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Dynamic probabilistic constraints under continuous
random distributions

Tatiana González Grandón, René Henrion, Pedro Pérez-Aros

This work is dedicated to the memory of Shabbir Ahmed

Abstract

The paper investigates analytical properties of dynamic probabilistic constraints (chance con-
straints). The underlying random distribution is supposed to be continuous. In the first part, a gen-
eral multistage model with decision rules depending on past observations of the random process
is analyzed. Basic properties like (weak sequential) (semi-) continuity of the probability function
or existence of solutions are studied. It turns out that the results differ significantly according to
whether decision rules are embedded into Lebesgue or Sobolev spaces. In the second part, the
simplest meaningful two-stage model with decision rules from L2 is investigated. More specific
properties like Lipschitz continuity and differentiability of the probability function are considered.
Explicitly verifiable conditions for these properties are provided along with explicit gradient formu-
lae in the Gaussian case. The application of such formulae in the context of necessary optimality
conditions is discussed and a concrete identification of solutions presented.

1 Introduction

1.1 Overview

The application of probabilistic constraints (or: chance constraints) to engineering problems and their
numerical solution is nowadays standard. Introduced by Charnes, Cooper and Symonds [5] in a simple
form (individual constrains) in 1958, their systematic theoretical and algorithmic investigation has been
pioneered by Prékopa and his students starting in the Seventies (see [15] and references therein). The
typical form of a probabilistic constraint is the inequality

P(gi(x, ξ) ≤ 0 (i = 1, . . . , p)) ≥ p, (1)

where x is a decision vector, ξ is a random vector, P a probability measure and g a random constraint
mapping with finitely many components. The meaning of (1) is to define a decision x as feasible if
the random inequality system g(x, ·) ≤ 0 is satisfied at least with probability p ∈ (0, 1]. A modern
theoretical treatment of probabilistic constraints can be found in the monograph [16, chapter 4]. The
algorithmic solution of optimization problems subject to constraints (1) has been tremendously ad-
vanced within the last twenty years. Rather than providing a detailed list of references here, we want
to emphasize the contribution to this development by Shabbir Ahmed (e.g., [12, 13]). At the same time
the traditional model (1) has been extended to broader settings such as PDE constrained optimization
([7], [9], [6]) or infinite random inequality systems (probust constraints, [17]).

A challenge of different nature consists in considering dynamic aspects in probabilistic constraints.
Observe that (1) is a static model by nature: The decision x (‘here-and now-decision’) has to be taken
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before the randomness ξ is observed. Such model would apply, for instance, in the design of a me-
chanical construction (encoded by x) which is done once and for ever and has to resist unknown future
random forces ξ with high probability. Many decisions, however, are time dependent. The components
of x and ξ could refer to discrete time decision and random processes, respectively. In the control of
a hydro reservoir, for instance, one is faced with an alternating sequence of decisions xt (referring to
water release) and realizations of randomness ξt (water inflow) according to the chronology

x1 y ξ1 y x2 y ξ2 y · · ·y xT (y ξT ). (2)

Whether or not this sequence ends with a decision (final recourse action) or with the observation
of randomness without the possibility of finally reacting to it, depends on the choice of a model of
multistage stochastic optimization or of multistage probabilistic programming. This distinction requires
some care because sometimes the term ‘two-stage probabilistic constraint’ is used for the addition of
a probabilistic constraint (relaxing the almost sure existence of a recourse action) in a setting of two-
stage stochastic programming. Such model has been first considered in [14] and is still of much interest
(e.g., [11]). Here, the chronology is the one of (2) with T = 2 (without the final term in parantheses):
x1 y ξ1 y x2, i.e., it is a special two-stage stochastic optimization problem. In our understanding,
it is not a two-stage probabilistic constraint which would end with the term in parentheses in (2):
x1 y ξ1 y x2 y ξ2. In this way one would obtain a logical generalization of conventional one-stage
(static) probabilistic constraints of type x1 y ξ1 and keep the idea, that in a probabilistic constraint one
is always faced with a final unknown realization of some random vector. This idea follows a remark in
[8]: ‘... a well-formed probabilistic constraint contains at least one coefficient that depends on a random
variable realized after the last decision is taken’.

It is clear that in (2) the dynamic character of the decision making process expresses itself by as-
suming all decisions being functions of past observations in order to take advantage of the gain of
information obtained from the realizations of the random vector. Hence, instead of static (constant)
decisions xt one admits decision rules or policies x2(ξ1), x3(ξ1, ξ2) etc. When considering continu-
ously distributed random vectors, this approach takes the problem to infinite dimensions even though
time is discrete, because policies are elements of appropriate function spaces. One may circumvent
this difficulty by restricting policies to a parameterized class, linear decision rules in the simplest case.
Then, one gets back to a static problem where decisions are the parameters of the policies. Several
aspects of modeling linear decision rules in the context of (linear) multistage probabilistic constraints
are discussed in [10]. It is not guaranteed, however, that the chosen class contains the optimal policy.
Another idea to reduce the problem again to a finite-dimensional one would consist in a discrete ap-
proximation of the random distribution. A conceptual framework for dealing with dynamic probabilistic
constraints without restricting the class of policies and keeping the continuous character of the given
(multivariate Gaussian) distribution was presented in [4] along with applications to two- and three-
stage probabilistic control of a water reservoir. Using stochastic dynamic programming rather than
direct nonlinear programming, a similar problem was later analyzed and numerically solved in [2] for a
significantly larger number of stages, however with a discrete random distribution.

The focus in this paper is not on the numerical solution of problems subject to dynamic probabilistic
constraints but rather on analytical properties of the arising probability function. Here we assume the
underlying random distribution to be continuous and keep the decision rules general as elements
of some Lebesgue or Sobolev space. In Section 2, a general multistage model is analyzed. Basic
properties like (weak sequential) (semi-) continuity of the probability function or existence of solutions
are studied. In Section 3, the simplest meaningful two-stage model with decision rules from L2 is
investigated. More specific properties like Lipschitz continuity and differentiability of the probability
function are considered. Explicitly verifiable conditions for these properties are provided along with
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Dynamic probabilistic constraints 3

explicit gradient formulae in the Gaussian case. The application of such formulae in the context of
necessary optimality conditions is discussed and a concrete identification of solutions presented.

1.2 The general setting

In this paper we study optimization problems of the type

min
x∈X
{J(x) | x ∈ C, ϕ(x) ≥ p} (3)

Here, the space of decisions X is one of the following Lebesgue or Sobolev spaces with q ∈ [1,∞)

X := R× Lq(R)× Lq(R2)× · · · × Lq(RT−1)

X 1 := R×W 1,q(R)×W 1,q(R2)× · · · ×W 1,q(RT−1).

The subset C ⊆ X (or C ⊆ X 1) is meant to represent some abstract constraint on the decision,
e.g., nonnegativity or bounds for the components. The focus of our attention will be on the inequality
constraint ϕ(x) ≥ p which we will assume to represent a so called joint dynamic chance constraint.
More precisely, p ∈ (0, 1] is some given safety level and ϕ : X → [0, 1] denotes a probability
function defined for x ∈ X as follows

ϕ(x) :=

P (hi (x1, x2 (ξ1) , . . . , xT (ξ1, . . . , ξT−1) , ξ1, . . . , ξT ) ≤ 0 i = 1, . . . , k) , (4)

where hi : RT ×RT → R and ξ := (ξ1, . . . , ξT ) is a T -dimensional discrete time process on some
probability space (Ω,A,P). Observe that with each component xt of the decision x depending on
past outcomes (ξ1, . . . , ξt−1) only, x represents an adapted decision process. We endow X and X 1

with the maximum norm with respect to the usual norms in the coordinate spaces. Doing so, X and
X 1 are Banach spaces.

1.3 A motivating example

To illustrate applications for problem 3, we present a decision management optimization problem on a
single water reservoir for hydroelectricity generation. Given a set of future time intervals 1, 2, . . . , T ,
the problem of the operator is to decide on an optimal release policy (x1, . . . , xT ) of water, considering
technical, economical and environmental aspects. By ξ = (ξ1, . . . , ξT ), we denote the random vector
indicating the stochastic water inflow (e.g. precipitation, snow melt) to the reservoirs at corresponding
time intervals . The main role of the reservoir is to generate electricity. At the same time, lower and
upper limits l∗, l∗ for the water level have to be satisfied in the reservoir, say for flood protection or
for ecological reasons. By the random nature of the inflows, the time dependent water level lt (x, ξ)
induced from the controlled water release x is a random variable too. Hence, the mentioned limits
cannot be satisfied in a deterministic way. Rather, it is reasonable to impose them in a probabilistic
way:

P (l∗ ≤ lt (x, ξ) ≤ l∗ (t = 1, . . . , T )) ≥ p. (5)

Here, p ∈ [0, 1] denotes a probability level at which the random constraints are supposed to hold true.
The current water level after time interval t is clearly given as the initial level plus the cumulated inflow
minus the cumulated release so far:

lt (x, ξ) = l0 + ξ1 + · · ·+ ξt − x1 − · · · − xt (t = 1, . . . , T ) .
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Sometimes, one decides on the future water release in complete ignorance of future water inflow. This
is the case, for instance, in day ahead markets, when energy production (water release) for each hour
of the next day is fixed one day ahead. Then, decisions are just scalars for each time intervals and the
probabilistic constraint (5) becomes

P

(
l∗ ≤ l0 +

t∑
τ=1

ξτ −
t∑

τ=1

xτ ≤ l∗ (t = 1, . . . , T )

)
≥ p

(
x ∈ RT

)
. (6)

Such a static model does not take into account the temporal gain of information while the random inflow
process unfolds. In longer term planning problems one therefore admits from the beginning that future
decisions on water release are functions of past observations of the random inflow. Hence, rather
than deciding on scalars x1, . . . , xT , one is looking for functions x1, x2(·), x3(·, ·), so-called policies.
In this dynamic setting better solutions of the underlying optimization problem can be expected (the
static model being included as a special case with constant policies, e.g., x2(·) ≡ x2 etc.). Hence, we
adjust our static chance constraint above to a dynamic one, where (x ∈ X ,X 1):

P

(
l∗ ≤ l0 +

t∑
τ=1

ξτ −
t∑

τ=1

xτ (ξ1, . . . , ξτ−1) ≤ l∗ (t = 1, . . . , T )

)
≥ p.

