T ];Yn) is dense in Lp(0, T ;Y) for any
1 ≤ p ≤ ∞. We will show that the operator norm given here below is uniformly bounded, again by testing (3.17), now
with functions ψ ∈ Lp(0, T ;Y).

‖Dτ%τn‖(Lp(0,T ;Y))∗ = sup
ψ∈Lp(0,T ;Y)

∣∣∣〈Dτ%τn, ψ〉Lp(0,T ;Y)

∣∣∣
‖ψ‖Lp(0,T ;Y)

.

Since PY
n is idempotent and selfadjoint PY

n
∗

= PY
n , it is∣∣∣〈Dτ%τn, ψ〉Lp(0,T ;Y)

∣∣∣ =
∣∣∣〈PY

n Dτ%τn, ψ
〉
Lp(0,T ;Y)

∣∣∣
=

∣∣∣∣〈PY
n

∗
Dτ%τn, ψ

〉
Lp(0,T ;Y)

∣∣∣∣ =
∣∣∣〈Dτ%τn, P

Y
n (ψ)

〉
Lp(0,T ;Yn)

∣∣∣ .
To find (3.9l), we now repeat the lines of (3.19) and (3.20) for the uniform estimates of the right-hand side of (3.17), also
using that

‖∇PY
n (ψ)‖Lp(0,T ;Lp(Ω;Rd)) ≤ ‖PY

n (ψ)‖Lp(0,T ;Y) ≤ ‖PY
n ‖L(Y,Y)‖ψ‖Lp(0,T ;Y),
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where ‖PY
n ‖L(Y,Y) ≤ C by (3.21). This together with the isomorphism (Lp(0, T ;Y))∗ ∼= Lp

′
(0, T ;Y∗) proves

estimate (3.9l).

To deduce (3.9m) we also argue by comparison based on (3.7b). In particular, we have

‖Aµ(%τn, uτn)‖(Ls(0,T ;U))∗ = sup
v∈Ls(0,T ;U)

∣∣∣〈Aµ(%τn, uτn), v〉Ls(0,T ;U)

∣∣∣
‖v‖Ls(0,T ;U)

.

Now we exploit (3.7b) and also make use of the selfadjoint, idempotent projector PU
n : U → Un, cf. Remark 3.1. More

precisely, since Aµ(%τn(t), ·) : U→ U∗ is a linear operator for a.a. t ∈ (0, T ), cf. (3.7e), we have∣∣∣〈Aµ(%τn, uτn), v〉Ls(0,T ;U)

∣∣∣ =
∣∣∣〈Aµ(%τn, P

U
n uτn), v

〉
Ls(0,T ;U)

∣∣∣
=

∣∣∣∣〈PU
n

∗
Aµ(%τn, uτn), v

〉
Ls(0,T ;U)

∣∣∣∣ =
∣∣∣〈Aµ(%τn, uτn), PU

n v
〉
Ls(0,T ;Un)

∣∣∣ ,
thanks to the fact that PU

n is idempotent and selfadjoint, with PU
n
∗

denoting the adjoint operator. Based on this, we further
estimate ∣∣∣〈Aµ(%τn, uτn), v〉Ls(0,T ;U)

∣∣∣ =
∣∣∣〈Aµ(%τn, uτn), PU

n (v)
〉
Ls(0,T ;Un)

∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(PU
n (v)) dx dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
Ω

M(%τn)uτn · PU
n (v) dx dt

∣∣∣∣∣︸ ︷︷ ︸
RHS1

+

∣∣∣∣∣
∫ T

0

∫
Ω

%τn∇D%E(%τn) · PU
n (v) dx dt

∣∣∣∣∣︸ ︷︷ ︸
RHS2

+

∣∣∣∣∣κ
∫ T

0

∫
Ω

|uτn|s−2uτn · PU
n (v) dxdt

∣∣∣∣∣︸ ︷︷ ︸
RHS3

.

(3.22)

We show that each of the three terms on the right-hand side of (3.22) is bounded. For the first term it is

RHS1 ≤M‖%τnuτn‖L2(0,T ;L2(Ω;Rd))‖PU
n (v)‖L2(0,T ;L2(Ω;Rd))

≤M‖%τnuτn‖L2(0,T ;L2(Ω;Rd))‖PU
n ‖L(U,U)‖v‖Ls(0,T ;U)

≤M‖%τnuτn‖L2(0,T ;L2(Ω;Rd))C̃‖v‖Ls(0,T ;U),

by virtue of the growth property (2.2c) of M(%τn), the immediate bound (3.9e) for %τnuτn and boundedness assumption
for PU

n given by Remark 3.1.

Thanks to the relations (2.2f) for the exponents p, s we find for the second term

RHS2 ≤ ‖%τn‖L2(0,T ;L2(Ω;Rd))

[
ε̃‖∇%τn‖Lp(0,T ;Lp(Ω;Rd)) + Ld(Q)1/p

]
‖PU

n (v)‖Ls(0,T ;Ls(Ω;Rd))

≤ ‖%τn‖L2(0,T ;L2(Ω;Rd))

[
ε̃‖∇%τn‖Lp(0,T ;Lp(Ω;Rd)) + Ld(Q)1/p

]
‖PU

n ‖L(U,U)‖v‖Ls(0,T ;U)

≤ C̃‖v‖Ls(0,T ;U) .

Here, we abbreviated Q := (0, T )× Ω and we also made use of the immediate bounds (3.9f), (3.9g) and boundedness
assumption for PU

n given by Remark 3.1. For the third term we have

RHS3 ≤ κ
(
s−1
s ‖uτn‖

s
Ls(0,T ;Ls(Ω;Rd)) + 1

s

)
‖PU

n ‖L(U,U)‖v‖Ls(0,T ;U) ≤ κC̃‖v‖Ls(0,T ;U),

where we used Hölder’s inequality with the exponent s together with (3.9e) and (3.21). Finally, (3.22) together with the
isomorphism (Ls(0, T ;U))∗ ∼= Ls

′
(0, T ;U∗) provides (3.9n). �
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4 Limit passage from discrete to continuous

In this Section we give the proof of our main results, the existence Theorem 2.3 and the identification Theorems 2.4 and
2.7.

4.1 Proof of Theorem 2.3: Existence of solutions in the sense of Def. 2.2

Based on the a priori bounds deduced in Proposition 3.4, we are now in the position to extract a subsequence of solutions
of the discrete problems that converges to a limit (%, u) in suitable topologies.

Proposition 4.1 (Convergence of the discrete approximants to a solution of (1.1)). Let the assumptions of Theorem 2.3
be fulfilled. Then the following statements hold true:

1 There exists a (not relabeled) subsequence of discrete solutions (%τn, uτn)τn and a limit quadruplet (%, u, ζ, Bµ)
as well as limit objects (ξl, Bp, b) such that as τ → 0 and n→∞, the following convergence results are valid

uτn ⇀ u in Ls(0, T ;Ls(Ω;Rd)), (4.1a)

|uτn|s−2uτn ⇀ ζ in Ls
′
(0, T ;Ls

′
(Ω;Rd)), (4.1b)

%τn ⇀ % in Lp(0, T ;W 1,p(Ω)), (4.1c)

Dτ%τn ⇀ ξl in (Lp(0, T ;Xl))
∗, (4.1d)

Ap(%τn) ⇀ Bp in (Lp(0, T ;X))∗, (4.1e)

div(%τnuτn) ⇀ b in L2(0, T ;L2(Ω)), (4.1f)

%τn(t) ⇀ %(t) in L2(Ω), for all t ∈ [0, T ], (4.1g)

Aµ(%τn, uτn) ⇀ Bµ in Ls
′
(0, T ;W 1,2(Ω;Rd)∗). (4.1h)

In addition to (4.1a)–(4.1h), as τ → 0 and n→∞ also the following convergence results hold true:

%τn → % in Lp(0, T ;Lp(Ω)), (4.1i)

%τn → % in Lp(0, T ;W 1,p(Ω)). (4.1j)

2 The limit quadruplet (%, u, ζ, Bµ) extracted by convergences (4.1) is a weak solution of system (1.1) in the sense
of Definition 2.2.

The proof of convergence result (4.1i) will rely on the following (discrete) Aubin-Lions type result:

Proposition 4.2 ([DJ12, Thm. 1]). Assume T > 0, N ∈ N, τ = T/N , and set tk = kτ, k = 0, . . . , N . Let X,B
and Y be Banach spaces such that the embedding X ↪→ B is compact and the embedding B ↪→ Y is continuous.
Furthermore, let either 1 ≤ p < ∞, r = 1 or p = ∞, r > 1, and let (uτ ) be a sequence of functions, which are
constant on each subinterval (tk−1, tk), satisfying

τ−1‖uτ − uτ (· − τ)‖Lr(τ,T ;Y ) + ‖uτ‖Lr(0,T ;X) ≤ C0 for all τ > 0, (4.2)

where C0 > 0 is a constant which is independent of τ . If p < ∞, then (uτ ) is relatively compact in Lp(0, T ;B). If
p = ∞, there exists a subsequence of (uτ ) which converges in each space Lq(0, T ;B), 1 ≤ q < ∞, to a limit which
belongs to C0([0, T ];B).

Proof of Prop. 4.1: The convergence results (4.1a)–(4.1h) are direct consequences of the a priori estimates (3.9) derived
in Proposition 3.4.

To verify convergence statement (4.1i) we observe that (3.9h) and (3.9l) imply the bound

‖Dτ%τn‖Lp′ (0,T ;W 2,2(Ω)∗) + ‖%τn‖Lp(0,T ;W 1,p(Ω)) ≤ C0, for all τ > 0. (4.3)
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Now, we apply Proposition 4.2 with X = W 1,p(Ω), B = Lp(Ω) and Y = W 2,2(Ω)∗. Indeed, W 1,p(Ω) embeds
compactly into Lp(Ω) and Lp(Ω) embeds continuously into W 2,2(Ω)∗. Moreover, by (2.2f) and Remark 2.1, Item 2., we
have p, p′ > 1 = r and therefore, estimate (4.3) fits with assumption (4.2). Hence, Proposition 4.2 provides (4.1i).

In order to verify Prop. 4.1, Item 2, we will pass to the limit n → ∞, τ → 0 in system (3.7) for the interpolated solutions
(%τn, uτn)τn. We carry out this procedure separately in Sections 4.1.1 and 4.1.2. To deduce the limit transport equation
(2.5a) requires to identify that 〈Bp, ψ〉Lp(0,T ;X) = 〈Ap(%), ψ〉Lp(0,T ;X) for all ψ ∈ Lp(0, T ;X) for the p-Laplacian
term defined in (3.7d) and the limit Bp obtained by convergence (4.1e). This identification is also carried out in Section
4.1.1 based on tools from convex analysis and monotone operator theory. As a result of the identification procedure, we
will also conclude the strong Lp(0, T ;W 1,p(Ω))-convergence (4.1j) for the densities. �

Remark 4.3. (Preparations for the identification argument in Theorems 2.4 & 2.7)

1 Using Proposition 4.2 with X = W 1,p(Ω), B = C(Ω) and Y = W 2,2(Ω)∗, where W 1,p(Ω) embeds compactly
into C(Ω) for p > d, and following the above line of arguments, also yields

%τn → % in Lp(0, T ;C(Ω)). (4.4)

2 The above strong convergence (4.4) together with Egorov’s theorem provides the existence of a further (not re-
labelled) subsequence that converges almost uniformly in (0, T ). More precisely, for every δ > 0, there exists a
measurable subset Icδ of (0, T ) such that L1(Icδ ) < δ, and such that

‖%τn(t)− %(t)‖C(Ω) → 0 uniformly for all t ∈ Iδ := (0, T ) \ Icδ ,

which also yields

%τn → % uniformly in Iδ × Ω. (4.5)

The above uniform convergence on Iδ ×Ω will be exploited subsequently in Section 4.2 for the identification of Bµ
and ζ as functions of the limit pair (%, u) on the non-cylindrical domains Qδν , cf. Thm. 2.4 and in Section 4.3 for
proving the non-negativity and boundedness of the limit density %, cf. Prop. 2.7.

4.1.1 Limit passage in the continuity equation and convergence result (4.1j)

In the following, we carry out the limit passage in the discrete transport equation (3.7a) by discussing each of the three
apprearing terms separately. We start with the time derivative 〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl) and subsequently address the
two remaining terms defined in (3.7c) and (3.7d).

The limit passage in the time derivative is carried out in two steps. For this, we follow the strategy of [Rou05, Proof of Thm.
8.27, p. 225ff]: Firstly, from convergence statement (4.1d), we obtain

〈ξl, Pl(ψ)〉Lp(0,T ;Xl)
= lim

τ→0
n→∞

〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)
for each l ∈ N fixed. (4.6a)

Secondly, we let l → ∞. For this, we note that ξl+1 can be regarded as an extension of ξl from Lp(0, T ;Xl)
to Lp(0, T ;Xl+1). By (4.1d), there holds ‖ξl‖(Lp(0,T ;Xl))∗ ≤ C independently of l ∈ N. Hence, by density of⋃
l∈N L

p(0, T ;Xl) inLp(0, T ;X) and since Hahn-Banach’s theorem guarantees the existence and uniqueness of a con-
tinuous extension, we conclude the existence of a functional %̇ ∈ (Lp(0, T ;X))∗ such that also ‖%̇‖(Lp(0,T ;X))∗ ≤ C .
In addition, it is %̇|Lp(0,T ;Xl) = ξl = ∂t%|Lp(0,T ;Xl) for each l ∈ N. Hence, we obtain for any ψ ∈ Lp(0, T ;X) as
l→∞

〈∂t%, ψ〉Lp(0,T ;X) = lim
l→∞

〈ξl, Pl(ψ)〉Lp(0,T ;Xl)
= lim
l→∞

(
lim
τ→0
n→∞

〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)

)
. (4.6b)

This result also allows us to conclude the regularity stated for % in (2.4), i.e., in particular

∂t% ∈ (Lp(0, T ;X))∗ ∼= Lp
′
(0, T ;X∗) . (4.6c)
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For the limit passage in the remaining terms we can simultaneously send τ → 0, n→∞, and l→∞.

