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EDP-convergence for nonlinear fast-slow reaction systems with
detailed balance

Alexander Mielke, Mark A. Peletier, Artur Stephan

Abstract

We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast
reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange
multipliers and a set of nonlinear constraints that ask the fast reactions to be in equilibrium. Our
aim is to study the limiting gradient structure which is available if the reaction system satisfies the
detailed-balance condition.

The gradient structure on the set of concentration vectors is given in terms of the relative
Boltzmann entropy and a cosh-type dissipation potential. We show that a limiting or effective
gradient structure can be rigorously derived via EDP convergence, i.e. convergence in the sense
of the Energy-Dissipation Principle for gradient flows. In general, the effective entropy will no
longer be of Boltzmann type and the reactions will no longer satisfy mass-action kinetics.

1 Introduction

The study of nonlinear reaction systems with different time scales has attracted much attention over
the last decades, see e.g. [Bot03, KaK13, WiS17, DLZ18, MiS19, MaM20] and the references therein.
In this work we consider the simplest case of fast-slow reaction systems with mass-action kinetics that
have only two time scales, namely 1 and ε,

ċ = Rsl(c) +
1

ε
Rfa(c), (1.1)

where c ∈ C := [0,∞[i∗ denotes the vector of the concentrations ci of the ith speciesXi. The typical
aim of the above-mentioned work is to derive the limiting equation for the evolution of c on the slow
time scale, while the fast reactions are in equilibrium. Under suitable assumptions the limiting equation
can be formulated in three equivalent ways:

constrained dynamics: ċ(t) = Rsl(c(t)) + λ(t), λ(t) ∈ Γfa ⊂ Ri∗ , Rfa(c(t)) = 0,

projected dynamics: ċ(t) = (I−P(c(t)))Rsl(c(t)), Rfa(c(0)) = 0,

reduced dynamics: q̇(t) = QfaRsl(Ψ(q(t))), c(t) = Ψ(q(t)).

We refer to Section 4 for a discussion of these formulations.

The goal of this work is to revisit the same limit process, but now from the point of view of varia-
tional evolution. Our starting point is that reaction-rate equations such as (1.1) can be written as a
gradient-flow equation if the reactions occur in pairs of forward and backward reactions and that these
pairs satisfy the detailed-balance condition. This observation was highlighted in [Mie11, Sec. 3.1] but
was observed and used implicitly earlier in [ÖtG97, Eqs. (103)+(113)] and [Yon08, Sec. VII]. A different
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gradient structure already occurs in [Grm10, Eqn. (69)] and has its origin in the thermodynamic consid-
erations in [Mar15] from 1915. The latter gradient structure, which we will call the cosh-type gradient
structure following [MiS19], was mathematically derived in [MPR14, MP∗17] from microscopic chemi-
cal master equations via a large-deviation principle.

To be specific, we assume that the species Xi, i ∈ I := {1, . . . , i∗} undergo r∗ forward-backward
reactions of mass-action type

αr1X1 + · · ·+ αri∗Xi∗ 
 βr1X1 + · · ·+ βri∗Xi∗ ,

where αr = (αri )i∈I and βr = (βri )i∈I are the stoichiometric vectors in Ni∗0 . The reaction-rate
equation (1.1) takes the form

ċ = −
r∗∑
r=1

(
kfw
r c

αr − kbw
r cβ

r)(
αr−βr), where cα = cα1

1 · · · c
αi∗
i∗ . (1.2)

The detailed-balance condition asks for the existence of a positive concentration vector c∗ = (c∗i )i∈I ∈
C+ := ]0,∞[i∗ such that all r∗ reactions are in

∃ c∗ = (c∗i )i∈I ∈ C+ ∀ r ∈ R := {1, . . . , r∗} : kfw
r c

αr

∗ = kbw
r cβ

r

∗ . (1.3)

For the subsequent analysis it is advantageous to introduce the scalars δ∗r =
(
cα

r

∗ c
βr

∗
)1/2

and κ̂r =
kfw
r c

αr

∗ /δ
∗
r = kbw

r cβ
r

∗ /δ
∗
r .

Throughout this work we will assume that c∗ will not depend on the small parameter ε measuring the
ratio between the slow and the fast time scale. The set of reaction pairs R will be decomposed into
slow and fast reactions, namely R = Rsl ∪̇Rfa, and we assume κ̂r = κr for r ∈ Rsl and κ̂r = κr/ε
for r ∈ Rfa, where κr are fixed numbers. With this we obtain the symmetric representation of the
fast-slow reaction-rate equation via

ċ = Rsl(c) +
1

ε
Rfa(c) withRxy(c) := −

∑
r∈Rxy

κr δ
∗
r

(
cα

r

cαr∗
− cβ

r

cβr∗

)
(αr − βr). (1.4)

The cosh-type gradient structure is now defined in terms of a gradient system (C, E ,R∗ε), where the
energy functional is given in terms of the relative Boltzmann entropy

E(c) =
∑
i∈I

c∗iλB(ci/c
∗
i ), where λB(ρ) := ρ log ρ− ρ+ 1,

and the dual dissipation potentialR∗ε in the form

R∗ε(c, ξ) = R∗sl(c, ξ) +
1

ε
R∗fa(c, ξ) withR∗xy(c, ξ) =

∑
r∈Rxy

κr
(
cα

r

cβ
r)1/2

C∗
(
(αr−βr) · ξ

)
,

where C∗(ζ) = 4 cosh(ζ/2) − 4. The fast-slow reaction-rate equation (1.4) can now be written as
the gradient flow equation

ċ(t) = ∂ξR∗ε
(
c(t),−DE(c(t))

)
.

In fact, there are many other gradient structures for (1.4), see Remark 2.6; however the cosh-type
gradient structure is special in several aspects: (i) it can be derived via large-deviation principles
[MPR14, MP∗17], (ii) the dual dissipation potentialR∗ is independent of c∗, and (iii) it is stable under
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Nonlinear fast-slow reaction systems 3

general limiting processes, see [LM∗17, Sec. 3.3]. The property (ii), also called tilt invariance below,
will be especially important for us.

The main goal of this paper is to construct the effective gradient system (C, Eeff ,R∗eff) for the given
family (C, E ,R∗ε) in the limit ε → 0+. Here we use the notion of convergence of gradient system
in the sense of the energy-dissipation principle, shortly called EDP-convergence. This convergence
notion was introduced in [DFM19] and further developed in [MMP19, FrL19, MiS19] and is based on
the dissipation functionals

Dη
ε(c) :=

∫ T

0

{
Rε(c, ċ) +R∗ε(c, η−DE(c))

}
dt,

which are defined for all curves c ∈ L1([0, T ];C). The notion of EDP-convergence with tilting now

asks that the two Γ-convergences Eε
Γ−→ Eeff and Dη

ε
Γ−→ Dη

0 (in suitable topologies) and that for all η

the limit Dη
0 has the form Dη

0(c) =
∫ T

0

{
Reff(c, ċ) +R∗eff(c, η−DE(c))

}
dt; see Section 3.1 for the

exact definition.

Our main result is Theorem 3.5 which asserts EDP-convergence with tilting with

Eeff = E and R∗eff(c, ξ) = R∗sl(c, ξ) + χΓ⊥fa
(ξ),

where Γfa = span
{
αr−βr

∣∣ r ∈ Rfa

}
, Γ⊥fa :=

{
ξ ∈ Ri∗

∣∣ ∀ γ ∈ Γfa : γ · ξ = 0
}

and χA is the
characteristic function of convex analysis taking 0 on A and∞ otherwise. The proof relies on three
observations:

(1) Tilting of the relative Boltzmann entropy E by η is equivalent to changing the underlying equilibrium
c∗ to cη∗ := (eηic∗i )i∈I (see (3.7)), andR∗ε is independent of cη∗.

(2) The dual dissipation potentials R∗ε increase monotonically to their limit R∗eff , which is singular.
Hence, the primal dissipation potentials Rε decrease monotonically to their limit Reff , which is de-
generate. Defining Qfa : Ri∗ → Rmfa such that kerQfa = Γfa and imQ>fa = Γ⊥fa, the bound
Dη
ε(c

ε) ≤ Mdiss < ∞ does not provide a uniform bound on ċε, but we are able to show weak
compactness of Qfac

ε in W1,1([0, T ];Rmfa).

(3) To obtain compactness for families (cε)ε∈]0,1[ from the bound Dε(c
ε) ≤ Mdiss < ∞ we can use∫ T

0
R∗fa(cε,−DE(cε)) dt ≤ εMdiss, which forces cε into the set of equilibria of the fast equation,

namely Efa :=
{
c ∈ C

∣∣Rfa(c) = 0
}

.

An important assumption of the fast reaction system c′(τ) = Rfa(c(τ)) is that it has a unique equilib-
rium in each invariant subset Cfa

q :=
{
c ∈ C

∣∣Qfac = q
}

. This equilibrium is obtained as minimizer
of E and is denoted by Ψ(q). Thus, the unique fast equilibrium condition reads

Msl :=
{

Ψ(q)
∣∣ q ∈ QfaC

} !!
= Efa :=

{
c ∈ C

∣∣Rfa(c) = 0
}
.

The main difficulty is to show that the information in points (2) and (3) is enough to obtain the com-

pactness necessary for deriving liminf estimate for the Γ-convergence Dε
Γ−→ D0 for the non-convex

functionals Dε. On the local level, one sees that (2) provides partial control of the temporal oscillations
of ċε via the bound on Qfaċ

ε in L1([0, T ];Rmfa), whereas (3) provides strong convergence towards
Msl, which is locally defined via DE(c) ∈ Γ⊥fa (see Lemma 3.7). In summary, we are able to show that
Dε(c

ε) ≤ Mdiss < ∞ implies that there exists a subsequence such that cεn → c̃ in L1([0, T ];C)
and Qfac

εn → q uniformly in C0([0, T ];Rmfa), where c̃(t) = Ψ(q(t)) with q ∈W1,1([0, T ];Rmfa).
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A. Mielke, M. A. Peletier, A. Stephan 4

As a corollary we obtain that the limiting evolution lies in Msl and is governed by the reduced (or
coarse grained) equation q̇ = QfaRsl(Ψ(q)) described by the slow variables q ∈ QfaC and a
natural gradient structure (QfaC,E,R). Even on the level of the limiting equations our result goes
beyond those in [Bot03, DLZ18], since we do not assume that solutions are strictly positive or that the
stoichiometric vectors γr = αr−βr, r ∈ Rfa, are linearly independent.

For illustration, we close the introduction by a simple example involving i∗ = 5 species and one fast
and one slow reaction (see Section 4.3 for the details under slightly more general conditions):

X1 +X2

fast

 X3 and X3 +X4

slow

 X5,

which gives rise to the stoichiometric vectors γfa = (1, 1,−1, 0, 0)> and γsl = (0, 0, 1, 1,−1)>.
Assuming the detailed-balance condition with respect to the steady state c∗ = (1, 1, 1, 1, 1)>, the
reaction-rate equation takes the form

ċ = −κ
fa

ε

(
c1c2 − c3

)
γfa − κsl

(
c3c4 − c5

)
γsl .

The limiting reaction system can be described by the slow variables q=(c1+c3, c2+c3, c4, c5)> and
reads

q̇ = QfaRsl(Ψ(q)) = −κsl
(
a(q1, q2)q3 − q4

)
γsl,

where the slow manifold takes the form Ψ(q) =
(
q1, q2, a(q1, q2), q3, q4

)
and the reduced entropy is

E(q) = E(Ψ(q)).

2 Modeling of reaction systems

We first introduce the classical notation for reaction systems with reaction kinetics according to the
mass-action law. After briefly recalling our notation for gradient systems, we show that based on the
condition of detailed balance, the reaction-rate equation is the gradient-flow equation for a suitable
gradient system. Next we introduce our class of fast-slow systems, and finally we present a small, but
nontrivial example in R3.

2.1 Mass action law and stoichiometric subspaces

We consider i∗ ∈ N species Xi reacting with each other by r∗ ∈ N reactions. The set of species is
denoted by I = {1, . . . , i∗}, the set of reactions by R = {1, . . . , r∗}, and the r∗ chemical reactions
are given by

∀ r ∈ R :
i∗∑
i=1

αriXi 

i∗∑
i=1

βriXi,

where the stoichiometric vectors αr, βr ∈ Ni∗0 contain the stoichiometric coefficients. The concentra-
tion ci of species Xi is nonnegative, the space of concentrations is denoted by

C = [0,∞[i∗ ⊂ Ri∗ ,

which is the nonnegative cone of Ri∗ . Moreover, we introduce C+ := intC = ]0,∞[i∗ , the interior
of the set of concentrations.
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Nonlinear fast-slow reaction systems 5

The mass-action law for reaction kinetics assumes that the forward and backward reaction fluxes are
proportional to the product of the densities of the species, i.e. j(c)r = −kfw

r c
αr + kbw

r cβ
r
, where for

stoichiometric vectors δ ∈ Ni+0 the monomials cδ are given by
∏i∗

i=1 c
δi
i . The reaction-rate equation

(RRE) of the concentrations c ∈ C takes the form

ċ = R(c) = −
r∗∑
r=1

(
kfw
r c

αr − kbw
r cβ

r)
(αr − βr) , (2.1)

with given forward and backward reaction rates kfw
r , k

bw
r > 0.

For each of the r reactions we introduce the stoichiometric vector γr := αr − βr ∈ Zi∗ . The span
of all vectors γr is the stoichiometric subspace Γ ⊂ Ri∗ , i.e. Γ := span

{
γr
∣∣ r ∈ R}. We do not

assume any properties of the stoichiometric vectors, in particular they are not assumed to be linearly
independent.