A possible objective in a corresponding optimization problem might consist in the maximization of the
expected overall water release (representing the amount of energy produced):

J(x) := −E
T∑
t=1

xt (ξ1, . . . , ξτ−1) .

Then, the optimization problem is of the form (3) with the probability function ϕ defined in (4) via the
constraint mapping h : RT × RT → R2T . The latter has k := 2T components

ht (u, v) : = l0 − l∗ +
t∑

τ=1

vτ −
t∑

τ=1

uτ (t = 1, . . . , T )

hT+t (u, v) : = l∗ − l0 +
t∑

τ=1

uτ −
t∑

τ=1

vτ (t = 1, . . . , T ) .

2 Basic Structural Properties of the General Model

In this section we are going to collect some basic structural properties of the chance constraintϕ(x) ≥
p in (3) and the involved probability function ϕ in (4). For convenience, we introduce the notation
u[i] := (u1, . . . , ui) for vectors u ∈ Rn and 1 ≤ i ≤ n. With the policy x ∈ X we associate the joint
policy (whose components have a common domain) as a mapping [x] : RT → RT defined by

[x] (z) :=
(
xt(z[t−1])

)
t=1,...,T

(
z ∈ RT

)
, (7)

with the convention x1(z[0]) = x1. Finally, we introduce the maximum function related to the mapping
h:

hmax := max
i=1,...,k

hi. (8)
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Then, the probability function in (4) can be compactly written as

ϕ(x) = P (hmax ([x] (ξ), ξ) ≤ 0) . (9)

We first check, that this expression is well-defined. In order to ensure this, we make the following basic
assumptions in (4) throughout this paper:

ξ possesses a density
h is Borel measurable

}
. (BA)

Observe first that for given x ∈ X each component xt : Rt−1 → R is Borel measurable, whence the
mapping [x] is Borel measurable. Then, hmax ([x] (z), z) is a Borel measurable function of z because
each hi is so thanks to (BA). This implies that

{ω ∈ Ω|hmax ([x] (ξ (ω)), ξ (ω)) ≤ 0} ∈ A,

so that it is justified to speak of the probability of this event appearing in the definition of (9). It remains
to show that this probability is independent of the representative of x ∈ X . To see this, let x(1), x(2) ∈
X such that x(1)

1 = x
(2)
1 and be such that

x
(1)
t+1(u) = x

(2)
t+1(u) ∀u ∈ Bt ∀t = 1, . . . , T − 1,

whereBt ⊆ Rt are Lebesgue measurable subsets with λt (Rt\Bt) = 0 (λt is the Lebesgue measure
in Rt). Define

C :=
T−1⋃
t=1

Ct, where Ct :=
(
Rt\Bt

)
× RT−t−1 ⊆ RT−1 ∀t = 1, . . . , T − 1.

Then, λT−1 (C) = 0 and[
x(1)
]

(z) =
[
x(2)
]

(z) ∀z ∈
(
RT−1\C

)
× R.

Since ξ possesses a density fξ, it follows from (9) that

ϕ(x(1)) =

∫
{z|hmax([x(1)](z),z)≤0}

fξ (z) dz

=

∫
{z|hmax([x(1)](z),z)≤0}∩{(RT−1\C)×R}

fξ (z) dz

=

∫
{z|hmax([x(2)](z),z)≤0}∩{(RT−1\C)×R}

fξ (z) dz

=

∫
{z|hmax([x(2)](z),z)≤0}

fξ (z) dz = ϕ(x(2)).

This shows, that the value of ϕ does not depend on the representative of x ∈ X .

We will commence our analysis with some (lower-) semicontinuity properties and then derive conse-
quences later on. The following Proposition turns out to be a crucial technical tool in this context:
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Proposition 2.1 In addition to the basic assumptions (BA), suppose that h in (4) has components hi
which are lower semicontinuous in their first argument vector (related with x). Consider a sequence
x(n) in X which converges componentwise almost everywhere to some x ∈ X . Then,

lim sup
n→∞

ϕ
(
x(n)
)
≤ ϕ (x) . (10)

Moreover, if h has components hi which are upper semicontinuous in their first argument vector and
in addition

λT
({
z ∈ RT |hi ([x] (z), z) = 0

})
= 0 i = 1, . . . , k, (11)

then
lim inf
n→∞

ϕ
(
x(n)
)
≥ ϕ (x) . (12)

Proof. We start with the first assertion (10). The function hmax in (8) is lower semicontinuous in its first
argument vector because the hi are assumed to be so. By assumption, we have that x(n)

1 →n x1 and

x
(n)
t+1(u)→n xt+1(u) ∀u ∈ Bt ∀t = 1, . . . , T − 1,

for some Lebesgue measurable subsetsBt ⊆ Rt with λt (Rt\Bt) = 0. Without loss of generality (by
passing to a superset whose difference with Bt has Lebesgue measure zero), we may assume that
the Bt are Borel measurable. Repeating the construction from the beginning of this section, we find a
subset C ⊆ RT−1 which now is Borel measurable and is such that λT−1 (C) = 0 and[

x(n)
]

(z)→n [x] (z) ∀z ∈
(
RT−1\C

)
× R.

Denote Γ := ξ−1
((
RT−1\C

)
× R

)
∈ A and observe that

P (Γ) =

∫
(RT−1\C)×R

fξ (z) dz = 1,
[
x(n)
]

(ξ (ω))→n [x] (ξ (ω)) ∀ω ∈ Γ.

Consider the event sets

An : =
{
ω ∈ Ω|hmax

([
x(n)
]

(ξ (ω)), ξ (ω)
)
≤ 0
}

(n ∈ N)

A : = {ω ∈ Ω|hmax ([x] (ξ (ω)), ξ (ω)) ≤ 0} .

Fix an arbitrary ω ∈ (Ω\A) ∩ Γ. Then, the lower semicontinuity of hmax in its first argument vector
yields that

lim inf
n→∞

hmax
([
x(n)
]

(ξ (ω)), ξ (ω)
)
≥ hmax ([x] (ξ (ω)), ξ (ω)) > 0.

Consequently, for any ω ∈ (Ω\A) ∩ Γ, there exists some n0 (ω) ∈ N such that

hmax
([
x(n)
]

(ξ (ω)), ξ (ω)
)
> 0 ∀n ≥ n0 (ω) (13)

Denote by χQ the characteristic function of a set Q. Now, (13) entails that χAn (ω) →n 0 for all
ω ∈ (Ω\A) ∩ Γ. In other words, since P (Γ) = 1, χAn converges pointwise P-almost surely to χA
on the set Ω\A. Since χAn ≤ 1, the dominated convergence theorem provides that∫

Ω\A

χAndP→n 0.
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Now, let x(nl) be a subsequence realizing the limsup in (10) as a limit. Then, in view of the relation
above, we arrive at (10):

lim sup
n→∞

ϕ
(
x(n)
)

= lim
l→∞

ϕ
(
x(nl)

)
= lim

l→∞
P
(
hmax

([
x(nl)

]
(ξ), ξ

)
≤ 0
)

= lim
l→∞

P (Anl
) = lim

l→∞

∫
Ω

χAnl
dP

≤ lim sup
l→∞

∫
Ω\A

χAnl
dP+ lim sup

l→∞

∫
A

χAnl
dP

= lim sup
l→∞

∫
A

χAnl
dP ≤ lim sup

l→∞

∫
A

dP = P (A)

= P (hmax ([x] (ξ), ξ) ≤ 0) = ϕ (x) .

As for (12), observe first that with the components hi being upper semicontinuous in their first argu-
ment vector, the components (−hi) of −h are lower semicontinuous in their first argument vector.
Denote by ϕ̃ the probability function in (4) or (9), respectively, associated with −h rather than with h.
Then, by the just proven relation (10), we have that

lim sup
n→∞

P
(
−hmax

([
x(n)
]

(ξ), ξ
)
≤ 0
)

= lim sup
n→∞

ϕ̃
(
x(n)
)

≤ ϕ̃ (x) = P (−hmax ([x] (ξ), ξ) ≤ 0) .