We proceed with the drift term given by (3.7c). Due to (4.1i), in particular %τn → % in L2(0, T ;L2(Ω)) as τ → 0,
n→∞, and by Pτl(ψ)→ ψ in Lp(0, T ;X) as τ → 0, l→∞, we obtain

‖%∇ψ − %τn∇Pτl(ψ)‖Ls′ (0,T ;Ls′ (Ω;Rd))

≤ ‖(%τn − %)∇Pτl(ψ)‖Ls′ (0,T ;Ls′ (Ω;Rd)) + ‖%∇(Pτl(ψ)− ψ)‖Ls′ (0,T ;Ls′ (Ω;Rd))

≤ ‖(%τn − %)‖L2(0,T ;L2(Ω))︸ ︷︷ ︸
→0

‖∇Pτl(ψ)‖Lp(0,T ;Lp(Ω;Rd)) + ‖%‖L2(0,T ;L2(Ω)) ‖∇(Pτl(ψ)− ψ)‖Lp(0,T ;Lp(Ω;Rd))︸ ︷︷ ︸
→0

,

where we applied Hölder’s inequality and exploited the relations (2.2f) and Remark 2.1, Item 2., for the exponents p, s.
Hence, we have as τ → 0 and n, l→∞

%τn∇Pτl(ψ)→ %∇ψ in Ls
′
(0, T ;Ls

′
(Ω;Rd)) . (4.7)

Together with the weak Ls(0, T ;Ls(Ω))-convergence (4.1a) for the velocities we conclude∫ T

0

∫
Ω

%u∇ψ dxdt = lim
τ→0
n,l→∞

∫ T

0

∫
Ω

%τnuτn∇Pτl(ψ) dxdt , (4.8)

which gives the desired convergence result for the drift term. In addition, we here also deduce an alternative limit expres-
sion, which is obtained by performing integration by parts on the drift term and by exploiting convergence relation (4.1f);
this expression will be useful for the identification of the term Bp lateron:

lim
τ→0
n,l→∞

∫ T

0

∫
Ω

%τnuτn∇Pτl(ψ) dxdt = lim
τ→0
n,l→∞

∫ T

0

∫
Ω

−div(%τnuτn)Pτl(ψ) dxdt =

∫ T

0

∫
Ω

b ψ dxdt . (4.9)

Moreover, from convergence statement (4.1e) we directly read

〈Bp, ψ〉Lp(0,T ;X) = lim
τ→0
n,l→∞

〈Ap(%τn), Pτl(ψ)〉Lp(0,T ;Xl)
. (4.10)

Putting together (4.6b), (4.8), and (4.10) yields

〈∂t%, ψ〉Lp(0,T ;X) −
∫ T

0

∫
Ω

%u∇ψ dx dt+ 〈Bp, ψ〉Lp(0,T ;X) = 0 for all ψ ∈ Lp(0, T ;X). (4.11)

Similarly, when putting together (4.6b), (4.9), and (4.10), we obtain

〈∂t%, ψ〉Lp(0,T ;X) +

∫ T

0

∫
Ω

bψ dxdt+ 〈Bp, ψ〉Lp(0,T ;X) = 0 for all ψ ∈ Lp(0, T ;X). (4.12)

Hence, it remains to identify in (4.10), resp. (4.11), that

〈Bp, ψ〉Lp(0,T ;X)

!
= 〈Ap(%), ψ〉Lp(0,T ;X) :=

∫ T

0

∫
Ω

ε |∇%|p−2∇% · ∇ψ dxdt (4.13)

for the limit density % ∈ Lp(0, T ;X). For this, we will carry out a Minty-type argument from convex analysis and monotone
operator theory and in the course of this argument we will make use of the limit continuity equation in the form (4.12). In
preparation, we introduce the proper, lower semicontinuous, and convex functional

F : Lp(0, T ;X)→ [0,∞), F(%̃) :=

∫ T

0

∫
Ω

ε

p
|∇%̃|p dxdt , (4.14)

and observe that F is Gâteaux-differentiable with the Gâteaux-derivative DF : Lp(0, T ;X)→ Lp
′
(0, T ;X∗),

〈DF(%̃), ψ〉Lp(0,T ;X) = 〈Ap(%̃), ψ〉Lp(0,T ;X) =

∫ T

0

∫
Ω

ε|∇%|p−2∇% · ∇ψ dxdt . (4.15)
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Hence, for each %̃ ∈ Lp(0, T ;X) the convex subdifferential ∂F(%̃) of the functional F in %̃ is single-valued and coincides
with the Gâteaux-derivative, i.e., it is ∂F(%̃) = {Ap(%̃)} for all %̃ ∈ Lp(0, T ;X). By definition of the convex subdifferen-
tial, cf. e.g. [ABM06], any subgradient ξ ∈ ∂F(%̃) is characterized by the inequality 〈ξ, ψ− %̃〉Lp(0,T ;X) ≤ F(ψ)−F(%̃)
for all ψ ∈ Lp(0, T ;X). In view of these reasonings the identification (4.13) can be achieved by verifying that

〈Bp, ψ − %〉Lp(0,T ;X)

!
≤ F(ψ)− F(%) for all ψ ∈ Lp(0, T ;X) . (4.16)

To this end, in correspondence to (4.14), we also introduce for the approximating problem (3.7a) the proper, lower semi-
continuous, and convex functionals Fn : Lp(0, T ;X)→ [0,∞],

Fn(%̃) :=

{ ∫ T
0

∫
Ω
ε
p |∇%̃|

p dxdt if %̃ ∈ Lp(0, T ;Xn).

∞ else.
(4.17)

Since Lp(0, T ;Xn) is a closed subspace of Lp(0, T ;X), the convex subdifferential of Fn is given by

∂Fn(%̃) :=

{
{DFn(%̃)} = {Ap(%̃)}, if %̃ ∈ Lp(0, T ;Xn),

∅ otherwise.
(4.18)

Hence, for all τ > 0, all n ≥ l ∈ N, and for all ψ ∈ Lp(0, T ;X) there holds

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn) = 〈D%Fn(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn)

≤ Fn(Pτl(ψ))− Fn(%τn).
(4.19)

We will exploit relation (4.19) in order to deduce (4.16). More precisely, we shall verify the following chain of inequalities

F(ψ)− F(%)
(4.20-1)
≥ lim sup

l→∞
l≤n

(
lim sup
τ→0
n→∞

Fn(Pτl(ψ))
)
− lim inf

τ→0
n→∞

Fn(%τn)

≥ lim sup
l→∞
l≤n

lim sup
τ→0
n→∞

(Fn(Pτl(ψ))− Fn(%τn))


(4.19)
≥ lim inf

l→∞
l≤n

(
lim inf
τ→0
n→∞

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn)

)
(4.20-2)
≥ 〈Bp, ψ − %〉Lp(0,T ;X) .

(4.20)

In the following we will verify that above in (4.20) the first inequality marked as (4.20-1) and the fourth inequality marked as
(4.20-2) indeed hold true, while the second inequality and the third inequality directly follow from the properties of the limit
superior and the limit inferior applied to relation (4.19). Alltogether, the chain of inequalities (4.20) will thus prove (4.16), so
that (4.13) can be concluded.

To inequality (4.20-1): Since
⋃
n∈N L

p(0, T ;Xn) is dense in Lp(0, T ;X) we may deduce that the sequence of func-
tionals (Fn)n Mosco-converges to F, i.e., that (4.21) below holds true, cf. [Mos67, ABM06]. For this, consider a sequence
(ψn)n ⊂ Lp(0, T ;X) such that ψn ⇀ ψ in Lp(0, T ;X); we show that

lim inf
n→∞

Fn(ψn) ≥ F(ψ) . (4.21a)

First assume that ψn 6∈ Lp(0, T ;Xn) for all n ∈ N. Then, clearly ∞ = Fn(ψn) > F(ψ) so that (4.21a) holds
true. Assume now that there is a (not relabelled) subsequence with ψn ∈ Lp(0, T ;Xn). Along this subsequence, it is
Fn(ψn) = F(ψn) and now we may exploit the weak sequential lower semicontinuity of F to find (4.21a).

Consider now any function ψ ∈ Lp(0, T ;X). In order to conclude Mosco-convergence, we verify that there exists a
recovery sequence (ψ̂n)n ⊂ Lp(0, T ;X) such that

ψ̂n → ψ in Lp(0, T ;X) and lim sup
n→∞

Fn(ψ̂n) ≤ F(ψ) . (4.21b)
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Indeed, by the density of
⋃
n∈N L

p(0, T ;Xn) in Lp(0, T ;X) it is ensured that for each element ψ ∈ Lp(0, T ;X)

there exists a sequence (ψ̂n)n such that ψ̂n ∈ Xn and ψ̂n → ψ in Lp(0, T ;X). The first property ensures that
Fn(ψ̂n) = F(ψ̂n) < ∞ for all n ∈ N and the strong Lp(0, T ;X)-convergence then in particular provides that
Fn(ψ̂n) = F(ψ̂n) → F(ψ) as n → ∞, which proves (4.21b). In fact, the construction (3.6) of the projectors Pτl
is based on the density of

⋃
n∈N C

0([0, T ];Xn) in Lp(0, T ;X) and hence the sequence (Pτlψ)τl has the property
(4.21b). This ensures that Fn(Pτlψ)→ F(ψ) as τ → 0, and l ≤ n→∞. Moreover, we see that (4.21a) provides that
− lim infτ→0,n→∞ Fn(%τn) ≤ −F(%). This finishes the proof of inequality (4.20-1).

To inequality (4.20-2): In order to verify inequality (4.20-2) we exploit the transport equation (3.7a) for the approximants
%τn in order to rewrite the term 〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn) in (4.20), i.e., by (3.7a) we have

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn) = −
∫ T

0

∫
Ω

(Dτ%τn + div(%τnuτn))(Pτl(ψ)− %τn) dx dt, (4.22)

where we have used integration by parts for the drift term. Now we perform the limit procedure used in (4.20) with the
terms on the right-hand side of (4.22). In particular, it is

lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn)

)

= lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−(Dτ%τn + div(%τnuτn))(Pτl(ψ)− %τn) dx dt

)

≥ lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−Dτ%τn(Pτl(ψ)− %τn) dx dt

)

+ lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−div(%τnuτn)(Pτl(ψ)− %τn) dx dt

)
(4.23)

and we now discuss the limit passage separately for each of the two terms on the right-hand side of (4.23).

We start with the first term on the right-hand side of (4.23) that involves the discrete time derivative. To pass to the limit in
the first contribution therein, we repeat the arguments along with (4.6) to find

lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−Dτ%τnPτl(ψ) dxdt

)
= lim inf

l→∞

∫ T

0

∫
Ω

−ξlPl(ψ) dx dt = 〈−∂t%, ψ〉Lp(0,T ;X) .

(4.24)
To handle the second contribution we use integration in time and subsequently exploit the weak sequential lower semicon-
tinuity of the L2-norm together with convergence result (4.1g). In this way, we deduce

lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−Dτ%τn(−%τn) dxdt = lim inf
τ→0
n→∞

Nτ∑
k=1

∫
Ω

%kτn − %k−1
τn

τ
%kτn dx

≥ lim inf
τ→0
n→∞

(1

2
‖%τn(T )‖2L2(Ω) −

1

2
‖%τn(0)‖2L2(Ω)

)
≥ 1

2
‖%(T )‖2L2(Ω) −

1

2
‖%(0)‖2L2(Ω) = −

∫ T

0

∫
Ω

−∂t% %dxdt .

(4.25)

Here, the last equality in (4.25) follows by integration in time, which is feasible thanks to regularity property (4.6c). Putting
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together (4.24) and (4.25) allows us to deduce that

lim
l→∞

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−Dτ%τn(Pτl(ψ)− %τn) dxdt

)

≥ lim
l→∞

(
lim
τ→0
n→∞

〈−Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)

)
− lim inf

τ→0
n→∞

∫ T

0

∫
Ω

−∂t%τn%τn dxdt

≥ 〈−∂t%, ψ − %〉Lp(0,T ;X) .

(4.26)

Now we turn to the second term on the right-hand side of (4.23), i.e., the drift term. Thanks to Pτlψ → ψ strongly in
Lp(0, T ;X) and %τn → % in Lp(0, T ;Lp(Ω)) by (4.1i) together with div(%τnuτn) ⇀ b in L2(0, T ;L2(Ω)) by (4.1f),
we immediately conclude by weak-strong convergence arguments that

lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−div(%τnuτn)(Pτl(ψ)− %τn) dx dt

)

= lim
l→∞
l≤n

(
lim
τ→0
n→∞

∫ T

0

∫
Ω

−div(%τnuτn)Pτl(ψ) dx dt

)
+ lim
l→∞
l≤n

(
lim
τ→0
n→∞

∫ T

0

∫
Ω

div(%τnuτn)%τn dxdt

)

=

∫ T

0

∫
Ω

−b(ψ − %) dx dt.

(4.27)

Now we collect the results of (4.23), (4.26), and (4.27), and exploit the limit continuity equation (4.12) to find for all ψ ∈
Lp(0, T ;X)

lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn)

)

≥ 〈−∂t%, ψ − %〉Lp(0,T ;X) −
∫ T

0

∫
Ω

b(ψ − %) dxdt = 〈Bp, ψ − %〉Lp(0,T ;X) .

(4.28)

This finishes the proof of inequality (4.20-2).

We now recall that the deduced inequalities (4.20-1) and (4.20-2) prove the validity of the chain of inequalities (4.20),
which in turn establishes the identification (4.13), i.e., that

〈Bp, ψ〉Lp(0,T ;X) = 〈Ap(%), ψ〉Lp(0,T ;X) =

∫ T

0

∫
Ω

ε|∇%|p−2∇% · ∇ψ dxdt

for all ψ ∈ Lp(0, T ;X) in the continuity equation (4.11), resp. in (4.12) of the limit.

Proof of the strongLp(0, T ;W 1,p(Ω))-convergence (4.1j): Result (4.1i) already provides the strongLp(0, T ;Lp(Ω))-
convergence of the densities (%τn)τn. To conclude (4.1j) it remains to prove the strongLp(0, T ;Lp(Ω;Rd))-convergence
of the gradients (∇%τn)τn. This can be concluded from the following chain of inequalities

∫ T

0

∫
Ω

ε|∇%|p dx dt ≤ lim inf
τ→0
n→∞

∫ T

0

∫
Ω

ε|∇%τn|p dx dt ≤ lim sup
τ→0
n→∞

∫ T

0

∫
Ω

ε|∇%τn|p dxdt ≤
∫ T

0

∫
Ω

ε|∇%|p dx dt .

(4.29)
We note that the first inequality in (4.29) follows from the weak sequential lower semicontinuity of the functional F :
Lp(0, T ;X) from (4.14) and the weak convergence (4.1c), while the second inequality is a property of the limit inferior
and the limit superior. The third inequality in (4.29) will be verified now by once more exploiting the transport equations of
the approximating solutions (3.7a) and of the limit (4.12), and by making use of the already above deduced convergence
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relations for the time-derivative (4.25) and for the drift term (4.27). In this way, we deduce the following chain of inequalities

lim inf
τ→0
n→∞

∫ T

0

∫
Ω

ε|∇%τn|p dxdt ≤ lim sup
τ→0
n→∞

〈Ap(%τn), %τn〉Lp(0,T ;X)

(3.7a)
= lim sup

τ→0
n→∞

∫ T

0

∫
Ω

−
(
Dτ%τn + div(%τnuτn)%τn

)
dxdt

≤ − lim inf
τ→0
n→∞

∫ T

0

∫
Ω

Dτ%τn%τn dxdt− lim inf
τ→0
n→∞

∫ T

0

∫
Ω

div(%τnuτn)%τn dxdt

(4.25),(4.27)
≤ −

∫ T

0

∫
Ω

∂t% %dxdt−
∫ T

0

∫
Ω

b %dxdt

(4.12)
= 〈Ap(%), %〉Lp(0,T ;X) =

∫ T

0

∫
Ω

ε|∇%|p dxdt .