Conservation directions are vectors q ∈ Ri∗ such that q ∈ Γ⊥ (also written q ⊥ Γ), where the
annihilator Γ⊥ is defined as Γ⊥ =

{
q ∈ Ri∗

∣∣ ∀ γ ∈ Γ : q · γ = 0
}

. By construction we have
R(c) ∈ Γ, thus for all solutions t 7→ c(t) of the RRE (2.1), the value of q ·c(t) is constant, i.e. q ·c is a
conserved quantity for (2.1). Fixing a basis {q1, . . . , qm} of Γ⊥, we introduce a matrix Q ∈ Rm×i∗ by
defining its adjointQ> = (q1, . . . , qm). By construction,Q> : Rm → Ri∗ is injective,Q : Ri∗ → Rm
is surjective, and kerQ = Γ. The image of the nonnegative cone C under Q is denoted by Q, i.e.
Q : C→ Q ⊂ Rm. Fixing a vector q ∈ Q, we define the stoichiometric subsets

Cq :=
{
c ∈ C

∣∣Qc = q
}
.

They provide a decomposition C = ∪q∈QCq into affine sets that are invariant under the flow of the
RRE (2.1).

Notation: In the whole paper we consider all vectors as column vectors. In particular DE(c) ∈ X∗
is also a column vector although it is an element of the dual space and might be understood as a
covector.

2.2 Notations for gradient systems

Following [Mie11, Mie16], we call a triple (X, E ,R) a (generalized) gradient system (GS) if

1) the state space X is a closed and convex subspace of a Banach space X ,

2) E : X→ R∞ := R∪{∞} is a sufficiently smooth functional (such as a free energy, a relative
entropy, or a negative entropy, etc.),

3) R : X × X → R∞ is a dissipation potential, which means that for any u ∈ X the func-
tional R(u, ·) : X → R∞ is lower semicontinuous, nonnegative and convex, and satisfies
R(u, 0) = 0.

The dynamics of a gradient system is given by the associated gradient-flow equation that can be
formulated in three different, but equivalent ways: as an equation in X , in R, or in X∗ (the dual
Banach space of X), respectively:

(I) Force balance in X∗ : 0 ∈ ∂u̇R(u, u̇) + DE(u) ∈ X∗, (2.2a)

(II) Power balance in R : R(u, u̇) +R∗(u,−DE(u)) = −〈DE(u), u̇〉 ∈ R, (2.2b)

(III) Rate equation in X : u̇ ∈ ∂ξR∗(u,−DE(u)) ⊂ X. (2.2c)

DOI 10.20347/WIAS.PREPRINT.2781 Berlin 2020
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Here, R∗ is the dual dissipation potential obtained by Legendre-Fenchel transform, R∗(u, ξ) :=
supv∈X

{
〈ξ, v〉 −R(u, v)}. The partial derivatives ∂u̇R(u, u̇) and ∂ξR∗(u, ξ) are the possibly set-

valued convex subdifferentials.

For a given evolution equation u̇ = V (u) we say that it has a gradient structure if there exists
a gradient system (X, E ,R) such that the evolution equation is the gradient-flow equation for this
gradient system, namely V (u) = ∂ξR∗(u,−DE(u)). We emphasize that a given evolution equation
may have none or many gradient structures; see Remark 2.6 for the case of our nonlinear reaction
systems.

Integrating the power balance (II) in time over [0, T ] and using the chain rule for the time-derivative of
t 7→ E(u(t)), we obtain another equivalent formulation of the dynamics of the gradient system, which
is called Energy-Dissipation-Balance:

(EDB) E(u(T )) +

∫ T

0

{
R(u, u̇) +R∗(u,−DE(u))

}
dt = E(u(0)). (2.3)

This gives rise to the dissipation functional

D(u) :=

∫ T

0

{
R(u, u̇) +R∗(u,−DE(u))

}
dt,

which is now defined on trajectories u : [0, T ] 7→ X.

The following Energy-Dissipation Principle (EDP) states that, under natural technical conditions, solv-
ing the EDB (2.3) is equivalent to solving any of the three versions of the gradient-flow equation (2.2).

Theorem 2.1 (Energy-dissipation principle, cf. [AGS05, Prop. 1.4.1] or [Mie16, Th. 3.2]). Assume that
X is a closed convex subset of X = Ri∗ , that E ∈ C1(X,R), and that the dissipation potential
R(u, ·) is superlinear uniformly in u ∈ X. Then, a function u ∈W1,1([0, T ];Ri∗) is a solution of the
gradient-flow equation (2.2) if and only if u solves the EDB (2.3).

2.3 The detailed balance condition induces gradient structures

Already in Section 2.1, we have assumed that each reaction occurs in both forward and backward
directions. Such reaction systems are called weakly reversible. A much stronger assumption is the
so-called detailed-balance condition which states that there is a strictly positive state c∗ = (c∗i ) ∈ C+

in which all reactions are in equilibrium, i.e. jr(c∗) = 0 for all r:

(DBC) ∃ c∗ ∈ C+ ∀ r ∈ R : kfw
r c

αr

∗ = kbw
r cβ

r

∗ . (2.4)

Under this assumption, one can rewrite the RRE (2.1) in the symmetric form

ċ = R(c) = −
r∗∑
r=1

κ̂r δ
∗
r

( cαr
cαr∗
− cβ

r

cβ
r

∗

) (
αr − βr

)
with δ∗r =

(
cα

r

∗ c
βr

∗
)1/2

and κ̂r := kfw
r c

αr

∗ /δ
∗
r = kbw

r cβ
r

∗ /δ
∗
r .

(2.5)

Subsequently, we will use the notion of a reaction system satisfying the detailed-balance condition, or
shortly a detailed-balance reaction system.

Definition 2.2 (Detailed-balance reaction systems (DBRS)). For i∗, r∗ ∈ N consider the stoichiomet-
ric matrices A =

(
αri
)
∈ Ni∗×r∗0 and B =

(
βri
)
∈ Ni∗×r∗0 and the vectors c∗ = (c∗i ) ∈ ]0,∞[i∗

and κ̂ = (κ̂r) ∈ ]0,∞[r∗ . Then, the quadruple (A,B, c∗, κ̂) is called a detailed-balance reaction
systems with i∗ species and r∗ reactions. The associated RRE is given by (2.5).

DOI 10.20347/WIAS.PREPRINT.2781 Berlin 2020



Nonlinear fast-slow reaction systems 7

It was observed in [Mie11] (but see also [ÖtG97, Eqn. (103)+(113)] and [Yon08, Sec. VII] for earlier,
but implicit statements) that RREs in this form have a gradient structure. Here we will use the gradient
structure derived in [MP∗17] by a large-deviation principle from a microscopic Markov process. In
Remark 2.6 we will shortly comment on other possible gradient structures.

With C as above we define the energy as the relative Boltzmann entropy

E :

{
C → R,
c 7→

∑i∗
i=1 c

∗
iλB(ci/c

∗
i ),

with λB(r) =


r log r − r + 1 for r > 0,

1 for r = 0,

∞ for r < 0.

(2.6a)

The dissipation functional R will be defined by specifying the dual dissipation potential R∗ of “cosh-
type” as

R∗ :


C× Ri∗ → R,

(c, ξ) 7→
r∗∑
r=1

κ̂r
√
cαrcβr C∗

(
(αr−βr) · ξ

)
,

with C∗(ζ) = 4 cosh (ζ/2)− 4 .

(2.6b)

We will often use the following formulas for C∗:

(a) C∗(log p− log q) = 2

(√
p−√q

)2

√
pq

,

(b)
(
C∗
)′

(ζ) = e ζ/2 − e−ζ/2, (c)
(
C∗
)′

(log p− log q) =
p− q
√
pq
.

(2.7)

The following result is also easily checked by direct calculations using (2.7)(b) and the logarithm rules

αrDE(c) = log(cα
r

)− log(cα
r

∗ ) = log
(
cα

r

/cα
r

∗ ). (2.8)

This identity also follows as a special case of Remark 2.6. The primal dissipation potentialR is given
by the Legendre-Fenchel transformation:

R(u, v) = sup
{
ξ · v −R∗(c, ξ)

∣∣ ξ ∈ Ri∗ }. (2.9)

Proposition 2.3 (Gradient structure, [MP∗17, Thm. 3.6]). The RRE (2.5) is the gradient-flow equation
associated with the cosh-type gradient system (C, E ,R) with E andR given in (2.6).

An important property of this gradient structure, which is not shared with the ones discussed in Remark
2.6 below, is that the dissipation potentialR∗ does not depend on the equilibrium state c∗. This might
seen an artifact of our special choice of the definition of κ̂r in terms of c∗; however, we already see this
in the example treated in Section 2.5. This property will be even more relevant when we use “tilting”
in our main result Theorem 3.5, which state the “EDP-convergence with tilting”. In [MiS19, Prop. 4.1] it
was shown that this tilt-invariance is a special property of the cosh-gradient structure; see also Remark
2.6.

Moreover, we have identified c∗ as a “static” property of the RRE (2.5), whereas the stoichiometric
matrices A,B ∈ Ni∗×r∗0 and the reaction coefficients κ̂r encode the “dissipative” properties.

Because we are going to use the energy-dissipation principle, we explicitly state the cosh-type dissi-
pation functional given by

D(c) =

∫ T

0

{
R(c, ċ) +R∗(c,−DE(c))

}
dt =

∫ T

0

{
R(c, ċ) + S(c)

}
dt. (2.10)

DOI 10.20347/WIAS.PREPRINT.2781 Berlin 2020
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We will mostly write the dissipation functional D in the first “R+R∗ form” to highlight its duality struc-
ture. However, for mathematical purposes it will be advantageous to use the second representation
via the slope function

S(c) : C→ [0,∞[; c 7→ S(c) :=
r∗∑
r=1

2κ̂rδ
∗
r

((cαr
cαr∗

)1/2 −
(cβr
cβ

r

∗

)1/2
)2

, (2.11)

which is continuous on C and satisfies S(c) = R∗(c,−DE(c)) for c ∈ C+. Sometimes S is also
called the (discrete) Fisher information as it corresponds to

∫
Ω

4k|∇√ρ|2 dx =
∫

Ω
k|∇ρ|2/ρ dx in

the diffusion case.

A special feature of DBRS is that all equilibria have the property that they provide an equilibrium to
each individual reaction r ∈ R, where we do not need linear independence of (γr)r∈R, see also
[MHM15, Sec. 2] or [Mie17].

Lemma 2.4 (Equilibria in DBRS). Let (A,B, c∗, κ̂) be a DBRS with slope function S defined in (2.11).
Then, the following identities hold:

ER :=
{
c ∈ C

∣∣R(c) = 0
}

=
{
c ∈ C

∣∣ S(c) = 0
}

=
{
c ∈ C

∣∣ ∀ r ∈ R : cα
r

cαr∗
= cβ

r

cβ
r
∗

}
.

(2.12)

Moreover, if c̃∗ ∈ ER ∩C+, then the two DBRS (A,B, c∗, κ̂) and (A,B, c̃∗, κ̂) generate the same
RRE.

Proof. Step 1. For c ∈ C+ the gradient structureR(c) = ∂R∗(c,−DE(c)) of the DBRS gives

R(c,R(c)) +R∗(c,−DE(c)) = −DE(c) ·R(c). (2.13)

Thus,R(c) = 0 implies S(c) = R∗(c,−DE(c)) = 0, and since S(c) is the sum of r∗ nonnegative

terms (cf. (2.11)) we conclude cα
r

cαr∗
= cβ

r

cβ
r
∗

as desired.

Step 2. If c ∈ ∂C satisfies R(c) = 0, then consider cδ = c+δc∗ ∈ C+ for δ ∈ ]0, 1[. With
|R(cδ)| ≤ C0δ,R(cδ, v) ≥ 0, and |DE(cδ)| ≤ i∗ log(1/δ) we find

S(cδ) = R∗(cδ,−DE(cδ)) = −DE(cδ) ·R(cδ)−R(cδ,R(cδ)) ≤ i∗C0δ log(1/δ) + 0 .

Using the continuity of S we obtain S(c) = limδ→0+ S(cδ) = 0 and conclude as in Step 1.

Step 3. The equilibrium condition of Step 1 implies c̃β
r

∗ /c̃
αr

∗ = cβ
r

∗ /c
αr

∗ =: µ2
r for all r ∈ R. Because

in the RRE (2.5) only the terms δr∗/c
αr

∗ =
(
cβ

r

∗ /c
αr

∗
)1/2

= µr and δr∗/c
βr

∗ = 1/µr appear, the last
statement follows.

The next lemma shows that R(c, ·) forbids velocities v outside of the stoichiometric subspace Γ.
Moreover, for all trajectories c : [0, T ]→ C with D(c) <∞, which are much more than the solutions
of the RRE (2.1), we find that they have to lie in one stoichiometric subset Cq, i.e. the conserved
quantities are already encoded in D.

Below we use the characteristic function χA of convex analysis, which is defined via χA(v) = 0 for
v ∈ A and χA(v) =∞ otherwise.
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Lemma 2.5 (Conserved quantities via D). Let Γ, Q, Cq, and Q be defined as in Section 2.1, and let
R∗ andR be defined as in (2.6b) and (2.9), respectively.

(a) For all (c, v) ∈ C× Ri∗ we haveR(c, v) ≥ χΓ(v).

(b) If c ∈W1,1([0, T ];C) satisfies D(c) <∞, then Qċ = 0 a.e., or equivalently there exists q ∈ Q
such that c(t) ∈ Cq for all t ∈ [0, T ].

