
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Modeling and simulation of the lateral photovoltage scanning

method

Patricio Farrell1, Stefan Kayser1, Nella Rotundo2

submitted: October 29, 2020

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: patricio.farrell@wias-berlin.de

stefan.kayser@wias-berlin.de

2 University of Florence
Department of Mathematics and Computer Science
“Ulisse Dini” (DIMAI)
Viale Morgagni 67 A
50134 Florence
Italy
E-Mail: nella.rotundo@unifi.it

No. 2784

Berlin 2020

2010 Mathematics Subject Classification. 35Q81, 35K57, 65N08.

Key words and phrases. Lateral-photovoltage-scanning method (LPS), semiconductor simulation, van Roosbroeck system,
finite volume simulation, crystal growth.

The authors would like to thank Natasha Dropka, Jürgen Fuhrmann, Timo Streckenbach and Hang Si for their valuable
input. The temperature field simulation in Figure 1 are courtesy of Robert Menzel (Leibniz-Institut für Kristallzüchtung). We
thank the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC2046: MATH+ for funding
the project IN-B3 (S.K.).



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Modeling and simulation of the lateral photovoltage scanning
method

Patricio Farrell, Stefan Kayser, Nella Rotundo

Abstract

The fast, cheap and nondestructive lateral photovoltage scanning (LPS) method detects
inhomogeneities in semiconductors crystals. The goal of this paper is to model and simulate this
technique for a given doping profile. Our model is based on the semiconductor device equations
combined with a nonlinear boundary condition, modelling a volt meter. To validate our 2D and
3D finite volume simulations, we use theory developed by Tauc [22] to derive three analytical
predictions which our simulation results corroborate, even for anisotropic 2D and 3D meshes.
Our code runs about two orders of magnitudes faster than earlier implementations based on
commercial software [14]. It also performs well for small doping concentrations which previously
could not be simulated at all due to numerical instabilities. Our simulations provide experimentalists
with reference laser powers for which meaningful voltages can still be measured. For higher laser
power the screening effect does not allow this anymore.

1 Introduction

Semiconductor crystals are the very basis for any optoelectronic component such as transistors, LEDs
or solar cells. Crystals are solid substances with an inherent structure/symmetry. To grow these crystals,
amorphous crystalline material e.g. raw silicon is heated until it melts. As it cools down, the atoms
are forced to build bonds. During solidification a seed crystal may enforce a preferred crystallization
direction in these bonds, creating a single crystal. Two well-established single crystal growth techniques
dominate the market. On the one hand, Czochralski grown crystals (95% market share) are cheap
to produce but systematically introduce oxygen and carbon into the crystal, thus limiting their quality
severely [24]. On the other hand, floating zone crystals (5% market share) produce purer crystals,
however, severely increase the production cost [4].

Figure 1: Striations from LPS measurement (left); temperature field simulation created by a coil (the
black line represents the solid-liquid interface at 1687K) as well the corresponding striations (middle);
LPS measurement setup (right).

In order to improve the crystal growth design, it is crucial to predict the temperature distribution of
the coils which heat up the raw material. Unfortunately, it is impossible to measure the temperature
distribution inside of the growing crystal during the production process. Silicon, for example, melts
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at 1687K. However, along the solid-liquid interface microscopic variations in the crystal appear, see
Figure 1 (left and middle). These so-called striations can be measured even in the cooled-down crystal.
Traditionally, the local doping concentration is measured by analyzing the electric resistivity of the crystal
[23]. The main drawbacks of this technique are the relatively poor spatial resolution (few millimeters) and
the long acquisition time. Another technique is secondary ion mass spectroscopy (SIMS). Unfortunately,
it is intrinsically destructive and detects only high doping concentrations NA > 1× 1015 cm−3 for light
elements such as boron [7].

To overcome all these limitations, the lateral photovoltage scanning method (LPS) has been proposed
[19]. This opto-electrical measurement procedure detects doping inhomogeneities at wafer-scale
and room temperature in a non-destructive fashion, see Figure 1 (right). Interestingly, besides being
very cost-effective and fast, this tabletop setup is especially suitable for low doping concentrations
(1012 cm−3 to 1016 cm−3) and thus applies to a larger range of doping concentrations than SIMS. The
LPS method excites the semiconductor crystal with a laser, creating a voltage difference at the sample
edges which is proportional to the local doping variation. This voltage difference can be measured,
from which one can infer the doping profile from the voltage difference. However, from a mathematical
point of view one has to solve an inverse problem. An efficient solution of this inverse problem – an
ambitious future task – requires a fast and reliable solution of the forward problem (where the voltage
difference is determined from a nonlinear boundary condition).

For this reason we derive a charge transport model of the LPS measurement setup. With the help
of our model we then simulate the forward model of the LPS measurement technique. To check the
validity of our simulation results, we use theoretical observations proposed by Tauc in the 1950ies [22].
From his theory we derive three analytical predictions: First, the LPS voltage depends on local doping
variations at least for low laser powers. Second, eventually the LPS voltage saturates for higher laser
intensities due to the screening effect. And third, the LPS voltage depends logarithmically on moderate
laser intensities. All three predictions are verified by our simulations and even hold true for anisotropic
2D and 3D meshes.

Our simulations rely on a Voronoi finite volume discretization which has been presented in [11, 10, 17].
The flux discretization is handled by ideas of Scharfetter and Gummel [20]. So far it seems only one
implementation of the forward LPS method exists by Kayser et al. [16, 14] based on commercial
software. Our open-source code reduces the simulation time by two orders of magnitude. This is
crucial since a future aim is to efficiently solve the corresponding inverse problem. Moreover, our
method presented here also works well for very low doping concentrations which previously could
not be simulated due to numerical instabilities [16, 14]. We implement the nonlinear LPS boundary
condition via the secant method. We also present a convergence study which shows that the LPS
voltage converges quadratically. Finally, we provide experimentalists with reference laser powers for
which meaningful voltages can still be measured. For higher laser power the screening effect does not
allow this anymore.

To the best of our knowledge, the LPS technique has not been studied mathematically. Related (inverse)
models for laser beam and electron induced current (LBIC and EBIC) exist. Simplified models have
been studied in [6, 5, 18]. For these models, the setup the contacts are located in different areas and a
current is measured instead of a voltage. The analytical theory behind coupling charge transport with
circuits is addressed for example in [2, 3] and in the references therein.