(4.30)

Putting together (4.29) and (4.30) yields the strong convergence result (4.1j). �

4.1.2 Limit passage in the momentum balance

In the following we carry out the limit passage in the weak momentum balance (3.7b). For this, we discuss each of the
terms individually. For the viscous stress defined in (3.7e), in view of its weak convergence (4.1h) in Ls

′
(0, T ;U∗) and

the strong convergence PU
n (Pτ (v))→ v in Ls(0, T ;U), we obtain

〈Bµ, v〉Ls(0,T ;U) = lim
τ→0
n→∞

〈
Aµ(%τn, uτn), PU

n (Pτ (v))
〉
Ls(0,T ;Un)

. (4.31)

For the non-quadratic viscosity, in view of the weak Ls
′
(0, T ;Ls

′
(Ω;Rd))-convergence from (4.1b) together with the

strong convergence PU
n (Pτ (v))→ v in Ls(0, T ;Ls(Ω;Rd)), we deduce that

κ

∫ T

0

∫
Ω

ζ · v dxdt = κ lim
τ→0
n→∞

∫ T

0

∫
Ω

|uτn|s−2uτn · PU
n (Pτ (v)) dxdt. (4.32)

Next, we investigate the convergence of the pressure term, i.e., we aim to show that

lim
τ→0
n→∞

∫ T

0

∫
Ω

%τn∇D%E(%τn) · PU
n (Pτ (v)) dxdt

!
=

∫ T

0

∫
Ω

%∇D%E(%) · v dxdt . (4.33)

Recall that∇D%E(%τn) = (∇x2 + ε̃∇%τn) ⇀ (∇x2 + ε̃∇%) = ∇D%E(%) in Lp(0, T ;Lp(Ω;Rd)) by (4.1c). Hence,
(4.33) will follow from the strong convergence

%τnP
U
n (Pτ (v))

!→ %v in Lp
′
(0, T ;Lp

′
(Ω,Rd)) . (4.34)

To verify (4.34), in view of assumption (2.2f) on p, s, we apply Hölder’s inequality with the exponents q := 2
p′ = s+2

s for

%τn and q′ = s+2
2 for PU

n (Pτ (v)) to find

‖%τnPU
n (Pτ (v))− %v‖Lp′ (0,T ;Lp′ (Ω,Rd))

≤ ‖(%τn − %)PU
n (Pτ (v))‖Lp′ (0,T ;Lp′ (Ω,Rd)) + ‖%(PU

n (Pτ (v))− v)‖Lp′ (0,T ;Lp′ (Ω,Rd))

≤ ‖(%τn − %)‖L2(0,T ;L2(Ω))‖PU
n (Pτ (v))‖Ls(0,T ;Ls(Ω,Rd)) + ‖%‖L2(0,T ;L2(Ω))‖(PU

n (Pτ (v))− v)‖Ls(0,T ;Ls(Ω,Rd))

≤ ‖(%τn − %)‖L2(0,T ;L2(Ω))︸ ︷︷ ︸
→0

‖PU
n (Pτ (v))‖Ls(0,T ;U) + ‖%‖L2(0,T ;L2(Ω)) ‖(PU

n (Pτ (v))− v)‖Ls(0,T ;U)︸ ︷︷ ︸
→0

,

where the convergence of the above terms follows fromPU
n (Pτ (v))→ v inLs(0, T ;U) and from the strongLp(0, T ;Lp(Ω))-

convergence (4.1i). Thus, both (4.34) and (4.33) are verified.

DOI 10.20347/WIAS.PREPRINT.2786 Berlin 2020



M.H. Farshbaf-Shaker, M. Thomas 22

It remains to discuss the convergence of the term stemming from the quadratic, lower order viscosity, i.e., we show now
that also

lim
τ→0
n→∞

∫ T

0

∫
Ω

M(%τn)uτn · PU
n (Pτ (v)) dxdt

!
=

∫ T

0

∫
Ω

M(%)u · v dx dt . (4.35)

By (4.1a) we have uτn ⇀ u in Ls(0, T ;Ls(Ω;Rd)). Thus (4.35) will follow from the strong convergence

M(%τn)PU
n (Pτ (v))

!→M(%)v in Ls
′
(0, T ;Ls

′
(Ω,Rd)) . (4.36)

To deduce (4.36) we shall apply Lebesgue’s dominated convergence theorem. For this, we observe that, along a subse-
quence,

M(%τn)PU
n (Pτ (v))→M(%)v pointwise a.e. in (0, T )× Ω, (4.37)

by strong convergence in Lebesgue-spaces. Since this limit is obtained for any convergent subsequence, we conclude that
(4.37) holds true even along the whole sequence. Moreover, by the growth properties (2.2c) of M(·) we see that

|M(%τn)PU
n (Pτ (v))| ≤M %2

τn|PU
n (Pτ (v))| a.e. in (0, T )× Ω, for all τ > 0, n ∈ N,

and we need to show that the obtained sequence of majorants (M %2
τn|PU

n (Pτ (v))|)τn satisfies

%2
τnP

U
n (Pτ (v))

!→ %2v in Ls
′
(0, T ;Ls

′
(Ω,Rd)) . (4.38)

To deduce (4.38), we now establish suitable estimates by applying Hölder’s inequality separately in space and time, again
taking into account assumption (2.2f) on the exponents p, s. More precisely, consider %̂ ∈ L∞(0, T ;L2(Ω)), %̃ ∈
Lp(0, T ;W 1,p(Ω)), and v ∈ Ls(0, T ;U). Then also %̃ ∈ Lp(0, T ;L∞(Ω)) and v ∈ L2(0, T ;Lp(Ω)), the latter
because of (2.2f). In this way we find

‖%̂%̃v‖s
′

Ls′ (0,T ;Ls′ (Ω,Rd))
=

∫ T

0

∫
Ω

|%̂%̃v|s
′
dxdt

≤
∫ T

0

(
‖%̃(t)‖s

′

L∞(Ω)

∫
Ω

|%̂(t)|s
′
|v|s

′
dx
)

dt

(1)

≤
∫ T

0

(
‖%̃(t)‖s

′

L∞(Ω)

(∫
Ω

|%̂(t)|2 dx
)s′/2(∫

Ω

|v(t)|p dx
)2/(p+2))

dt

=

∫ T

0

(
‖%̃(t)‖s

′

L∞(Ω)‖%̂(t)‖s
′

L2(Ω)‖v(t)‖s
′

Lp(Ω)

)
dt

(2)

≤ ‖%̃‖s
′

Lp(0,T ;L∞(Ω))‖%̂‖
s′

L∞(0,T ;L2(Ω))‖v‖
s′

L2(0,T ;Lp(Ω)) .

(4.39)

Above, we applied Hölder’s inequality with the exponents q1 := 2
s′ and q′1 = 2

2−s′ = p+2
2 to find estimate (1), and

estimate (2) followed by Hölder’s inequality with the exponents q2 := p
s′ and q′2 = p

p−s′ = p+2
p . Using estimate (4.39)

we further deduce

‖%2
τnP

U
n (Pτ (v))− %2v‖Ls′ (0,T ;Ls′ (Ω,Rd))

≤ ‖(%2
τn − %2)PU

n (Pτ (v))‖Ls′ (0,T ;Ls′ (Ω,Rd)) + ‖%2(PU
n (Pτ (v))− v)‖Ls′ (0,T ;Ls′ (Ω,Rd))

= ‖(%τn − %)(%τn + %)PU
n (Pτ (v))‖Ls′ (0,T ;Ls′ (Ω,Rd)) + ‖%%(PU

n (Pτ (v))− v)‖Ls′ (0,T ;Ls′ (Ω,Rd))

≤ ‖%τn − %‖Lp(0,T ;L∞(Ω))︸ ︷︷ ︸
→0

‖%τn + %‖L∞(0,T ;L2(Ω))︸ ︷︷ ︸
≤C

‖PU
n (Pτ (v))‖L2(0,T ;Lp(Ω))︸ ︷︷ ︸

≤C

+ ‖%‖Lp(0,T ;L∞(Ω))‖%‖L∞(0,T ;L2(Ω)) ‖PU
n (Pτ (v))− v‖L2(0,T ;Lp(Ω))︸ ︷︷ ︸

→0

.

(4.40)

In (4.40), convergence of the first factor follows from the strong Lp(0, T ;W 1,p(Ω))-convergence (4.1j) when taking into
account the compact embeddingW 1,p(Ω) ⊂ C0(Ω) thanks to p > d. The boundedness ‖%τn+%‖L∞(0,T ;L2(Ω)) ≤ C
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is due to the a priori bound (3.9f) which holds for all t ∈ [0, T ]. Moreover, the convergence ‖PU
n (Pτ (v))−v‖L2(0,T ;Lp(Ω)) →

0 follows from the strong convergence of the interpolants in Ls(0, T ;U) using that Ls(0, T ;U) ⊂ L2(0, T ;Lp(Ω)) by
the relations (2.2f) for p, s. This proves (4.38) and hence Lebesgue’s dominated convergence theorem yields (4.36), which
allows us to conclude (4.35).

Putting together (4.31), (4.32), (4.33), and (4.35) ultimately results in the weak momentum balance of the limit system

〈Bµ, v〉Ls(0,T ;U) +

∫ T

0

∫
Ω

M(%)u · v dx dt+ κ

∫ T

0

∫
Ω

ζ · v dx dt+

∫ T

0

∫
Ω

%∇D%E(%) · v dxdt = 0

for all v ∈ Ls(0, T ;U).

(4.41)

The identification of 〈Bµ, v〉Ls(0,T ;U) in terms of the viscous stress of the limit pair (%, u) and of ζ as the Ls
′
-nonlinearity

evaluated in the limit u is the topic of Theorem 2.4 whose proof is carried out subsequently in Section 4.2. �

4.2 Proof of Theorem 2.4: Identification of Bµ and ζ

In preparation of the proof of Theorem 2.4, we first state the following lemma, which results from the isomorphism
L2((0, T )× Ω) ∼= L2(0, T ;L2(Ω)).

Lemma 4.4. Let m ∈ N and (un)n∈N ⊂ L2(0, T ;L2(Ω,Rm)), u ∈ L2(0, T ;L2(Ω,Rm)) such that un ⇀ u in
L2(0, T ;L2(Ω,Rm)). Then for almost all t ∈ (0, T ) there holds un(t) ⇀ u(t) in L2(Ω,Rm).

Proof. We consider any test function φ = φtφx ∈ L2(0, T ;L2(Ω,Rm)) such that φt ∈ L2(0, T ) and φx ∈
L2(Ω,Rm), and show that

lim
n→∞

∣∣∣∣∣
∫ T

0

∫
Ω

(un − u)φ dx dt

∣∣∣∣∣ = 0 =⇒ for a.e. t ∈ (0, T ) : lim
n→∞

∣∣∣∣∫
Ω

(un(t)− u(t))φx dx

∣∣∣∣ = 0 .

We proceed by contradiction. Assume, there is a measurable set B ⊂ (0, T ) with L1(B) > 0 such that

for a.a. t ∈ B, for all φx ∈ L2(Ω,Rm) : lim
n→∞

∫
Ω

(un(t)− u(t))φx dx 6= 0 .

Then there exists some φx ∈ L2(Ω,Rm) and a measurable set B+ ⊂ B with L1(B+) > 0, such that

for a.a. t ∈ B+ : lim
n→∞

∫
Ω

(un(t)− u(t))φx dx > 0.

Let χB+ be the characteristic function of the set B+. Then we use φ = φtφx := χB+φx ∈ L2(0, T ;L2(Ω,Rm)) as a
test function. By Fatou’s lemma, we obtain a contradiction:

0 <

∫ T

0

lim inf
n→∞

(
χB+

∫
Ω

(un(t)− u(t))φx dx

)
dt ≤ lim inf

n→∞

∫ T

0

∫
Ω

(un(t)− u(t))χB+
φx dxdt

= lim
n→∞

∫ T

0

∫
Ω

(un(t)− u(t))φ dxdt = 0.

This proves the statement of Lemma 4.4.

We now turn to the proof of Theorem 2.4, i.e., to the identification of the termsBµ and ζ appearing in the weak momentum
balance of the limit system (2.5b), resp. (4.41) above. The identification can be carried out by restricting the set of test
functions for (2.5b) to those v ∈ Ls(0, T ;W 1,2(Ω;Rd)) supported in non-cylindrical domains Qδν , i.e., to the functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν . (4.42)
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For the readers’ convenience we here recall the definition of the non-cylindrical domains Qδν first introduced in (2.7): With
the aid of Remark 4.3, based on Aubin-Lions’ theorem and Egorov’s theorem we have

∀ δ > 0 ∃ Icδ ⊂ (0, T ) with L1(Icδ ) < δ : %τn → % uniformly in Iδ × Ω, where Iδ := (0, T )\Icδ . (4.43a)

For every δ > 0 we then define

Qδν :=
⋃
t∈Iδ

{t} × ΩLip
ν (t) ⊂ (0, T )× Ω , with (4.43b)

ΩLip
ν (t) any Lipschitz-domain such that ΩLip

ν (t) ⊂ Ων(t) and (4.43c)

Ων(t) := {x ∈ Ω, ν < %(t) < %crit − ν} for any ν > 0 . (4.43d)

Thanks to the uniform convergence of the sequence (%τn)τn on the non-cylindrical domains Qδν , it is possible to find a
uniform bound from below for the viscosity (µ(%τn))τn for all (t, x) ∈ Qδν and thus, to deduce the following result, which
will be used to ultimately verify the statements of Theorem 2.4:

Lemma 4.5. Let the assumptions of Theorem 2.4 be valid. For every δ > 0, for every ν > 0 consider the non-cylindrical
domain Qδν as in (4.43). Then, for every test function v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν there holds:∫ T

0

∫
Ω

e(uτn) : e(v) dxdt →
∫ T

0

∫
Ω

e(u) : e(v) dx dt , (4.44a)∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(v) dxdt →
∫ T

0

∫
Ω

µ(%)e(u) : e(v) dxdt , (4.44b)∫ T

0

∫
Ω

κ|uτn|s−2uτn · v dxdt →
∫ T

0

∫
Ω

κ|u|s−2u · v dx dt (4.44c)

as τ → and n→∞.

Proof. Consider the sequence (%τn, uτn)τn of approximating solutions converging to the limit pair (%, u) in the topologies
(4.1). To simplify the arguments, but without loss of generality, for the index τ > 0 we fix here a subsequence

τ = τ(n)→ 0 as n→∞ such that approximation property (4.1) is valid. (4.45)

Since our arguments will be true for any such subsequence (τ(n))n with property (4.45), they will hold true along the
original, full sequence. We write (%τn, uτn)τn also for this subsequence of approximating solutions, i.e., without indicating
this explicitely, we have in mind that τ = τ(n) as in (4.45).

From now on, for any δ > 0 and ν > 0 general but fixed, consider the non-cylindrical domain Qδν defined in (4.43).

Proof of (4.44a): Thanks to the uniform convergence (4.43a) on Qδν , we have

∃n(ν/2) ∈ N ∀n ≥ n(ν/2) ∀(t, x) ∈ Qδν :
ν

2
< %τn(t, x) < %crit −

ν

2
. (4.46)

In view of the uniform a priori bounds (3.9c) and (3.9d) this yields

∀n ≥ n(ν/2) : Mν
2 ‖uτn‖

2
L2(Qδν ;Rd) +

cµν
2 ‖e(uτn)‖2L2(Qδν ;Rd×d) ≤ C .

Thus, since the spacesL2(Qδν ;Rd) andL2(Qδν ;Rd×d) are reflexive, separable Banach spaces by Lemma 2.5, according
to Remark 2.6 there exists a (not relabelled) subsequence and a limit pair (ũ, E) ∈ L2(Qδν ;Rd)× L2(Qδν ;Rd×d) such
that

uτn ⇀ ũ in L2(Qδν ;Rd), (4.47a)

e(uτn) ⇀ E in L2(Qδν ;Rd×d). (4.47b)

By convergence result (4.1a) we already know that uτn ⇀ u in Ls(0, T ;Ls(Ω)) and hence we conclude that ũ = u.
Verifying that

E = e(u) in L2(Qδν ;Rd×d) (4.48)
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will then provide the assertion (4.44a). To deduce (4.48) we now set

fn(t, x) :=

{
uτn(t, x) for (t, x) ∈ Qδν ,

0 otherwise,
f(t, x) :=

{
u(t, x) for (t, x) ∈ Qδν ,

0 otherwise,
and (4.49a)

en(t, x) :=

{
e(uτn(t, x)) for (t, x) ∈ Qδν ,

0 otherwise,
e(t, x) :=

{
E(t, x) for (t, x) ∈ Qδν ,

0 otherwise.
(4.49b)

Then, by (4.47) there holds

fn ⇀ f in L2(0, T ;L2(Ω;Rd)) and en ⇀ e in L2(0, T ;L2(Ω;Rd×d)) , (4.50)

and Lemma 4.4 further implies that

for a.a. t ∈ (0, T ) : fn(t) ⇀ f(t) in L2(Ω;Rd) and en(t) ⇀ e(t) in L2(Ω;Rd×d) . (4.51)

In view of (4.49) and the definition of Qδν from (4.43), this is equivalent to

for a.a. t ∈ Iδ : uτn(t) ⇀ u(t) in L2(ΩLip
ν (t);Rd) and e(uτn(t)) ⇀ E(t) in L2(ΩLip

ν (t);Rd×d) . (4.52)

Using (4.52) and the fact that weak convergence implies boundedness, we find

for a.a. t ∈ Iδ ∃ C̃(t) > 0 : ‖uτn(t)‖W 1,2(ΩLip
ν (t);Rd) ≤ C̃(t) . (4.53)

Hence, for a.a. t ∈ Iδ , there exist a further t-dependent subsequence and a limit û(t) ∈W 1,2(ΩLip
ν (t);Rd) such that

uτn(t) ⇀ û(t) in W 1,2(ΩLip
ν (t);Rd). (4.54)

In view of (4.52), due to the uniqueness of the weak limit we thus conclude that

for a.a. t ∈ Iδ : û(t) = u(t) in L2(Ω;Rd) and e(û(t)) = e(u(t)) = E(t) in L2(Ω;Rd×d) . (4.55)

This proves (4.48) and thus finishes the proof of assertion (4.44a).