Proof. Using γr = αr − βr we findR∗(c, ξ) = 0 for ξ ⊥ Γ = ker(Q) and conclude

R(c, v) = sup
ξ

(ξ · v −R∗(c, ξ)) ≥ sup
ξ⊥Γ

(ξ · v −R∗(c, ξ)) = sup
ξ⊥Γ

(ξ · v) = χΓ(v).

This proves part (a).

The bound D(c) <∞ implies that
∫ T

0
R(c, ċ)dt <∞ and hence ċ ∈ Γ = ker(Q) a.e. This proves

Qċ(t) = 0 a.e. and by the absolute continuity of c, the function t 7→ Qc(t) must be constant. Hence
part (b) is established as well.

Remark 2.6 (Different gradient structures). We emphasize that the symmetric RRE (2.5), which was
obtained from the DBC, indeed has many other gradient structures with the same relative entropy
E given in (2.6a). Choosing arbitrary smooth and strictly convex functions Φr : R → [0,∞[ with
Φr(0) = 0 and Φr(−ζ) = Φr(ζ) we may define

R∗Φ(c, ξ) =
r∗∑
r=1

κ̂rδ
∗
rΛr

(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
Φr

(
(αr−βr) · ξ

)
with Λr(a, b) =

a − b

Φ′r
(

log a− log b
)

and δ∗r =
(
cα

r

∗ c
βr

∗
)1/2

. Note that Λr can be smoothly extended by Λr(a, a) = a/Φ′′r(0).

To show that the gradient system (C, E ,RΦ) indeed generates (2.5) as the associated gradient-flow
equation, it suffices to consider the rth reaction pair, because the dual potential R∗Φ is additive in the
reaction pairs. Inserting DE(c) =

(
log(ci/c

∗
i )
)
i=1,..,i∗

we obtain the relation

DξR∗Φr
(
c,−DE(c)

)
= κ̂rδ

∗
rΛr

(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
Φ′r
(

(αr−βr) · (−DE(c))
)
(αr−βr)

(2.8)
= −κ̂rδ∗rΛr

(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
Φ′r

(
log
(cαr
cαr∗

)
− log

(cβr
cβ

r

∗

))
(αr−βr) = −κ̂rδ∗r

(cαr
cαr∗
− cβ

r

cβ
r

∗

)
(αr−βr),

which is the desired result.

The choice Φr(ζ) = ζ2/2 was used in [Mie11], while here we use Φr = C∗ leading to

Λr(a, b) = (ab)1/2 and δ∗r Λr

(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
=
(
cα

r

cβ
r)1/2

.

This is the desired term in (2.6b) that is independent of c∗, while for other choice of Φr the last term
will depend on c∗ (see [MiS19]).

2.4 Fast-slow reaction-rate equation

We assume that some reactions are fast with reaction coefficients κ̂εr = κr/ε, while the others are
slow with reaction coefficients κ̂εr = κr (of order 1). Here we assume that the set or reaction indices
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R = {1, ..., r∗} decomposes into Rsl ∪̇Rfa. For simplicity we assume that the detailed-balance
steady state c∗ is independent of ε, but a soft dependence with a limit cε∗ → c∗ ∈ C+ could be
allowed as well.

ċ = Rε(c) = −
r∗∑
r=1

κ̂εrδ
∗
r

(cαr
cαr∗
− cβ

r

cβ
r

∗

)(
αr − βr

)
= Rsl(c) +

1

ε
Rfa(c)

withRxy(c) =
∑
r∈Rxy

κrδ
∗
r

(cαr
cαr∗

cβ
r

cβ
r

∗

)(
αr − βr

)
for xy ∈ {sl, fa}.

(2.14)

Obviously, for each ε > 0 we have a cosh-type gradient structure (C, E ,Rε) with

R∗ε(c, ξ) = R∗sl(c, ξ) +
1

ε
R∗fa(c, ξ) withR∗xy(c, ξ) =

∑
r∈Rxy

κr
√
cαrcβr C∗

(
(αr−βr) · ξ

)
. (2.15)

The aim of this paper is to investigate the behavior of the gradient structures (C, E ,Rε) in the limit
ε → 0+. In particular, we study the Γ-limit of the induced dissipation functionals Dε obtained as in
(2.10) but with the duality pairRε+R∗ε.
At this stage we report on well-known results (see e.g. [Bot03, DLZ18]) about the limit evolution for
ε → 0+. For small times of order ε the fast system Rfa will dominate, while for t ∈ [

√
ε, T ] a slow

dynamics takes place where the slow reactions drive the evolution and the fast reactions remain in
equilibrium.

To be more precise we introduce the fast time scale τ = t/ε such that in terms of τ we obtain the
rescaled system c′(τ) = εRsl(c(τ)) +Rfa(c(τ)). For ε→ 0+ we obtain the fast system

c′(τ) = Rfa(c(τ)), c(0) = c0. (2.16)

This is again a RRE satisfying the detailed-balance condition and all constructions introduced in Sec-
tions 2.1 and 2.3. In particular we obtain the fast stoichiometric subspace

Γfa := span
{
γr ∈ Zi∗

∣∣ r ∈ Rfa

}
⊂ Γ ⊂ Ri∗ .

For the annihilator Γ⊥fa :=
{
q ∈ Ri∗

∣∣ ∀ γ ∈ Γfa : q · γ = 0
}

we have Γ⊥ ⊂ Γ⊥fa and
mfa := dim Γ⊥fa ≥ m = dim Γ⊥. Thus, we can extend the basis {q1, . . . , qm} for Γ⊥ to a ba-
sis {q1, ..., qm, ..., qmfa

} for Γ⊥fa and define the conservation operator Qfa : Ri∗ → Rmfa via

Q>fa :=
(
q1, . . . , qmfa

)
: Rmfa → Ri∗ and set Q :=

{
Qfac ∈ Rmfa

∣∣ c ∈ C
}
.

In particular, the important defining relations of Qfa are

kerQfa = Γfa and imQ>fa = Γ⊥fa. (2.17)

Of course, our interest lies in the case 0 ≤ m � mfa � i∗. In that case the mapping c 7→ Qc yields
fewer conserved quantities for the full fast-slow RRE (2.14) than the mapping c 7→ q = Qfac supplies
for the fast RRE (2.16). We call q ∈ Q the slow variables, as they may still vary on the slow time scale.
In particular, the decomposition of C into fast stoichiometric subsets

C = ∪q∈QC
fa
q where Cfa

q :=
{
c ∈ C

∣∣Qfac = q
}

(2.18)

is finer than C =
⋃
q∈Q Cq.
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Starting from a general initial condition c0, one can show that the solutions cε : [0, T ] → C of the
fast-slow RRE (2.14) have a limit c0 : [0, T ] → C, but this limit may not be continuous at t = 0. On
the short time scale τ = t/ε we may define c̃ ε(τ) = cε(ετ) which has a limit c̃ 0 : [0,∞[ → C
satisfying the fast RRE (2.16) and having a limit c0 := limτ→∞ c̃

0(τ) with Rfa(c0) = 0. Hence, we
define the set of fast equilibria

Efa :=
{
c ∈ C

∣∣Rfa(c) = 0
}

=
{
c ∈ C

∣∣ ∀ r ∈ Rfa : cα
r

cαr∗
= cβ

r

cβ
r
∗

}
(2.19)

such that for τ ∈ [0,∞[ the solution c̃ 0(τ) describes the approach to the slow manifold and c0 ∈ Efa.
On the time scale of order 1, the limits c0(t) of the solutions cε(t) satisfy c0(t) ∈ Efa for all t ∈ ]0, T ],
and one has the matching condition c0 = limt→0+ c

0(t).

The evolution of the solutions c0 within Efa is driven by the slow reactions only; the fast reactions keep
the solution on the fast-equilibrium manifold Efa. In particular, it can be shown (see [Bot03, DLZ18] or
[MiS19] for the linear case) that c0 satisfies the limiting equation

ċ(t) = Rsl(c(t)) + λ(t) with c(t) ∈ Efa and λ(t) ∈ Γfa, c(0) = c0. (2.20)

The result of our paper is quite different: We will pass to the limit in the gradient systems (C, E ,Rε)
directly and obtain an effective gradient system (C, E ,Reff), see Theorem 3.5. As a consistency
check, we will show in Section 4 that the gradient-flow equation for (C, E ,Reff) is indeed identical to
the limiting equation (2.20), see Proposition 4.4.

2.5 A simple example for a fast-slow system

As a guiding example, we consider a reaction system consisting of three speciesXi, i = 1, 2, 3 = i∗,
which interact via r∗ = 2 reactions, one being slow and one being fast:

slow: X1 
 X3 fast: X1 +X2 
 2X3 .

Hence, the stoichiometric vector are given by

α1 = (1, 0, 0)>, β1 = (0, 0, 1)>, γ1 = (1, 0,−1)>,

α2 = (1, 1, 0)>, β2 = (0, 0, 2)>, γ2 = (1, 1,−2)> .

Hence, one can easily check that the space of conserved quantities is span
(
(1, 1, 1)>

)
∈ R3 which

defines the matrix Q = (1, 1, 1) ∈ R1×3.

We have R = Rfa ∪Rsl = {1} ∪ {2} and the RRE reads

ċ = Rε(c) = (c3−3c1)

 1
0
−1

+
1

ε
(c2

3−c1c2)

 1
1
−2

 . (2.21)

The nontrivial equilibria of this RRE are given by c∗ = (c∗1, c
∗
2, c
∗
3)> = σ(1, 9, 3)> for σ > 0. All

these c∗ satisfy the detailed balance condition, and (2.21) takes the symmetric form (2.5), viz.

ċ = −κ1δ
∗
1

(c1

c∗1
− c3

c∗3

) 1
0
−1

− κ2

ε
δ∗2

(c1c2

c∗1c
∗
2

− c2
3

(c∗3)2

) 1
1
−2


with δ∗1 = (c∗1c

∗
3)1/2 = σ

√
3, δ∗2 = (c∗1c

∗
2)1/2c3 = 9σ2, κ1 =

√
3, and κ2 = 1.
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Figure 2.1: The state space C =
[0,∞[3 decomposes into the triangles
Qc = c1 + c2 + c3 = q (light brown),
which decompose into the straight seg-
ments Qfac = q (brown). Each segment
has exactly one intersection with the fast
equilibria Efa (green).

Thus, we find the cosh-type gradient structure (C, E ,R∗ε) of Section 2.3 with

E(c) = σλB(c1/σ) + 9σλB(c2/(9σ)) + 3σλB(c3/(3σ)),

R∗ε(c, ξ) =
√

3c1c3 C
∗(ξ1−ξ3) +

1

ε

√
c1c2c2

3 C
∗(ξ1+ξ2−2ξ3) .

As noted just after Proposition 2.3,R∗ε is independent of c∗.

The associated fast system consists simply of one reaction, hence we find

Γfa = span(1, 1,−2)>, Qfa =

(
1 1 1
1 −1 0

)
, Q =

{
q ∈ R2

∣∣ q1 ≥ 0
}
.

The stoichiometric sets Cq with Qc = q ∈ R1 are triangles, which decompose into the straight
segments Cfa

q given by Qfac = q, whereas the set of fast equilibria

Efa =
{
c ∈ C

∣∣ c1c2 = c2
3

}
.

is curved. See Figure 2.5 for an illustration.

Finally, we discuss the evolution for our example starting with the initial condition c0 = (10, 4, 0)>

such that Qcε(t) = cε1(t) + cε2(t) + cε3(t) = 14 is the conserved quantity. Since there is only one fast
reaction, the second conserved quantity c1 − c2 = q2 = 6 shows that c̃ε(τ) = cε(εt) converges to
c̃(τ) and c̃(τ)→ c0 = (8, 2, 4)> ∈ Efa for τ →∞.

Thus, the limit solution c0 satisfies the limiting equation (2.20), which reads in our case

ċ = (c3−3c1)

 1
0
−1

+ λ0

 1
1
−2

 , c1(t)c2(t) = c3(t)2, c(0) = c0 = (8, 2, 4)>.

By eliminating the Lagrange multiplier λ0 ∈ R and using the conserved quantityQc = 14 this system
is equivalent to the system

ċ1 − ċ2 = c3 − 3c1, c1c2 = c2
3, c1 + c2 + c3 = 14.

Simulations are shown in Figure 2.5, which show the fast convergence to Efa and then the slow con-
vergence to the final steady state ceq = (1, 9, 4)>.
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Figure 2.2: Numerical calculation of the solutions cε(t) for the RRE (2.21) with cε(0) =
(4, 0, 10)> with ε = 1 (upper left) and ε = 0.2 (lower left). The lower left figure shows the
fast convergence to c0 = (8, 2, 4)>. The right graphs displays the curve t 7→ cε(t) (red),
which lies in the plane Qc = 14 (light brown). It quickly approaches Msl (green) and then
moves towards the set of steady states (blue).

3 EDP-convergence and effective gradient structure

In this section we first provide the precise definitions of EDP-convergence for gradient systems. Next
we present the our main result concerning the EDP-limit of the cosh-type gradient structure for the
fast-slow RRE with detailed-balance condition as introduced in Section 2.4, where the proofs are
postponed to later sections. Finally, in Section 4 we discuss the obtained effective gradient system
(C, E ,Reff) and show that the induced gradient-flow equation indeed is the same as the limiting
equation (2.20).

3.1 Definition of different types of EDP-convergence

The definition of EDP-convergence for gradient systems relies on the notion of Γ-convergence for

functionals (cf. [Dal93]). If Y is a Banach space and Iε : Y → R∞ we write Iε
Γ−→ I0 and Iε

Γ
⇀ I0

for Γ-convergence in the strong and weak topology, respectively. If both holds this is called Mosco

convergence and written as Iε
M−→ I0.