The remainder of the paper is organized as follows: In the following section, we introduce the LPS
model and Tauc’ theory. In particular we describe the nonlinear boundary condition that models the
voltage meter. In the following sections, we then describe the finite volume discretization, present our
simulation results and conclude.
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2 LPS model

In this section, we describe first the charge transport model, then the circuit model which describes the
LPS measurement technique.

2.1 The van Roosbroeck model

We model the silicon crystal as a bounded domain Ω ⊂ R3. Its doping profile is given by the difference
of donor and acceptor concentrations, ND(x)−NA(x), where x = (x, y, z)T ∈ Ω.

Within the crystal we consider two charge carriers: Electrons with negative elementary charge −q, and
holes with positive elementary charge q. The charge transport within the crystal is described in terms of
the electrostatic potential, denoted by ψ(x), and quasi Fermi potentials for electron and holes, denoted
by ϕn(x) and ϕp(x). The current densities for electrons and holes are given by Jn(x), Jp(x). These
variables satisfy the following steady-state system, the so-called van Roosbroeck model,

−∇ · (ε∇ψ) = q(p(ψ, ϕp)− n(ψ, ϕn) +ND(x)−NA(x))

−1

q
∇ · Jn = G(x)−R(ψ, ϕn, ϕp), Jn = −qµnn(ψ, ϕn)∇ϕn,

1

q
∇ · Jp = G(x)−R(ψ, ϕn, ϕp), Jp = −qµpp(ψ, ϕp)∇ϕp.

(1)

The first equation is a nonlinear Poisson equation, describing a self-consistent electric field. The
following two continuity equations describe the charge transport in the crystal.

Assuming so-called Boltzmann statistics, the relations between the quasi-Fermi potentials and the
densities of electrons and holes, n and p respectively, are given by

n(ψ, ϕn) = Nc exp

(
q(ψ − ϕn)− Ec

kBT

)
and p(ψ, ϕp) = Nv exp

(
q(ϕp − ψ) + Ev

kBT

)
.

(2)

Here, we have denoted the conduction and valence band densities of states with Nc and Nv, the
Boltzmann constant with kB and the temperature with T . Furthermore, Ec and Ev refer to the constant
conduction and valence band-edge energies, respectively. Using the relations (2) the current densities
can be written in the following drift-diffusion form

Jn = −qµn(n∇ψ − UT∇n), Jp = −qµp(p∇ψ + UT∇p),

in which UT = kBT/q is the thermal voltage. The intrinsic carrier density ni is defined via the
relationship

n2
i = NcNv exp

(
−Ec − Ev

kBT

)
. (3)

If we neglect both transport equations, and only solve the nonlinear Poisson equation in (1) for the
electrostatic potentialψeq and fixed quasi Fermi potentialsϕn = ϕp = 0, we say that the semiconductor
is in equilibrium. The corresponding equilibrium charge densities neq and peq satisfy

neqpeq = n2
i . (4)

The precise geometry Ω will be specified in the following Section 2.6.
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2.2 Boundary conditions

The stationary van Roosbroeck system (1) is usually supplied with Dirichlet-Neumann boundary
conditions. We assume that the boundary ∂Ω is the union of two disjoint parts ΓN and ΓD. On ΓN , we
assign Neumann boundary conditions

∂ψ

∂ν
=
∂ϕn
∂ν

=
∂ϕp
∂ν

= 0, (5)

where ∂/∂ν = ν · ∇ is the normal derivative along the external unit normal ν.

On ΓD, we assign Dirichlet-type boundary conditions. This type of boundary condition models so-called
ohmic contacts. We suppose that there are two ohmic contacts, i. e. ΓD = ΓD1 ∪ ΓD2 . The ohmic
boundary conditions can be summarized by

ψ − ψ0 = ϕn = ϕp = uDi
− uref on ΓDi

, i = 1, 2, (6)

where ψ0 is the local electroneutral potential which one obtains by solving the Poisson equation for ψ
for a vanishing left-hand side. The terms uDi

denote the contact voltages at the corresponding ohmic
contacts. It is common to define a reference value uref of the potential. We set uref = 0.

The electric current jDi
flowing through the i-th ohmic contact ΓDi

is defined by the surface integral

jDi
= −

∫
ΓDi

ν · (Jn(x) + Jp(x))dσ(x), i = 1, 2. (7)

According to the conservation of charge, the currents in (7) satisfy the relation
∑2

i=1 jDi
= 0. For

notational convenience we define
iD := jD1 = −jD2 . (8)

2.3 Arora mobility model

The Arora mobility model takes into account the scattering of charge carriers with ionized impurities,
most likely by doping. The electron and hole mobilities are given by

µn = µn,min +
µn,0

1 +
(
ND+NA

ND0

)αn
and µp = µp,min +

µp,0

1 +
(
ND+NA

NA0

)αp
, (9)

where the different parameters are given by

µn,min = µref
n,min ·

(
T0

300K

)β1
, µp,min = µref

p,min ·
(

T0

300K

)β1
,

µn,0 = µref
n,0 ·

(
T0

300K

)β2
, µp,0 = µref

p,0 ·
(

T0

300K

)β2
,

ND0 = N ref
D0 ·

(
T0

300K

)β3
, NA0 = N ref

A0 ·
(

T0

300K

)β3
,

αn = α0 ·
(

T0

300K

)β4
, αp = α0 ·

(
T0

300K

)β4
.

Again the remaining parameters are found in Appendix A.1.
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2.4 Recombination rates

The total recombination rate is given by the sum of all recombination rates. We consider three recombi-
nation mechanisms,

R = Rdir +RAug +RSRH, (10)

that is, the direct recombination
Rdir = Cd(np− n2

i ) (11)

the Auger recombination

RAug = Cnn(np− n2
i ) + Cpp(np− n2

i ) (12)

and the Shockley-Read-Hall recombination

RSRH =
np− n2

i

τp(n+ nT ) + τn(p+ pT )
. (13)

In contrast to the robust Auger, the Shockley-Read-Hall (SRH) recombination will vary for different
samples due to unintentional incorporation of elements which results into different life times τn, τp and
reference densities nT , pT . The remaining parameters are collected in Appendix A.1.