Proof of (4.44b): By virtue of the uniform bound (4.46) for (%τn)n on Qδν there are constants ν, ν > 0, such that

∀n ≥ n(ν/2) ∀(t, x) ∈ Qδν : ν < µτ (%ντn(t, x)) < ν . (4.56)

Moreover, by the continuity of µτ , cf. (3.3a), the convergence property (3.3c) of (µτ (%))τ , and by the uniform convergence
(4.43a) of (%τn)n on Qδν , we have

µ(%(t, x)) = lim
n→∞

µτ (%τn(t, x)) for all (t, x) ∈ Qδν . (4.57)

Consider now any test function v ∈ Ls(0, T ;W 1,2(Ω;Rd)) ⊂ L2(0, T ;W 1,2(Ω;Rd)) with the property (4.42), i.e.,
such that supp(v) ⊂ Qδν . Then, in view of (4.57) and (4.56), Lebesgue’s dominated convergence theorem implies

µτ (%τn)e(v)→ µ(%)e(v) in L2(Qδν ;Rd×d) .

Now, exploiting convergence (4.47b) and identification (4.55), we obtain in particular∫
Iδ

∫
ΩLip
ν (t)

µ(%)e(u) : e(v) dx dt = lim
n→∞

∫ T

0

∫
ΩLip
ν (t)

µτ (%τn)e(uτn) : e(v) dx dt.

for all v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v) ⊂ Qδν . This concludes the proof of assertion (4.44b).

Proof of (4.44c): By Rellich-Kondrachov’s embedding theorem, the space W 1,2(ΩLip
ν (t);Rd) is compactly imbedded in

Ls(ΩLip
ν (t);Rd) for the exponent s as in (2.2f). In view of convergence (4.52) and identification (4.55) this provides

for a.a. t ∈ Iδ : uτn(t)→ u(t) in Ls(ΩLip
ν (t);Rd) . (4.58)
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For every n ∈ N, we introduce the functions

fn : Iδ → [0,∞), fn(t) :=
∥∥|uτn(t)|s−2uτn(t)− |u(t)|s−2u(t)

∥∥
Ls′ (ΩLip

ν (t);Rd)
(4.59)

and for the sequence (fn)n we are now going to show that

fn(t)→ 0 for a.a. t ∈ Iδ , (4.60a)

fn ⇀ 0 in Ls
′
(Iδ) . (4.60b)

To (4.60a): Making use of the estimate, cf. [Kne04, (A.7)],

for each s > 2 fixed ∃ c > 0 ∀A,B ∈ Rd :
∣∣|A|s−2A− |B|s−2B

∣∣ ≤ c(|A|+ |B|)s−2|A−B| , (4.61)

we infer by (4.58) for a.a. t ∈ Iδ that

fn(t)s
′

=
∥∥|uτn(t)|s−2uτn(t)− |u(t)|s−2u(t)

∥∥s′
Ls′ (ΩLip

ν (t);Rd)

≤ cs
′∥∥(|uτn(t)|+ |u(t)|)s−2|uτn(t)− u(t)|

∥∥s′
Ls′ (ΩLip

ν (t);Rd)

≤
∥∥|uτn(t)|+ |u(t)|

∥∥s′(s−2)

Ls(ΩLip
ν (t);Rd)

‖uτn(t)− u(t)‖s
′

Ls(ΩLip
ν (t);Rd)

→ 0

(4.62)

as n→∞. This proves (4.60a).

To (4.60b): By [Els18, Satz 5.9] or [AFP06, Thm. 1.35, p. 17], for s′ ∈ (1,∞), the weak Ls
′
-convergence of a sequence

can be concluded from its convergence pointwise a.e. together with the uniform boundedness of the Ls
′
-norms. In view of

(4.60a) it thus remains to show
∃C > 0 ∀n ∈ N : ‖fn‖Ls′ (Iδ) ≤ C . (4.63)

Indeed, setting gn(t) := ‖|uτn(t)|s−2uτn(t)‖Ls′ (ΩLip
ν (t);Rd) and using the uniform bound (3.9n), we obtain

‖gτn‖Ls′ (Iδ) ≤ C. (4.64)

Moreover, gτn ≥ 0 for a.a. t ∈ Iδ . Thanks to (4.60a), we further have

gτn(t)→ g(t) := ‖|u(t)|s−2u(t)‖Ls′ (ΩLip
ν (t);Rd) for a.a. t ∈ Iδ . (4.65)

Hence, in view of (4.64), Fatou’s lemma implies

‖g‖Ls′ (Iδ) ≤ lim inf
n→∞

‖gτn‖Ls′ (Iδ) ≤ C . (4.66)

This yields (4.63), and hence the assertion (4.60b) follows.

It remains to conclude assertion (4.44c) with the aid of weak convergence (4.60b). Indeed, by (4.60b) we infer for every
v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν that∣∣∣ ∫

Iδ

∫
ΩLip
ν (t)

(
|uτn(t)|s−2uτn(t)− |u(t)|s−2u(t)

)
· v dx dt

∣∣∣ ≤ ∫
Iδ

fn(t)‖v(t)‖Ls(ΩLip
ν (t);Rd) dt→ 0 (4.67)

as n→∞, since ‖v(·)‖Ls(ΩLip
ν (t);Rd) ∈ Ls(Iδ). This gives assertion (4.44c). Thus, the proof of Lemma 4.5 is complete.

Based on Lemma 4.5 we now obtain the identification of the limit objects Bµ and ζ in the following

Corollary 4.6 (Identification of Bµ and ζ). Let the assumptions of Theorem 2.4 and Lemma 4.5 be satisfied. Then, for all
δ > 0, for all ν > 0, all non-cylindrical domains Qδν , and for every test function v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that
supp(v) ⊂ Qδν there holds:∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(PU
n (Pτ (v))) dxdt→

∫ T

0

∫
Ω

µ(%)e(u) : e(v) dx dt , (4.68a)∫ T

0

∫
Ω

κ|uτn|s−2uτn · PU
n (Pτ (v)) dxdt→

∫ T

0

∫
Ω

κ|u|s−2u · v dxdt . (4.68b)
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Hence, for all v ∈ Ls(0, T ;W 1,2(Ω),Rd) such that supp(v) ⊂ Qδν it is

〈Bµ, v〉Ls(0,T ;W 1,2(Ω):Rd) =

∫ T

0

∫
Ω

µ(%)e(u) : e(v) dxdt , (4.69a)∫ T

0

∫
Ω

κζ · v dxdt =

∫ T

0

∫
Ω

κ|u|s−2u · v dxdt (4.69b)

for the elements Bµ ∈ Ls
′
(0, T ;W 1,2(Ω,Rd)∗) and ζ ∈ Ls

′
(0, T ;Ls

′
(Ω,Rd)) appearing in the limit momentum

balance (2.5b).

Proof. We shall verify convergences (4.68), then statement (4.69) follows by comparison by the uniqueness of weak limits.

To (4.68a): With the aid of convergence result (4.44b), the uniform bound (3.9a), and the strong convergencePU
n (Pτ (v))→

v in Ls(0, T ;W 1,2(Ω,Rd)) we obtain∣∣∣ ∫ T

0

∫
Ω

(
µτ (%τn)e(uτn) : e(PU

n (Pτ (v)))− µ(%)e(u) : e(v)
)

dxdt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

(
µτ (%τn)e(uτn)− µ(%)e(u)

)
: e(v) dxdt

∣∣∣+
∣∣∣ ∫ T

0

∫
Ω

µτ (%τn)e(uτn) :
(
e(PU

n (Pτ (v)))− e(v)
)

dxdt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

(
µτ (%τn)e(uτn)− µ(%)e(u)

)
: e(v) dxdt

∣∣∣︸ ︷︷ ︸
→0

+
∥∥√µτ (%τn)e(uτn)

∥∥
L2(0,T ;L2(Ω,Rd))︸ ︷︷ ︸

≤C

∥∥e(PU
n (Pτ (v)))− e(v)

∥∥
L2(0,T ;L2(Ω,Rd×d))︸ ︷︷ ︸

→0

,

which gives (4.68a).

To (4.68b): Using convergence result (4.44c), the uniform bound (3.9n), and the strong convergence PU
n (Pτ (v))→ v in

Ls(0, T ;W 1,2(Ω,Rd)) we find∣∣∣ ∫ T

0

∫
Ω

(
|uτn|s−2uτn · PU

n (Pτ (v))− |u|s−2u · v
)

dxdt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

(
|uτn|s−2uτn − |u|s−2u

)
· v dx dt

∣∣∣+
∣∣∣ ∫ T

0

∫
Ω

|uτn|s−2uτn ·
(
PU
n (Pτ (v))− v

)
dx dt

∣∣∣
≤
∣∣∣ ∫ T

0

∫
Ω

(
|uτn|s−2uτn − |u|s−2u

)
· v dx dt

∣∣∣︸ ︷︷ ︸
→0

+
∥∥|uτn|s−2uτn

∥∥
Ls′ (0,T ;Ls′ (Ω,Rd))︸ ︷︷ ︸
≤C

∥∥PU
n (Pτ (v))− v

∥∥
Ls(0,T ;Ls(Ω,Rd))︸ ︷︷ ︸

→0

.

This proves (4.68b).

We now verify the last statement of Theorem 2.4, i.e., that the identification relations (2.8) and (2.9) holds true even for all
test functions with property (2.10), cf. (4.74). This argument is based on a more general statement, which will be applied
lateron also in a different context. Therefore, we give the argument in the following remark:

Remark 4.7 (Generalization of the identification result to test functions satisfying (2.10)). 1 The restriction of Ων(t)
to Lipschitz subdomains ΩLip

ν (t) ⊂ Ων(t) in the construction (4.43) of the non-cylindrical domains Qδν is needed
for the proof of (4.44c) in order to ensure that Rellich-Kondrachov’s embedding thorem is available to handle the
Ls-nonlinearity. Yet, [Vor10, Theorem 1] states that any open set D in Rd is a union of an ascending sequence of
bounded domains Dm with analytic boundary and such that Dm ⊂ D. In this way, for any ν > 0 it is possible to
approximate Ων(t) from the inside by unions of sets Dm with analytic boundary, which are clearly contained in the
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class of sets with Lipschitz boundary. Using a partition of unity of constructed from approximating, smooth setsDm

we obtain that (4.69) holds true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v) ⊂
⋃
t∈Iδ

{t} × Ων(t) for all δ, ν > 0 . (4.70)

Due to this, we ultimately conclude that (4.69) holds true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v) ⊂
⋃
t∈Iδ

{t} × [0 < %(t) < %crit] for all δ > 0 , (4.71)

where we used the notation (2.1).
2 Let us now consider a sequence

(δj)j∈N such that δj > 0 for all j ∈ N and δj → 0 as j →∞ . (4.72)

It is possible to apply Egorov’s theorem such that the sets Icδj ⊂ (0, T ) with L1(Icδj ) < δj form a nested de-
scending sequence, i.e., such that Icδj+1

⊂ Icδj . More precisely, by Egorov’s theorem, for each δj > 0 one finds

a set Icδj ⊂ (0, T ) such that L1(Icδj ) < δj and such that ‖%τn − %‖C(Ω) → 0 uniformly on Iδj . Subsequently,

for δj+1 > 0 one finds by Egorov’s theorem a set Icδj+1
⊂ Icδj such that L1(Icδj+1

) < δj+1 and such that

‖%τn − %‖C(Ω) → 0 uniformly on Iδj+1 . In this way one obtains

Iδj ⊂ Iδj+1
for all j ∈ N and L1((0, T )\Iδj )→ 0 as j →∞ . (4.73)

In view of (4.71) and (4.73) we now conclude that (4.69) holds true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v(t)) ⊂ [0 < %(t) < %crit] for a.a. t ∈ (0, T ) . (4.74)

Based on the ideas of Remark 4.7 we also deduce a uniform L2-bound for
√
µ(%)e(u) on the set [0 < % < %crit] ⊂

(0, T )× Ω and we obtain that e(u) ∈ L2([0 < %]):

Lemma 4.8. Let the assumptions of Theorem 2.4 hold true. Then there exists a constantC > 0, such that for all δ, ν > 0
and for every non-cylindrical domain Qδν it is

‖
√
µ(%)e(u)‖L2(Qδν ;Rd×d) ≤ C . (4.75)

Consequently, the pair (%, u) also satisfies

‖
√
µ(%)e(u)‖L2([0<%<%crit];Rd×d) ≤ C . (4.76)

Moreover, there holds
e(u) ∈ L2([ν < %]) for all ν > 0 . (4.77)

This extends the identification result (4.69), resp. (2.9), to hold true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v(t)) ⊂ [0 < %(t)] for a.a. t ∈ (0, T ) . (4.78)

Proof. To (4.75): Consider any fixed non-cylindrical domain Qδν as in (4.43). To show (4.75) we repeat the arguments of
(4.46)–(4.55) to find with the aid of the uniform convergence (4.43a) on Qδν

∃n(ν/2) ∈ N ∀n ≥ n(ν/2) ∀(t, x) ∈ Qδν :
ν

2
< %τn(t, x) < %crit −

ν

2
, (4.79)

and to find that e(uτn) ⇀ e(u) in L2(Qδν ;Rd×d). Then also

en :=

{
e(uτn) on Qδν ,

0 otherwise
⇀ e :=

{
e(u) on Qδν ,

0 otherwise
weakly in L2(0, T ;L2(Ω;Rd×d)) . (4.80)

DOI 10.20347/WIAS.PREPRINT.2786 Berlin 2020



Analysis of a compressible Stokes-flow with degenerating, non-standard viscosity 29

In addition, we set

%̂n :=

{
%τn on Qδν ,
0 otherwise.