It now follows that

lim inf
n→∞

ϕ
(
x(n)
)

= lim inf
n→∞

P
(
hmax

([
x(n)
]

(ξ), ξ
)
≤ 0
)

≥ lim inf
n→∞

P
(
−hmax

([
x(n)
]

(ξ), ξ
)
> 0
)

= − lim sup
n→∞

−P
(
−hmax

([
x(n)
]

(ξ), ξ
)
> 0
)

= − lim sup
n→∞

(
P
(
−hmax

([
x(n)
]

(ξ), ξ
)
≤ 0
)
− 1
)

= 1− lim sup
n→∞

P
(
−hmax

([
x(n)
]

(ξ), ξ
)
≤ 0
)

≥ 1− P (−hmax ([x] (ξ), ξ) ≤ 0) = P (hmax ([x] (ξ), ξ) < 0) .

From (11) and the basic assumption (BA) that ξ possesses a density, we infer that

P (hmax ([x] (ξ), ξ) = 0) = λT
({
z ∈ RT |hmax ([x] (z), z) = 0

})
≤

k∑
i=1

λT
({
z ∈ RT |hi ([x] (z), z) = 0

})
= 0.

Hence, we may continue the previous chain of (in-)equalities, in order to arrive at (12):

lim inf
n→∞

ϕ
(
x(n)
)
≥ P (hmax ([x] (ξ), ξ) ≤ 0) = ϕ (x) .

�

The following Lemma will allow us to derive from Proposition 2.1 the announced (semi-) continuity
properties for ϕ. We do not claim that this Lemma is new but are not able to provide a reference.
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Lemma 2.1 Consider a sequence
{
x(n)
}
⊆ X 1 which converges weakly to x ∈ X 1. Then, there

exists a subsequence
{
x(nk)

}
which converges almost everywhere to x.

Proof. Consider {x(n)} ⊆ X 1 which converges weakly to x ∈ X 1. Since our space X 1 is a product
spaces, it is enough to prove that each coordinates has a subsequence with the desired property.

Let us fix i ∈ {2, . . . , T} (the case i = 1 is trivial). For simplicity of notation let us denote fn := x
(n)
i ,

f := x(n). Since fn converges weakly to f we have that fn is bounded in W 1,q(Ri−1).

Consider r ∈ N\{0}, define the domain Ur := Br ⊆ Ri−1, the Euclidean ball centered at zero with
radius r. We have that the restriction of fn and f belongs to W 1,1(Ur), and since Ur is bounded
we have that fn and f belong to W 1,q(Ur). Now, by Rellich-Kondrachov’s Theorem (see, e.g., [1,
Theorem 6.3, Part I] and [1, p. 84]) we can extract a subsequence fnk

which converges in norm and
almost everywhere to z ∈ L1(Ur). Moreover, since fnk

also converges weakly to f we have that
z = f almost everywhere on Ur. Finally, using induction and a diagonal argument we are done.

�

Theorem 2.1 In addition to the basic assumptions (BA), suppose that h in (4) has components hi
which are lower semicontinuous in their first argument vector (related with x). Then, ϕ : X → [0, 1]
defined in (4) is upper semicontinuous in the norm topology of X . Its restriction ϕ|X 1 : X 1 →
[0, 1] is sequentially upper semicontinuous with respect to the weak topology of X 1. If, h in (4) has
components hi which are upper semicontinuous in their first argument vector and condition (11) is
satisfied, then ϕ : X → [0, 1] is lower semicontinuous in the norm topology of X and its restriction
ϕ|X 1 : X 1 → [0, 1] is sequentially lower semicontinuous with respect to the weak topology of X 1.

Proof. Let
{
x(n)
}
⊆ X be a sequence strongly converging to some x ∈ X . Consider a subsequence{

x(nk)
}

such that

lim sup
n→∞

ϕ
(
x(n)
)

= lim
k→∞

ϕ
(
x(nk)

)
.

It is well known that there exists a further subsequence
{
x(nkl

)
}

converging almost everywhere to x
(see, e.g., [3, Theorem 13.6]). Then, by (10),

lim sup
n→∞

ϕ
(
x(n)
)

= lim
l→∞

ϕ
(
x(nkl

)
)
≤ ϕ (x) (14)

which shows the upper semicontinuity of ϕ in the norm topology of X .

Next, let
{
x(n)
}
⊆ X 1 be a sequence weakly converging to some x ∈ X 1. Then, repeating the

previous argument - this time justifying almost everywhere convergence of a subsequence on the
basis of Lemma 2.1 - we derive in the same way inequality (14), thus proving the sequential upper
semicontinuity of ϕ|X 1 with respect to the weak topology of X 1.

Under the additional assumption (11), the same argumentation as above can be repeated along with
(12), in order to derive the remaining assertions. �

Corollary 2.1 Denote by

M(p) := {x ∈ X |ϕ(x) ≥ p} ; M1(p) :=
{
x ∈ X 1|ϕ(x) ≥ p

}
the sets of feasible decisions in problem (3) defined by the dynamic probabilistic constraint. In addition
to the basic assumptions (BA), suppose that h in (4) has components hi which are lower semicontin-
uous in their first argument vector (related with x). Then, M(p) is strongly closed in X and M1(p) is
weakly sequentially closed in X 1.
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Corollary 2.2 In addition to the basic assumptions (BA) and to condition (11) suppose that h in (4)
has components hi which are continuous in their first argument vector (related with x). Then, ϕ :
X → [0, 1] defined in (4) is continuous in the norm topology of X . Its restriction ϕ|X 1 : X 1 → [0, 1]
is sequentially continuous with respect to the weak topology of X 1.

We are now in a position to prove with standard arguments the existence of solutions to problem (3)
related with the space X 1 of decisions:

Theorem 2.2 Consider the optimization problem (3) with X 1 as the space of decisions. In addition to
the basic assumptions (BA), we suppose that

1 The index q in the definition of the space X 1 satisfies 1 < q <∞.

2 The abstract constraint set C ⊆ X 1 is norm closed, bounded and convex.

3 The objective function J is weakly sequentially lower semicontinuos.

4 The mapping h in (4) has components hi which are

lower semicontinuous in their first argument vector (related with x).

5 The set of feasible decisions of problem (3) is nonempty.

Then, (3) admits a solution.

Proof. As a consequence of 1., X 1 is a reflexive Banach space. Therefore, 2. implies that C is weakly
sequentially compact. By 4. and Corollary 2.1, the set M1(p) = {x ∈ X 1|ϕ(x) ≥ p} is weakly
sequentially closed. Hence, with 5., the feasible set C ∩M1(p) of (3) is nonempty and weakly se-
quentially compact. Now, with 3., the Weierstrass Theorem guarantees the existence of a solution to
(3). �

The following example illustrates that, under the assumptions of Corollary 2.1, M(p) cannot be ex-
pected to be weakly sequentially closed inX (in contrast withM1(p) andX 1) and therefore existence
of solutions as in Theorem 2.2 cannot be expected in the space X :

Example 2.1 Let T = 2, k = 2, q = 2, p = 0.5 + (2π)−1 and let ξ have a uniform distribution on
the rectangle [0, 4π]× [0, 1]. Define the mapping h by hi (x1, x2, z1, z2) = zi−xi for i = 1, 2. Then,
the hi are continuous such that our basic assumptions (BA) are satisfied and Corollary 2.1 guarantees
that M(p) is strongly closed in X . Now, define the sequence

x(n) :=
(
x

(n)
1 , x

(n)
2

)
∈ X = R× L2(R) by

x
(n)
1 := 4π; x

(n)
2 (t) :=


0 t ∈ (−∞, 0] ∪ (4π,∞)

sin (nt) t ∈ (0, 2π]
1 t ∈ (2π, 4π]

.
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Then, x(n) weakly converges to x :=
(
4π, χ[2π,4π]

)
. Moreover, by definition of h and ξ and by (4), it

holds that

ϕ
(
x(n)
)

= P
(
ξ1 ≤ x

(n)
1 , ξ2 ≤ x

(n)
2 (ξ1)

)
= P (0 ≤ ξ1 < 2π, 0 ≤ ξ2 ≤ sin (nξ1)) + P (2π ≤ ξ1 ≤ 4π, 0 ≤ ξ2 ≤ 1)

= (2π)−1 + 0.5 = p.

Therefore, x(n) ∈M(p). On the other hand,

ϕ (x) = P
(
ξ1 ≤ 4π, ξ2 ≤ χ[2π,4π] (ξ1)

)
= P (2π ≤ ξ1 ≤ 4π, 0 ≤ ξ2 ≤ 1)

= 0.5 < p.

It follows that x /∈M(p), whence M(p) fails to be weakly sequentially closed.