2.5 Generation rate

When the laser hits the crystal, some photons are reflected with constant reflectivity R. The other
impinged photons create electron-hole pairs, resulting in a generation rate defined as follows

G(x) = Nph(1−R)S(x), (14)

where S(x) is the shape function of the laser (normalized by
∫

Ω
S(x)dx = 1) and Nph the impinging

photon rate on the whole surface of the sample given by

Nph =
PλL
hc

. (15)

Here, P denotes the laser power, λL the wave length of the laser and hc = 6.6× 10−34m2kg/s =
6.6× 10−34 Js the Planck constant. The shape function S depends on the spatial dimension. Hence,
we will specify it for each geometry separately.

2.6 Geometries and shape functions

We will consider 1D, 2D and 3D setups for the silicon crystal. Each sample has to be sufficiently larger
than the mean free path of the electrons. The necessary length depends on the assumed charge carrier
life times but it can reach millimeter scale. The active region is highly centralized. A fact that our meshes
will need to respect. For large charge carrier life times (millisecond range) it might be necessary to
increase the sample length. The height of the sample is directly related to the penetration depth of the
laser. For a laser with wave length λ = 685 nm, the penetration depth is approximately 5 nm, and so
99.996% of the laser energy is absorbed in the sample. For smaller laser wave lengths a sufficient
amount of the laser energy is still absorbed.
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2.6.1 1D model

For the one dimensional model, the domain is given by

Ω = {(x, y, z) ∈ R3 | x ∈ [−`/2, `/2], y = 0, z = 0}

and the boundary consists of two pointsW = (−`/2, 0, 0) and E = (`/2, 0, 0) with ` = 3mm. The
geometry is shown in Figure 2 on the left. The 1D shape function in (14) is given by

T
` = 3mm

W E
x

−1.5 −1 −0.5 0 0.5 1 1.5

0

1

2

3

4

x [mm]
S
x
(x

)
[1
/m

m
]

Figure 2: 1D model: geometry (left) and shape function (right)

Sx(x) =
1√

2πσL
exp

[
−1

2

(
x− x0

σL

)2
]
, (16)

where x0 denotes the position of the laser and σL the laser spot radius, see the image on the right in
Figure 2.

2.6.2 2D model

In the two dimensional case, the domain is the surface

Ω = {(x, y, z) ∈ R3 | x ∈ [−`/2, `/2], y = 0, z ∈ [−h, 0]}.

with ` = 3mm and height h = 5× 10−5mm. It is visualized in Figure 3.

The 2D shape function in (14) is given by

S(x, z) = Sx(x) · Sz(z)

where in z direction the absorption of the laser is assumed to be an exponential decay function

Sz(z) =
1

dA
exp

[
−|z|
dA

]
. (17)

Here dA is the penetration depth, or in other words 1/dA is the absorption coefficient, which heavily
depends on the laser wave length. In x direction the one-dimensional Gaussian (16) from the previous
section is used. The shape function in 2D is visualized in Figure 3 on the right.
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|W
T

E| h = 50 nm
B

` = 3mm

S

x

z

−0.4−0.2 0 0.2 0.4 −1.5

−1
−0.5

0

·10−2

0

500

x [mm]
z [mm]

S(x, z) [1/mm2]

Figure 3: 2D model: geometry (left) and shape function (right)

2.6.3 3D model

The three-dimensional setup is a cuboid given by

Ω = {(x, y, z) ∈ R3 | x ∈ [−`/2, `/2], y ∈ [0, w], z ∈ [−h, 0]}

with length ` = 3mm, width w = 0.5mm and height h = 5× 10−5mm, see Figure 4. The boundary
of the domain ∂Ω consists of six surfaces, defined by

W = Ω ∩ {(x, y, z) ∈ R | x = −`/2}, E = Ω ∩ {(x, y, z) ∈ R | x = `/2},
S = Ω ∩ {(x, y, z) ∈ R | y = 0}, N = Ω ∩ {(x, y, z) ∈ R | y = w},
T = Ω ∩ {(x, y, z) ∈ R | z = 0}, B = Ω ∩ {(x, y, z) ∈ R | z = −h}.

w = 0.5mm

h = 50 nm

` = 3mm

S

T

E

x

z
y

x

y

G(x, y, z)

Figure 4: 3D model: geometry (left) and shape function (right)

The 3D shape function in (14) is given by

S(x, y, z) = Sxy(x, y) · Sz(z).

In z direction the absorption of the laser is again assumed to be the exponential decay function (17).
For Sxy(x, y) a two dimensional Gaussian distribution is assumed:

Sxy(x, y) = Sx(x)Sy(y) =
1

2πσ2
L

exp

[
−1

2

(
x− x0

σL

)2
]

exp

[
−1

2

(
y − y0

σL

)2
]
. (18)

That is, the laser hits the crystal at (x0, y0, 0)T . A contour plot of the xy plane is shown in Figure 4 on
the right.
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uref

uD1 uD2

R iD

:= ΓD1

ΓN

ΓD2

ΓN

Ω

Figure 5: On the left we show a sample of photo-sensitive silicon crystal (in red) coupled with the
voltage meter having resistanceR. On the right, we show the domain Ω and the ohmic contacts ΓD1

and ΓD2 .

2.7 Coupling the device to an external circuit

So far we have described the van Roosbroeck system. It models charge transport in semiconductors
but not the LPS setup itself. To achieve the latter, we model the voltage meter as a simple circuit having
a resistance R. This structure is visualized in Figure 2.7. The network has two nodes, in which the
potentials are respectively uD1 and uD2 . Using the formalism of the Modified Nodal Analysis (MNA) we
have that the difference between the electric potentials at the nodes is given by

uD2 + ψ0|ΓD2
− (uD1 + ψ0|ΓD1

) = R iD(uD2), (19)

where iD is defined in (8). Usually one of the nodes of an electric circuit is assumed to have an electric
potential equal to the ground. This means in our case that we can arbitrarily set uD1 = uref = 0, and
thus (19) reduces to

uD2 + ∆ψ0 = R iD(uD2), (20)

where ∆ψ0 := ψ0|ΓD2
−ψ0|ΓD1

is the built-in potential and uLPS := uD2 the LPS voltage or the LPS
signal, our quantity of interest.