For families of gradient systems (X, Eε,Rε), three different levels of EDP-convergence are introduced
and discussed in [DFM19, MMP19], called simple EDP-convergence, EDP-convergence with tilting,
and contact EDP-convergence with tilting. Here we will only use the first two notions. For all three
notions the choice of weak or strong topology is still to be decided according to the specific problem.
Here in the state spaceX = Ri∗ this question is irrelevant, but it is relevant for curves u : [0, T ]→ X
lying in Y = L1([0, T ];X), where the state spaceX is a closed convex subset with non-empty interior
of the Banach space X . For our paper, the strong topology will be sufficient.

Definition 3.1 (Simple EDP-convergence). A family of gradient structures (X, Eε,Rε) is said to EDP-
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converge to the gradient system (X, E0,Reff) if the following conditions hold:

1) Eε
Γ−→ E0 on X ⊂ X ;

2) Dε strongly Γ-converges to D0 on L1([0, T ];X) conditioned to bounded energies (we write

Dε
ΓE→ D0), i.e. we have

2a) (Liminf) For all strongly converging families uε → u in L1([0, T ];X) which satisfy
supε>0 ess supt∈[0,T ]Eε(uε(t)) <∞, we have lim infε→0+ Dε(uε) ≥ D0(u).

2b) (Limsup) For all ũ ∈ L1([0, T ];X) there exists a strongly converging family ũε → ũ
in L1([0, T ];X) with supε>0 ess supt∈[0,T ]Eε(ũε(t)) < ∞ and lim supε→0+ Dε(ũε) ≤
D0(ũ);

3) there is an effective dissipation potentialReff : X×X → R∞ such that D0 takes the form of
a dual sum, namely D0(u) =

∫ T
0
{Reff(u, u̇)+R∗eff(u,−DEeff(u))}dt.

Similarly, one can also use weak Γ or Mosco convergence conditioned to bounded energy, which we

will then write as Dε
ΓE⇀ D0 and Dε

ME−→ D0. In fact, for our fast-slow reaction systems we are going

to prove Dε
ME−→ D0.

A general feature of EDP-convergence is that under suitable conditions the gradient-flow equation u̇ =
∂ξR∗eff(u,−DE0(u)) of the effective gradient system (X, E0,Reff) is indeed the limiting equation
equation for the family u̇ = ∂ξR∗ε(u,−DEε(u)), i.e. limits u0 of solutions uε of latter equations solve
the former equation, see e.g. [Bra14, Thm. 11.3], [MiS19, Lem. 3.4], or [MMP19, Lem. 2.8]. For our
case, such a result is given in Propositions 4.3 and 4.4.

A strengthening of simple EDP-convergence is the so-called EDP-convergence with tilting. This notion
involves the tilted energy functionals Eηε : X 3 u 7→ Eε(u) − 〈η, u〉, where the tilt η (also called
forcing) varies through the whole dual space X∗.

Definition 3.2 (EDP-convergence with tilting (cf. [MMP19, Def. 2.14])). A family of gradient structures
(X, Eε,Rε) is said to EDP-converge with tilting to the gradient system (X, E0,Reff), if for all tilts
η ∈ X∗ we have (X, Eηε ,Rε) EDP-converges to (X, Eηε ,Reff).

We observe that Eε
Γ−→ E0 implies Eηε

Γ−→ Eη0 for all η ∈ X∗ (and similarly for weak Γ-convergence),
since the linear tilt u 7→ −〈η, u〉 is weakly continuous. The main and nontrivial assumption is that
additionally

Dη
ε : u 7→

∫ T

0

{
Rε(u, u̇) +R∗ε(u, η−DEε(u))

}
dt

Γ-converges in L1([0, T ];X) to Dη
0 for all η ∈ X∗ and that this limit Dη

0 is given in dual-sum form
withReff via

Dη
0(u) =

∫ T

0

{
Reff(u, u̇) +R∗eff(u, η−DEeff(u))

}
dt.

The main point is thatReff remains independent of η ∈ X∗. We refer to [MMP19] for a discussion of
this and the other two notions of EDP-convergence.
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3.2 Our main EDP-convergence result

Since we have assumed that the stationary measure does not depend on ε > 0, also the energy
Eε = E is ε-independent. Since E is also convex and lower semicontinuous, we have the trivial Mosco

convergence Eε
M−→ E .

To study the Γ-limit of the dissipation functionals Dε we first extend them to the space

L1([0, T ];C) :=
{
c ∈ L1([0, T ];Ri∗)

∣∣ c(t) ∈ C a.e.
}
.

For this we also use the slope functions (where xy ∈ {fa, sl})

Sε(c) = Ssl(c) +
1

ε
Sfa(c) with Sxy(c) =

∑
r∈Rxy

2κrδ
∗
r

((cαr
cαr∗

)1/2 −
(cβr
cβ

r

∗

)1/2
)2

. (3.1)

For ε > 0 the dissipation functional Dε : L1([0, T ];C)→ [0,∞] is now given by

Dε(c) =

{∫ T
0

{
Rε(c, ċ) + Sε(c)

}
dt for c ∈W1,1([0, T ];C),

∞ otherwise.
(3.2)

We recall that the dual dissipation potentials are given by (with γr = αr − βr)

R∗ε(c, ξ) = R∗sl(c, ξ) +
1

ε
R∗fa(c, ξ) withR∗xy(c, ξ) =

∑
r∈Rxy

κr
√
cαrcβr C∗

(
γr · ξ

)
.

Because Sfa(c) ≥ 0 and R∗fa(c, ξ) ≥ 0 we observe that Sε(c) and R∗ε(c, ξ) are monotonously
increasing for ε ↓ 0. Thus, their Γ-limits exist and are equal to the pointwise limits, which are denoted
by S0 andR∗0 respectively (this uses [Dal93, Rem. 5.5] and the continuity of Sfa andR∗fa.)

Using (2.12) for the fast system we know that for c ∈ C the three conditionsRfa(c) = 0, Sfa(c) = 0,
and c ∈ Efa are equivalent. Hence, we conclude

lim
ε→0+

Sε(c) =: S0(c) = Ssl(c) + χEfa
(c), where χA(b) =

{
0 for b ∈ A,
∞ for b 6∈ A.

Obviously, we have limε→0+R∗ε(c, ξ) =: R∗0(c, ξ) = 0 for ξ ∈ Γ⊥fa and for c ∈ C+ we obtain
R∗0(c, ξ) =∞ for ξ 6∈ Γ⊥fa. Thus, we define the effective dual dissipation potential as

R∗eff(c, ξ) = R∗sl(c, ξ) + χΓ⊥fa
(ξ) . (3.3)

Note that R∗eff(c, ξ) ≥ R∗0(c, ξ) where inequality may happen on the boundary of C, e.g. at c = 0.
Nevertheless, we have the important relation

∀ c ∈ C+ : R∗eff(c,−DE(c)) = S0(c) := Ssl(c) + χEfa
(c) . (3.4a)

The primal effective dissipation potentialReff is given by the Legendre–Fenchel transformation:

Reff(c, v) = sup
ξ∈Ri∗

{v · ξ −R∗eff(c, ξ)} = sup
ξ∈Ri∗

{
v · ξ −R∗sl(c, ξ)− χΓ⊥fa

(ξ)
}

= inf
v1+v2=v

{Rsl(c, v1) + χΓfa
(v2)} = inf

v2∈Γfa

{Rsl(c, v−v2)} ,
(3.4b)
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where we have used (χΓfa
)∗ = χΓ⊥fa

and the classical theorem on the Legendre-Fenchel transforma-
tion turning a sum into an infimal convolution (see [Att84, Prop. 3.4]).

To state our main result we now impose a non-trivial structural assumption that is crucial for our result
and its proof. An analogous condition on the uniqueness of equilibria in each stoichiometric subset
Cfa

q was used in [Mie17, Eqn. (17)]. We believe that the theory of EDP-convergence can be studied
without this assumption, but then one has to refine the results and the solution technique suitably, see
the counterexample in Remark 3.10.

Assumption 3.3 (Conditions on the fast equilibria Efa). For all q ∈ Q :=
{
Qfac

∣∣ c ∈ C
}

, there is
exactly one equilibrium of c′ = Rfa(c) in the invariant subset Cfa

q (cf. (2.18)), i.e.

(UFEC) ∀ q ∈ Q : #
(
Cfa

q ∩ Efa

)
= 1 , (3.5)

which is called the unique fast-equilibrium condition. By Ψ : Q → C we denote the mapping such
that {Ψ(q)} = Cfa

q ∩ Efa for all q ∈ Q.

We further impose the following positivity assumption on Ψ:

∃ q ∈ Q ∀ θ ∈ ]0, 1] ∀ q ∈ Q ∀ i ∈ I : Ψ(q+θq)i > 0 and Ψ(q+θq)i ≥ Ψ(q)i. (3.6)

The positivity and monotonicity assumption (3.6) seems to be only technical and it is only used at one
point, namely in Step 1 in the proof of Theorem 5.5. We expect that this assumption can be avoided
by a more careful construction of recovery sequence.

In Section 3.3 we will show that one of possibly several equilibria in Cfa
q is always given as the min-

imizer of E on Cfa
q . Thus, the assumption really means that this “thermodynamic equilibrium” is the

only steady state. Our main Γ-convergence result reads as follows.

Theorem 3.4 (Γ-convergence). Consider a fast-slow DBRS (A,B, c∗, κ̂
ε) as in (2.14) together with

its cosh-type gradient structure (C, E ,Rε) as in Proposition 2.3 and the dissipation functional Dε

defined in (3.2). Moreover, let Assumption 3.3 be satisfied.

Then we have Dε
ME−→ D0 on L1([0, T ],C) conditioned to bounded energies, where the functional

D0 : L1([0, T ];C)→ [0,∞] is defined as

D0(c) :=

{∫ T
0

{
Reff(c, ċ) + S0(c)

}
dt for c ∈ C0([0, T ];C) and Qfac ∈W1,1([0, T ];Rmfa),

∞ otherwise,

whereReff and S0 are defined in (3.4).

The proof of this result is the content of Section 5.

We emphasize that the integrand of D0 is (i) degenerate (non-coercive) in q̇ and (ii) singular (taking the
value∞). Concerning (i), we recall that the definition ofReff in (3.4b) implies thatReff(c, ·) vanishes
on Γfa. In fact, it is only possible to control the time derivative of t 7→ Qfac(t) ∈ Rmfa . Concerning
(ii), we observe that S0 equals +∞ outside of Efa, which is a manifold of dimension mfa, and at each
c ∈ Efa ∩ C+ the subspaces TcEfa and Γfa are transversal, see Section 4. Assumption 3.3 will be
needed to avoid jump-type behavior which can occur otherwise, see the counterexample discussed in
Remark 3.10.

We now come to our main result on the EDP-convergence with tilting for the cosh-type gradient sys-
tems (C, E ,Rε) towards the effective gradient system (C, E ,Reff).
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The theorem enables to establish our main result on EDP-convergence with tilting. The result is a direct
consequence of the Γ-convergence stated in Theorem 3.4 and the general fact for the Boltzmann
entropy that tilting is equivalent to changing the reference measure. In fact, introducing the relative
Boltzmann entropy H(c |w) =

∑i∗
i=1wiλB(ci/wi) we have E(c) = H(c | c∗) and obtain, for all

η ∈ Ri∗ , the relation

Eη(c) = E(c)− η·c = H(c |Dηc∗) +Eη with Dηc := (eηici)i∈I and Eη =
i∗∑
i=1

(1−eηi)c∗i . (3.7)

Thus, we observe that tilting of a DBRS (A,B, c∗, κ̂
ε) only changes the static property, namely the

equilibrium c∗ intoDηc∗, while the dissipative properties encoded in the stoichiometric matricesA and
B and the reaction coefficients κ̂ remain unchanged.

Theorem 3.5 (EDP-convergence with tilting). Under the assumptions of Theorem 3.4, the gradient
systems (C, E ,Rε) EDP-converge with tilting to the gradient system (C, E ,Reff).

Proof. Step 1. Simple EDP-convergence: Since Eε = E is continuous we obviously have Eε
M−→ E .

Moreover, Theorem 3.4 provides Dε
ME−→ D0. Finally, the relation (3.4a) shows that the integrand

of D0 has the desired dual structure Reff(c, ċ)+R∗eff(c,−DE(c)). Thus, we have established the
simple EDP-convergence of (C, E ,Rε) to the effective gradient system (C, E ,Reff).

Step 2. EDP-convergence with tilting: We use that Eη = H(· |Dηc∗)+Eη is of the same type as E =
H(· | c∗) if we ignore the irrelevant constant energy shift. Clearly, the new fast-slow RRE (2.14) has
the same A, B, κr, i∗, and hence Qfa; only c∗ is replaced by Dηc∗. Thus, all structural assumptions
are the same, and Theorem 3.4 is applicable for all η ∈ R∗. In particular, the UFEC in (3.5) holds
for the tilted DBRS by Corollary 3.8. Thus, (C, Eη,Rε) EDP-converges to (C, Eη,Reff) according
to Step 1. Since the effective dissipation potential Reff is independent of η ∈ Ri∗ , we have shown
EDP-convergence with tilting.

3.3 Discussion of the UFEC and definition of Msl

Here we first prove properties of the function Ψ that provides the fast equilibria (see Assumption 3.3).
Secondly, we show that UFEC is invariant under tilting.