(4.81)

Then we also have

%̂n → %̂ :=

{
% on Qδν ,
0 otherwise

uniformly in [0, T ]× Ω and strongly in Lp(0, T ;Lp(Ω)) , (4.82)

and %̂, %̂n ∈ [ν2 , %crit− ν
2 ]. We further observe that the restricted viscosities µ|[ ν2 ,%crit− ν2 ] and µτ |[ ν2 ,%crit− ν2 ], τ = τ(n),

are uniformly bounded from above and from below, and continuous, cf. (2.2b) & (3.3a). Moreover, we find an index nν ≥
n(ν/2) such that for every n ≥ nν it is τ = τ(n) < ν

2 . Thus, in view of the definitions (2.2b) & (3.3a), it is µτ (%̂n) =

µ(%̂n) for all n ≥ nν . Now [Dac12, Thm. 3.4, p. 74] ensures that the functional (%̃, ẽ) 7→
∫ T

0

∫
Ω
µ[ ν2 ,%crit− ν2 ](%̃)ẽ :

ẽdxdt is lower semicontinuous with respect to strongLp(0, T ;Lp(Ω))-convergence and weakL2(0, T ;L2(Ω;Rd×d))-
convergence. Based on the uniform bound (3.9a) we now conclude by lower semicontinuity that

C ≥ lim inf
n→∞

‖√µτ (%τn)e(uτn)‖L2(Qδν ;Rd×d) = lim inf
n→∞

‖√µ(%̂n)en‖L2(0,T ;L2(Ω;Rd×d))

≥ ‖√µ(%̂)e‖L2(0,T ;L2(Ω;Rd×d)) = ‖√µ(%)e(u)‖L2(Qδν ;Rd×d) .
(4.83)

To (4.76): To conclude (4.76) we first apply the argument of Remark (4.7), Item 1, to see that above bound (4.83)
also holds true for any noncylindrical domain

⋃
t∈Iδ{t} × Ων(t) for all δ, ν > 0. Here we also exploit the additivity

of the integral to patch together any Lipschitz-sets ΩLip1
ν (t) and ΩLip2

ν (t) in order to approximate Ων(t) from inside
for any ν > 0. Thanks to (4.83) this gives C ≥ ‖√µ(%)e(u)‖L2(∪t∈Iδ{t}×Ων(t);Rd×d) for all ν, δ > 0, and thus

C ≥ ‖√µ(%)e(u)‖L2(∪t∈Iδ{t}×[0<%(t)<%crit];Rd×d). Subsequently, we apply the argument of Remark (4.7), Item 2, to
observe that the bound remains true for a sequence δj → 0 as in (4.72) & (4.73). This yields (4.76).

To (4.77): For every ν > 0 we set Ω̃ν(t) := {x ∈ Ω, %(t) > ν} and consider any Lipschitz-subdomain Ω̃Lip
ν (t).

For each δ > 0 we have the sets Iδ ⊂ (0, T ), where the uniform convergence (4.43a) holds true. Based on this,
we further set Q̃δν := ∪t∈Iδ{t} × Ω̃ν(t). By repeating the arguments of (4.46)–(4.55) we find an index ñ(ν/2) ∈ N
such that for all n ≥ ñ(ν/2) and for all (t, x) ∈ Q̃δν we have %τn(t, x) > ν/2. This provides a weakly convergent
subsequence e(un) ⇀ e(u) in L2(Q̃δν ;Rd×d). Using the notation of (4.80), now with Q̃δν , we thus also have en ⇀ e
in L2(0, T ;L2(Ω;Rd×d)). Hence, like in (4.83), the weak lower semicontinuity of the L2(0, T ;L2(Ω;Rd×d))-norm in
combination with the uniform bound (4.76) allows us to conclude

C ≥ lim inf
n→∞

∫
Q̃δν

µ(%τn)e(uτn) : e(uτn) dx dt ≥ lim inf
n→∞

∫
Q̃δν

µ(ν/2)e(uτn) : e(uτn) dxdt

≥
∫
Q̃δν

µ(ν/2)e(u) : e(u) dx dt for all ν > 0 .

Invoking Remark 4.7 ultimately yields (4.77).

To (4.78): Here we repeat the steps of the proofs of (4.44b) and (4.44c) as well as (4.68) based on the non-cylindrical
domains Q̃δν .

4.3 Proof of Theorem 2.7: Non-negativity & boundedness of %, and refined identification of
Bµ and ζ

In this section we verify the statements of Theorem 2.7. First, we shall deduce that the density of the limit system % has
the property

0 ≤ %(t) ≤ %crit a.e. in Ω for all t ∈ [0, T ] . (4.84)

Property (4.84) will be established with the aid of two separate lemmata: In a first step, in Lemma 4.9 we show that the
velocity of the limit system satisfies e(u) = 0 on subsets B ⊂ (0, T ) × Ω, where % is strictly negative, i.e., on sets
B ⊂ [% < 0], or where it reaches or even exceeds the critical value %crit, i.e., on sets B ⊂ [% ≥ %crit], cf. notation
(2.1). This result will be deduced by investigating the convergence of the approximating velocities (uτn)τn on suitable
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non-cylindrical domains, where additional information can be drawn from the a priori bound (3.9a) by exploiting the growth
properties (3.3) of the viscosities (µτ (%τn))τn. With the aid of the information e(u) = 0 on B and suitably devised test
functions for the limit transport equation (2.5a), it will be shown in a second step in Lemma 4.10 that the sets [%(t) < 0]
and [%(t) > %crit] are Ld-null sets for all t ∈ [0, T ]. As a further step, in Lemma 4.11 it will be concluded for the case
that the viscosity exponent α > 2 in (2.2b) and 0 ≤ %0 ≤ %crit − τ0 for some τ0, that also

0 ≤ %(t) < %crit a.e. in Ω, for all t ∈ [0, T ] . (4.85)

Lemma 4.9. Let the assumptions of Theorem 2.4 be valid and assume that (%, u,Bµ, ζ) is a weak solution of (1.1) in
the sense of Definition 2.2 and Thm. 2.4, obtained by discrete approximation via scheme (3.2) and extracted from discrete
solutions (%τn, uτn)τn through convergences (4.1). Then, for all ν > 0 the following convergence information hold true

‖e(uτn)‖L2([%τn<−ν];Rd×d) → 0 as τ → 0, n→∞, (4.86a)

‖e(uτn)‖L2([%τn>%crit+ν];Rd×d) → 0 as τ → 0, n→∞. (4.86b)

and the velocity u has the property

e(u) = 0 a.e. on [% < 0] ∪ [% ≥ %crit] . (4.87)

Proof. To (4.86): Keep ν > 0 fixed and recall from (3.3a) the definition of µτ . Thus, for [%τn < −ν] the a priori estimate
(3.9a) yields

‖e(uτn)‖2L2([%τn<−ν];Rd×d) ≤
τ(n)α

ν ‖
√
µτe(uτn)‖2L2([%τn<−ν];Rd×d) ≤

Cτ(n)α

ν → 0 as τ(n)→ 0 ,

where we again used the notation of (4.45). Similarly, one finds for [%τn > %crit + ν]

‖e(uτn)‖2L2([%τn>%crit+ν];Rd×d) ≤
τ(n)α|%crit−τ |

ν̃ν ‖√µτe(uτn)‖2L2([%τn>%crit+ν];Rd×d) <
Cτ(n)α%crit

ν̃ν → 0

as τ(n)→ 0. Hence (4.86) is verified.

To (4.87): For each δ > 0 and every ν > 0, we define the non-cylindrical domains B•δ,ν with • ∈ {−,+} by

B•δ,ν :=
⋃
t∈Iδ

{t} × Ω•ν(t) ⊂ [0, T ]× Ω,

where Ω−ν (t) := {x ∈ Ω | %(t) < −ν} and Ω+
ν (t) := {x ∈ Ω | %(t) > %crit − ν} for suitably small ν > 0. By virtue

of a priori estimate (3.9a), we obtain in particular for B•δ,ν , • ∈ {−,+},∥∥√µτ (%τn) e(uτn)
∥∥
L2(B•;Rd×d)

≤ C. (4.88)

In the following we work again with a subsequence τ = τ(n) as defined in (4.45). In this notation, due to the uniform
convergence (4.43a), we have

∃n(ν/2) ∈ N ∀n ≥ n(ν/2) ∀(t, x) ∈ B−δ,ν : %τn(t, x) < −ν
2
, (4.89a)

∃n(ν/2) ∈ N ∀n ≥ n(ν/2) ∀(t, x) ∈ B+
δ,ν : %τn(t, x) > %crit −

ν

2
. (4.89b)

In view of the definition (3.3a) of the viscosity µτ , estimate (4.88) implies for B−δ,ν∫
Iδ

∫
Ω−ν (t)

|%τn|ν̃
%αcrit

e(uτn) : e(uτn) dxdt︸ ︷︷ ︸
≥0

+

∫
Iδ

∫
Ω−ν (t)

1

τα
|%τn|2 e(uτn) : e(uτn) dxdt︸ ︷︷ ︸

≥0

+

∫
Iδ

∫
Ω−ν (t)

τβ e(uτn) : e(uτn) dx dt︸ ︷︷ ︸
≥0

≤ C . (4.90)
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Applying (4.89a) to the second term of (4.90) we obtain∫
B−δ,ν

e(uτn) : e(uτn) dx dt =

∫
Iδ

∫
Ω−ν (t)

e(uτn) : e(uτn) dxdt ≤ 4C

ν2
τα . (4.91)

With similar ideas we now deduce a uniform L2-estimate for e(uτn) on B+
δ,ν . In view of (4.89b), for all t ∈ Iδ and for all

n ≥ n(ν/2) the set Ω+
ν (t) can be decomposed as follows:

Ω+
ν (t) =

(
Ω+
ν (t) ∩ [%τn(t) ≥ %crit − τ ]

)
∪
(
Ω+
ν (t) ∩ [%τn(t) < %crit − τ ]

)
=
(
Ω+
ν (t) ∩ [%τn(t) ≥ %crit − τ ]

)
∪
(
Ω+
ν (t) ∩ [%crit − ν

2 < %τn(t) < %crit − τ ]
)
.

(4.92)

Thus, for all n ≥ n(ν/2) decomposition (4.92) together with the definition (3.3a) of the viscosity µτ and estimate (4.88)
yields

C ≥
∫
B+
δ,ν

µτ (%τn) e(uτn) : e(uτn) dxdt

=

∫
Iδ

∫
Ω+
ν (t)∩[%τn(t)≥%crit−τ ]

ν̃|%τn|2

τα|%crit − τ |
e(uτn) : e(uτn) dxdt︸ ︷︷ ︸

≥0

+

∫
Iδ

∫
Ω+
ν (t)∩[%τn(t)≥%crit−τ ]

τβ e(uτn) : e(uτn) dxdt︸ ︷︷ ︸
≥0

+

∫
Iδ

∫
Ω+
ν (t)∩[%crit− ν2<%τn(t)<%crit−τ ]

|%τn|ν̃
(%crit − %τn)α

e(uτn) : e(uτn) dxdt︸ ︷︷ ︸
≥0

+

∫
Iδ

∫
Ω+
ν (t)∩[%crit− ν2<%τn(t)<%crit−τ ]

τβ e(uτn) : e(uτn) dxdt︸ ︷︷ ︸
≥0

.

(4.93)

To estimate (4.93) from below we disregard the second and the fourth term on its right-hand side. For the first term we see

that ν̃|%τn(t)|2
τα|%crit−τ | ≥

ν̃|%crit−τ |
τα >

ν̃|%crit− ν2 |
τα on Ω+

ν ∩ [%τn(t) ≥ %crit − τ ]. For the third term on the right-hand side of (4.93)

we have that |%τn(t)|ν̃
(%crit−%τn(t))α >

ν̃|%crit− ν2 |
τα on Ω+

ν ∩ [%crit − ν
2 < %τn(t) < %crit − τ ]. Altogether this gives∫

B+
δ,ν

e(uτn) : e(uτn) dxdt =

∫
Iδ

∫
Ω+
ν (t)

e(uτn) : e(uτn) dxdt <
Cτα

ν̃|%crit − ν
2 |
. (4.94)

Based on the uniform estimates (4.91) and (4.94) we may repeat the arguments of (4.47)–(4.55) in the proof of Lemma
4.5 in order to extract a (not relabelled) subsequence (uτn)n with the properties

uτn ⇀ u in L2(B•δ,ν ;Rd) and e(uτn) ⇀ e(u) in L2(B•δ,ν ;Rd×d) . (4.95)

Moreover, in the notation of (4.49b) we have that

en ⇀ e :=

{
e(u) on B•δ,ν ,

0 on ((0, T )× Ω)\B•δ,ν ,
weakly in L2(0, T ;L2(Ω)) .

Hence, we find by weak sequential lower semicontinuity of the L2(0, T ;L2(Ω))-norm∫
Iδ

∫
Ω•ν(t)

e(u) : e(u) dxdt =

∫ T

0

∫
Ω

e : e dxdt

≤ lim inf
n→∞

∫ T

0

∫
Ω

en : en dx dt = lim inf
n→∞

∫
Iδ

∫
Ω•ν(t)

e(uτn) : e(uτn) dxdt ≤ lim
n→∞

L(±) τ(n)α = 0 ,
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with L(−) := 4C
ν2 and L(+) := C

ν̃|%crit− ν2 |
. This gives e(u) = 0 a.e. onB•δ,ν for • ∈ {−,+}, for all δ > 0 and all ν > 0.

For every δ > 0 and all t ∈ Iδ we further notice that [%(t) < 0] =
⋃
ν>0 Ω−ν (t) and [%(t) ≥ %crit] =

⋂
ν>0 Ω+

ν (t).
Choosing now a sequence (δj)j∈N such that δj → 0 as j → ∞, as outlined in Remark 4.7, Item 2, we see that
[% < 0] =

⋃
j∈N

⋃
t∈Iδj

[%(t) < 0] in L1-measure as well as [% ≥ %crit] =
⋃
j∈N

⋃
t∈Iδj

[%(t) ≥ %crit] in L1-

measure. In this way we conclude (4.87).

Information (4.86) in particular provides that

‖ div uτn‖L2(Sντn) → 0 for Sντn ∈ {[%τn < −ν], [%τn ≥ %crit + ν]}, for any ν > 0 . (4.96)

This will be used to ultimately infer the statements of Proposition 2.7. More precisely, we will show in Lemma 4.10 and
Lemma 4.11 that the sets [% < 0] and [% ≥ %crit] are Ld+1-null sets. This will be achieved by testing the discrete
transport equation (3.7a) with suitably devised test functions and by exploiting information (4.96) together with the strong
Lp(0, T ;W 1,p(Ω))-convergence (4.1j) of the approximating sequence (%τn)τn when letting τ = τ(n) → 0 and n →
∞.

Lemma 4.10. Let the assumptions of Lemma 4.9 be valid and let p ≥ 4. Further assume that the initial datum has the
property

%0 ∈ L2(Ω) , such that 0 ≤ %0 ≤ %crit a.e. in Ω . (4.97)

Then, for all t ∈ [0, T ], the sets [%(t) < 0] and [%(t) > %crit] are Ld-null sets, i.e.,

Ld([%(t) < 0]) = 0 for all t ∈ [0, T ] , (4.98a)

Ld([%(t) > %crit]) = 0 for all t ∈ [0, T ] . (4.98b)

Proof. In order to verify the assertion (4.98) one would like to test the transport equation (2.5a), here

〈∂t%, ψ〉Lp(0,T ;W 1,p(Ω)) −
∫ T

0

∫
Ω

(%u) · ∇ψ dx dt+

∫ T

0

∫
Ω

ε|∇%|p−2∇% · ∇ψ dx dt = 0 (4.99)

by functions of the type ψ := max{%, a} or ψ := min{%, a} for a constant a ∈ R and % ∈ Lp(0, T ;W 1,p(Ω)). We
note that the functions max{·, a} : R → R and min{·, a} : R → R are Lipschitz-continuous functions. Thus [MM79]
ensures that their composition with an Lp(0, T ;W 1,p(Ω))-function again results in an Lp(0, T ;W 1,p(Ω))-function.
However, to handle the drift term in (4.99) would require an integration by parts in space, which is not admissible for the
limit problem because it is not clear that (%(t)u(t)) ∈ H1(Ω;Rd) for all of Ω, for a.e. t ∈ (0, T ). Therefore we instead
resort to the discrete equation (3.7a), where, for all τ = τ(n) > 0 and n ∈ N fixed µτ from (3.3a) provides the needed
information (%τn(t)uτn(t)) ∈ H1(Ω;Rd), for a.a. t ∈ (0, T ). Yet, in the space-discrete setting the above described
functions involving the cut-off by max or min, denoted here for brevity by Ψ′(%), are not admissible test functions for the
discrete transport equation (3.7a). To make it admissible, we shall apply the projector Pτl : Lp(0, T ;X)→ Lp(0, T ;Xl)
from (3.6) to such a function and then we use the projected function as a test function for (3.7a). More precisely, with the
function Ψ′(·) denoting the functions involving the cut-off by max or min, and for % a solution of (2.5a), we define the
function

Ψ′t∗(t, %(t)) :=

{
Ψ′(%(t)) if t ∈ [0, t∗],

0 if t ∈ (t∗, T ],
(4.100)

and applying the Pτl : Lp(0, T ;X) → Lp(0, T ;Xl) to Ψ′t∗(t, %(t)) yields the function PτlΨ′t∗(·, %), which is an
admissible test function for (3.7a) for any n ≥ l ∈ N. This results in〈

Dτ%τn, Pτl(Ψ
′
t∗(·, %))

〉
Lp(0,T ;Xl)

−
∫ T

0

∫
Ω

%τn(t)uτn(t) · ∇Pτl(Ψ′t∗(t, %(t))) dx dt

+

∫ T

0

∫
Ω

ε|∇%τn(t)|p−2∇%τn(t) · ∇Pτl(Ψ′t∗(t, %(t))) dxdt = 0 .