We finish this Section by briefly addressing the issue of convexity of the feasible set defined by the
probabilistic constraint ϕ(x) ≥ p in (3). Assume first that we would deal with a joint static probabilistic
constraint, which means that the decision policies x are supposed to be constants: x[z] ≡ x ∈ RT
in (7). Assume further, that ξ has a logconcave density (e.g., multivariate Gaussian) and that the
mapping h is affine linear: h (x, z) = Ax + Bz + b. This is the cae, for instance, for the reservoir
problem with static probabilistic constraint (6). Then, thanks to a result by Prékopa [15, Th. 10.2.1.],
the inequality ϕ(x) ≥ p defines a convex set of feasible decisions x for any right-hand side probability
level p. Unfortunately, a similar convexity result gets lost in the dynamic setting. Indeed, we may revisit
Example 2.1, where the density of the given uniform distribution is constant on the rectangle and zero
outside, hence logconcave (in the extended-valued meaning). Moreover, the mapping h (x, z) = z−x
is linear. As for the feasible set M(p) := {x ∈ X |ϕ(x) ≥ p}, we have seen in Example 2.1 that it
is strongly closed but fails to be weakly sequentially closed. If it was convex, then closedness would
imply weak closedness, hence weak sequential closedness, which is a contradiction.

3 Properties of the Probability Function in a simple Two-stage
Model

In this section, we are going to investigate analytical properties (continuity, Lipschitz continuity, dif-
ferentiability including explicit derivatives) of the probability function ϕ in (4) in the framework of the
simplest meaningful dynamic setting. More precisely, we consider a two-stage model (T = 2) of the
following joint and separated probabilistic constraint:

ϕ (x) := P (ξ1 ≤ x1, ξ2 ≤ x2(ξ1)) ≥ p. (15)

This corresponds to the choice of the mapping h : R2×R2 → R2 defined by h(x, z) = z−x in (4).
We will chooseX with index q = 2 to be the base space of decisions, which means that x2 ∈ L2(R).
In all results hereafter, we shall explicitly work with a given density of ξ. By continuity of h, our basic
assumptions (BA) will be automatically satisfied then.

3.1 Continuity and Lipschitz Continuity

Proposition 3.1 If ξ has a density, then the probability function ϕ : R× L2(R)→ R is continuous.
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Proof. Since h is continuous, it suffices by Corollary 2.2 to check condition (11) at an arbitrary x ∈ X .
For the first component h1 of h it reads as

λ2

({
z ∈ R2|z1 = x1

})
= 0

which is evidently true. For the second component we observe that

λ2

({
z ∈ R2|z2 = x2(z1)

})
= 0 ⇐⇒

λ1 ({z2 ∈ R|z2 = x2(z1)}) = 0 a.e. z1 ∈ R

and that the right-hand side is evidently true. �

Before extending the previous result on continuity to the stronger Lipschitz continuity, we introduce the
following two assumptions on the density gξ of a two-dimensional random vector ξ:

∃C ≥ 0 : gξ1(r)

(
=

∫
R
gξ (r, s) ds

)
≤ C a.e. r ∈ R (16)

sup
s∈R

gξ (·, s) ∈ L2 (R) (17)

Note that (16) means that the first marginal density of ξ (which is the density gξ1 of the first component
of ξ) is bounded.

Proposition 3.2 Let the density gξ of ξ satisfy (16) and (17). Then, ϕ is Lipschitz continuous.

Proof. Consider an arbitrary couple x, y ∈ X . We start with the obvious estimate

|ϕ(x)− ϕ(y)| ≤ |ϕ(x1, x2)− ϕ(y1, x2)|+ |ϕ(y1, x2)− ϕ(y1, y2)| . (18)

Without loss of generality, assume that x1 ≤ y1. Now, by (15), and taking into account assumption
(16), we have that

|ϕ(x1, x2)− ϕ(y1, x2)| = |P (ξ1 ≤ x1, ξ2 ≤ x2(ξ1))− P (ξ1 ≤ y1, ξ2 ≤ x2(ξ1))|
= P (x1 < ξ1 ≤ y1, ξ2 ≤ x2(ξ1))

=

∫ y1

x1

∫ x2(r)

−∞
gξ (r, s) dsdr ≤

∫ y1

x1

∫ ∞
−∞

gξ (r, s) dsdr

≤ C |y1 − x1| .

Likewise, exploiting (17), the fact that x2, y2 ∈ L2 (R) and the Cauchy-Schwartz inequality, we obtain

|ϕ(y1, x2)− ϕ(y1, y2)| = |P (ξ1 ≤ y1, ξ2 ≤ x2(ξ1))− P (ξ1 ≤ y1, ξ2 ≤ y2(ξ1))|

=

∣∣∣∣∣
∫ y1

−∞

(∫ x2(r)

−∞
gξ (r, s) ds−

∫ y2(r)

−∞
gξ (r, s) ds

)
dr

∣∣∣∣∣
≤

∫ y1

−∞

∣∣∣∣∣
∫ x2(r)

−∞
gξ (r, s) ds−

∫ y2(r)

−∞
gξ (r, s) ds

∣∣∣∣∣ dr
=

∫ y1

−∞

∫ max{x2(r),y2(r)}

min{x2(r),y2(r)}
gξ (r, s) dsdr

≤
∫ ∞
−∞

sup
s∈R

gξ (r, s) |x2(r)− y2(r)| dr

≤
∥∥∥∥sup
s∈R

gξ (r, s)

∥∥∥∥
L2(R)

‖x2 − y2‖L2(R) = C̃ ‖x2 − y2‖L2(R) .
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Along with (18), we conclude that

|ϕ(x)− ϕ(y)| ≤ (C + C̃) ‖x− y‖X .

�

The following example shows, that the assumptions of Proposition 3.2 are not strong enough to guar-
antee the differentiability of ϕ:

Example 3.1 Let ξ ∼ N (0, I2) have a bivariate standard Gaussian distribution (uncorrelated com-
ponents with mean zero and unit variance). By Proposition 3.5, the assumptions (16) and (17) of
Proposition 3.2 are satisfied and, hence, ϕ is Lipschitz continuous. On the other hand, ϕ fails to be
differentiable. To see this, we fix x̂2 := χ[0,1] ∈ L2 (R) and observe that the partial real function
ϕ̃(x1) := ϕ (x1, x̂2) fails to be differentiable. Indeed, the following explicit representation can be
immediately verified, where Φ refers to the cumulative distribution function of the one dimensional
standard Gaussian distribution:

ϕ̃(x1) =


Φ (0) Φ (x1) x1 ≤ 0
Φ2 (0) + Φ (1) (Φ (x1)− Φ (0)) x1 ∈ [0, 1]
Φ2 (0) + Φ (1) (Φ (1)− Φ (0)) + (Φ (0) (Φ (x1)− Φ (1))) x1 ≥ 0

The graph of this function is shown in Figure 1. Clearly, ϕ̃ is Lipschitz continuous because ϕ is so. On
the other hand, it fails to be differentiable at x1 = 0 and x1 = 1. This can be seen for x1 = 0, for
instance, by deriving the first two expressions above at 0. With f denoting the density of the standard
Gaussian distribution, the derivative of the first expression - yielding the left directional derivative of ϕ̃
at 0 - gives Φ (0) f (0). On the other hand, the derivative of the second expression - yielding the right
directional derivative of ϕ̃ at 0 - gives Φ (1) f (0). Since Φ (1) > Φ (0) and f (0) > 0, both values
are different, hence ϕ̃ fails to be differentiable at 0.

-1.0 -0.5 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: Plot of function ϕ̃ from Example 3.1

We shall see in the next section that the reason for the failure of differentiability of ϕ in Example 3.1
is the discontinuity of the second stage policy x2 := χ[0,1] at which the derivative is considered.
More precisely, this circumstance concerns just the partial differentiability of ϕ with respect to its first
argument x1, whereas the partial differentiability of ϕ with respect to x2 remains unaffected by a
possible discontinuity of x2.
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3.2 Differentiability

Before verifying the partial differentiability of ϕ with respect to its first argument, we shall prove the
following

Lemma 3.1 Let a bivariate probability density g satisfy the following technical (uniform calmness)
condition:

∀r̄ ∈ R ∃l ∈ L1 (R) , ε > 0 :

|g (r, s)− g (r̄, s)| ≤ l(s) |r − r̄| ∀r ∈ (r̄ − ε, r̄ + ε) a.e. s ∈ R . (19)

Assume further, that f : R→ R is continuous. Then, the function

α (r) :=

∫ f(r)

−∞
g (r, s) ds (r ∈ R) (20)

is finite-valued and continuous.

Proof. Fix an arbitrary r̄ ∈ R and consider an arbitrary sequence rn → r̄. We are going to show that
α (rn)→ α (r̄). We observe first that

g (rn, s)χ(−∞,f(rn)](s)→ g (r̄, s)χ(−∞,f(r̄)](s) a.e. s ∈ R. (21)

Indeed, if s < f(r̄), then, s < f(rn) and if s > f(r̄), then, s > f(rn) for n large enough by
continuity of f . Hence, for each s 6= f(r̄), one has that χ(−∞,f(rn)](s) = χ(−∞,f(r̄)](s) for n large
enough. By (19), there exists a subset A ⊆ R such that λ1 (A) = 0 and g (rn, s) → g (r̄, s) for all
s ∈ R\A. Consequently, (21) holds true for all s ∈ R\ (A ∪ {f(r̄)}), where λ1 (A ∪ {f(r̄)}) = 0.

From (19) we conclude that, for n large enough and almost every s ∈ R,

|g (rn, s)− g (r̄, s)| ≤ l(s) |rn − r̄| ≤ l(s).