Notice that (20) is an implicit equation for uD2 since iD depends implicitly on uD2 , via the van
Roosbroeck system (1). Once we have found a solution (ψ, ϕn, ϕp) to the van Roosbroeck system
where uD2 enters the Dirichlet boundary condition (6), we compute the current iD via (7). In [3] and
the references therein, related coupled models are analyzed in detail. In particular, the existence of a
solution is proven in case of a vanishing generation rate G and more complicated circuits [3, Theorem
1]. We state the result here, adapted as far as possible to our specific setting:

Theorem 1 (Existence and boundedness of solution). The van Roosbroeck model (1) for G ≡ 0
coupled with (19) and supplied with boundary conditions (5), (6) admits a solution (ψ, ϕn, ϕp) ∈
(H1(Ω) ∩ L∞(Ω))3. Moreover, any solution satisfies the estimates infΓD

ψ0 + mini uDi
≤ ψ ≤

supΓD
ψ0 + maxi uDi

,mini uDi
≤ ϕn, ϕp ≤ maxi uDi

.

3 Tauc theory

In this section, we summarize and work out the theoretical framework first developed by Tauc [22]. We
will use his theoretical results to validate our simulation results. Starting with his observations we derive
three theoretical results.

DOI 10.20347/WIAS.PREPRINT.2784 Berlin 2020



Modeling and simulation of the lateral photovoltage scanning method 9

As a starting point Tauc assumed a 1D circular geometry as shown in Figure 6, assuming that the
segment from b to c is illuminated with monochromatic light. The sample contacts are denoted
by a′ and a. The photoinduced LPS voltage difference is measured between both contacts, namely
uLPS = ψ(a′)−ψ(a). It is assumed also that the contact positions are far enough from the illuminated
region to prevent that excess carrier densities reach them. Furthermore we suppose that the sample
thickness is sufficiently small compared to the reciprocal of the absorption coefficient in the direction
of the radiating field (hence we can work indeed on a circle instead of an annulus). Additionally, the
transverse direction is assumed much thinner than the beam diameter, so that the generation rate can
be assumed constant in the entire segment from b to c.

a′

a

x

xa xa′xb xc

x

σ

xxa xa′xb′ xc′

Figure 6: 1D sample geometry. The red region represents the illuminated portion of the sample; the two
contacts are placed at the sample boundaries and are marked by a and a′. As an inlay the conductivity
profile σ(x) assumed for case (III) is shown.

We define the line integral of the electric vector field E to be∫
γ

E(x) · dx :=

∫ xa′

xa

E(γ(x)) · γ ′(x)dx, (21)

where γ : R→ R2 is defined by

γ(x) =

(
cos(x)
sin(x)

)
such that γ(xa) = a and γ(xa′) = a′. For the electric field Tauc assumed

E(γ(x)) = F (x)γ ′(x),

with

F (x) = UT
µp

d
dx
p(x)− µn d

dx
n(x)

µpp(x) + µnn(x)
.

This expression for the electric field in 1D is derived from (8) for F = d
dx
ψ. That is, (21) becomes

uLPS = ψ(a′)− ψ(a) = −
∫
γ

E(x) · dx = −
∫ xa′

xa

F (x)dx = −UT
∫ xa′

xa

µp
d
dx
p− µn d

dx
n

µpp+ µnn
dx.

(22)

This formula will be the basis of many of the following observations.

DOI 10.20347/WIAS.PREPRINT.2784 Berlin 2020
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We will introduce notation to make clear how some quantity within a sample illuminated at laser spot
position x0 is perturbed from equilibrium values (denoted with the subscript eq) by a certain excess
amount. Namely,

n(x) = neq(x) + ∆n(x− x0), p(x) = peq(x) + ∆p(x− x0),

ρ(x) = ρeq(x) + ∆ρ(x− x0), σ(x) = σeq(x) + ∆σ(x− x0).
(23)

Here σ and ρ refer respectiveley to the conductivity and the resistivity defined as

σ := q(µnn+ µpp), ρ := 1/σ. (24)

If there is no illumination G = 0 then also no excess quantities will be generated and all four quantities
are given by their respective equilibrium values. In the following several assumptions will be needed
which we will collect here first:

(A1) The equilibrium electron density dominates the equilibrium hole density: neq � peq.

(A2) The equilibrium electron density is approximately given by the donor doping value: neq ≈ ND.

(A3) The doping variations are comparatively small to the doping offset: ND(x) = ND0 + ∆ND(x)
with ND0 � maxx∈Ω |∆ND(x)|.

(A4) The laser generates as many electrons as holes: ∆n = ∆p.

(A5) We have weak illumination, that is ∆σ � σeq. This case is by physicists referred to as low
injection conditions. In this case, we have also

σeq
∆σ + σeq

≈ 1− ∆σ

σeq
.

(A6) The illuminated area is relatively small with respect to the doping variation.

Assumption (A1) and (A2) imply

σeq = q(µnneq + µppeq) ≈ qµnneq ≈ qµnND. (25)

Tauc analyzed theoretically the three following cases [22]:

1 non-illuminated semiconductor: If our sample is not illuminated, the charge carrier densities
are given by their respective equilibrium values, namely

n(x) = neq(x), p(x) = peq(x) =
ni(x)2

n(x)
.

If xa = xa′ , we know by the fundamental theorem of calculus for line integrals that (22) vanishes.
However, since we need to measure the LPS voltage difference we cannot close the circuit
entirely. However, it is safe to assume that neq(xa) = neq(xa′). In this case (22) will vanish as
well since

uLPS = −
∫ xa′

xa

F (x)dx = −UT
∫ xa′

xa

n′eq
neq

dx = −UT
[

log(neq)
]xa′
xa

= 0. (26)

DOI 10.20347/WIAS.PREPRINT.2784 Berlin 2020



Modeling and simulation of the lateral photovoltage scanning method 11

2 illuminated homogeneous semiconductor: We use the notation introduced in (23). Since the
semiconductor is homogeneous we have ND = 0 which implies that neq and peq are constants.
Since xa and xa′ are far away from the illuminated area, we have ∆n(xa) = ∆n(xa′) = 0. In
this case (22) vanishes as well since we have by case 1 and (A4) that

uLPS = −UT
∫ xa′

xa

µp
d
dx
p− µn d

dx
n

µpp+ µnn
dx

= −UT
∫ xa′

xa

(µp − µn) d
dx

∆n

µp(peq + ∆n) + µn(neq + ∆n)
dx

= −UT
µp − µn
µp + µn

∫ xa′

xa

(µp + µn) d
dx

∆n

µppeq + µnneq + (µp + µn)∆n
dx

= −UT
µp − µn
µp + µn

log
(
µppeq + µnneq + (µp + µn)∆n

)∣∣∣xa′
xa

= 0.