(4.101)

Yet, in (4.101) it is neither possible to integrate the first term in time nor to judge about the sign of the p-Laplacian term.
Both steps would be possible if Pτl(Ψ′t∗(·, %)) is replaced by

Ψ′t̄τ (t∗)
(t, %τn(t)) :=

{
Ψ′(%τn(t)) if t ∈ [0, t̄τ (t∗)],

0 if t ∈ (t̄τ (t∗), T ],
(4.102)
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where we used the notation (3.5). Therefore, we shall add to (4.101) the desired terms and subtract them again for
compensation. Morally, we would test each of the terms in (3.7a) by Ψ′t̄τ (t∗)

(·, %τn), then add and subtract the re-

sulting terms to (4.101). At this point, we note that 〈Dτ%τn,Ψ
′
t̄τ (t∗)

(·, %τn)〉Lp(0,T ;Xl) is well-defined for all τ > 0,

n ∈ N fixed, since Ψ′t̄τ (t∗)
(·, %τn) ∈ Lp(0, T,W 1,p(Ω)). But we cannot obtain any information about the conver-

gence of this term, because a priori estimate (3.9j) only provides uniform boundedness of (Dτ%τn)τn in (Lp(0, T ;Xl))
∗

but not in (Lp(0, T ;X))∗, where X = W 1,p(Ω). Therefore, instead of adding and subtracting to (4.101) the term
〈Dτ%τn,Ψ

′
t̄τ (t∗)

(·, %τn)〉Lp(0,T ;Xl), we will use the time-integrated version of it. To be more specific about this, let us

suppose that Ψ′t∗(·, ρ) and Ψ′t̄τ (t∗)
(·, ρ) are defined by the function Ψ(·) as in (4.100) and (4.102), and that these

functions have the following properties for all ρ ∈ Lp(0, T ;W 1,p(Ω)):

Ψ′t∗(t, ρ(t)) = 0 a.e. in Ω, for all t ∈ (t∗, T ], for any t∗ ∈ (0, T ) general but fixed, (4.103a)

Ψ′t̄τ (t∗)
(t, ρ(t)) = 0 a.e. in Ω, for all t ∈ (t̄τ (t∗), T ], (4.103b)

Ψ′,Ψ′t∗(t, ·) : Lp(0, T ;W 1,p(Ω))→ Lp(0, T ;W 1,p(Ω)) are continuous for all t ∈ [0, T ] , (4.103c)

Ψ′ is the derivative of the convex, continuous function Ψ : R→ R , (4.103d)

Ψ′′(ρ(t, x)) ≥ 0 for a.a. (t, x) ∈ (0, T )× S(ρ(t)) and Ψ′′(ρ(t, x)) = 0 otherwise . (4.103e)

Hence, by properties (4.103b) and (4.103d) we find that〈
Dτ%τn,Ψ

′
t̄τ (t∗)

(·, %τn)
〉
Lp(0,T ;Xn)

≥ ‖Ψ(%τn(t̄τ (t∗)))‖L1(Ω) − ‖Ψ(%τn(0))‖L1(Ω)

= ‖Ψ(%τn(t∗))‖L1(Ω) − ‖Ψ(%τn(0))‖L1(Ω) ,
(4.104)

where we exploited the convexity of Ψ and used the notation (3.5d). Thanks to the well-preparedness of the initial data and
the strong L2(Ω)-convergence (4.1g) of (%τn)τn pointwise for all t ∈ [0, T ] together with (4.103d) we further deduce
that

‖Ψ(%τn(t∗))‖L1(Ω) − ‖Ψ(%τn(0))‖L1(Ω) → ‖Ψ(%(t∗))‖L1(Ω) − ‖Ψ(%(0))‖L1(Ω) (4.105)

as n → ∞, where we work again with a subsequence τ = τ(n) as defined in (4.45). In view of this, we will add and
subtract to (4.101) directly the limit terms on the right-hand side of (4.105). In this way, we get

‖Ψ(%(t∗))‖L1(Ω) − ‖Ψ(%(0))‖L1(Ω) −
∫ t̄τ (t∗)

0

∫
Ω

%τnuτn · ∇Ψ′t̄τ (t∗)
(t, %τn) dxdt

(4.106a)

+

∫ t̄τ (t∗)

0

∫
Ω

ε|∇%τn|p−2∇%τn · ∇Ψ′t̄τ (t∗)
(t, %τn) dxdt+

3∑
j=1

Rj,nl = 0, where

R1,nl :=
〈
Dτ%τn, Pτl(Ψ

′
t∗(%))

〉
Lp(0,T ;Xl)

−
(
‖Ψ(%(t∗))‖L1(Ω) − ‖Ψ(%(0))‖L1(Ω)

)
, (4.106b)

R2,nl := −
∫ t̄τ (t∗)

0

∫
Ω

%τnuτn · ∇
(
Pτl(Ψ

′
t∗(%))−Ψ′t̄τ (t∗)

(t, %τn)
)

dxdt , (4.106c)

R3,nl :=

∫ t̄τ (t∗)

0

∫
Ω

ε|∇%τn|p−2∇%τn · ∇
(
Pτl(Ψ

′
t∗(%))−Ψ′t̄τ (t∗)

(t, %τn)
)

dxdt . (4.106d)

For the sum of the error terms in (4.106a) we shall verify below that

3∑
j=1

Rj,nl → 0 as n ≥ l→∞ . (4.107)

We now discuss the treatment of the remaining two terms in (4.106a). In view of (4.103e) we readily observe for the
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p-Laplacian term in (4.106a)∫ t̄τ (t∗)

0

∫
Ω

ε|∇%τn|p−2∇%τn · ∇Ψ′t̄τ (t∗)
(t, %τn) dx dt

=

∫ t̄τ (t∗)

0

∫
S(%τn(t))

ε|∇%τn|p−2∇%τn ·Ψ′′(%τn)∇%τn dxdt

=

∫ t̄τ (t∗)

0

∫
S(%τn(t))

ε|∇%τn|p Ψ′′(%τn) dxdt ≥ 0 .

(4.108)

For the drift term we are now in the position to apply integration by parts in space and with the function Ψ′(%τn) precisely
tailored to the two cases (4.98a) and (4.98b) it will be the goal to show that, as n→∞,∣∣∣∣∣−

∫ t̄τ (t∗)

0

∫
Ω

%τnuτn · ∇Ψ′t̄τ (t∗)
(t, %τn) dx dt

∣∣∣∣∣ ≤ c ‖div(uτn)‖L2(S(%τn)) → 0 , (4.109)

where the convergence ‖div(uτn)‖L2(S(%τn)) → 0 follows from information (4.86) for S(%τn) = [%τn < −ν] or
S(%τn) = [%τn > %crit + ν] for any ν > 0.

Now, putting together (4.106a) and (4.107)–(4.109) leads to the following estimate

‖Ψ(%(t∗))‖L1(Ω) ≤ ‖Ψ(%(0))‖L1(Ω) +
∣∣∣ 3∑
j=1

Rj,nl

∣∣∣+ c ‖div(uτn)‖L2(S(%τn))

=
∣∣∣ 3∑
j=1

Rj,nl

∣∣∣+ c ‖div(uτn)‖L2(S(%τn)) −→ 0 as n ≥ l→∞ ,

(4.110)

given that the initial datum satisfies ‖Ψt∗(%(0))‖L1(Ω) = 0. In the limit we thus have

‖Ψ(%(t∗))‖L1(Ω) = 0 , (4.111)

and for suitably tailored functions Ψt∗ ,Ψ this will result in the information (4.98a) and (4.98b).

Proof of the convergence (4.107) of the error terms: We have %τn → % strongly in Lp(0, T ;W 1,p(Ω)) by (4.1j).
Since the function Ψ′ : Lp(0, T ;W 1,p(Ω)) → Lp(0, T ;W 1,p(Ω)) is continuous, there also holds Ψ′(%τn) → Ψ′(%)
in Lp(0, T ;W 1,p(Ω)) as well as Ψ′t̄τ (t∗)

(·, %τn) → Ψ′t∗(·, %). Furthermore, by the approximation properties of the

projector we then also have PτnΨ′t∗(·, %) → Ψ′t∗(·, %) in Lp(0, T ;W 1,p(Ω)). Then, the subsequent estimates will
allow us to conclude (4.107). We start withR1. For this, we may first repeat the arguments of (4.6) and subsequently apply
integration by parts in time to arrive that

lim
l→∞

lim
n→∞
n≥l
〈Dτ%τn, Pτl(Ψ

′
t∗(·, %))〉Lp(0,T ;Xl) = 〈∂t%,Ψ′t∗(·, %)〉Lp(0,T ;X) = ‖Ψ(%(t∗))‖L1(Ω) − ‖Ψ(%(0))‖L1(Ω) .

In view of (4.106b) this shows that R1,nl → 0 as n ≥ l→∞.

For the error term R2,nl we deduce via Hölder’s inequality and with the aid of a priori estimate (3.9d) together with the
strong Lp(0, T ;W 1,p(Ω))-convergence of PτnΨ′t∗(·, %)−Ψ′t̄τ (t∗)

(·, %τn) that

|R2,nl| =
∣∣∣∣−∫ t∗

0

∫
Ω

%τnuτn · ∇
(
Pτl(Ψ

′
t∗(t, %))−Ψ′t̄τ (t∗)

(t, %τn)
)

dx dt

∣∣∣∣
≤ ‖%τnuτn‖L2(0,T ;L2(Ω;Rd))

∥∥∇(Pτl(Ψ′t∗(·, %))−Ψ′t̄τ (t∗)
(·, %τn)

)∥∥
L2(0,T ;L2(Ω;Rd))

≤ C
∥∥∇(Pτl(Ψ′t∗(·, %))−Ψ′t̄τ (t∗)

(·, %τn)
)∥∥
L2(0,T ;L2(Ω;Rd))

→ 0 as n ≥ l→ 0 .

With similar arguments also the convergence of R3,nl follows, now exploiting a priori estimate (3.9k), resp. (3.9g)

|R3,nl| ≤ ‖∇%τn‖
p−1
Lp(0,T ;X)

∥∥∇(Pτl(Ψ′t∗(·, %))−Ψ′t̄τ (t∗)
(·, %τn)

)∥∥
Lp(0,T ;Lp(Ω;Rd))

≤ C
∥∥∇(Pτl(Ψ′t∗(·, %))−Ψ′t̄τ (t∗)

(·, %τn)
)∥∥
Lp(0,T ;Lp(Ω;Rd))

→ 0 as n ≥ l→ 0 .
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Thus, (4.107) is verified.

To (4.98a): We apply the reasoning (4.101)–(4.111) with the function

Ψ′t∗(t, ρ(t)) = (ρ(t))ν−,t∗ :=

{
(ρ(t))ν− for t ∈ [0, t∗],

0 for t ∈ (t∗, T ],
where (ρ(t))ν− := min{ρ(t) + ν, 0} (4.112)

for any ν > 0. We note that (ρ)ν−,t∗ ∈ L
p(0, T ;W 1,p(Ω)) for any ρ ∈ Lp(0, T ;W 1,p(Ω)), for all t∗ ∈ [0, T ] and all

ν > 0. As outlined in (4.101) we test the discrete transport equation (3.7a) by PτlΨ′t∗(%) with % ∈ Lp(0, T ;W 1,p(Ω))
a solution of (2.5a). Moreover, we carry out the steps (4.101)–(4.111) also with Ψ′t̄τ (t∗)

(%τn) = (%τn)−,t̄τ (t∗) as defined

in (4.102). To arrive at (4.111) we have to verify for the functions Ψ′t∗(t, ρ(t)) := (ρ(t))ν−,t∗ defined in (4.112) and
Ψ′t̄τ (t∗)

(t, %τn) = (%τn)ν−,t̄τ (t∗)
that properties (4.103) hold true and that the drift term can be estimated as claimed in

(4.109).

To properties (4.103) for Ψ′t∗ from (4.112): Clearly, by definition (4.112) property (4.103a) is valid and similarly, properties
(4.103b) and (??) are valid for Ψ′t̄τ (t∗)

by definition (4.102). Moreover, the function Ψ′(•) := (•)ν− = min{• + ν, 0}
is Lipschitz continuous and thus the map Ψ′t∗ : [0, T ] × Lp(0, T ;W 1,p(Ω)) → Lp(0, T ;W 1,p(Ω)) from (4.112) is
continuous, which is (4.103c). We further observe that the primitive and the derivative of Ψ′t∗ are given by

Ψt∗(t, ρ(t)) :=

{
1
2 ((ρ(t))ν−)2 for t ∈ [0, t∗],
0 for t ∈ (t∗, T ],

(4.113a)

Ψ′′t∗(t, ρ(t)) :=

 1 if ρ(t) < −ν and for t ∈ [0, t∗],
0 if ρ(t) ≥ −ν and for t ∈ [0, t∗],
0 for t ∈ (t∗, T ] .

(4.113b)

From (4.113a) we see that Ψ(•) := 1
2 ((•)ν−)2 is continuous for t ∈ [0, t∗]. Moreover (4.113b) yields (4.103e) with

S(ρ(t)) := [ρ(t) < −ν], which then also provides the convexity of Ψ and thus finishes the proof of property (4.103d).