Therefore, for n large enough and almost every s ∈ R,

g (rn, s)χ(−∞,f(rn)](s) ≤ g (rn, s) ≤ l(s) + g (r̄, s) . (22)

We show that g (r̄, ·) ∈ L1 (R): Indeed, as g ∈ L1 (R2) (as a probability density), Fubini’s Theorem
yields that g (r, ·) ∈ L1 (R) for almost every r ∈ R. Hence, there exists some r̃ ∈ (r̄ − ε, r̄ + ε)
with ε from (19) such that g (r̃, ·) ∈ L1 (R) and

g (r̄, s) ≤ l(s) |r̃ − r̄|+ g (r̃, s) a.e. s ∈ R.

Since l ∈ L1 (R) and |r̃ − r̄| ≤ ε, it follows that g (r̄, ·) ∈ L1 (R). Hence, by (22), l + g (r̄, ·) is
an integrable majorant for the sequence of functions g (rn, ·)χ(−∞,f(rn)], which by (21) converges
pointwise almost everywhere to the function g (r̄, ·)χ(−∞,f(r̄)]. Therefore, by Lebesgue’s dominated
convergence theorem, the value

α (r̄) =

∫
g (r̄, s)χ(−∞,f(r̄)](s)ds <∞

in (20) is finite and it holds that

α (rn) =

∫
g (rn, s)χ(−∞,f(rn)](s)ds→n α (r̄) .
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Since r̄ was chosen arbitrarily, we have shown that α is finite-valued and continuous. �

The preceding Lemma allows us to formulate the desired result on partial differentiability of ϕ with
respect to its first argument:

Proposition 3.3 Let the density gξ of ξ satisfies (19) and fix x̄2 ∈ L2(R) such that x̄2 is continuous.
Then, the partial derivative of ϕ w.r.t. x1 exists at any (x̄1, x̄2), it equals

∂ϕ

∂x1

(x̄1, x̄2) =

∫ x̄2(x̄1)

−∞
gξ (x̄1, s) ds.

Moreover, it depends continuously on x1.

Proof. Let x̄1 be arbitrary. By (15), we have that

ϕ (x̄1, x̄2) =

∫ x̄1

−∞

∫ x̄2(r)

−∞
gξ (r, s) dsdr=

∫ x̄1

−∞
α (r) dr

with α defined in Lemma 3.1 upon setting f(r) := x̄2(r) and g := gξ. Since x̄2 is supposed to
be continuous, the assumptions of Lemma 3.1 are satisfied. Thus, by taking into account that α is
continuous according to 3.1, we arrive at

∂ϕ

∂x1

(x̄1, x̄2) = lim
h→0

ϕ (x̄1 + h, x̄2)− ϕ (x̄1, x̄2)

h
= α(x̄1) =

∫ x̄2(x̄1)

−∞
g (x̄1, s) ds.

Continuity of ∂ϕ
∂x1

(·, x̄2) = α follows once more from the continuity of α. �

Observe, that a full continuity result (with respect to x1 and x2 simultaneously) cannot be expected for
the partial derivative ∂ϕ

∂x1
because, by virtue of Example 3.1, it may not even be defined for discontin-

uous x2 approaching the continuous policy x̄2. In contrast to the partial derivative w.r.t. x1, the partial
derivative of ϕ with respect to x2 does not require any assumptions on the fixed second-stage policy
x̄2 but rather some additional assumptions on the density gξ:

Proposition 3.4 Let the density gξ of ξ satisfies assumption (17) as well as the assumption of being
Lipschitz continuous in the second argument uniformly in the first argument:

∃C > 0 : |gξ (r, s)− gξ (r, t)| ≤ C |s− t| ∀r, s, t ∈ R. (23)

Fix an arbitrary (x̄1, x̄2) ∈ X = R× L2 (R). Then, the partial derivative ∇x2ϕ exists at (x̄1, x̄2), it
is given by the expression

∇x2ϕ (x̄1, x̄2) = gξ (·, x̄2(·))χ(−∞,x̄1]. (24)

and it is continuous in (x1, x2).

Proof. We put γ (x2) := ϕ (x̄1, x2) for all x2 ∈ L2 (R) and show that this function is Fréchet
differentiable at x̄2. Define the linear function

A(h) :=

∫ x̄1

−∞
gξ (r, x̄2(r))h(r)dr

(
h ∈ L2 (R)

)
. (25)
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From (17) we infer that gξ (·, x̄2(·)) ∈ L2 (R), whence by the Cauchy-Schwarz inequality,

|A(h)| ≤
∫ ∞
−∞

gξ (r, x̄2(r)) |h(r)| dr ≤ ‖gξ (·, x̄2(·))‖L2 ‖h‖L2 .

Consequently, A is a continuous linear functional. Hence, the Fréchet differentiability of γ at x̄2 will be
proven, once we can show that

lim
‖h‖L2→0

‖h‖−1
L2 (γ (x̄2 + h)− γ (x̄2)− A(h)) = 0. (26)

Indeed, the definition of γ and (15) entail that

γ (x̄2 + h)− γ (x̄2)− A(h) =∫ x̄1

−∞

∫ x̄2(r)+h(r)

−∞
gξ (r, s) dsdr −

∫ x̄1

−∞

∫ x̄2(r)

−∞
gξ (r, s) dsdr −∫ x̄1

−∞
gξ (r, x̄2(r))h(r)dr =∫ x̄1

−∞

(
(sgnh (r))

∫ max{x̄2(r),x̄2(r)+h(r)}

min{x̄2(r),x̄2(r)+h(r)}
gξ (r, s) ds− gξ (r, x̄2(r))h(r)

)
dr =∫ x̄1

−∞
(sgnh (r))

∫ max{x̄2(r),x̄2(r)+h(r)}

min{x̄2(r),x̄2(r)+h(r)}
(gξ (r, s)− gξ (r, x̄2(r))) dsdr.

By (23), we have that

|gξ (r, s)− gξ (r, x̄2(r))| ≤ C |h (r)|
∀r ∈ R ∀s ∈ [min{x̄2 (r) , x̄2(r) + h (r)},max{x̄2 (r) , x̄2(r) + h (r)}] .

Consequently, we derive the following relation implying (26).

|γ (x̄2 + h)− γ (x̄2)− A(h)| ≤ C

∫ x̄1

−∞
|h (r)|2 dr = C ‖h‖2

L2 .

It follows that ∇x2ϕ (x̄1, x̄2) = ∇γ (x̄2) = A. Since A in (25) has been shown to be a continuous
linear functional on L2 (R), it can be identified with the function gξ (·, x̄2(·))χ(−∞,x̄1] ∈ L2 (R).
This entails the asserted formula (24). It remains to show that the expression given there depends
continuously on (x1, x2). To this aim, consider a sequence (x

(n)
1 , x

(n)
2 ) in X strongly converging to

(x̄1, x̄2) ∈ X . We have to show that

∇x2ϕ(x
(n)
1 , x

(n)
2 )→n ∇x2ϕ (x̄1, x̄2)

in L2 (R). We will do this by showing the equivalent fact that every subsequence (x
(nk)
1 , x

(nk)
2 ) of

(x
(n)
1 , x

(n)
2 ) has again a subsequence (x

(nkl
)

1 , x
(nkl

)

2 ) such that

∇x2ϕ(x
(nkl

)

1 , x
(nkl

)

2 )→l ∇x2ϕ (x̄1, x̄2) (27)

in L2 (R). So, let (x
(nk)
1 , x

(nk)
2 ) be such an arbitrary subsequence. Observe first that the strong con-

vergence (x
(nk)
1 , x

(nk)
2 )→l (x̄1, x̄2) in R× L2 (R) implies the almost everywhere pointwise conver-

gence for a subsequence:

(x
(nkl

)

1 (r), x
(nkl

)

2 (r))→l (x̄1(r), x̄2(r)) a.e. r ∈ R. (28)
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As gξ is continuous in its second argument by (23), it follows from (28) that

gξ(r, x
(nkl

)

2 (r))→l gξ(r, x̄2(r)) a.e. r ∈ R.

Moreover,
χ

(−∞,x
(nkl

)

1 ]
(r)→l χ(−∞,x̄1](r) ∀r ∈ R� {x̄1} .

We conclude from (24) that

∇x2ϕ(x
(nkl

)

1 , x
(nkl

)

2 )(r) = gξ(r, x
(nkl

)

2 (r))χ
(−∞,x

(nkl
)

1 ]
(r)

→l gξ(r, x̄2(r))χ(−∞,x̄1](r) = ∇x2ϕ (x̄1, x̄2) .

for almost every r ∈ R. On the other hand, by (17)

∇x2ϕ(x
(nkl

)

1 , x
(nkl

)

2 )(·) = gξ(·, x
(nkl

)

2 (·))χ
(−∞,x

(nkl
)

1 ]
(·) ≤ sup

s∈R
gξ (·, s) ∈ L2 (R) .