The stoichiometric subsets Cfa
q :=

{
c ∈ C

∣∣ Qfac = q
}

are the intersection of the affine sub-

space
{
y ∈ Ri∗

∣∣ Qfay = q
}

of dimension mfa with the simplicial convex cone C = [0,∞[i∗ .
Hence, each Cfa

q is a closed and convex simplex of dimensionm(q) ∈ {0, 1, . . . ,mfa}. The simplex-
boundary ∂Cfa

q of such a simplex is the union of its boundary simplices of dimension m(q) − 1. A
two-dimensional n-gon has n intervals as boundary, and an interval has 2 points as boundary. For the
case of a point, which is the only 0-dimensional simplex, we say that the boundary is empty. We say
that an equilibrium c ∈ Efa is a boundary equilibrium if c ∈ ∂Cfa

q . Otherwise c ∈ Efa is called an
interior equilibrium.

The following result provides an alternative construction of the mapping Ψ : Q → C that is inde-
pendent of the UFEC (3.5). We observe that Ψ is defined for every fast DBRS (Afa, Bfa, c∗, κ

fa) and
that Ψ only depends on Afa−Bfa and c∗. The first part of the next result is also shown in [MHM15,
Prop. 2.1] or [DLZ18, Lem. 2.3].

Proposition 3.6 (Existence and continuity of interior equilibria). For a fast DBRS
(Afa, Bfa, c∗, κ

fa) the energy E only depends on c∗, and Qfa only depends on Γfa= im(Afa−Bfa).
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For each q ∈ Q, denote by Ψ(q) the unique minimizer of E on Cfa
q . Then, Ψ(q) is the only equilibrium

of ċ = Rfa(c) that lies in the interior Cfa
q \ ∂Cfa

q . Moreover, the mapping Ψ : Q→ C is continuous,
and Ψ : intQ→ intC is analytic.

Proof. Step 1. Uniqueness and existence of minimizer: The existence of a global minimizer follows
from the coercivity of E and the closedness of Cfa

q . The uniqueness follows from the convexity of Cfa
q

and the strict convexity of E .

Step 2. Interior property: If Cfa
q is a singleton {ĉ}, then Ψ(q) = ĉ automatically lies in the interior. If

c∂ is a point in the boundary and c◦ a point in the interior of Cfa
q , then there is at least one k ∈ I such

that c∂k = 0 and c◦k > 0. Since ck 7→ c∗kλB(ck/c
∗
k) has slope −∞ at ck = 0, we conclude that c∂

cannot be a minimizer of E : c 7→
∑

i c
∗
iλB(ci/c

∗
i ). Hence, ĉ = Ψ(q) lies in the interior of Cfa

q .

Step 3. Unique equilibrium property: Since E is a strict Liapunov function for the RRE, the minimizer
Ψ(q) has to be an equilibrium.

For the uniqueness, we consider first the case dim(Cfa
q ) = mfa,in which case interior points in Cfa

q lie
inC+. Hence, for any other equilibrium ce in the interior ofCfa

q the derivative DE(ce) =
(

log(ce
i/c
∗
i )
)
i

is well-defined. Moreover, Lemma 2.4 implies cα
r

e /c
αr

∗ = cβ
r

e /c
βr

∗ for all r ∈ Rfa. These two properties
yield DE(ce) ·γr = 0 for r ∈ Rfa. But DE(ce) ∈ Γ⊥fa and Cfa

q ⊂ ce +Γfa guarantee that ce minimizes
the convex functional E on Cfa

q , which yields ce = Ψ(q).

If dim(Cfa
q ) = m(q) < mfa then there exists I0 ⊂ I with mfa−m(q) elements such that Cfa

q ⊂{
c ∈ C

∣∣ ci = 0 for all i ∈ I0

}
and that for interior points c̃ ∈ Cfa

q \ ∂Cfa
q we have c̃i > 0 for

i 6∈ I0. Hence, the above argument can be applied to the reduced system for c̃ = (ci)i∈I\I0 , i.e. the
components ci = 0, i ∈ I0 are simply ignored.

Step 4. Continuity of Ψ: Consider a sequence qk → q∞ and let ck = Ψ(qk), then we have to show
that ck → c∞. We set αk = E(ck) = min

{
E(c)

∣∣ c ∈ Cfa
qk

}
and choose a subsequence (kl) such

that α := lim infk→∞ αk = liml→∞ αkl . By coercivity of E we know that (ck) is bounded that there
exists a further subsequence (not relabeled) with ckl → c̃ and Qc̃ = limQckl = lim qk = q∞.
Hence, we obtain the estimate

E(c∞) ≤ E(c̃) = lim
l→∞
E(ckl) = lim

l→∞
αkl = α. (3.8)

Moreover, our given c∞ and each ε > 0 there exists a δ > 0 such that Q
(
BR

i∗
ε (c∞) ∩C

)
contains

the set BR
mfa

δ (q∞) ∩ Q. Thus, we find a sequence (ĉk)k∈N with ĉk → c∞ and Qĉk = qk → q∞.
Since E is continuous we conclude

E(c∞) = lim
k→∞
E(ĉk) ≥ lim inf

k→∞
E(ck) = α.

With (3.8) we conclude E(c̃) = E(c∞), which implies ck → c∞ = Ψ(q∞), as desired.

Step 5. Analyticity of Ψ: For q ∈ intQ we have Ψ(q) ∈ C+ = intC. Hence, c = Ψ(q) can
be characterized by the Lagrange principle for constrained minimizers using the Lagrange function
L(c, λ) = E(c)−µ·(Qfac−q) with µ ∈ Rmfa . This characterization leads to the equation F (c, µ) =
(0, q), where

F (c, µ) :=
(
DE(c)−Q>faµ,Qfac

)
.

Obviously, F : C+ × Rmfa → Ri∗ × Rmfa is analytic, and we have F (Ψ(q), µ̃(q)) = (0, q) for a
suitable µ̃. If we can show that DF (Ψ(q), µ) is invertible for all q ∈ intQ, then the implicit function
theorem implies that the mapping q→ (Ψ(q), µ̃(q)) is analytic as well.
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The Jacobian of F (c, µ) is given by DF (c, µ) =
(

D2E(c) −Q>fa
Qfa 0

)
, and we prove that DF (c, µ) is

invertible by showing that its kernel is trivial. Let (w, η) be such that DF (c, µ)(w, η)> = 0. We
conclude that D2E(c)w = Q>faη and Qfaw = 0. Since c is positive, the Hessian D2E(c) is invertible,
and hence, we have QfaD2E(c)−1Q>faη = 0. Multiplying η from the left and using that D2E(c)−1 is a
positive matrix, we have Q>faη = 0. Since Q>fa is injective, we conclude that η = 0 which implies that
also w = 0 due to D2E(c)w = Q>faη = 0.

For later use we observe that by construction we have the relation

QfaΨ(q) = q for all q ∈ Q. (3.9)

A crucial role in our further analysis will be played by the image of Ψ, which we call the slow manifold:

Msl := im(Ψ) =
{

Ψ(q)
∣∣ q ∈ Q

}
⊂ C, (3.10)

which is a closed set that is contained in the set of the fast equilibria Efa defined in (2.19). The UFEC
in (3.5) is made to guarantee that Msl contains all the fast equilibria:

(UFEC) ⇐⇒ Efa = Msl. (3.11)

It is important to emphasize that Efa can be strictly bigger than Msl, but by Proposition 3.6 these
equilibria must be so-called boundary equilibria, i.e. they lie in ∂Cfa

q ⊂ ∂C. (In the case that Cfa
q ⊂

∂C the equilibrium Ψ(q) lies in the boundary of C, but is not a boundary equilibrium!)

The equilibria on Msl are stable, since they are global minimizers of the Liapunov function E in their
invariant subset. In contrast, possible boundary equilibria are always unstable, because starting near
the equilibrium but in the interior of Cfa

q gives a solution moving towards Ψ(q), see Figure 3.1. The
UFEC may fail if one has autocatalytic reactions where the product αriβ

r
i is strictly positive for some

i ∈ I ; see the example treated in Remark 3.9.

The following simple result provides the characterization of the slow manifold Msl in terms of the
potential force DE(c) and the annihilator of the fast subspace Γfa.

Lemma 3.7. Consider a fast DBRS (Afa, Bfa, c∗, κ
fa). Then for c ∈ C+ we have

DE(c) ∈ Γ⊥fa =
{
ξ ∈ Ri∗

∣∣ ξ · γr for r ∈ Rfa

}
⇐⇒ c ∈Msl.

Proof. Using DE(c) =
(

log(ci/c
∗
i )
)
i∈I we find, for all r ∈ Rfa,

0 = DE(c) · γr = log
(cαr
cαr∗

cβ
r

∗
cβr

)
⇐⇒ cα

r

cαr∗
=
cβ

r

cβ
r

∗

With Proposition 3.6 and the definition of Msl in (3.10) we obtain the desired result.

Finally, we show that the UFEC is invariant under tilting. This is a nice consequence of the fact that
tilting in systems satisfying the DBC allows us easily to follow the changes in the set Efa of fast
equilibria.

Corollary 3.8 (UFEC and tilting). Consider a fast DBRS (Afa, Bfa, c∗, κ
fa) and general tilt vectors

η ∈ Ri∗ . Denote by E η
fa and M η

sl the set of equilibria and the slow manifold, respectively, for the fast
DBRS (Afa, Bfa,Dηc∗, κfa). Then, the following holds:

(a) E η
fa = DηE 0

fa and M η
sl = DηM 0

sl ,

(b) (Afa, Bfa, c∗, κ
fa) satisfies UFEC if and only if (Afa, Bfa,Dηc∗, κfa) does so.
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c1
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M (1)
sl
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0.0

0.5

1.0

1.5

Figure 3.1: The slow manifolds M (k)
sl (green) are strictly contained in E (k)

fa (blue and green). The blue
points are unstable, while the green points are stable. In the case (1) the invariant sets Cfa

q (red) are
one-dimensional, while in case (2) we have Cfa

0 = C.

Proof. By Lemma 2.4 the equilibria c ∈ E 0
fa are given by the condition cα

r

cαr∗
= cβ

r

cβ
r
∗

for all r ∈ Rfa.

However, changing c and c∗ into Dηc and Dηc∗, respectively, shows that the condition remains the
same.

Moreover, for c ∈ C+ we have DEη(Dηc) = DE(c) by construction. Since c ∈ C+ ∩M 0
sl is

equivalent to DE(c) ∈ Γ⊥fa we haveDηc ∈M η
sl . By the continuity of Ψ = Ψ0 and Ψη (see Proposition

3.6) we conclude DηM 0
sl ⊂ M η

sl . As Dη is invertible, we can revert the argument and arrive at
DηM 0

sl = M η
sl . Thus, (a) is established.

With (a) we see that E 0
fa = M 0

sl is equivalent to E η
fa = M η

sl , and (b) is established as well.

3.4 Examples and problems without the UFEC

In the following two remarks, we firstly provide a few examples where UFEC does not hold and sec-
ondly show that our main result in Theorem 3.4 fails without UFEC.

Remark 3.9 (Examples without UFEC). The simplest example of a RRE not satisfying the UFEC
condition is the autocatalytic reaction 2X 
 X , leading to the RRE ċ = 1

ε
(c − c2), where Γ =

Γfa = R and m = mfa = 0. In particular, the fast stoichiometric subset C = Cfa
0 = [0,∞[ contains

the the interior equilibrium c∗ = 1 and the boundary equilibrium c = 0.

Next, we consider two different fast systems for two species, the first with the single autocatalytic
reaction X1 + X2 � 2X1 and the second with two non-autocatalytic reactions 2X1 � X2 and
X1 � 2X2. The fast RREs read

c′ = R(1)(c) = (c2
1−c1c2)

(
−1

1

)
, c′ = R(2)(c) = (c2

1−c2)

(
−2

1

)
+ (c1−c2

2)

(
−1

2

)
.

The conserved quantities are given by the matrices

Q
(1)
fa c = c1 + c2 ∈ Q(1) = [0,∞[ and Q

(2)
fa c = 0 ∈ Q(2) = {0}.

The functions Ψ for the minimizers of E over Cfa
q are given by Ψ(1)(q) = (q/2, q/2)> and Ψ(2)(0) =

(1, 1)> leading to

M (1)
sl =

{
(z, z)>

∣∣ z ≥ 0
}

and M (2)
sl = {(1, 1)>} .

However, the set of fast equilibria is bigger in both cases:

E (1)
fa = M (1)

sl ∪̇
{

(0, z)
∣∣ z ≥ 0

}
and E (2)

fa = M (2)
sl ∪̇ {(0, 0)>}.
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Figure 3.1 displays the invariant sets Cfa
q , Msl, and Efa for both cases.

To the knowledge of the authors there are currently no general sufficient conditions on the fast DBRS
(Afa, Bfa, c∗, κ

fa) available that guarantee the validity of the UFEC. However, in many applications
the number #(Rfa) of fast reactions is rather small such that an analysis of the fast RRE is easily
done.

The next remark shows that Theorem 3.4 does not hold if the UFEC in (3.5) does not hold.

Remark 3.10 (A counterexample with jumps). We return to the first RRE ċ = 1
ε
(c−c2) of the previous

remark. The associated dissipation potential and slope functions are

R∗ε(c, ξ) =
c3/2

ε
C∗(ξ) and Sε(c) =

2

ε
c
(
c1/2−1

)2
.

Moreover, the dissipation functional Dε takes the form

Dε(c) =

∫ T

0

{c3/2

ε
C
( εċ

c3/2

)
+

2c

ε

(
c1/2−1

)2
)}

dt.

Note that c ≡ 0 and c ≡ 1 yield Dε(c) = 0. Moreover, fixing t∗ ∈ ]0, T [ the trajectories c̃ε(t) =
e(t−t∗)/ε/(1+e(t−t∗)/ε) are exact solutions of the RRE ċ = 1

ε
(c−c2), hence the energy-dissipation

principle gives Dε(c̃
ε) = E(c̃ε(0))− E(c̃ε(T )) ≤ E(0)− E(1) = 1. Thus, the limit function c̃0 with

ĉ0(t) = 0 for t < t∗ and ĉ0(t) = 1 for t > t∗ is not continuous but must satisfy D0(c̃0) ≤ 1, which
is in contradiction to Theorem 3.4.