To estimate (4.109) for the drift term: For Ψ′t̄τ (t∗)
(t, %τn(t)) := (%τn(t))ν−,t̄τ (t∗)

from (4.112) the expression (4.109)

can now be handled using integration by parts in space, also exploiting that uτn(t) = 0 on ∂Ω for a.a. t ∈ (0, T ), i.e.,∣∣∣− ∫ t̄τ (t∗)

0

∫
Ω

%τnuτn · ∇Ψ′t̄τ (t∗)
(t, %τn) dxdt

∣∣∣ =
∣∣∣− ∫ t̄τ (t∗)

0

∫
Ω

%τnuτn · ∇(%τn)ν− dxdt
∣∣∣

=
∣∣∣− ∫ t̄τ (t∗)

0

∫
Ω

(%τn + ν)uτn · ∇(%τn)ν− dx dt+

∫ t̄τ (t∗)

0

∫
Ω

νuτn · ∇(%τn)ν− dxdt
∣∣∣

=
∣∣∣− ∫ t̄τ (t∗)

0

∫
Ω

uτn · ∇
((%τn)ν−)2

2
dxdt+

∫ t̄τ (t∗)

0

∫
Ω

νuτn · ∇(%τn)ν− dxdt
∣∣∣

≤
∣∣∣ ∫ t̄τ (t∗)

0

∫
Ω

div(uτn)
((%τn)ν−)2

2
dxdt−

∫ t̄τ (t∗)

0

∫
∂Ω

(uτn · ~n)
((%τn)ν−)2

2
dHd−1 dt

∣∣∣
+
∣∣∣ ∫ t̄τ (t∗)

0

∫
Ω

ν div(uτn)(%τn)ν− dx dt−
∫ t̄τ (t∗)

0

∫
∂Ω

ν(uτn · ~n)(%τn)ν− dHd−1 dt
∣∣∣

=
∣∣∣ ∫ t̄τ (t∗)

0

∫
[%τn(t)<−ν]

div(uτn)
((%τn)ν−)2

2
dxdt

∣∣∣+
∣∣∣ ∫ t̄τ (t∗)

0

∫
[%τn<−ν]

ν div(uτn)(%τn)ν− dxdt
∣∣∣

≤ ‖div(uτn)‖L2([%τn(t)<−ν])

(
1
2‖((%τn)ν−)2‖L2(0,T ;L2(Ω)) + ν‖(%τn)ν−‖L2(0,T ;L2(Ω))

)
= c‖ div(uτn)‖L2([%τn<−ν]) → 0 as n→∞

(4.114)

by information (4.86a) and thanks to the assumptions p ≥ 4 and %0 ≥ 0 a.e. in Ω by (4.97). This proves (4.109). Now the
validity of properties (4.103) and (4.109) provides (4.111), i.e., that ‖Ψ(%(t∗))‖L1(Ω) = ‖(%(t∗))

ν
−‖L1(Ω) = 0, which

gives (4.98a).

To (4.98b): Now, we apply the reasoning (4.101)–(4.111) using the function

Ψt∗(t, ρ(t)) = (%(t))νcrit+,t∗ :=

{
(ρ(t))νcrit+ for t ∈ [0, t∗],

0 for t ∈ (t∗, T ],
where (ρ(t))νcrit+ := max{ρ(t)− %crit − ν, 0}

(4.115)
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and to arrive at (4.111) we have to show that Ψt∗(t, ρ(t)) = (%(t))νcrit+,t∗
and Ψt̄τ (t∗)(t, ρ(t)) = (%(t))νcrit+,t̄τ (t∗)

satisfy properties (4.103) and that estimate (4.109) holds true.

To properties (4.103) for Ψt∗ from (4.115): Here, the primitive and the derivative are given by

Ψt∗(t, ρ(t)) :=

{
1
2 ((ρ(t))νcrit+)2 for t ∈ [0, t∗],
0 for t ∈ (t∗, T ],

(4.116a)

Ψ′′t∗(t, ρ(t)) :=

 1 if ρ(t) > %crit + ν and for t ∈ [0, t∗],
0 if ρ(t) ≤ %crit + ν and for t ∈ [0, t∗],
0 for t ∈ (t∗, T ] .

(4.116b)

Now similar arguments as for (4.112) provide properties (4.103) also for Ψt∗ from (4.115).

To estimate (4.109) for the drift term: Very similar calculations via integration by parts in space, as in (4.114), also here
result in∣∣∣− ∫ t̄τ (t∗)

0

∫
Ω

%τnuτn · ∇Ψ′t̄τ (t∗)
(t, %τn) dx dt

∣∣∣ =
∣∣∣− ∫ t̄τ (t∗)

0

∫
Ω

%τnuτn · ∇(%τn)νcrit+ dx dt
∣∣∣

=
∣∣∣− ∫ t̄τ (t∗)

0

∫
Ω

(%τn − %crit − ν)uτn · ∇(%τn)νcrit+ dx dt−
∫ t̄τ (t∗)

0

∫
Ω

(%crit + ν)uτn · ∇(%τn)νcrit+ dxdt
∣∣∣

=
∣∣∣− ∫ t̄τ (t∗)

0

∫
Ω

uτn · ∇
((%τn)νcrit+)2

2
dx dt−

∫ t̄τ (t∗)

0

∫
Ω

(%crit + ν)uτn · ∇(%τn)νcrit+ dxdt
∣∣∣

≤
∣∣∣ ∫ t̄τ (t∗)

0

∫
Ω

div(uτn)
((%τn)νcrit+)2

2
dx dt−

∫ t̄τ (t∗)

0

∫
∂Ω

(uτn · ~n)
((%τn)νcrit+)2

2
dHd−1 dt

∣∣∣
+
∣∣∣ ∫ t̄τ (t∗)

0

∫
Ω

(%crit + ν) div(uτn)(%τn)νcrit+ dxdt+

∫ t̄τ (t∗)

0

∫
∂Ω

(%crit + ν)(uτn · ~n)(%τn)νcrit+ dHd−1 dt
∣∣∣

=
∣∣∣ ∫ t̄τ (t∗)

0

∫
[%τn(t)>%crit+ν]

div(uτn)
((%τn)νcrit+)2

2
dxdt

∣∣∣
+
∣∣∣ ∫ t̄τ (t∗)

0

∫
[%τn(t)>%crit+ν]

(%crit + ν) div(uτn)(%τn)νcrit+ dxdt
∣∣∣

≤ ‖div(uτn)‖L2([%τn>%crit+ν])

(
1
2‖((%τn)νcrit+)2‖L2(0,T ;L2(Ω)) + ν‖(%τn)νcrit+‖L2(0,T ;L2(Ω))

)
= c‖ div(uτn)‖L2([%τn>%crit+ν]) → 0 as n→∞

(4.117)

by information (4.86b) and thanks to the assumptions p ≥ 4 and %0 ≤ %crit a.e. in Ω by (4.97). This proves (4.109). Now
the validity of properties (4.103) and (4.109) provides (4.111), i.e., that ‖Ψt∗(%(t∗))‖L1(Ω) = ‖(%(t∗))

ν
crit+‖L1(Ω) = 0,

which yields (4.98b).

Lemma 4.11. Let the assumptions of Lemma 4.9 be valid. Further assume that α > 2 for the exponent of the viscosity in
(2.2b), and that p ≥ 4. Suppose that there is some τ0 ∈ (0, %crit) so that the initial datum has the property

%0 ∈ L2(Ω) , such that 0 ≤ %0 < %crit − τ0 a.e. in Ω . (4.118a)

Then, for all t ∈ [0, T ] the set [%(t) = %crit] is an Ld-null set, i.e., there holds

Ld([%(t) = %crit]) = 0 and 0 ≤ %(t) < %crit a.e. in Ω, for all t ∈ [0, T ] . (4.118b)

Proof. In order to deduce implication (4.118) we shall proceed via the following three steps:

Step 1: Construct a suitable test function F ′θδ for the transport equation (2.5a): It will be constructed such that the primitive
Fθδ satisfies Fθδ(ρ) <∞ for all θ > 0 fixed and for all ρ ∈ R, and such that Fθδ(%crit)→∞ as θ → 0.

Step 2: For % a solution of (2.5a) show that there is a constant C > 0 such that

‖Fθδ(%(t))‖L1(Ω) ≤ C for all t ∈ [0, T ] and for all θ > 0 sufficiently small . (4.119)
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Step 3: Verify that (4.119) implies (4.118b).

To Step 1: For the construction of a suitable test function for (2.5a), set

Fδ(ρ) :=
1

|%crit − ρ|δ
with δ := α− 2 , hence F ′δ(ρ) :=

δ

|%crit − ρ|δ+1
. (4.120)

Note that δ > 0 thanks to the assumption α > 2. Fix γ ∈ (0, 1); a suitable choice will be specified more precisely below
in (4.125). For all θ > 0 sufficiently small such that γ%crit < %crit − θ we define

F ′θδ(ρ) := max
{

min
{
F ′δ(ρ), F ′δ(%crit − θ)

}
, F ′δ(γ%crit)

}
=

 F ′δ(γ%crit) if ρ ≤ γ%crit,
F ′δ(ρ) if γ%crit < ρ < %crit − θ,

F ′δ(%crit − θ) if ρ ≥ %crit − θ.

(4.121)

Its primitive and its derivative are given by

Fθδ(ρ) =

 F ′δ(γ%crit)ρ if ρ ≤ γ%crit

Fδ(ρ)−Kγ if γ%crit < ρ < %crit − θ,
F ′δ(%crit − θ)ρ−Kγ −Kθ if ρ ≥ %crit − θ, where

(4.122a)

Kγ = −
(
− Fδ(γ%crit) + F ′δ(γ%crit)γ%crit

)
(4.122b)

Kθ = −
(
Fδ(%crit − θ)− F ′δ(%crit − θ)(%crit − θ)

)
and (4.122c)

F ′′θδ(ρ) =

 0 if ρ ≤ γ%crit,
F ′′δ (ρ) if γ%crit < ρ < %crit − θ,

0 if ρ ≥ %crit − θ,
where (4.122d)

F ′′δ (ρ) =
δ(δ + 1)

(%crit − ρ)δ+2
∈
(

δ(δ+1)
((1−γ)%crit)δ+2 ,

δ(δ+1)
θδ+2

)
for γ%crit < ρ < %crit − θ . (4.122e)

In this way we observe that F ′θδ(ρ) ∈ Lp(0, T ;W 1,p(Ω)) for any ρ ∈ Lp(0, T ;W 1,p(Ω)) and for every 0 < θ <
(1− γ)%crit. For any t∗ ∈ [0, T ] and ρ ∈ Lp(0, T ;W 1,p(Ω)) we further set

F ′θδ,t∗(ρ(t)) :=

{
F ′θδ(ρ(t)) if t ∈ [0, t∗],

0 if t ∈ (t∗, T ].
(4.123)

With the above reasonings we conclude that also F ′θδ,t∗(ρ) ∈ Lp(0, T ;W 1,p(Ω)) and this will be the test function for
(2.5a) for which we aim to deduce the bound (4.119). To this purpose, we now also discuss the properties of the two
constants Kγ and Kθ appearing in (4.122a). In particular, we show here that

0 ≤ Kγ = −
(
− Fδ(γ%crit) + F ′δ(γ%crit)γ%crit

)
≤ Fδ(γ%crit) ≤ Fδ(ρ) for ρ ∈ [γ%crit, %crit − θ) , (4.124a)

0 ≤ Kθ = −
(
Fδ(%crit − θ)− F ′δ(%crit − θ)(%crit − θ)

)
≤ Kγ +Kθ ≤ F ′δ(%crit − θ)(%crit − θ) ≤ F ′δ(%crit − θ)ρ for ρ ≥ %crit − θ . (4.124b)

To property (4.124a) for Kγ : We observe that

Kγ = Fδ(γ%crit)− F ′δ(γ%crit)γ%crit = 1
(1−γ)δ%δcrit

− δγ%crit

(1−γ)δ+1%δ+1
crit

= 1
(1−γ)δ%δcrit

(
1− δγ

1−γ

) !
≥ 0

is ensured if

γ ≤ 1

1 + δ
< 1 for any δ > 0 . (4.125)

Moreover, since F ′δ(γ%crit) > 0, we also have that

Kγ = Fδ(γ%crit)− F ′δ(γ%crit)γ%crit ≤ Fδ(γ%crit) ≤ Fδ(ρ) for any ρ ∈ [γ%crit, %crit − θ) .

Thus, property (4.124a) indeed holds true.
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To property (4.124b) for Kθ : We readily check that

0 ≤ Kθ = F ′δ(%crit − θ)(%crit − θ)− Fδ(%crit − θ) = δ(%crit−θ)
θδ+1 − 1

θδ
= 1

θδ

( δ(%crit−θ)
θ − 1

) !
≥ 0

is ensured for

θ ≤ δ%crit

1 + δ
. (4.126)

Now, in view of Kγ ≥ 0 we also find that indeed

0 ≤ Kθ ≤ Kθ +Kγ = F ′δ(%crit − θ)(%crit − θ)− Fδ(%crit − θ) + Fδ(γ%crit)− F ′δ(γ%crit)γ%crit

≤ F ′δ(%crit − θ)(%crit − θ) ≤ F ′δ(%crit − θ)ρ for any ρ ≥ %crit − θ ,

which concludes the proof of property (4.124b).

To Step 2: For any t∗ ∈ [0, T ] we test the transport equation (2.5a) by F ′θδ,t∗(%) from (4.123) with % a solution of (2.5a);

by the above considerations we have that F ′θδ,t∗(%) ∈ Lp(0, T ;W 1,p(Ω)) is an admissible test function. We also use
integration by parts in time and the bound (4.122e) to arrive at the following estimate from below

0 = 〈∂t%, F ′θδ,t∗(%)〉Lp(0,T ;W 1,p(Ω)) −
∫ t∗

0

∫
Ω

(
%u− ε|∇%|p−2∇%

)
· ∇F ′θδ(%) dxdt

=

∫ t∗

0

∫
Ω

∂tFθδ(%) dxdt−
∫ t∗

0

∫
Ω

%u · ∇F ′θδ(%) dx dt+

∫ t∗

0

∫
Ω

ε|∇%|pF ′′θδ(%) dxdt

≥ ‖Fθδ(%(t∗))‖L1(Ω) − ‖Fθδ(%(0))‖L1(Ω) −
∫ t∗

0

∫
Ω

%u · ∇F ′θδ(%) dxdt .

(4.127)

Estimate (4.127) will now be used to deduce the bound (4.119). For this, note that

‖Fθδ(%(0))‖L1(Ω) ≤ ‖Fθδ(%crit − τ0)‖L1(Ω) ≤
∥∥∥∥ δ

(τ0)δ

∥∥∥∥
L1(Ω)

≤ C0 , (4.128)

and hence it remains to deduce a suitable estimate for the drift term on the right-hand side of (4.127). Like in the proof
of Lemma 4.10 this would require an integration by parts in space. But this is not admissible since it is not clear that
(%(t)u(t)) ∈ H1(Ω) for a.a. t ∈ (0, T ). We circumvent this problem caused by the lack of regularity by adding the
discrete analogon of the drift term, thus creating an error term that subsequently has to be shown to be controlled. Yet, for
the discrete drift term it is then possible to perform an integration by parts in space, where the boundary integral on ∂Ω is
zero thanks to the property uτn = 0 on ∂Ω. Following this strategy, also taking into account (4.128), we arrive at

0 ≥ ‖Fθδ(%(t∗))‖L1(Ω) − C0 −
∫ t∗

0

∫
Ω

%τnuτn · ∇F ′θδ(%τn) dxdt+R(θ, n)

= ‖Fθδ(%(t∗))‖L1(Ω) − C0 +

∫ t∗

0

∫
Ω

div(%τnuτn)F ′θδ(%τn) dxdt+R(θ, n) ,

(4.129)

where the error term R(θ, n) has to be shown to satisfy for any fixed θ ∈ (0, δ%crit

1+δ ) sufficiently small

R(θ, n) :=
(∫ t∗

0

∫
Ω

%τnuτn · ∇F ′θδ(%τn) dxdt−
∫ t∗

0

∫
Ω

%u · ∇F ′θδ(%) dx dt
)

!→ 0 as n→∞ . (4.130)

We shall verify the convergence (4.130) of the error term below in (4.142) and now continue to process the discrete drift
term in (4.129). Our goal with this procedure is to obtain from (4.129) an estimate of the form

‖Fθδ(%(t∗))‖L1(Ω) ≤ |R(θ, n)|+ C0 + C1 + ĉ

∫ t∗

0

‖Fθδ(%τn)‖L1(Ω) dt for any t∗ ∈ [0, T ] . (4.131)

As n→∞, on account of (4.130) and thanks to the strong Lp(0, T ;Lp(Ω))-convergence (4.1i) of the sequence (%τn)n
the estimate (4.131) leads to

‖Fθδ(%(t∗))‖L1(Ω) ≤ C0 + C1 + ĉ

∫ t∗

0

‖Fθδ(%)‖L1(Ω) dt for any t∗ ∈ [0, T ] . (4.132)
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Then, Gronwall’s lemma ultimately yields the desired bound (4.119) uniformly for all t ∈ [0, T ] and for all θ ∈ (0, δ%crit

1+δ )
sufficiently small.