3 illuminated inhomogeneous semiconductor: Only this final case leads to a nonvanishing
LPS voltage. Since the analysis is more complicated, Tauc makes some additional assumptions
on the conductivity, shown in Figure 6. A constant gradient is assumed in [xb′ , xc′ ]. Both values,
xb′ and xc′ , are chosen such that no excess charge carrier ∆n generated in [xb, xc] may reach
xb′ or xc′ by diffusion. Under this assumption Tauc can show that

uLPS = −UT
2

µ̄
log

[
1 + ∆σ

σ(xc)

1 + ∆σ
σ(xb)

]
= −UT

2

µ̄

(
log

[
σ(xc)

σ(xb)

]
− log

[
σ(xc) + ∆σ

σ(xb) + ∆σ

])
,

(27)

where again ∆σ is the conductivity variation due to illumination and µ̄ = 1 + µn
µp

.

Using Tauc’ result we make the following predictions on the LPS signal.

Theorem 2. From Tauc’ model it follows that the LPS voltage

(I) features a logarithmic growth for low laser powers

lim
P→0

uLPS(P ) =− UT
2

µ̄
×(

log

[
ND(xc)

ND(xb)

]
− log

[
ND(xc)

ND(xb)
+ κP

µ̄(ND(xb)−ND(xc))

ND(xb)
+O(P 2)

])
,

(28)

(II) for low and high laser powers saturates

lim
P→∞

uLPS(P ) = −UT
2

µ̄
log

[
ND(xc)

ND(xb)

]
. (29)

(III) is proportional to the doping gradient

uLPS(x0) ≈ − UT
qµnND0

2

µ̄
N ′D(x0)

∫ x0+δ/2

x0−δ/2

1

ND0

∆σ(x− x0)dx (30)

for some small δ > 0.
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Proof. Inserting the conductivity defined in (24), the photoinduced conductivity variation ∆σ =
q∆n(µn + µp) and the equilibrium conductivity variation σ(xb) = qµnND(xb) in (27), we obtain

uLPS = −UT
2

µ̄

(
log

[
ND(xc)

ND(xb)

]
− log

[
ND(xc) + ∆nµ̄

ND(xb) + ∆nµ̄

])
. (31)

This equation holds true for any mono-doped semiconductor. If the SRH recombination is dominant
(as it is plausible for silicon), the excess carrier density will be proportional to the laser pump power
∆n = κP for some κ > 0. Hence,

uLPS = −UT
2

µ̄

(
log

[
ND(xc)

ND(xb)

]
− log

[
ND(xc) + κP µ̄

ND(xb) + κP µ̄

])
. (32)

For low and high laser powers this leads respectiveley to (28) and (29).

To show that the LPS voltage under certain conditions is proportional to the gradient of the doping
concentration, we start again from (22). By the first result for non-illuminated semiconductors we obtain

uLPS = −
∫ xb

xa

F (x;G = 0)dx−
∫ xc

xb

F (x;G 6= 0)dx−
∫ xa′

xc

F (x;G = 0)dx

= −
∫ xa′

xa

F (x;G = 0)dx+

∫ xc

xb

F (x;G = 0)dx−
∫ xc

xb

F (x;G 6= 0)dx

=

∫ xc

xb

F (x;G = 0)dx−
∫ xc

xb

F (x;G 6= 0)dx.

By arguments similar to the case for non-illuminated semiconductors, see (26), we obtain for the first
integral ∫ xc

xb

F (x;G = 0)dx = −UT
[

log(neq)
]xc
xb

=: Cnl = const.

We focus on the second integral. By the definition of the conductivity and (A4), we find∫ xc

xb

F (x;G 6= 0) = UT

∫ xc

xb

µp
d
dx
p− µn d

dx
n

µpp+ µnn
dx

= UT

∫ xc

xb

µp
d
dx

(peq + ∆n)− µn d
dx

(neq + ∆n)

σeq + ∆σ
dx

= UT

∫ xc

xb

(µp − µn) d
dx

∆n− µp peqneq

d
dx
neq − µn d

dx
neq

σeq + ∆σ
dx

Since (4) implies that d
dx
peq = − peq

neq

d
dx
neq, the final equality holds. Considering that

∆σ(x− x0) = (µp + µn)∆n(x− x0) and σeq = q(µnneq + µppeq),

we obtain∫ xc

xb

F (x;G 6= 0) = UT
µp − µn
µp + µn

∫ xc

xb

d
dx

∆σ

σeq + ∆σ
dx− UT

∫ xc

xb

σeq
σeq + ∆σ

d
dx
neq

neq
dx.

Using (A5) and the partial integration∫ xc

xb

d
dx

∆σ

σeq
dx =

∫ xc

xb

ρeq
d

dx
∆σdx = ρeq∆σ

∣∣∣xc
xb
−
∫ xc

xb

∆σ
d

dx
ρeqdx = −

∫ xc

xb

∆σ
d

dx
ρeqdx
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we find∫ xc

xb

F (x;G 6= 0) = −UT
µp − µn
µp + µn

∫ xc

xb

∆σ
d

dx
ρeqdx+ Cnl + UT

∫ xc

xb

∆σ

σeq

d
dx
neq

neq
dx.

Combining the above result with the fact that (25) yields

d
dx
neq

neq
= −σeq

d

dx
ρeq, (33)

we obtain

uLPS = UT

(
2

µ̄

)∫ xc

xb

∆σ(x− x0)
d

dx
ρeq(x)dx

Let us assume that xb = x0 − δ/2 and xc = x0 + δ/2 for some δ > 0 which is by assumption (A6)
relatively small, then

uLPS ≈ UT

(
2

µ̄

)(
d

dx
ρeq(x)

) ∣∣∣∣∣
x=x0

∫ x0+δ/2

x0−δ/2
∆σ(x− x0)dx.