Indeed, using the Modica-Mortola approach as described in [Bra02, Sec. 6] (involving the estimate

Rε(c, ċ) + R∗ε(c,−DE(c)) ≥ −DE(c)ċ) it can be shown that Dε
Γ−→ D0 in L1([0, T ];R), where

D0 is finite only on piecewise constant functions taking values in {0, 1} only. Moreover, for these
functions D0(c) equals the number of jumps times E(0) − E(1) = 1. The same was also observed
in [Ste19].

4 The effective GS and the limiting equation

Here we present two different ways to derive the the limiting equation from our effective gradient
system. The first one is in line with the coarse-graining approach developed in [MiS19], where a lower-
dimensional system is derived for the coarse-grained variable q = Qfac and the restriction c = Ψ(q)
is built into the model. The second one follows [Bot03] and [DLZ18, Thm. 4.5], where the variable c is
maintained and the constraint c ∈Msl is realized by a suitable projection.

In both cases we start from the Γ-limit D0 of the dissipation functionals Dε. Using the energy-
dissipation principle from Theorem 2.1 the limiting evolution can be recovered from

E(c(T )) + D0(c; 0, T ) ≤ E(c(0)), D(c; 0, T ) =

∫ T

0

{Reff(c, ċ) +R∗eff(c,−DE(c))} dt (4.1)

via the chain rule, which holds in the finite-dimensional space C ⊂ Ri∗ .
Any solution satisfies the condition∫ T

0

S0(c(t))dt ≤ D0(c; 0, T ) =

∫ T

0

{Reff(c, ċ)+R∗eff(c,−DE(c))} dt ≤ E(c(0))−E(c(T )) <∞,
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where by the UFEC the function S0 assumes the value +∞ for c 6∈ Msl. Hence, the continuity of c
implies that c(t) ∈ Msl for all t ∈ [0, T ]. Thus, setting q(t) := Qfac(t) and using the relation (3.9)
we have c(t) = Ψ(q(t)) for all t ∈ [0, T ]. We recall that the properties

c ∈ C0([0, T ];C) and q = Qfac ∈W1,1([0, T ];Rmfa)

are consequences of Theorem 3.4.

4.1 Coarse-graining approach

In this part we concentrate solely on the slow variables q and define

E(q) := E(Ψ(q)) and R∗(q, ζ) := R∗sl(Ψ(q), Q>faζ), (4.2)

which defines a reduced gradient system (Q,E,R) for the coarse-grained state q ∈ Q ⊂ Rmfa . In
particular, R∗ : Q×Rmfa → [0,∞] is a well-defined dual dissipation potential asQ>fa : Rmfa → Ri∗ .

The main result of this subsection will be that the gradient-flow equation for the reduced gradient
system (Q,E,R) is indeed the limiting equation and it has a simple representation in terms of Rsl,
Qfa, and Ψ:

q̇ = ∂ζR
∗(q,−DE(q)) = QfaRsl(Ψ(q)). (4.3)

Thus, (Q,E,R) provides an exact nonlinear coarse-graining in the sense of [MaM20, Sec. 6.1], where
the relation Imfa

= QfaDΨ(q) simplifies the formula for R∗ compared to [MaM20, Eq. (6.2)].

Remark 4.1. This theory is a nonlinear generalization of the coarse-graining theory developed in
[MiS19], where ˙̂c = MAslNĉ is the coarse-grained equation. In our case the role of the reconstruction
operatorN : RJ → RI is played by the nonlinear mapping Ψ : Q→ C, while the role of the coarse-
graining operator M : RI → RJ is our linear operator Qfa : C→ Q.

The following result provides first the justification of the second identity in (4.3), and then shows that
this equation is indeed the limiting equation obtained from the energy-dissipation principle for E and
D0.

Proposition 4.2 (Reduced gradient structure). Let the DBRS (A,B, c∗, κ̂
ε) be given as in Section

2.4 and satisfy the UFEC (3.5), and let (Q,E,R∗) be defined as above. Then the following identities
are valid:

(a) For q ∈ intQ we have

QfaDΨ(q) = Imfa
, and, Q>faDΨ(q)> is a projection onto im(Q>fa) = Γ⊥fa (4.4)

(b) For q ∈ intQ we have ∂ζR∗(q,−DE(q)) = QfaRsl(Ψ(q));

(c) the primal dissipation potential R takes the form

R(q, w) = inf
{
Rsl(Ψ(q), v)

∣∣Qfav = w
}

= Reff(Ψ(q), ṽ) whenever Qfaṽ = w ;

(d) For q ∈ intQ we have R∗(q,−DE(q)) = Ssl(Ψ(q)) =: S(q) ;

(e) D0(Ψ(q)) =
∫ T

0

{
R(q, q̇)+S(q)

}
dt .
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In part (e) it is crucial to observe that for differentiable t 7→ q(t) we cannot guarantee that t 7→
c(t) = Ψ(q(t)) is differentiable as well, since q(t) need not remain in the interior of Q. However,
for D0 we only need continuity of c and the differentiability of t 7→ Qfac(t) = q(t), where we used
q = QfaΨ(q), see (3.9).

Proof. For part (a), we use that Ψ is differentiable in intQ. Differentiating the relation QfaΨ(q) = q
yields QfaDΨ(q) = Imfa

. In particular, this implies that DΨ(q)Qfa is a projection, and hence also its
transpose Q>faDΨ(q)>.

To show part (b) we first use the chain rule DE(q) = DΨ(q)>DE(Ψ(q)). With Lemma 3.7 and part
(a) we have that DE(Ψ(q)) = Q>faDΨ(q)>DE(Ψ(q)), which yields

∂ζR
∗(q,−DE(q)) = Q>faDξR∗sl

(
Ψ(q),−Q>faDΨ(q)>DE(Ψ(q))

)
= Q>faDξR∗sl

(
Ψ(q),−DE(Ψ(q))

)
= QfaRsl(Ψ(q)).

For (c) we establish the relation R∗ = LR via the Legendre transformation L:(
LR(q, ·)

)
(ζ) = sup

{
ζ · w − R(q, w)

∣∣ w ∈ Rmfa
}

= sup
{
ζ · w + sup

{
−Rsl(Ψ(q), v)

∣∣Qfav = w
} ∣∣∣ w ∈ Rmfa

}
= sup

{
ζ · w −Rsl(Ψ(q), v)

∣∣Qfav = w
}

= sup
{
ζ ·Qfav −Rsl(Ψ(q), v)

∣∣ v ∈ Ri∗ } = R∗sl(Ψ(q), Q>faζ) = R∗(q, ζ).

Part (d) follows similarly as part (b) by inserting DE(q) = DΨ(q)>DE(Ψ(q)) and DE(Ψ(q)) =
Q>faDΨ(q)>DE(Ψ(q)) into the definition of R∗ viaR∗sl.
For part (e) we first observe that Ssl(Ψ(q)) = S(q) for all q ∈ Q by definition. For the rate part
Reff(c, ċ) part (c) established that the dependence on ċ is only through Qfaċ. But relation (3.9) gives
d
dt
QfaΨ(q(t)) = q̇(t), and the relation Reff(c, ċ) = Reff(Ψ(q),DΨ(q)q̇) = R(q, q̇) holds even

q(t) touching the boundary of Q.

The next result shows that the reduced gradient-flow equation (4.3) indeed is the limiting equation
for the fast-slow RRE (2.14) in the sense that for solutions cε : [0, T ] → C any accumulation point
q : [0, T ] → Q of the family

(
Qfac

ε
)

solves indeed (4.3). The assumptions on the initial conditions
cε(0) are special to avoid a potential jump at t = 0, see Section 2.4. The proof is based on the
energy-dissipation principle and follows [Mie16, Thm. 3.3.3] or [MMP19, Lem. 2.8] with some special
care because of the degeneracies and singularities of the limiting problem.

Proposition 4.3 (Reduced limiting equation). Consider a fast-slow DBRS (A,B, c∗, κ̂
ε) satisfying

the UFEC (3.5) and let cε : [0, T ] → Ri∗ be a family of solutions of the fast-slow RRE (2.14). If
along a subsequence (not relabeled) we have cε → c0 in L1([0, T ];C) and cε(0) → c0 ∈ Msl,
then Qfac

ε → q := Qfac
0 weakly in W1,1([0, T ];Q) and strongly in C0([0, T ];Q), and q solves the

reduced gradient-flow equation (4.3) with initial condition q(0) = Qfac0.

Proof. The solutions cε satisfy the EDB E(cε(T )) + Dε(c
ε) = E(cε(0)). Using that cε → c0 in

L1([0, T ];Ri∗) and lim supε→0+ Dε(c
ε) ≤ limε→0+ E(cε(0)) = E(c0) < ∞, we obtain qε :=

Qfac
ε → q weakly in W1,1([0, T ];Q) and strongly in C0([0, T ];Q) by invoking Theorem 5.1(ii).

Moreover, because of c0 ∈ Msl and qε(0) = Qfac
ε(0) → Qfac0 we have q(0) = Qfac0 and

DOI 10.20347/WIAS.PREPRINT.2781 Berlin 2020



A. Mielke, M. A. Peletier, A. Stephan 24

hence c0 = Ψ(q(0)) and E(c0) = E(q(0)). Passing to the limit ε → 0+ using the liminf estimate in

Dε
ΓE→ D0 we arrive at

E(q(T )) + D0(Ψ(q)) ≤ E(c0(T )) + D0(c0) ≤ E(c0) = E(q(0)) .

Because D0(Ψ(·)) has the R⊕R∗ structure (cf. Proposition 4.2(d+e)) the energy-dissipation principle
shows that q solves the reduced RRE (4.3).

4.2 The projection approach

By contrast to Section 4.1 above, in this section we maintain the variable c. First, we justify the limiting
equation (2.20) with the constraint c ∈ Msl and the Lagrange multiplier λ(t) ∈ Γfa. Secondly, we
show that for positive solutions the evolution can be written as an ODE involving a suitable projection.
Finally, we compare this to the reduced limiting equation (4.3).

Proposition 4.4 (Limiting equation with constraint). For a fast-slow DBRS (A,B, c∗, κ̂
ε) satisfying the

UFEC (3.5) we consider a family cε : [0, T ] → Ri∗ of solutions of the fast-slow RRE (2.14). If along
a subsequence (not relabeled) we have cε → c0 in L1([0, T ];C) and cε(0)→ c0 ∈Msl, then there
exists c ∈ C0([0, T ];C) such that c(t) = c0(t) a.e. in [0, T ], c(0) = c0, Qfac ∈W1,1([0, T ];Q),
and c solves the limiting equation with constraint:

ċ(t) = Rsl(c(t)) + λ(t), λ(t) ∈ Γfa, c(t) ∈Msl. (4.5)

Proof. We proceed as in the proof of Proposition 4.3 but stay with c rather than reducing to q = Qfac.
The solutions cε satisfy the EDB E(cε(T )) + Dε(c

ε) = E(cε(0)). Using cε → c0 in L1([0, T ];Ri∗)
and lim supε→0+ Dε(c

ε) ≤ limε→0+ E(cε(0)) = E(c0) < ∞, we have Qfac
ε → q weakly in

W1,1([0, T ];C) and strongly in C0([0, T ];Ri∗), see Theorem 5.1(ii). With this we define c(t) =
Ψ(q(t)) for t ∈ [0, T ] such that c ∈ C0([0, T ];C) and Qfac(t) = q(t).

Passing to the limit ε → 0+ in the EDB we obtain E(c(T )) + D0(c) ≤ E(c(0)), and the energy-
dissipation principle gives the gradient-flow equation

ċ ∈ ∂ξR∗eff(c,−DE(c)) = ∂ξ

(
R∗sl(c,−DE(c)) + χΓ⊥fa

(−DE(c))

)
. (4.6)

For a linear subspace Y ⊂ Ri∗ the set-valued convex subdifferential ∂χY ⊥(ξ) equals Y for ξ ∈ Y ⊥
and ∅ otherwise, hence the last relation has the form

ċ ∈ ∂ξR∗sl(c,−DE(c)) + Γfa = Rsl(c) + Γfa and DE(c) ∈ Γ⊥fa .

With Lemma 3.7 we can replace the last constraint by c ∈Msl, and (4.5) is established.

To obtain an ODE of the form ċ = V (c) instead of the limiting equation (4.5) with constraint, we have to
resolve the constraint DE(c) ∈ Γ⊥fa. For any curve s→ c̃(s) ∈Msl ∩C+ we have DE(c̃(s)) ∈ Γ⊥fa
and taking the derivative with respect to s, we find

˙̃c(s) ∈ Tc̃(s)Msl and D2E(c̃(s))˙̃c(s) ∈ Γ⊥fa.

Hence, for c ∈Msl ∩C+ the tangent space TcMsl of Msl at c is given by

TcMsl =
(
H(c)

)−1
Γ⊥fa with H(c) := D2E(c) = diag(1/c1, . . . , 1/ci∗).
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With this we obtain the following representation of the limiting equation, which matches that in [Bot03,
Thm. 2(b)] and [DLZ18, Thm. 4.5]. Our result is more general, since we do not need to assume that
the stoichiometric vectors

{
γr
∣∣ r ∈ Rfa

}
are linearly independent.