Proof of estimate (4.131) by processing the discrete drift term in (4.129): Using once more integration by parts in space
we obtain ∫ t∗

0

∫
Ω

div(%τnuτn)F ′θδ(%τn) dx dt

=

∫ t∗

0

∫
Ω

(
%τn(div uτn)F ′θδ(%τn) + uτn · (∇%τn)F ′θδ(%τn)

)
dx dt

=

∫ t∗

0

∫
Ω

%τn(div uτn)F ′θδ(%τn) dxdt−
∫ t∗

0

∫
Ω

(div uτn)Fθδ(%τn) dx dt .

(4.133)

In order to arrive at (4.131) the two terms in the last line of (4.133) will be maneuvered to the left-hand side of (4.129) and
there their absolute values have to be suitably estimated from above. In view of (4.121) and (4.122) we decompose the
two integrals on the right-hand side of (4.133) as follows:∫ t∗

0

∫
Ω

%τn(div uτn)F ′θδ(%τn) dxdt

=

∫ t∗

0

( ∫
[%τn(t)≤γ%crit]

+

∫
[γ%crit<%τn(t)<%crit−θ]

+

∫
[%crit−θ≤%τn(t)]

)
%τn(div uτn)F ′θδ(%τn) dxdt

=: I1 + I2 + I3 ,

(4.134a)

and ∫ t∗

0

∫
Ω

(div uτn)Fθδ(%τn) dx dt

=

∫ t∗

0

( ∫
[%τn(t)≤γ%crit]

+

∫
[γ%crit<%τn(t)<%crit−θ]

+

∫
[%crit−θ≤%τn(t)]

)
(div uτn)Fθδ(%τn) dxdt

=: I4 + I5 + I6 .

(4.134b)

First, we estimate the Integrals I1, I3, I4 and I6. For I1 and I3 we obtain

|I1|+ |I3| ≤max
{∣∣∣F ′δ(γ%crit)

∣∣∣, ∣∣∣F ′δ(%crit − θ)
∣∣∣} ∫ t∗

0

( ∫
[%τn(t)≤γ%crit]

+

∫
[%crit−θ≤%τn(t)]

)∣∣∣%τn(div uτn)
∣∣∣dxdt

≤max
{∣∣∣F ′δ(γ%crit)

∣∣∣, ∣∣∣F ′δ(%crit − θ)
∣∣∣} ∫ t∗

0

∫
Ω

∣∣∣%τn(div uτn)
∣∣∣dxdt

≤max
{∣∣∣F ′δ(γ%crit)

∣∣∣, ∣∣∣F ′δ(%crit − θ)
∣∣∣}Ld([0, T ]× Ω) ‖%τne(uτn)‖L2(0,T ;L2(Ω;Rd×d))

≤C,
(4.135a)

where we exploited a priori estimate (3.9c) for the last inequality. Using (4.124b) we see that

|Fθδ(%τn)| ≤ |F ′δ(%crit − θ)%τn| ,

which is used to further estimate I6. In this way, we find for I4 and I6 that

|I4|+ |I6| ≤max
{∣∣∣F ′δ(γ%crit)

∣∣∣, ∣∣∣F ′δ(%crit − θ)
∣∣∣} ∫ t∗

0

( ∫
[%τn(t)≤γ%crit]

+

∫
[%crit−θ≤%τn(t)]

)∣∣∣%τn(div uτn)
∣∣∣dxdt

≤max
{∣∣∣F ′δ(γ%crit)

∣∣∣, ∣∣∣F ′δ(%crit − θ)
∣∣∣}Ld([0, T ]× Ω) ‖%τne(uτn)‖L2(0,T ;L2(Ω;Rd×d))

≤C,
(4.135b)
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where we again exploited (3.9c) in the last inequality.

To treat the terms I2 and I5 we introduce the short notation Sθ(%τn(t)) := [γ%crit < %τn(t) < %crit − θ]. Then, using
Hölder’s inequality, I2 and I5 are estimated from above as follows

|I2| =
∣∣∣ ∫ t∗

0

∫
Sθ(%τn(t))

%τn(div uτn)F ′θδ(%τn) dxdt
∣∣∣

=
∣∣∣ ∫ t∗

0

∫
Sθ(%τn(t))

%τn
√
ηθ(%τn)√
ν̃

(div uτn)

√
ν̃√

ηθ(%τn)
F ′θδ(%τn) dx dt

∣∣∣
≤
∥∥∥%τn√ηθ(%τn)√

ν̃
(div uτn)

∥∥∥
L2(0,t∗;L2(Sθ(%τn(t))))

√
ν̃
∥∥∥ F ′θδ(%τn)√

ηθ(%τn)

∥∥∥
L2(0,t∗;L2(Sθ(%τn(t))))

,

(4.136a)

and

|I5| =
∣∣∣ ∫ t∗

0

∫
Sθ(%τn(t))

(div uτn)Fθδ(%τn) dx dt
∣∣∣

=
∣∣∣ ∫ t∗

0

∫
Sθ(%τn(t))

%τn
√
ηθ(%τn)√
ν̃

(div uτn)
Fθδ(%τn)

√
ν̃

%τn
√
ηθ(%τn)

dx dt
∣∣∣

≤
∥∥∥%τn√ηθ(%τn)√

ν̃
(div uτn)

∥∥∥
L2(0,t∗;L2(Sθ(%τn(t))))

√
ν̃
∥∥∥ Fθδ(%τn)

%τn
√
ηθ(%τn)

∥∥∥
L2(0,t∗;L2(Sθ(%τn(t))))

.

(4.136b)

Hereby, in (4.136) the function ηθ is defined like the regularized viscosity from (3.3a), i.e.,

ηθ(ρ) :=


ν̃

%αcrit
+ 1

θα |ρ| if ρ < 0,
ν̃

(%crit−ρ)α if 0 ≤ ρ < %crit − θ,
ν̃ρ

θα|%crit−θ| if ρ ≥ %crit − θ,
(4.137)

with ν̃ > %crit and α > 2. Hence, also thanks to the uniform a priori bound (3.9a), we obtain for all τ = τ(n) ≤ θ for the
first term appearing on both of the right-hand sides of (4.136) that∥∥∥%τn√ηθ(%τn)√

ν̃
(div uτn)

∥∥∥2

L2(0,t∗;L2(Sθ(%τn(t))))

=

∫ t∗

0

∫
Sθ(%τn(t))

%2
τnηθ(%τn)

ν̃ (div uτn)2 dxdt

≤ (%crit − θ)
ν̃

∫ t∗

0

∫
Sθ(%τn(t))

%τnηθ(%τn)(div uτn)2 dxdt

≤ (%crit − θ)
ν̃

∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(uτn) dxdt ≤ C .

(4.138)

For the remaining two terms on the right-hand sides of (4.136) we are going to show that(∫ t∗

0

∫
Sθ(%τn(t))

A(%τn) dxdt
)1/2

≤
(∫ t∗

0

c‖Fθδ(%τn)‖L1(Sθ(%τn(t))) dt+ C
)1/2

, (4.139)

where A(%τn) ∈
{∣∣∣ F ′θδ(%τn)√

ηθ(%τn)

∣∣∣2, ∣∣∣ Fθδ(%τn)

%τn
√
ηθ(%τn)

∣∣∣2}.

Proof of (4.139) for A(%τn) =
∣∣∣ F ′θδ(%τn)√

ηθ(%τn)

∣∣∣2: On the set [γ%crit < %τn(t) < %crit − θ] it is

A(%τn) =
∣∣∣ F ′θδ(%τn)√

ηθ(%τn)

∣∣∣2 = δ2(%crit−%τn)α

|%crit−%τn|2δ+2ν̃
= δ2

ν̃
1

|%crit−%τn|
2(δ+1−α

2
) = δ2

ν̃
1

|%crit−%τn|δ

= c1Fθδ(%τn) + c1Kγ = c1Fθδ(%τn) + c̃1 .

(4.140)
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Here we used that 2(δ + 1− α
2 ) = δ due to δ = α− 2 and that 0 ≤ Kγ = const.

Proof of (4.139) for A(%τn) =
∣∣∣ Fθδ(%τn)

%τn
√
ηθ(%τn)

∣∣∣2: In view of the properties (4.124a) of Kγ we argue on the set [γ%crit <

%τn(t) < %crit − θ] that

A(%τn) =
∣∣∣ Fθδ(%τn)

%τn
√
ηθ(%τn)

∣∣∣2 =
(
Fδ(%τn)−Kγ

)2 1
%2
τnηθ(%τn)

≤ Fδ(%τn)2 (%crit−%τn)α

%2
τnν̃

≤ 1

(%crit−%τn)2(δ−α
2

)
1

(γ%crit)2ν̃ = 1
(γ%crit)2ν̃

(%crit−%τn)2

(%crit−%τn)δ
≤ (1−γ)2%2

crit

(γ%crit)2ν̃
1

(%crit−%τn)δ

= (1−γ)2

γ2ν̃

(
Fδ(%τn)−Kγ

)
+ (1−γ)2

γ2ν̃ Kγ = c2Fθδ(%τn) + c̃2 .

(4.141)

This finishes the proof of (4.139) and together with (4.134)–(4.138) we are entitled to conclude estimate (4.131). Upon
verifying the convergence (4.130) of the error term R(θ, n) this yields (4.132) for n → ∞, and ultimately proves the
desired uniform bound (4.119) thanks to Gronwall’s inequality.

Proof of the convergence (4.130) of the error term: It remains to verify that

R(θ, n) :=
(∫ t∗

0

∫
Ω

%τnuτn · ∇F ′θδ(%τn) dxdt−
∫ t∗

0

∫
Ω

%u · ∇F ′θδ(%) dx dt
)

!→ 0 as n→∞ . (4.142)

For shorter notation we again introduce Sθ(ρ) := [γ%crit < ρ(t) < %crit − θ] and we denote by χSθ(ρ) the indicator
function of the set Sθ(ρ), i.e., χSθ(ρ)(x) = 1 if x ∈ Sθ(ρ) and χSθ(ρ)(x) = 0 if x 6∈ Sθ(ρ). In this way the error term
can be rewritten as

R(θ, n) =

∫ t∗

0

∫
Ω

(
χSθ(%)%u · ∇F ′θδ(%)− χSθ(%τn)%τnuτn · ∇F ′θδ(%τn)

)
dxdt

=

∫ t∗

0

∫
Ω

χSθ(%)%F
′′
θδ(%)∇% · (u− uτn) dx dt

+

∫ t∗

0

∫
Ω

uτn ·
(
χSθ(%)%F

′′
θδ(%)∇%− χSθ(%τn)%τnF

′′
θδ(%τn)∇%τn

)
dxdt

→ 0 .

(4.143)

Here, convergence of the first term on the right-hand side of (4.143) follows by observing that (u − uτn) ⇀ 0 in
Ls(0, T ;Ls(Ω)) thanks to convergence result (4.1a). Moreover, it is χSθ(%)%F

′′
θδ(%)∇% ∈ Lp(0, T ;Lp(Ω;Rd)), since

χSθ(%)%F
′′
θδ(%) ∈ L∞(0, T × Ω) for any θ small but fixed. Convergence of the second term is observed by weak-strong

convergence arguments again using that uτn ⇀ u in Ls(0, T ;Ls(Ω)) and that(
χSθ(%)%F

′′
θδ(%)∇% − χSθ(%τn)%τnF

′′
θδ(%τn)∇%τn

)
→ 0 strongly in L2(0, T ;L2(Ω;Rd)). Indeed, the latter follows

from convergence result (4.1j) and from the following estimate for any θ ∈ (0, δ%crit

1+δ ) fixed

‖χSθ(%)%F
′′
θδ(%)∇%− χSθ(%τn)%τnF

′′
θδ(%τn)∇%τn‖L2([0,t∗]×Ω;Rd)

≤ ‖χSθ(%)%F
′′
θδ(%)

(
∇%−∇%τn

)
‖L2([0,t∗]×Ω;Rd) + ‖∇%τn

(
χSθ(%)%F

′′
θδ(%)− χSθ(%τn)%τnF

′′
θδ(%τn)

)
‖L2([0,t∗]×Ω;Rd)

≤ %critF
′′
θδ(%crit − θ)‖∇%−∇%τn‖L2([0,t∗]×Ω;Rd)

+ ‖∇%τn‖Lp(0,T×Ω;Rd)‖χSθ(%)%F
′′
θδ(%)− χSθ(%τn)%τnF

′′
θδ(%τn)‖L2q′ ([0,t∗]×Ω;Rd)

≤ C
(
‖∇%−∇%τn‖L2([0,t∗]×Ω;Rd) + ‖%

(
χSθ(%)F

′′
θδ(%)− χSθ(%τn)F

′′
θδ(%τn)

)
‖L2q′ ([0,t∗]×Ω;Rd)

+ ‖(%− %τn)χSθ(%τn)F
′′
θδ(%τn)‖L2q′ ([0,t∗]×Ω;Rd)

)
≤ C

(
‖∇%−∇%τn‖L2([0,t∗]×Ω;Rd) + %crit‖F ′′θδ(%)− F ′′θδ(%τn)‖L2q′ ([0,t∗]×Ω)

+ δ(δ+1)
θδ+2 ‖%− %τn‖L2q′ ([0,t∗]×Ω)

)
.

Here we have applied Hölder’s inequality with the exponent q = p/2 and q′ = p/(p − 2). Then strong convergence in
L2q′([0, t∗]×Ω) follows for 2q′ = 2p/(p− 2) ≤ p, which is ensured for p ≥ 4. Also note that |F ′′θδ(%)−F ′′θδ(%τn)| ≤
δ(δ+1)
θ2δ+4 (|%crit−%τn|δ+2−|%crit−%|δ+2) ≤ δ(δ+1)(δ+2)|%crit|δ+1

θ2δ+4 (|%crit−%τn|−|%crit−%|)→ 0 in L2q′([0, T ]×Ω)
again for p ≥ 4.
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To Step 3: In order to verify that (4.119) implies (4.118b) we proceed by contradiction. Thus, assume that there is some
t ∈ [0, T ] and a set B ⊂ Ω with Ld(B) = b > 0 such that %(t) = %crit in B. Then, for all θ > 0 and for all x ∈ B it is
%(t, x) = %crit > %crit − θ. Together with (4.122a), (4.122b), and (4.122c) this yields

Fθδ(%(t, x)) = F ′δ(%crit − θ)%crit −Kγ −Kθ

=
δ%crit

θδ+1
−Kγ −

δ(%crit − θ)
θδ+1

+
1

θδ
=

1 + δ

θδ
−Kγ

for all θ > 0 and for all x ∈ B. Together with the uniform bound (4.119) this results in a contradiction

C ≥ ‖Fθδ(%(t))‖L1(Ω) ≥ ‖Fθδ(%(t))‖L1(B) =

∥∥∥∥1 + δ

θδ
−Kγ

∥∥∥∥
L1(B)

→∞ as θ → 0 . (4.144)

This establishes that Ld([%(t) = %crit]) = 0 for all t ∈ [0, T ]. In view of (4.98b) also the second assertion of (4.118b)
follows.
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