By (33), (25) and (A3), we deduce (30). �

4 Finite volume discretization

In this section, we present a Voronoï finite volume technique [13, 12, 11, 21]. Similar as for finite
elements, we start by partitioning the domain Ω into non-intersecting, convex polyhedral control
volumes ωk such that Ω =

⋃Nvert

k=1 ωk. Unlike for finite elements, these control volumes need not to be
triangular but fulfill the following orthogonality condition: we associate with each control volume ωk
a node xk ∈ ωk. For every boundary intersecting control volume, we demand that this node lies on
the boundary xk ∈ ∂Ω ∩ ωk. Assuming that the partition is admissible in the sense of [9], that is for
two adjacent control volumes ωk and ωl, the edge xkxl of length hkl is orthogonal to ∂ωk ∩ ∂ωl, the
normal vectors to ∂ωk can be calculated by νkl = (xl − xk)/‖xl − xk‖. For each control volume ωk,

xk xl

ωk

ϕh
n;k

ϕh
p;k

ψh
k

ωl

ϕh
n;l

ϕh
p;l

ψh
l

j
νkl

Figure 7: Two adjacent control volumes ωk and ωl with corresponding notation.

the finite volume discretization is given by the three equations:∑
ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jψ;k,l = q|ωk|
(
Ck + phk − nhk

)
, (34a)

∑
ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jn;k,l = +q|ωk|Rk, (34b)

∑
ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jp;k,l = −q|ωk|Rk. (34c)
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We denote withN (ωk) the set of all control volumes neighboring ωk. In 2D, the measure |∂ωk ∩ ∂ωl|
corresponds to the length of the boundary line segment and in 3D to the area of the intersection of the
boundary surfaces. Furthermore, in 2D the measure |ωk| is given by the area and in 3D by the volume
of the control volume ωk. The unknowns ψhk , ϕhn;k, ϕhp;k correspond to the electrostatic potential as well
as the quasi-Fermi potentials for electrons and holes evaluated at node xk. Accordingly, nhk , phk , Rk

and Ck are defined as

nhk = NcF
(
ηn(ψhk , ϕ

h
n;k)
)
, Ck = C(xk), (35a)

phk = NvF
(
ηp(ψ

h
k , ϕ

h
p;k)
)
, Rk = R

(
nhk, p

h
k

)
. (35b)

The notation is explained visually in Figure 7.

Note that the doping profile C and the recombination rate R are given. The numerical fluxes jψ;k,l,
jn;k,l and jp;k,l approximate respectively−ε0εr∇ψ ·νkl, jn ·νkl and jp ·νkl on the interfaces between
two adjacent control volumes ωk and ωl. These fluxes can be expressed as functions depending
nonlinearly on the values ψhk , ϕ

h
n;k, ϕ

h
p;k and ψhl , ϕ

h
n;l, ϕ

h
p;l. The flux corresponding to the electrostatic

displacement is approximated by

jψ;k,l = −ε0εr
ψhl − ψhk
‖xl − xk‖

.

Next, we discuss numerical flux approximations which appear in the discretizations of the continuity
equations. Choosing the numerical fluxes jn;k,l and jp;k,l correctly is a rather delicate issue as the
wrong choice may lead to either instabilities or the violation of thermodynamic principles. Scharfetter and
Gummel presented in [20] a suitable choice for Boltzmann statistics. The constant Scharfetter-Gummel
flux is given by

jn;k,l = −qµnNcUT
xl − xk

(
exp

(
ηhn;k

)
B

(
−ψ

h
l − ψhk
UT

)
− exp

(
ηhn;l

)
B

(
ψhl − ψhk
UT

))
(36)

with ηhn;k = ηn(ψhk , ϕ
h
n;k) and ηhn;l = ηn(ψhl , ϕ

h
n;l). The Bernoulli function is given by B(η) =

η/(eη − 1). A similar expression can be derived for the hole flux. We point out that only in the
Boltzmann regime this flux is thermodynamically consistent in the sense that constant quasi-Fermi
potentials imply that the flux vanishes.

4.1 Solution strategy for nonlinear boundary condition

In this section, we detail how we solve the van Roosbroeck model, considering the implicit relationship
(20) for the contact voltage uD2 . We need to find the root of the function

F (uD2) := uD2 + ∆ψ0 −R iD(uD2)

= uD2 + ∆ψ0 −R
∫

ΓD2

ν · (Jn(x;uD2) + Jp(x;uD2))dσ(x).

Remember that in order to compute the second term, we need to solve the van Roosbroeck system (1).
So evaluating F corresponds to solving the van Roosbroeck system once. Since we do not know the
derivative of F with respect to uD2 , we apply for ` = 2, 3, . . . the secant method

u`+1
D2

= u`D2
− F (u`D2

)
u`D2
− u`−1

D2

F (u`D2
)− F (u`−1

D2
)
, (37)

using two starting values u0
D2

and u1
D2

.
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Figure 8: Tauc model: LPS voltage as a function of the laser power at x0 = 0mm for ND0 =
1× 1016 cm−1 (left) and LPS voltage as a function of the doping gradient d

dx
ND = ND0/15mm at

x0 = 0mm (right).

5 Numerical simulation results

In this section, we present different simulations results. Our simulations are based on the open-source
tool ddfermi [8].

5.1 Tauc model

We compare our simulation results to the three statements in Theorem 2. Due to the discussion in
Section 3 the Tauc model can be viewed as one-dimensional LPS model, see Section 2.6.1, with a
special conductivity profile σ. For the sake of simplicity, we set xa = xb′ = −1.5mm as well as
xa′ = xc′ = 1.5mm and assume the sample is illuminated at the center. The beam width σL = 10 µm
is chosen significantly smaller than the illuminated area xc − xb = 2.5mm to avoid excess carrier
diffusion. We define σ ≈ σeq under low injection conditions (see (A5)) indirectly via (25) and

ND(x) =


ND0(1 + x

15mm
), x ≤ 1mm,

ND0(1.4− x
3mm

), else.
(38)

As predicted by (I) in Theorem 2, our simulations, shown in Figure 8 left panel, feature a logarithmic
behavior for small laser powers. It must be pointed out that the simulation results were shifted by a
non-physical offset which leads to U(P = 0) 6= 0. By calculating this offset and shifting the data
accordingly we could guarantee that U(P = 0) = 0 is fulfilled. The saturation described by (II) in
Theorem 2 can also be observed in our simulation. The green line defines the maximum voltage
according to (II), which is in perfect agreement with our simulation results. In [15] the authors give
a physical argument why this is likely related to the screening effect. Finally, we analyze statement
(III) in Theorem 2 for small variations of the doping profile ND(x). The simulation result in Figure 8
(right panel) shows a linear dependency of the doping variation d

dx
ND = ND0/15mm for small LPS

voltages. For larger values of the doping variation LPS voltage and doping variation deviate from each
other nonlinearly. In this case, the low injection assumption (A5) is violated so that no linear relationship
is guaranteed anymore by Theorem 2. In summary, we note that our simulation results agree with the
theory.
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5.2 2D LPS model

Next, we simulate a 2D LPS model from Section 2.6.2. We define the doping profile

ND = ND0

(
1 + 0.2 sin

(
2π

x

100 µm

))
, (39)

with ND0 = 1× 1016 cm−2.