Proposition 4.5 (Limiting equation for c ∈ C+). A curve c : [0, T ] → C+ is a solution (4.5) if and
only if

ċ =
(
I − P(c)

)
Rsl(c) and c(0) ∈Msl. (4.7)

where the projector P(c) ∈ Ri∗×i∗ is defined via imP(c) = Γfa and kerP(c) = H(c)−1Γ⊥fa.

Proof. Step 1. Definition of the projector P(c): The projector is uniquely defined if YR := Γfa and

YK := H(c)−1Γ⊥fa provide a direct decomposition of Ri∗ . Assuming v ∈ YR ∩ YK we have v ∈ Γfa

and H(c)v ∈ Γ⊥fa. This implies v ·H(c)v = 0, but since H(c) is positive definite we arrive at v = 0.
Hence, YR ∩ YK = {0}. Obviously, dimYR + dimYK = i∗, so that Ri∗ = YR ⊕ YK is established.

Step 2. (4.7) =⇒ (4.5): We set λ(t) = −P(c(t))Rsl(c), and with (4.7) we obtain

ċ(t) = Rsl(c(t))− P(c(t))Rsl(c(t)) = Rsl(c(t)) + λ(t) with λ(t) ∈ Γfa.

Moreover, P(c(t))ċ(t) = P(c)(I−P(c))Rsl(c) = 0, which implies ċ ∈ H(c)−1Γ⊥fa = Tc(t)Msl.
Hence, with c(0) ∈Msl we obtain c(t) ∈Msl for all t ∈ [0, T ], and (4.5) is established.

Step 3. (4.5) =⇒ (4.7): From c(t) ∈Msl we obtain ċ(t) ∈ Tc(t)Msl = H(c(t))−1Γ⊥fa and conclude
0 = P(c)ċ = P(c)Rsl(c) + P(c)λ. Using λ ∈ imP(c) = Γfa we have P(c)λ = λ and find(

I − P(c)
)
Rsl(c) = Rsl(c)− P(c)Rsl(c) = Rsl(c) + P(c)λ = Rsl(c) + λ = ċ,

which is the desired equation (4.7).

To compare the last result with the reduced limiting equation (4.3), we simply use the relation c(t) =
Ψ(q(t)) and the fact that Ψ is smooth on intQ. From this we obtain(

I − P(c)
)
Rsl(c) = ċ = DΨ(q)q̇ = DΨ(q(t))QfaRsl(Ψ(q)) = DΨ(q(t))QfaRsl(c).

Thus, we can conclude that for c = Ψ(q) ∈Msl we have the identity(
I − P(c)

)
= DΨ(q)Qfa,

since the above identity must hold for all possible right-hand sides Rsl. This can also be shown by
using the identity c = Ψ(Qfac) for all c ∈ Msl and taking derivatives in the direction v ∈ Γfa and
w ∈ TcMsl, respectively. In particular, this provides the explicit form of the projection of Proposition
4.2(a).

4.3 An example for the effective gradient system

In the following example we consider a system with i∗ = 5 species and r∗ = 2 bimolecular reactions,
one fast and one slow. As a result we obtain a limiting equation with one reaction that is no longer of
mass-action type but involves all species. Taking a further EDP limit (done only formally) we recover a
trimolecular reaction of mass-action type again.

We consider the following two reactions

fast: X1 +X2 � X3 and slow: X3 +X4 
 X5,
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which give rise to the two stoichiometric vectors

γfa = (1, 1,−1, 0, 0)> and γsl = (0, 0, 1, 1,−1)>.

Assuming the steady state c∗ = (1, 1, %, 1, 1)> and the reaction coefficients κ̂ε = (κfa/ε, κsl) the
RRE (2.14) takes the form

ċ = −κ
fa%1/2

ε

(
c1c2 − c3/%

)
γfa − κsl%1/2

(
c3c4/%− c5

)
γsl .

The slow manifold is Msl =
{
c ∈ [0,∞[5

∣∣ c1c2 = c3/%
}

and Γfa = span γfa. With

Qfa =


1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1


we obtain Q = imQfa = [0,∞[4. For q ∈ Q it is easy to compute Ψ%(q) as a minimizer of c 7→ E(c)
under the constraint Qfac = q = (q1, ..., q4). We obtain

Ψ%(q) =
(
q1−a%(q1, q2), q2−a%(q1, q2), a%(q1, q2), q3, q4)> ∈ C = [0,∞[5

with a%(q1, q2) =
1

2%

(
1 + %q1 + %q2 −

√
1+%q1+%q2)2 − 4%2q1q2

)
∈
[
0,min{q1, q2}

]
.

In particular, the UFEC (3.5) holds. Moreover, the positivity and monotonicity condition (3.6) can be
checked easily with q = (1, 1, 1, 1)>. We see that c(θ) := Ψ%(q+θq) for θ ∈ ]0, 1] is given by

c(θ) =
(
q1+θ − a%(q1+θ, q2+θ), q2+θ − a%(q1+θ, q2+θ), a%(q1+θ, q2+θ), q3+θ, q4+θ

)>
.

Clearly we have c(θ)i > 0, since c(θ)i = 0 would imply qi + θ = 0. Differentiating with respect to θ,
we obtain

c′(θ) =
(
1− a′%[θ], 1− a′%[θ], a′%[θ], 1, 1

)>
with a′%[θ] =

%(c1(θ)+c2(θ))

1 + %(c1(θ)+c2(θ))
,

which implies that c′(θ)i > 0. Hence, Ψ%(q+θq)i = c(θ)i ≥ c(0)i = Ψ(q), i.e. the monotonicity
condition (3.6) holds.

We investigate the reduced system. First, we observe that the reduced limiting equation (4.3) is given
by

q̇ = QfaRsl(Ψ%(q)) = −κsl%1/2
(a%(q1, q2)q3

%
− q4

)
γ̂ with γ̂ := Qfaγ

sl = (1, 1, 1,−1)>.

(4.8)
Since a% is not a monomial, this RRE is no longer of mass-action type.

According to Section 4.1 the gradient structure (Q,E%,R%) for (4.8) is given via

E%(q) = E(Ψ%(q)) = λB(q1−a) + λB(q2−a) + %λB(a/%) + λB(q3) + λB(q4)
∣∣∣
a=a%(q1,q2)

,

R∗%(q, ζ) = Rsl(Ψ%(q), Q>faζ) = κsl
(
a%(q1, q2) q3q4

)1/2
C∗
(
ζ1+ζ2+ζ3−ζ4

)
.
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The energy E% is no longer of Boltzmann type, because the previously uncoupled densities c1, c2, and
c3 are now constrained to lie on Msl, i.e. c1c2 = c3. Nevertheless, the form is close to a mass-action
type for the trimolecular reaction Y1 + Y2 + Y3 
 Y4.

To recover an exact trimolecular reaction of mass-action type, one has to perform another limit, namely
% → 0+, which means that the species X3 is no longer observed, but still exists on a microscopic
reaction pathway. For the limit %→ 0+ we simply observe the expansion

a%(q1, q2) = %q1q2 +O(%2) for %→ 0+,

which implies Ψ%(q) → Ψ0(q) := (q1, q2, 0, q3, q4)T . If we additionally choose κsl = κ/%1/2 and
insert the expansion for a% we obtain

E%(q) → E0(q) =
4∑
j=1

λB(qj),

R∗%(q, ζ)→ R∗0(q, ζ) = κ
(
q1q2q3q4)1/2 C∗

(
ζ1+ζ2+ζ3−ζ4

)
.

Clearly, this is the gradient system generating the RRE of the trimolecular reaction X1 +X2 +X4 

X5. Of course, it is possible to show that this convergence is again a EDP-convergence with tilting of
the gradient systems (Q,E%,R%) to the effective system (Q,E0,R0).

5 Proof of Theorem 3.4

Here we will show the Γ-convergence of the dissipation functionals, namely Dε
ME−→ D0. As usual the

proof consists in three parts: (i) compactness of the sequences (cε) satisfying Dε(c
ε) ≤ C , (ii) the

liminf estimate, and the (iii) the limsup estimate, which needs the construction of recovery sequences.

All the following results are derived under the assumptions of Theorem 3.4: The fast-slow DBRS
(A,B, c∗, κ̂

ε) satisfies the unique fast-equilibrium condition UFEC (3.5). For constructing the recovery
sequence in Section 5.3, we need additionally the positivity and monotonicity assumption (3.6) for Ψ.

5.1 Compactness

In the definition of Dε
ME−→ D0 we consider sequences cε → c0 in L1([0, T ];C) that additionally

satisfy supε∈]0,1[, t∈[0,T ] E(cε(t)) ≤ C . The aim is to extract a strongly converging subsequence cε →
c0, such that we can talk about pointwise convergence almost everywhere. This will be necessary in
the liminf estimate because we cannot rely on convexity, in contrast to the linear theory developed in
[MiS19]. The compactness is derived via two quite different arguments that complement each other
and reflect the underlying fast-slow structure, which is seen on the local level via the decomposition of
TcC = Ri∗ in the direct sum of Γfa and TcMsl, see Step 1 in the proof of Proposition 4.5. First, we
derive time regularity for the slow part of the reactions. Secondly, we prove convergence towards the
slow manifold which then provides the remaining information for the whole sequence.

Theorem 5.1 (Compactness via dissipation bound). Consider (cε)ε>0 with cε ⇀ c0 in L1([0, T ];C),
supε>0, t∈[0,T ] E(cε(t)) ≤Mener <∞, and Dε(c

ε) ≤Mdiss <∞. Then, we have
(i) cε(·) is bounded in L∞([0, T ];C);
(ii) Qfac

ε → Qfac
0 weakly in W1,1([0, T ];Rmfa) and strongly in C0([0, T ];Rmfa);

(iii) c0(t) = c̃(t) := Ψ(Qfac
0(t)) ∈Msl for a.a. t ∈ [0, T ], and, in particular c̃ ∈ C0([0, T ],C);

(iv) cε → c0 in Lp([0, T ];C) strongly for all p ∈ [1,∞[.
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We emphasize that c0 and c̃ may be different, and this happens even for solutions, if near t = 0 a
jump develops such that (cf. Section 2.4)

lim cε(0) =: c0 6= c0 := lim
τ→0+

(
lim
ε→0+

cε(τ)
)
.

Before giving the detailed proof we provide two preliminary results that underpin the two complemen-
tary arguments of the proof.

For deriving bounds on the time derivatives, one heuristically sees that for fixed (c, ξ) we have
R∗ε(c, ξ) ↗ R∗eff(c, ξ) as ε → 0. By duality, this implies Rε(c, v) ↘ Reff(c, v). This already
shows that control of time derivatives has to be obtained from Reff(c, ·), which only controls Qfaċ
becauseReff(c, v) = Reff(c, w) if Qfav = Qfaw, see (3.4b).

Proposition 5.2 (Effective dissipation potential). For all ε > 0 we haveRε(c, v) ≥ Reff(c, v) for all
(c, v) ∈ C× Ri∗ . Moreover,Reff takes the form

Reff(c, v) = R̃(c,Qfav) where R̃(c, q) := sup
{
ζ · q−R∗sl(c,Q>faζ)

∣∣ ζ ∈ Rmfa
}
.

Proof. We first use the standard relation from linear algebra: im(Q>fa) =
(

ker(Qfa)
)⊥

= Γ⊥fa. By
construction of Γfa we haveR∗fa(c, ξ) = 0 for ξ ∈ Γ⊥fa and obtain

R∗ε(c, ξ) = R∗sl(c, ξ) +
1

ε
R∗fa(c, ξ) ≤ R∗eff(c, ξ) := R∗sl(c, ξ) + χΓ>fa

(ξ) = R∗sl(c, ξ) + χimQ>fa
(ξ).

Applying the Legendre-Fenchel transformation we obtain

Rε(c, v) ≥ Reff(c, v) = sup
{
v · ξ −R∗sl(c, ξ)

∣∣ ξ ∈ im(Q>fa)
}

= sup
{
v ·Q>faζ −R∗sl(c,Q>faζ)

∣∣ ζ ∈ Rmfa
}

= R̃(c,Qfav),

which provides the desired estimate as well as the representation via R̃.

The second result concerns the convergence of points towards the slow manifold Msl, and the crucial
property here is the UFEC (3.5) that guarantees the relation{

Ψ(q)
∣∣ q ∈ Q ⊂ Rmfa

}
=: Msl

!!
= Efa

Lemma 2.4
=

{
c ∈ C

∣∣ Sfa(c) = 0
}
.

Lemma 5.3 (Convergence towards Msl). For bounded sequences (cn)n∈N in C we have

Qfac
n → q and Sfa(cn)→ 0 =⇒ cn → Ψ(q). (5.1)

Proof. Without loss of generality we may assume cn → c. Hence we have Qfac
n → Qfac = q.

Moreover, the continuity of Sfa gives 0 = limSfa(cn) = Sfa(c). Thus, we have c ∈ Efa ∩Cfa
q . Now,

the UFEC (see (3.11)) gives c = Ψ(q) which is the desired result.

We are now ready to establish the main compactness result.

Proof of Theorem 5.1. Part (i): From the energy bound E(cε(t)) ≤ Mener < ∞ and the coercivity of
E we obtain an L∞ bound for cε, namely 0 ≤ cεj(t) ≤ |cε(t)| ≤ ‖cε‖L∞ ≤Mener.
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Part (ii): To provide a lower bound onReff we first observe an upper bound onR∗sl, namely

R∗sl(cε, Q>faζ) ≤
∑
r∈Rsl

κrM
(αr+βr)/2
ener C∗

(
γr ·Q>faζ

)
≤ bMC∗

(
bQ|ζ|

)
with bQ = max

r∈Rsl

|Qfaγ
r|,

where we used 0 ≤ cεj ≤ Mener from part (i). Using the Legendre-Fenchel transformation and
Proposition 5.2 we obtain the lower bound

Rε(c
ε, v) ≥ R̃(cε, Qfav) ≥ sup

{
Qfav · ζ − bMC∗(bQ|ζ|)

∣∣ ζ ∈ Rmfa
}

= bM C
( |Qfav|
bMbQ

)
.