Therefore, Lebesgue’s Dominated Convergence Theorem (for L2 (R)) yields the asserted conver-
gence (27) in L2 (R). �

3.3 Distributions satisfying the Assumptions

In this Section we are going to specify the results of the preceding sections to the special case of a
bivariate Gaussian distribution and a uniform distribution on a rectangle. First, we verify that all relevant
assumptions are satisfied in the Gaussian case:

Proposition 3.5 Let ξ be a bivariate random vector distributed according to ξ ∼ N (µ,Σ) with
regular Σ. Then its density gξ satisfies the assumptions (16), (17), (19) and (23).

Proof. The first marginal density of gξ is the density gξ1 of its first component ξ1 ∼ N (µ1,Σ11) which
is bounded of course. Hence, (16) holds true. To show (17), recall that

gξ (r, s) = C exp

(
−1

2
(r − µ1, s− µ2) Σ−1

(
r − µ1

s− µ2

))
, (29)

where C is some normalizing factor. With C2 > 0 denoting the smallest eigenvalue of Σ−1, we infer
that, for all s ∈ R,

gξ (r, s) ≤ C exp

(
−C2

2
(r − µ1)2 − C2

2
(s− µ2)2

)
≤ C exp

(
−C2

2
(r − µ1)2

)
∈ L2 (R) (30)

which implies (17). In order to verify (19) and (23), we first calculate the gradient of gξ:

∇gξ (r, s) = −gξ (r, s) Σ−1

(
r − µ1

s− µ2

)
∀r, s ∈ R.

Denoting hi(r) := exp
(
−C2

2
(r − µi)2) for i = 1, 2, it follows from (30) that

‖∇gξ (r, s)‖ ≤ C̃h1(r)h2(s) ‖(r − µ1, s− µ2)‖ ∀r, s ∈ R,
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where C̃ := C ‖Σ−1‖. Since the function h1(r)h2(s) ‖(r − µ1, s− µ2)‖2 is bounded from above,
we have that, for some C3 > 0,√

h1(r)h2(s) ‖(r − µ1, s− µ2)‖ ≤ C3 ∀r, s ∈ R.

Hence, thanks to h1, h2 ≤ 1, we get that

‖∇gξ (r, s)‖ ≤ C̃C3

√
h1(r)h2(s) ≤ C̃C3

√
h2(s) ≤ C̃C3 ∀r, s ∈ R.

Then, (23) follows from the Mean Value Theorem:

|gξ (r, s)− gξ (r, t)| ≤ C̃C3 |s− t| ∀r, s, t ∈ R.

Similarly, for arbitrarily fixed r̄ ∈ R,

|gξ (r, s)− gξ (r̄, s)| ≤ C̃C3

√
h2(s) |r − r̄| ∀r, s ∈ R,

where
√
h2 ∈ L1 (R). This proves (19). �

Theorem 3.1 Let ξ be a bivariate random vector distributed according to N (µ,Σ) with regular Σ.
Then, the probability function ϕ in (15) is Lipschitz continuous and has a second partial derivative at
an arbitrary (x̄1, x̄2) ∈ X = R× L2 (R) which is given by the explicit formula

∇x2ϕ (x̄1, x̄2) (r) =


1

2π
√

det Σ
exp

(
−1

2

(
r−µ1

x̄2(r)−µ2

)>
Σ−1

(
r−µ1

x̄2(r)−µ2

))
if r ≤ x̄1

0 if r > x̄1

. (31)

Here,∇x2ϕ depends continuously (in the norm of X ) on x = (x1, x2). Moreover, ϕ has a first partial
derivative at an arbitrary (x̄1, x̄2) ∈ X = R×L2 (R) with continuous x̄2 which is given by the explicit
formula

∂ϕ
∂x1

(x̄1, x̄2) =

1√
2πΣ11

exp
(
− 1

2Σ11
(r − µ1)2

)
Φ

(
x̄2(x̄1)−µ2−Σ−1

11 Σ12(x̄1−µ1)√
Σ22−Σ−1

11 Σ2
12

)
, (32)

where Φ(t) := (2π)−1/2 ∫ t
−∞ e

−s2/2ds refers to the cumulative distribution function of the one-

dimensional standard Gaussian distributionN (0, 1). Here ∂ϕ
∂x1

(·, x̄2) is continuous.

Proof. The Lipschitz continuity, the existence of partial derivatives and the corresponding continuity
statements follow from Propositions 3.2, 3.3 and 3.4 via Proposition 3.5. Relation (31) is obtained by

specifying (24) for the density of N (µ,Σ) (see (29) with C :=
(

2π
√

det Σ
)−1

). Concerning (32),

we recall the formula derived in Proposition 3.3:

∂ϕ

∂x1

(x̄1, x̄2) =

∫ x̄2(x̄1)

−∞
gξ (x̄1, s) ds = gξ1 (x̄1)

∫ x̄2(x̄1)

−∞

gξ (x̄1, s)

gξ1 (x̄1)
ds

= gξ1 (x̄1)

∫ x̄2(x̄1)

−∞
gξ2|ξ1=x̄1 (s) ds

= gξ1 (x̄1)Gξ2|ξ1x̄1 (x̄2(x̄1)) , (33)
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where gξ2|ξ1=x̄1 and Gξ2|ξ1=x̄1refer to the conditional density and cumulative distribution function,
respectively, of ξ2 given ξ1 = x̄1. As it is well known for the Gaussian case assumed here, one has
that the conditioned random variable ξ2|ξ1 = x̄1 has a one-dimensional Gaussian distribution with

(ξ2|ξ1 = x̄1) ∼ N
(
µ2 + Σ−1

11 Σ12 (x̄1 − µ1) ,Σ22 − Σ−1
11 Σ2

12

)
.

After normalization, we get that

η :=
(ξ2|ξ1 = x̄1)− µ2 − Σ−1

11 Σ12 (x̄1 − µ1)√
Σ22 − Σ−1

11 Σ2
12

∼ N (0, 1) .

Now, the definition of Gξ2|ξ1=x̄1 yields that

Gξ2|ξ1=x̄1 (x̄2(x̄1)) = P ((ξ2|ξ1 = x̄1) ≤ x̄2(x̄1))

= P

(
η ≤ x̄2(x̄1)− µ2 − Σ−1

11 Σ12 (x̄1 − µ1)√
Σ22 − Σ−1

11 Σ2
12

)

= Φ

(
x̄2(x̄1)− µ2 − Σ−1

11 Σ12 (x̄1 − µ1)√
Σ22 − Σ−1

11 Σ2
12

)
,

where Φ is the cumulative distribution function of N (0, 1). Now the asserted formula (32) follows
form (33) upon plugging in the formula for the first marginal density gξ1 of gξ having distribution
N (µ1,Σ11). �

Corresponding results can be expected for many other bivariate distributions having continuous den-
sity. As a contrast, we briefly refer to uniform distributions over rectangles for which no differentiability
results for ϕ but at least Lipschitz continuity can be expected:

Proposition 3.6 Let ξ be a bivariate random vector having a uniform distribution over the rectangle
[a, b]× [c, d]. Then, the probability function ϕ in (15) is Lipschitz continuous.

Proof. The density gξ satisfies the assumptions (16) and (17) thanks to the following easy to verify
relations

gξ1 =
1

b− a
χ[a,b]; sup

s∈R
gξ (·, s) =

1

(b− a) (d− c)
χ[a,b].

Now, the assertion follows from Proposition 3.2. �

Note, that a uniform distribution as in the previous Proposition cannot satisfy relations (19) and (23)
because of the discontinuity of its density. Therefore, no differentiability results as in Propositions 3.3
and 3.4 can be expected and counter examples are easily constructed.

3.4 Application to an optimization problem

In the following, we consider the simple dynamic probabilistic constraint as a part of the following
two-stage optimization problem (15):

min
x∈X

{
c1x1 + c2Ex2 (ξ1)χ(−∞,x1] (ξ1) |ϕ(x) ≥ p

}
, (34)
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where ξ (occuring in the definition of ϕ) is a bivariate random vector distributed according toN (µ,Σ).
The objective is linear in the decisions, it could represent, for instance, linear costs. Since the second
stage decision is random, its costs are represented as an expected value. Note, however, that con-
sidering the full expected value Ex2 (ξ1) would not make much sense: Indeed, since function values
of x2 (ξ1) for arguments ξ1 > x1 do not affect the probability ϕ(x) (see (15)), one could drive the
expected value Ex2 (ξ1) to −∞ while keeping the decision x feasible. Therefore, we measure the
costs of x2 by ignoring in the objective its values beyond x1 and rather considering the expected value
of x2χ(−∞,x1].

In a first step, one might be interested in deriving some information from necessary optimality con-
ditions for this problem. Here, one has to take into account that ϕ is not continuously differentiable
(see Example (3.1)). However, ϕ is continuously partially differentiable with respect to x2 thanks to
Proposition 3.4. This suggests to consider the decomposed version of problem (34):

min
x1∈R

{
c1x1 + min

x2∈L2(R)

{
c2Ex2 (ξ1)χ(−∞,x1] (ξ1) |ϕ(x1, x2) ≥ p

}}
. (35)

Here, the one-dimensional outer minimization over x1 can be realized by elementary numerical ap-
proaches. Therefore, our interest will focus on the inner minimization problem over x2 ∈ L2 (R) for
some fixed x̄1 ∈ R:

min
x2∈L2(R)

{
c2Ex2 (ξ1)χ(−∞,x̄1] (ξ1) |ϕ(x̄1, x2) ≥ p

}
. (36)

For this inner optimization problem, the data (objective and constraint) are continuously differentiable
and one can formulate necessary optimality conditions at some fixed x̄2 ∈ L2 (R) provided that
∇x2ϕ(x̄1, x̄2) 6= 0. This, however, is an immediate consequence of (31). Hence, one may formulate
the following necessary optimality condition:

Proposition 3.7 Let x̄2 ∈ L2 (R) be a solution of the optimization problem (36) (with some fixed
x̄1 ∈ R). Then, x̄2 is affine linear on the set (−∞, x1] with the explicit value of Σ12/Σ11 for its slope.