The numerical challenge we face here is that on the one hand due to the large diffusion length in silicon
(up to the order of millimeters) the sample needs to be several millimeters long. On the other hand,
the penetration depth of the laser dA = 4.8 µm is three orders of magnitude smaller than any suitable
sample length. The remaining parameters can be found in Appendix A.1.

A mesh with constant mesh size would either be inefficient with respect to the simulation time and or
lead to a poor resolution of the laser beam profile. To avoid this, we designed an anisotropic mesh
which resolves only the laser spot position well. This mesh is shown in Figure 9 for different zoom
levels. The colors correspond to the simulated quasi Fermi potential for holes ϕp. Since NA = 0 cm−3,
the shape of ϕp is mainly given by the generation rate G and the sample inherent diffusion length. It
can be seen that ϕp is decreasing fast in x direction, hence the directly linked excess charge carrier
distribution ∆p is also decreasing fast by (2). As discussed above this is required for our simulation.
The secant method (37) converges usually within 3-4 steps to a tolerance of 1× 10−9.

Figure 9: Full length 2D mesh geometry (bottom row) with different zoom levels (top row). The colors
correspond to the quasi Fermi potential values for holes ϕp for the laser power P = 200W and laser
spot position x0 = 0.

Next we vary the laser spot position x0 and compute the LPS voltage uLPS for each position, shown in
Figure 10 (right panel). On the right axis the doping variation (red) is shown, revealing a wavelength
λ = 100 µm. The LPS voltage (marked in black and shown on the left axis) features a variation in
agreement with the doping variation wave length. We stress again the fact, that this result agrees with
(III) in Theorem 2 even though we simulate a more complex geometry. Having a closer look at the
maxima and minima of the doping gradient, it can be observed that they do not perfectly match the
simulated voltages. This can be explained by the fact that in (30) the LPS voltage is only approximately
proportional to the doping variation. Also the first peak is not perfectly resolved since the mesh is
significantly coarser in this area due to our anisotropic mesh.
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Modeling and simulation of the lateral photovoltage scanning method 17

Figure 10: 2D simulation results: LPS voltage as a function of the laser power at x0 = 0mm with
ND0 = 1× 1016 cm−2 (left) and the LPS voltage for varying laser spot position (right). The LPS
voltage is shown on the left axis in black and the doping variation profile on the right axis in red
(ND0 = 1× 1016 cm−2). The first peak is not perfectly resolved since the mesh is significantly coarser
in this area due to our anisotropic mesh.

Figure 11: Anisotropic 3D mesh

5.3 3D LPS model

Finally, we simulate a full 3D tabletop setup described in Section 2.6.3 using again an anisotropic mesh,
shown in Figure 11 with approximately two million nodes. The doping profile is defined by

ND(x, y, z) = ND0

(
1 + 0.2 sin

(
2π

x

100 µm

))
. (40)

The remaining parameters are summarized in Appendix A.1. We plot the simulated quasi Fermi
potentials, the densities, the electrostatic potential as well as the generation rate in Figure 12. The
secant method (37) converges usually within 3-4 steps to a tolerance of 1× 10−9.

As for the 2D case, we observe again (cf. Theorem 2) a logarithmic behavior of the LPS voltage with
respect to the laser power (I), an eventual saturation (II) as well as a sinusoidal variation of the signal
(III), matching the gradient of doping profile (40) in x direction, see Figure 13 left and right panel. Only
near the extrema one can notice a small deviation which we also observed in the 2D case.

In 3D, we also compare LPS voltages uLPS(P ) for different base doping levels ND0 in Figure 14, left
panel. Generally, for low laser powers P the resulting LPS voltage is nearly independent of the base
doping level. For higher laser powers the signal saturates due to the screening effect. In this regime, the
valleys in the doping are completely filled with free charge carriers so that the doping variations are not
measurable anymore. That is, once the screening effect dominates, no meaningful measurements can
be obtained. Naturally, our simulations confirm that this happens faster for smaller base doping levels
and predict for a given base doping level which laser powers still give meaningful results. For example,
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Figure 12: 3D simulation result for P = 2mW, (x0, y0)T = (0mm, 0mm)T and ND0 =
1× 1016 cm−3. We show the electrostatic potential ψ (upper left panel), the resulting generation
rate G (upper right panel), the quasi Fermi potentials ϕn,ϕp for electrons and holes (middle panels).
The related charge carrier densities n, p are shown in the bottom panels.

Figure 13: 3D simulation results: LPS voltage as a function of the laser power forND0 = 1× 1016 cm−3

at (x0, y0)T = (0mm, 0mm)T (left) and the LPS voltage as a function of the doping gradient for
ND0 = 1× 1016 cm−3, y0 = 0mm and P = 2mW (right).
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Figure 14: 3D simulation results: LPS voltage as a function of the laser power at (x0, y0)T =
(0mm, 0mm)T for various average doping concentrations ND0 (left) and ratio of LPS voltage and
average doping concentrations as a function of the laser power P for various ND0 (right).

Figure 15: 3D simulation results: LPS voltage scan for P = 2mW, y0 = 0mm and ND0 =
1× 1011 cm−3 (left) and normalized LPS voltage scans for P = 2mW, y0 = 0mm and four different
base doping levels ND0 (right).

for a base doping level of ND0 = 1× 1011 cm−3 one needs to be able to detect nanovolts. Up to
now, real-life LPS measurement have only been performed for ND ≥ 1× 1012 cm−3. Yet, in practice
low doping fluctuations on the order of ND0 = 1× 1011 cm−3 do arise, for example, when trying to
examine inhomogeneities in the extremely pure Si28 crystal which was recently used to redefine the
kilogram [1]. Thus, in order to measure these extremely tiny inhomogeneities via the LPS method,
our simulations show that one needs to improve the voltage detectors. In Figure 15 left panel, we
show an LPS scan for such a very low base doping value ND0 = 1× 1011 cm−3. The LPS voltage
still follows the doping gradient nearly perfectly. Incidentally, Figure 14 (left panel) also indicates, that
measuring highly doped samples (ND0 ≥ 1× 1016 cm−3) is easier, as the saturation does not limit
the measurability up to a laser power of P = 1000W.