Using the bound Mdiss for the dissipation functionals, the family satisfies∫ T

0

C

(
|Qfaċ

ε(t)|
bMbQ

)
dt ≤

∫ T

0

1

bM
Rε

(
cε(t), ċε(t)

)
dt ≤ 1

bM
Dε(c

ε) ≤Mdiss/bM .

Since C(s) ≥ 1
2
|s| log(1+|s|) for all s ∈ R (cf. [MiS19, Eqn. (A.2)]) we have a uniform super-

linear bound for Qfaċ
ε. Thus, there exists a subsequence (not relabeled) such that Qfaċ

ε ⇀ w in
L1([0, T ];Rmfa). Moreover, Qfac

ε is equicontinuous (cf. [MiS19, Prop. 5.9]), which implies Qfac
ε →

q0 in C0([0, T ];Q).

Because of cε ⇀ c0 we conclude q0 = Qfac
0 ∈ W1,1([0, T ];Q) and q̇ = w. Since the limit is

unique, we also know that the whole family converges.

Part (iii): The dissipation bound gives the estimate
∫ T

0
Sfa(cε(t))dt ≤ εMdiss. Using Sfa(c) ≥ 0 this

implies that fε = Sfa ◦ cε converges to 0 in L1([0, T ]). Thus, we may choose a subsequence (not
relabeled) such that fε(t)→ 0 a.e. in [0, T ].

By the continuity Sfa and |cε(t)| ≤ Mener we also know that (fε(t))ε∈]0,1[ is bounded, while part (ii)
provides the convergence Qfac

ε(t) → q0(t) = Qfac
0(t). Hence, Lemma 5.3 guarantees cε(t) →

c̃(t) := Ψ(Qfac
0(t)) a.e. in [0, T ]. By cε ⇀ c0 we have c0(t) = c̃(t) a.e.

Since Ψ is continuous by Proposition 3.6, also c̃ = Ψ(Qfac
0) is continuous.

Part (iv): This follows via part (i), the pointwise a.e. convergence established in the proof of part (iii),
and from the dominated-convergence theorem.

5.2 Liminf estimate

The liminf estimate follows in a straightforward manner by using the fact that the velocity part Rε in
Dε satisfies the monotonicity Rε ≥ Reff , see Proposition 5.2, and that the slope part Sε takes the
simple form Ssl + 1

ε
Sfa.

Theorem 5.4 (Liminf estimate). Let (cε)ε>0 with cε ⇀ c0 in L1([0, T ];C) as in Theorem 5.1 we have
the estimate D0(c0) ≤ lim infε→0+ Dε(c

ε).

Proof. We may assume that α∗ := lim infε→0 Dε(c
ε) < ∞, since otherwise the desired estimate

is trivially satisfied. This implies Sfa(c0(t)) = 0 a.e. in [0, T ] as in the previous proof. We define the
functional

I(c, q) :=

∫ T

0

F(c(t), q(t))dt with F(c,w) = R̃(c,w) + Ssl(c).
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Then, usingRε ≥ Reff and Sε ≥ Ssl, we have

Dε(c
ε) ≥ I(cε, Qfaċ

ε) and D0(c0) = I(c0, Qfaċ
0),

where the last identity follows from the construction of the density F via R̃ and Ssl, and S0(c(t)) =
Ssl(c(t)) a.e. because of Sfa(c0(t)) = 0.

Thus, it suffices to show the lower semicontinuity I(c0, Qfaċ
0) ≤ lim infε→0+ I(cε, Qfaċ

ε). Using
the strong convergence cε → c0 in Lp([0, T ];C) and the weak convergence Qfaċ

ε ⇀ Qfaċ
0 in

L1([0, T ];Rmfa), see Theorem 5.1(ii+iv), this follows by Ioffe’s theorem (cf. [FoL07, Thm. 7.5] if we
know that F : C × Rmfa → [0,∞] is lower semicontinuous. However, the lower semicontinuity of
(c,w) 7→ F(c,w) = R̃(c,w) + Ssl(c) follows immediately from the continuity of Ssl and the by
Legendre transforming the continuous function (c, ζ) 7→ R∗sl(c,Q>faζ).

This finishes the proof of Theorem 5.4.

5.3 Construction of the recovery sequence

In this section we construct the recovery sequence which completes the proof of the Mosco conver-

gence Dε
ME−→ D0 with energy constraint. Below in Step 1, we will need the positivity and monotonicity

condition (3.6) for θ 7→ Ψ(q+θq).

Theorem 5.5 (Limsup estimate). Let c0 ∈ L1([0, T ];C) with supt∈[0,T ] E(c0(t)) < ∞. Then there
exists a family (cε)ε∈]0,1] with supt∈[0,T ], ε∈]0,1] E(cε(t)) ≤ Mener < ∞, cε → c0 strongly in
L1([0, T ];C), and limε→0 Dε(c

ε) = D0(c0).

Proof. We prove the theorem in several steps. In Steps 1 and 2 we show that it is sufficient to consider
c0 ∈ W1,∞([0, T ];C) with c0

j(t) ≥ c > 0, where we only work in D0 which has the advantage that
Reff(c, ċ) only depends on (q, q̇) = (Qfac,Qfaċ), see Section 4.1. In Step 3 we construct a recovery
sequence, and in Step 4 we conclude with a diagonal argument.

Step 0: To start with we may assume D0(c0) <∞. Indeed, if D0(c0) =∞, then we choose cε = c0

and Theorem 5.4 gives lim infε→0 Dε(c
ε) ≥ D0(c0) =∞, which means Dε(c

ε)→∞ as desired.

Step 1. Reducing to positive curves c0: For c0 with D0(c0) < ∞ we have Qfac
0 ∈ W1,1([0, T ];Q)

and c0 ∈ C0([0, T ];C) after choosing the continuous representative c0 = c̃, see Theorem 5.1.
Exploiting the positivity and monotonicity condition (3.6) we now set

cl(t) := Ψ
(
q(t) + θl q

)
with θl =

1

l+1
∈ ]0, 1[ for all t ∈ [0, T ].

By this condition, we know that cl(t) lies in C+ for all t ∈ [0, T ], such that the continuity of cl

guarantees that for each l there exists a δl > 0 such that cli(t) ≥ δl for all i ∈ I and t ∈ [0, T ].

By the continuity of Ψ we have cl → c0 uniformly and hence strongly in L1([0, T ];C). We now show

D0(cl) =

∫ T

0

{
Reff(cl(t), ċl(t)) + S0(cl(t))

}
dt → D0(c0) as l→ 0. (5.2)

For the second part, we use cl(t) ∈ Msl by construction via Ψ, and the continuity of Ssl yields
S0(cl(t)) = Ssl(c

l(t))→ Ssl(c
0(t)) = S0(c0(t)) uniformly in [0, T ].
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For the first part we use (i) the special form of Reff derived in Proposition 5.2, namely Reff(c, v) =

R̃(c,Qfav), where R̃(c, ·) is the Legendre transform of R∗sl(c,Q> · ). Moreover, the cosh-type dual
dissipation potential R∗sl as defined in (2.6b) or (2.14) enjoys (ii) a monotonicity property namely
R∗sl(c, ξ) ≤ R∗sl(c̃, ξ) or equivalently Rsl(c, v) ≥ Rsl(c̃, v) if c ≤ c̃ componentwise. This can
be exploited because of the monotonicity condition (3.6) using cl(t) ≥ c0(t) componentwise. With
Qfa ċ

l(t) = q̇(t) for all l ∈ N we obtain∫ T

0

Reff(cl, ċl(t))dt
(i)
=

∫ T

0

R̃(cl, q̇(t))dt
(ii)−→

∫ T

0

R̃(c0, q̇(t))dt
(i)
=

∫ T

0

Reff(c0, ċ0)dt,

where the convergence
(ii)−→ follows from the dominated-convergence theorem, since the integrands

on the left-hand side are bounded by that on the right-hand side and we have pointwise convergence.
With this we have established the desired convergence (5.2).

Step 2. Reducing to bounded derivative q̇ = Qfaċ: Because of Step 1, we can now assume

c0(t) ∈ Cδ :=
{
c ∈ C

∣∣ |c| ≤ 1/δ, ci ≥ δ for all i ∈ I
}

for all t ∈ [0, T ]

where δ > 0. Moreover, as in [MiS19, Step 2(b) of proof of Thm. 5.12] we find Λ∗ such that

c, c̃ ∈ Cδ and |c−c̃| ≤ α <
1

2Λ∗
=⇒ R̃(c̃,w) ≤ (1+Λ∗α) R̃(c,w).

With this we can estimateR∗sl(c, ·) from below and henceReff from above. Moreover, we can use the
Lipschitz continuity of c 7→ R∗ε.
For q(t) = Qfac

0 ∈W1,1([0, T ];Q) we define the piecewise affine interpolants q̂k via

q̂k
(
(n+θ)2−kT

)
= (1−θ)q

(
n2−kT

)
+ θq

(
(n+1)2−kT

)
for θ ∈ [0, 1], n ∈ {0, . . . , 2k−1}

and the piecewise constant interpolant qk
(
(n+θ)2−kT

)
= q(2−knT ) for θ ∈ [0, 1[. We also set

ĉk(t) = Ψ(q̂k(t)) and ck(t) = Ψ(qk(t)). By standard arguments we have

‖ck − ĉk‖L∞ + ‖ĉk − c0‖L∞ =: αk → 0 for k →∞.

As in Step 1 we again find
∫ T

0
S0(ĉk(t))dt→

∫ T
0
S0(c0(t))dt. To treat the velocity part we use both

interpolants obtain the estimate∫ T

0

Reff(ĉk, ˙̂c
k
)dt =

∫ T

0

R̃(ĉk, ˙̂qk)dt ≤ (1+Λ∗αk)

∫ T

0

R̃(ck, ˙̂q
k
)dt

(J)

≤ (1+Λ∗αk)

∫ T

0

R̃(ck, q̇)dt ≤
∫ T

0

R̃(c0, q̇)dt = (1+Λ∗αk)
2

∫ T

0

Reff(c0, ċ0)dt,

where
(J)

≤ indicates the use of Jensen’s inequality applied to the convex integrand R̃(ck(t), · ), which
is independent of t in the intervals ]2−knT, 2−k(n+1)T [. Combining this with the slope part and
using αk → 0 we obtain the desired estimate lim supk→∞D0(ĉk) ≤ D0(c0), which is of course a
limit because of the liminf estimate in Theorem 5.4.

Step 3. The limsup for ε → 0+: By Steps 1 and 2 it is sufficient to consider c0 ∈ W1,∞([0, T ];C)
with c0(t) = Ψ(q(t)) ∈ Cδ for some δ > 0. For these functions we can now use the constant
recovery sequence cε = c0, i.e. we will show

Dε(c
0) =

∫ T

0

{
Rε(c

0, ċ0) + Sε(c0)
}

dt → D0(c0) =

∫ T

0

{
Reff(c0, ċ0) + S0(c0)

}
dt (5.3)
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for ε → 0+. Because of c0(t) ∈ Msl we have Sε(c0(t)) = Ssl(c
0(t)) = S0(c0(t)), so the second

summand of the integral Dε(c
0) converges trivially.

Recall that Γ = span
{
γr
∣∣ r ∈ R = Rsl ∪̇Rfa

}
and define a projection Q on Ri∗ with imQ = Γ

giving kerQ> = Γ⊥. With this we can estimate the dual dissipation potentialR∗ε from below:

R∗ε(c, ξ) ≥ R∗1(c, ξ) ≥ b∗|Q>ξ|2.

To see this use C∗(σ) ≥ 1
2
σ2 and

(
cα

r
cβ

r)1/2 ≥ δ(αr+βr)/2 for all r ∈ R.

By Legendre-Fenchel transformation we obtain an upper bound for Rε, where we use ċ0 ∈ Γ, i.e.
Qċ0(t) = ċ0(t) (cf. Lemma 2.5):

Rε(c
0(t), ċ0(t)) ≤ R1(c0(t), ċ0(t)) ≤ 1

4b∗
|Qċ0(t)|2 =

1

4b∗
|ċ0(t)|2.

From c0 ∈ W1,∞([0, T ];C) we see that t 7→ R1(c0(t), ċ0(t)) lies in L∞([0, T ]) and thus provides
an integrable majorant for t 7→ Rε(c

0(t), ċ0(t)). However, the convergence R∗ε(c, ξ) ↗ Rε
0 =

R∗sl + χΓ⊥fa
for ε→ 0+ impliesRε(c, v)↘ Reff(c, v) for all (c, v) ∈ Cδ × Ri∗ . Hence, Lebesgue’s

dominated convergence theorem gives∫ T

0

Rε(c
0(t), ċ0(t))dt →

∫ T

0

Reff(c0(t), ċ0(t))dt for ε→ 0+,

and (5.3) is established.

Step 4. Diagonal sequence: The full recovery sequence for a general c0 with D0(c0) <∞ is obtained
via q(t) = Qfac

0(t) as a diagonal sequence cε = Ψ
(
q̂k(ε)(t) + θl(ε)q

)
, where the functions k(ε)

and l(ε) are suitably chosen such that cε → c0 strongly in L1([0, T ];C) and Dε(c
ε) → D0(c0). It

is also clear from the construction that ‖cε‖L∞ ≤ 1 + ‖c0‖L∞ such that the uniform energy bound
E(cε(t)) ≤Mener holds.
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