Proof. Without loss of generality, we may assume that c2 = 1 in (36) because the solution of the
problem is not affected by the value of c2. The gradient of the objective evaluated at x̄2 has to be a
multiple of the gradient∇ϕ(x̄1, x̄2) to the constraint in (36) also evaluated at x̄2. Clearly, the objective

Ex2 (ξ1) =

∫
x2 (r)χ(−∞,x1] (r) gξ1(r)dr

(with gξ1 referring to the density of ξ1) has a gradient which is given by the function χ(−∞,x1]gξ1 .
Hence, there exists some multiplier λ such that

gξ1(r) = λ∇x2ϕ(x̄1, x̄2) (r) a.e. r ≤ x̄1.

Since the one-dimensional Gaussian density gξ1 is strictly positive, we infer that λ > 0. Given the
explicit formula for gξ1 as well as for ∇x2ϕ(x̄1, x̄2) in (31), we derive the existence of constants
K1, K2 > 0 (where the latter already incorporates the multiplier λ) such that for almost every r ≤ x̄1:

K1 exp
(
−1

2
(r−µ1)2

Σ11

)
=

K2 exp
(
−1

2
(r − µ1, x̄2(r)− µ2) Σ−1

(
r−µ1

x̄2(r)−µ2

))
(37)
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We fix an arbitrary r for which (37) holds true. Using the correlation ρ between the two components ξ1

and ξ2, the inverse covariance matrix can be written as

Σ−1 =
1

1− ρ2

(
1

Σ11
− ρ√

Σ11Σ22

− ρ√
Σ11Σ22

1
Σ22

)
;

(
ρ :=

Σ12√
Σ11Σ22

)
.

Taking the log in (37) and rearranging terms, one arrives at

log K1

K2
=

1
1−ρ2

(
−ρ2

2Σ11
(r − µ1)2 + ρ√

Σ11Σ22
(r − µ1) (x̄2(r)− µ2)− 1

2Σ22
(x̄2(r)− µ2)2

)
.

Putting

α :=
x̄2(r)− µ2√

Σ22

; β := 2
(
1− ρ2

)
log

K1

K2

,

the last identity can be rewritten as

α2 − 2ρ√
Σ11

(r − µ1)α +
ρ2

Σ11

(r − µ1)2 + β = 0.

Resolution for α yields that

α =
ρ√
Σ11

(r − µ1)±
√
−β.

Resubstituting for α and β gives our assertion on the structure of x̄2:

x̄2(r) =

√
Σ22ρ√
Σ11

r + µ2 −
√

Σ22ρ√
Σ11

µ1 ±
√

Σ22

√
2 (1− ρ2) log

K2

K1

�

Unfortunately, since an affine linear function cannot belong to L2 (R) unless it is identically zero, we
draw the following negative conclusion of Proposition 3.7:

Corollary 3.1 If the components ξ1 and ξ2 of ξ are not independent, then problem (36) has no local,
much less global solution.

Proof. The independence assumption implies that Σ12 6= 0. Hence, if (36) had a local solution x̄2 ∈
L2 (R), then this solution would be a linear function (in the range from−∞ to x̄1) with nonzero slope
by Proposition 3.7. Therefore it does not belong to L2 (R), a contradiction. �

Before deriving a remedy to the outcome of Corollary 3.1, we want to illustrate the use of the gradient
information collected in (31) in a numerical context. We consider problem (36) with the following data:

c2 = 1; x̄1 = 2; p = 0.8; ξ ∼ N
(

(0, 0) ,

(
1 0.25

0.25 1

))
.

Using the explicit representation of the gradients for the objective and the constraint (see proof of Prop.
3.7), we apply a simple projected gradient algorithm in order to improve the second stage decision x2

in (36).

The left diagram of Fig. 2 shows some iterates of this algorithm. All plotted policies realize exactly the
desired probability p = 0.8 in the definition of the chance constraint in (36). The starting point for x2
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Figure 2: Plot of several iterates for a projected gradient algorithm applied to problem (36) (left) and of
associated values of the objective (right)

was chosen as a simple step function “1”, which after the first iteration turned into a nonlinear - still
discontinuous - policy “2”. After some further iterations, the policy becomes continuous. Interestingly,
after seven iterations “3”, the policy is affine linear on a certain subdomain. It turns out that on this
subdomain, the policy perfectly coincides with the affine linear policy “4” satisfying the necessary
optimality condition in Proposition 3.7. The latter is easily identified by its slope, which according to
Proposition 3.7 calculates as Σ12/Σ1,1 = 0.25 and by its intercept which has to be chosen in order
to match the probability level p = 0.8. Observe, that all iterates decay to zero on the left end of the
negative axis in order to belong to L2(R). The right diagram of Fig. 2 plots the objective for the first
seven iterates and for the the affine linear policy from Proposition 3.7 (isolated point). Evidently, the
necessary optimality condition from Proposition 3.7 still carries some information on the optimality
condition though not belonging to the L2 space.

3.5 Derivation of a global solution

Motivated by the negative result of Corollary 3.1, we consider now the optimization problem

min
(x1,x2)∈R×X ∗

{
c1x1 + c2Ex2 (ξ1)χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈M

}
, (38)

where X ∗ is the set of all Borel measurable functions f : R→ R, c1, c2 > 0 are some positive cost
coefficients, ξ ∼ N (µ,Σ) is a bivariate Gaussian random vector, ϕ is the probability function defined
in (15), p ∈ (0, 1] is some probability level and the additional constraint set is given by

M :=

{
x2 ∈ X ∗|x2 (r) ≥ µ2 +

Σ12

Σ11

(r − µ1)

}
.

This problem differs from (34) first in that the space of second stage decisions is much larger than the
space L2 (R) considered before, so that it also includes affine linear functions. At the same time we
add the technical constraint x2 ∈ M in order to identify a global solution by a direct argument rather
than by necessary optimality conditions. However, we shall make use of the result obtained before in
Proposition 3.7 to get the right guess for a candidate of an optimal second stage solution (affine linear
function with slope Σ12

Σ11
). Note that we do not require the expectation of x2χ(−∞,x1] in (38) to be finite.

It turns out that the solution of (38) can be reduced to a one-dimensional optimization. Before stating
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the result, we introduce the real functions

α (t) := Φ−1

 p

Φ
(
t−µ1√

Σ11

)
√Σ22 −

Σ2
12

Σ11

+ µ2 −
Σ12

Σ11

µ1 (39)

(
t >

√
Σ11Φ−1 (p) + µ1

)
, (40)

β (t) := µ1 −
√

Σ11

φ
(
t−µ1√

Σ11

)
Φ
(
t−µ1√

Σ11

) (41)

where µi and Σij refer to the corresponding components of µ and Σ, respectively and Φ denotes
as before the cumulative distribution function of the one-dimensional standard Gaussian distribution
N (0, 1). Recall that Φ is invertible with inverse Φ−1 called the quantile function of N (0, 1). Since
Φ−1 is defined only on the open interval (0, 1), (39) is defined correctly only if p < 1 (which we shall
impose in the Theorem below) and if

Φ

(
t− µ1√

Σ11

)
> p,

which leads to the constrained domain of definition in (39). Finally, the function

φ (t) :=
1√
2π
e−t

2/2,

appearing in (41), is the density of the one-dimensional standard Gaussian distribution.

Theorem 3.2 Let p ∈
[

1
2
, 1
)

be given. Then, a global solution of problem (38) is given by (x∗1, x
∗
2) ∈

R × X ∗, where x∗1 is a minimizer over R of the real function c1t + c2f (t) over the open interval(√
Σ11Φ−1 (p) + µ1,∞

)
, with

f (t) :=

[
Σ12

Σ11

β (t) + α (t) Φ

(
t− µ1√

Σ11

)]
(t ∈ R)

and

x∗2 (r) :=
Σ12

Σ11

r + α (x∗1) (r ∈ R) .

Proof. We start our proof with an intermediary result. To this aim, fix an arbitrary

x1 >
√

Σ11Φ−1 (p) + µ1, (42)

in order to make the value α (x1) well defined in (39). We claim that the second stage policy defined
by

y (r) :=
Σ12

Σ11

r + α (x1) (r ∈ R) (43)

is a global solution to the problem

min
x2∈X ∗

{
c2Ex2 (ξ1)χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈M

}
. (44)
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In a first step we check the feasibility of y in this problem. Introducing the linear transformation

η1 := ξ1; η2 := ξ2 −
Σ12

Σ11

ξ1 (45)

of random variables, we observe that according to well-known rules the random vector η := (η1, η2)

obeys a bivariate Gaussian lawN
(
µ̃, Σ̃

)
with parameters

µ̃ =

(
µ1, µ2 −

Σ12

Σ11

µ1

)
, Σ̃ =

(
Σ11 0

0 Σ22 − Σ2
12

Σ11

)
.