On the right panel in Figure 14 we show the LPS signal normalized by the base doping level, i.e.
uLPS/ND0. For larger laser powers all LPS signals reach the same plateau. Again, this can be
explained by the screening effect. It is interesting, that the ratio uLPS/ND0 in the plateau regions is
nearly independent of the average doping concentration, setting a fundamental barrier for the maximal
uLPS/ND0 ratio.

Additionally, we performed several LPS scans normalized by the maximal LPS voltage at x0 = 0mm,
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that is umax := uLPS(x0 = 0), for varying ND0, see Figure 15 right panel. It can be seen, that all four
normalized scans lie on top of each other. This indicates that∫ x0+δ/2

x0−δ/2

1

ND0

∆σ(x− x0)dx ≈ const (41)

in (30) as long as the LPS voltages have not saturated yet because in this case umax does not depend
on ND0 as can be see in Figure 14 (left panel).

5.4 Convergence study

We analyze the convergence order of our method experimentally. Since in practice the LPS voltage
uLPS is the quantity of interest, we focus on its relative error with respect to a fine reference solution.
Since our doping profiles in the earlier sections only vary in one direction, we run a convergence
study in 1D. We choose the doping profile ND = ND0 (1 + 0.2 sin (2πx/100 µm)) on a sequence
of nested uniform grids. We fix the number of secant iterations to 20 for every mesh. The reference
voltage uref is computed on a mesh which is two times more refined than the finest mesh used in this
study. As can be seen in Figure 16, the LPS voltage converges at first linearly and then approximately
quadratically.

Figure 16: 1D convergence study for σL = 20 µm, P = 2W, x0 = 0mm andND0 = 1× 1016 cm−1

on a nested sequence of uniform grids.

5.5 Efficiency and comparison

We compare our current implementation with the only other code known to us simulating LPS mea-
surements by Kayser et al. [16, 14] which is based on the commercial COMSOL Multiphysics software
package. Unfortunately, it was not possible to run both codes on the same machine due to licencing
restrictions. We report that in 1D there were no significant differences. However, for the 3D model in
Section 2.6 Table 5.5 shows that even on a computer that is significantly better, the COMSOL implemen-
tation computes one LPS voltage nearly 18 times more slowly. Fine tuning of numerical parameters may
decrease this gap though we were not able to improve the performance of the COMSOL implementation
any further.
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COMSOL ddfermi
system Windows 10 64-Bit OpenSuse 15.1 64-Bit
CPU 8x i7-6700 3.4GHz 4x i7-5600 2.6GHz
RAM 32GB 8GB

run time 1516 seconds 85 seconds

Table 1: Comparison of 3D model from Section 5.2 on same anisotropic grid (see Figure 11) run with
COMSOL code [14] and our implementation, using three secant iterations. One single LPS voltage is
computed for (x0, y0)T = (0mm, 0mm)T , ND chosen as in (40) with ND0 = 1× 1016 cm−3 and
P = 1× 10−19W.

Moreover, Kayser showed in his PhD thesis [14], that the commercial COMSOL Multiphysics toolbox
can be used to simulate a full LPS scan for the 3D model at the considerably low base doping level
ND0 = 1× 1012 cm−3. But unfortunately, in this realistic setting the simulation time was on the order
of weeks. On the other hand, our implementations were performed on the same OpenSuse notebook
from Table 5.5 in approximately two hours. That is, our simulation runs two orders of magnitude
faster. This huge speed up is achieved by a clever simulation strategy reusing previously computed
results as starting values for the next Newton iteration [11]. It is not exactly clear how the COMSOL
Multiphysics toolbox solves the nonlinear system. For base doping levels belowND0 = 1× 1012 cm−3

the COMSOL Multiphysics toolbox even failed to produce any results due to numerical instabilities.

6 Conclusion and future research

To improve crystal growth it is paramount to understand the temperature distribution created by the
coils. It is impossible to measure the temperature during growth but one can measure inhomogeneities
which follow the solid-liquid interface post mortem. We modeled and simulated a special measurement
technique of these inhomogeneities, the lateral photovoltage scanning (LPS) since it is fast, cheap and
nondestructive. Our model was based on the semiconductor device equations combined with a nonlinear
boundary condition, modelling a simple circuit. To validate our 2D and 3D finite volume simulations, we
used theory developed by Tauc [22] to prove three analytical predictions, all of which our simulation
results satisfied, even for the more complex 2D and 3D settings. Our code runs about two orders
of magnitudes faster than earlier implementations based on commercial software. It also performs
well for small doping concentrations which previously could not be simulated. We show a quadratic
experimental order of convergence on finer meshes. Finally, our simulations provide experimentalists
with the lowest reference voltages which their volt meter needs to be able to detect for given doping
concentrations. Future research will be concerned with simulating the full inverse problem, requiring a
whole new set of techniques.
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A Model specifications

A.1 Parameter list for silicon

Physical Quantity Symbol Value Units
Reference temperature T0 300 K
Electron affinity χ(T0) 4.05 eV
Band gap Eg(T0) 1.12 eV
eff. DOS parameter electrons κn 1.04× 1019 1/cm3

eff. DOS parameter holes κp 2.8× 1019 1/cm3

Density of states in the conduction band Nc(T0) 1.04× 1019 1/cm3

Density of states in the valence band Nv(T0) 2.8× 1019 1/cm3

Laser power PL 0 − 20 mW
Laser wave length λL 685 nm
Laser penetration depth dA 4.8 µm
Laser spot radius σL ≥1.25 µm
Direct recombination factor Cd 1× 10−20 cm3/s
Auger recombination factor electrons Cn 2.8× 10−31 cm6/s
Auger recombination factor holes Cp 2.8× 10−31 cm6/s
SRH lifetime electrons τn 1× 10−9 − 1× 10−3 s
SRH lifetime holes τp 1× 10−9 − 1× 10−3 s
Trap Energy Boron ET 0.045 eV
Trap Energy Phosphorus ET 0.044 eV
Arora mobility parameter µref

n, 0 1323 cm2/Vs
Arora mobility parameter µref

p, 0 429 cm2/Vs
Arora mobility parameter µref

n,min 89 cm2/Vs
Arora mobility parameter µref

p,min 55 cm2/Vs
Arora mobility exponent α0 0.88 −
Arora mobility exponent β1 −0.57 −
Arora mobility exponent β2 −2.33 −
Arora mobility exponent β3 2.4 −
Arora mobility exponent β4 −0.146 −
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