In particular, the components η1, η2 - having zero covariance - are independent. It follows from the
definition (15) of ϕ and from (43) that

ϕ (x1, y) = P (ξ1 ≤ x1, ξ2 ≤ y (ξ1)) = P (η1 ≤ x1, η2 ≤ α (x1))

= P (η1 ≤ x1)P (η2 ≤ α (x1)) ,

where the last equality follows from the independence of η1 and η2. Again, by the well-known transfor-
mation laws of Gaussian distributions as well as by (39), it holds that

P (η1 ≤ x1) = Φ

(
x1 − µ̃1√

Σ̃11

)
= Φ

(
x1 − µ1√

Σ11

)
; (46)

P (η2 ≤ α (x1)) = Φ

(
α (x1)− µ̃2√

Σ̃22

)
= Φ

α (x1)− µ2 + Σ12

Σ11
µ1√

Σ22 − Σ2
12

Σ11


=

p

Φ
(
x1−µ1√

Σ11

) .
Consequently, we arrive at ϕ (x1, y) = p. Hence, x2 := y is feasible with respect to the constraint
ϕ (x1, x2) ≥ p. Next, we verify that y ∈M . By definition of y, M and α, it suffices to show that

α (x1) ≥ µ2 −
Σ12

Σ11

µ1 = µ̃2. (47)

Indeed, the assumption that α (x1) < µ̃2 would lead - via the fact that the values of Φ are strictly
smaller than one - to the contradiction

p <
p

Φ
(
x1−µ1√

Σ11

) = P (η2 ≤ α (x1)) < P (η2 ≤ µ̃2) ≤ 1

2

with our assumption that p ≥ 1
2
. Summarizing, y ∈ X ∗ defined by (43) is a feasible second stage

policy in problem (44).

In the last step of our initial claim, we show that there is no other feasible second stage decision in (44)
that would yield a strictly smaller objective value than y. Indeed, assume to the contrary, that some
function ỹ ∈ M with ϕ (x1, ỹ) ≥ p would realize in (44) a strictly smaller objective value than y.
Then, since c2 > 0,

Eỹ (ξ1)χ(−∞,x1] (ξ1) < Ey (ξ1)χ(−∞,x1] (ξ1) . (48)
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Now, by (45) and with gη denoting the density of η,

0 ≤ ϕ (x1, ỹ)− ϕ (x1, y) = P (ξ1 ≤ x1, ξ2 ≤ ỹ (ξ1))− P (ξ1 ≤ x1, ξ2 ≤ y (ξ1))

= P
(
η1 ≤ x1, η2 ≤ ỹ (η1)− Σ12

Σ11

η1

)
− P

(
η1 ≤ x1, η2 ≤ y (η1)− Σ12

Σ11

η1

)
=

∫ x1

−∞

∫ ỹ(r)−Σ12
Σ11

r

−∞
gη (s, r) dsdr −

∫ x1

−∞

∫ y(r)−Σ12
Σ11

r

−∞
gη (s, r) dsdr.

Recalling that, by independence of the components η1 and η2, we may write gη (s, r) = gη1 (r) gη2 (s),
where gη1 ,gη2 refer to the one-dimensional densities of η1 and η2, we may - taking into account (43) -
continue as

0 ≤
∫ x1

−∞
gη1 (r)

(∫ ỹ(r)−Σ12
Σ11

r

−∞
gη2 (s) ds

)
dr

−
∫ x1

−∞
gη1 (r)

(∫ α(x1)

−∞
gη2 (s) ds

)
dr

=

∫ x1

−∞
gη1 (r)Fη2

(
ỹ (r)− Σ12

Σ11

r

)
dr −

∫ x1

−∞
gη1 (r)Fη2 (α (x1)) dr

=

∫ x1

−∞
gη1 (r)

[
Fη2

(
ỹ (r)− Σ12

Σ11

r

)
− Fη2 (α (x1))

]
dr, (49)

where Fη2 refers to the cumulative distribution function of η2. Since one-dimensional Gaussian dis-
tribution functions are concave right of their mean (their second derivative coincides with the first
derivative of the density, and so is negative right of the mean), we have the relation

Fη2 (t) ≤ Fη2 (s) + F ′η2
(s) (t− s) ∀s, t ≥ µ̃2.

Now, α (x1) ≥ µ̃2 by (47) and also, because of ỹ ∈M ,

ỹ (r)− Σ12

Σ11

r ≥ µ2 −
Σ12

Σ11

µ1 = µ̃2.

Therefore, we may conclude that

Fη2

(
ỹ (r)− Σ12

Σ11

r

)
≤ Fη2 (α (x1)) + ∆

(
ỹ (r)− Σ12

Σ11

r − α (x1)

)
,

where, by positivity of Gaussian densities,

∆ := F ′η2
(α (x1)) = gη2 (α (x1)) > 0.

This allows us, along with (43) and (48), to proceed lead (49) to the contradiction

0 ≤ ∆

∫ x1

−∞
gη1 (r)

(
ỹ (r)− Σ12

Σ11

r − α (x1)

)
dr = ∆

∫ x1

−∞
gη1 (r) [ỹ (r)− y(r)] dr

= ∆
[
Eỹ (ξ1)χ(−∞,x1] (ξ1)− Ey (ξ1)χ(−∞,x1] (ξ1)

]
< 0.

This proves our initial claim that y in (43) is a global solution to (44). Accordingly, for each x1 ∈ R
satisfying (42), we have that

min
x2∈X ∗

{
c2Ex2 (ξ1)χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈M

}
= c2Ey (ξ1)χ(−∞,x1] (ξ1) = c2E

[
Σ12

Σ11

ξ1 + α (x1)

]
χ(−∞,x1] (ξ1)

= c2

[
Σ12

Σ11

Eξ1|ξ1≤x1 + α (x1)Eχ(−∞,x1] (ξ1)

]
.
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It is well-known that for the Gaussian random variable ξ1 with mean µ1 and standard deviation
√

Σ11

the mean conditioned to ξ1 ≤ x1 calculates as Eξ1|ξ1≤x1 = β (x1), where β is defined in (41). Since,
moreover, by (46),

Eχ(−∞,x1] (ξ1) = P (ξ1 ≤ x1) = P (η1 ≤ x1) = Φ

(
x1 − µ1√

Σ11

)
,

we may conclude that, with the function f as introduced in the statement of this Theorem,

min
x2∈X ∗

{
c2Ex2 (ξ1)χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈M

}
= c2f (x1) . (50)

Now, finally, we turn to our given problem (38) and decompose it pretty much the same way we did in
(35):

min
x1∈R

{
c1x1 + min

x2∈X ∗

{
c2Ex2 (ξ1)χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈M

}}
.

Observe first that for arbitrary x1 with x1 ≤
√

Σ11Φ−1 (p) + µ1 the feasible set of the inner problem
above is empty. Indeed, if there existed some x2 ∈ X ∗ with ϕ (x1, x2) ≥ p, then, repeating an earlier
argumentation on top of (49), we could establish the contradiction

p ≤ ϕ (x1, x2) = P (ξ1 ≤ x1, ξ2 ≤ x2 (ξ1)) =

∫ x1

−∞
gη1 (r)Fη2

(
ỹ (r)− Σ12

Σ11

r

)
dr

<

∫ x1

−∞
gη1 (r) dr = P (η1 ≤ x1) = P (ξ1 ≤ x1)

= P
(
ξ1 − µ1√

Σ11

≤ x1 − µ1√
Σ11

)
= Φ

(
x1 − µ1√

Σ11

)
≤ Φ

(
Φ−1 (p)

)
= p.

Here, the strict inequality follows from the fact that gη1 > 0 and Fη2 < 1, while the last inequality is a
consequence of Φ being nondecreasing. Hence, for x1 ≤

√
Σ11Φ−1 (p) + µ1, the minimum value of

the objective over the empty feasible set is equal to infinity. Therefore, such x1 can be ignored in the
outer minimization and we can write our problem, thanks to (50) as

min
x1>
√

Σ11Φ−1(p)+µ1{
c1x1 + minx2∈X ∗

{
c2Ex2 (ξ1)χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈M

}}
= minx1>

√
Σ11Φ−1(p)+µ1

{c1x1 + c2f (x1)} .

This proves our assertion on an optimal solution x∗1. As shown in the first part in this proof, the optimal
second-stage decision in (44) associated with the first-stage decision x∗1 is defined in (43) and yields
the asserted formula for x∗2 in the statement of this proof. �

Figure 3 illustrates the solution of problem (38) for the data

c1 = 1; c2 = 2; p = 0.8; µ = (0, 0); Σ =

(
1 0.25

0.25 1

)
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Figure 3: Illustration of a solution to problem 38: Optimal first stage decision x∗1 as minimizer of the
function c1t+c2f(t) (left) and optimal second stage decision x∗2(r) as affine linear function with slope
and intercept as indicated in Theorem 3.2 (right).
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