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Modelling charge transport in perovskite solar cells:
Potential-based and limiting ion depletion

Dilara Abdel, Petr Vágner, Jürgen Fuhrmann, Patricio Farrell

Abstract

From Maxwell-Stefan diffusion and general electrostatics, we derive a drift-diffusion model
for charge transport in perovskite solar cells (PSCs) where any ion in the perovskite layer may
flexibly be chosen to be mobile or immobile. Unlike other models in the literature, our model
is based on quasi Fermi potentials instead of densities. This allows to easily include nonlinear
diffusion (based on Fermi-Dirac, Gauss-Fermi or Blakemore statistics for example) as well as
limit the ion depletion (via the Fermi-Dirac integral of order −1). The latter will be motivated by
a grand-canonical formalism of ideal lattice gas. Furthermore, our model allows to use different
statistics for different species. We discuss the thermodynamic equilibrium, electroneutrality as well
as generation/recombination. Finally, we present numerical finite volume simulations to underline
the importance of limiting ion depletion.

1 Introduction

In recent years, perovskite solar cells (PSCs) have become one of the fastest growing technology
within photovoltaics [1, 2]. Typically, in a PSC a perovskite layer is sandwiched between an electron
transport layer (ETL) and a hole transport layer (HTL), see Figure 1.1a. One of the most common
device architectures is a planar cell, where light enters through the ETL. If light enters through the HTL,
the architecture is called inverted.

(a) (b)

Figure 1.1: (a) A perovskite solar cell architecture. For simplicity other layers haven been neglected to focus on
the charge transport within the perovskite. Typically, TiO2, PCBM, ZnO are chosen as ETL material, whereas
spiro-OMeTAD and PEDOT:PSS are common materials for the hole transport layer. (b) A perovskite unit cell with
corresponding charge numbers zα and lattice weights βα, see Sections 2.3 and 2.4 for more details.

Two advantages of PSCs stand out: On the one hand, certain architectures have significantly lower
production costs than conventional solar cells. On the other hand, in 2020 silicon-perovskite tandem
cells have become more efficient than classical single junction silicon solar cells. A record efficiency of

DOI 10.20347/WIAS.PREPRINT.2780 Berlin, October 20, 2020/rev. May 3, 2021



D. Abdel, P. Vágner, J. Fuhrmann, P. Farrell 2

29.15% has been demonstrated [1, 3]. Further efficiency gains are likely. However, the commercial-
ization of PSCs is still in its early stages and several challenges need to be overcome: Commercially
viable PSCs degrade significantly faster. Also some PSCs rely on environmentally unfriendly materials
such as lead (Pb), yielding toxic chemical compounds (PbI2).

For this reason it is paramount to understand the charge transport in perovskites better via improved
modelling and simulation. A major difference to charge transport models for classical or organic
semiconductors is that ion migration within the perovskite plays a fundamental role. Adequate models
which include all relevant physical effects are also crucial for numerical simulations to better predict the
behavior of such complex physical devices.

Already in the 80ies, the diffusion of ionic vacancies was studied [4]. However, only in 2014 ion migration
in perovskite devices became of practical interest when experiments seemed to indicate that the mobility
of ionic defects is one possible reason for current-voltage hysteresis in perovskite solar cells [5]. In
2015, Eames et al. presented a density functional theory (DFT) model [6]. Due to DFT’s exceedingly
high computational costs as well its inability to produce I-V characteristics which can be compared
to experiments, various drift-diffusion models were formulated – first without, e.g. [7], and later with
ion migration. Also in 2015, van Reenen et al. formulated a drift-diffusion model incorporating ionic
transport [8]. Shortly after, Calado et al. [9], Courtier et al. [10, 11], and Neukom et al. [12] presented
extended drift-diffusion systems to model charge transport in perovskite solar cells.

All of these models above are based on densities and linear diffusion (the Boltzmann approximation).
Densities depend on the quasi Fermi potentials but are discontinuous themselves across heterojunctions.
While densities have an intuitive interpretation, they lack a certain flexibility from a modelling and
computational point of view. If one neglects additional effects such as thermionic emission or interfacial
recombination [13, 14], one may even assume continuous quasi Fermi potentials. For this reason, we
present a model which is based on quasi Fermi potentials. Using quasi Fermi potentials instead of
densities as set of unknowns has several practical advantages: First, they are on the same order of
magnitude as the electrostatic potential and do not vary over more than twenty orders of magnitude
like densities may do. This is advantageous from a numerical point of view. Second, unlike densities
quasi Fermi potentials are continuous across heterojunctions when neglecting additional effects at
the interfaces. In this case, no additional discontinuity-preserving internal boundary conditions for the
densities are needed. Third, potentials are easier to interpret physically as well as mathematically e.g.
as gradient flows [15, 16, 17].

But perhaps most importantly a potential-based model allows to easily include two important features
which thus far seem to have been neglected almost entirely in the perovskite literature: In three-
dimensional (3D) bulk semiconductors with parabolic bands the statistical relationship which links
densities to quasi-Fermi potentials is given by the Fermi-Dirac integral of order one-half [18]. This leads
to nonlinear diffusion in the charge transport equations. This nonlinearity cannot be neglected in highly
doped regions, at low temperatures or in certain organic materials [19]. So far it seems only Fell et al.
[20] and Tessler et al. [21] have used statistical relationships which do not rely on the simpler Boltzmann
approximation for the charge carrier densities of electrons and holes within the perovskite literature.

Moreover, neither of the previously mentioned models limit the depletion of ions. Physically one cannot
extract ions below a certain threshold without destroying the perovskite’s crystal structure. We will
enforce this threshold by employing the Fermi-Dirac integral of order −1 [22] which we will properly
derive from a grand canonical formalism of ideal lattice gas. Recently this feature has been hardcoded
into a FEM based drift-diffusion code [23, 24] but to the best of our knowledge all standard perovskite
drift-diffusion models seem to not limit ion depletion. Particular values for the ion depletion limit may
be inferred from measurements of PSCs such as impedance spectra [25]. However, estimating these
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parameters via an engineering approach is not discussed since it would go beyond the scope of the
work.

The remainder of this paper is organized as follows: In Section 2, we derive our general drift-diffusion
model for charge transport in perovskite solar cells from Maxwell-Stefan diffusion and electrostatics.
Ionic migration is assumed due to Schottky defects. The model allows all three ionic species to be
mobile though in practice this does not seem to be necessary [12]. We also discuss useful aspects such
as thermodynamic equilibrium, local electroneutrality as well as photogeneration and recombination.
We motivate our specific choice for how to limit the ion vacancies and finish this section by formulating
a simplified model for just one mobile ionic species. Another useful additional feature of our model
is that the governing statistics may be chosen for each charge carrier individually. In Section 3, we
briefly present numerical simulations that emphasize the importance of limiting ion depletion. From
our simulation it becomes apparent that not properly limiting the ions will overestimate their influence
on the electrons and holes. While others have used either a finite-difference [11, 20], a finite-element
discretization [9, 11], or commercial software packages [12, 26, 27, 28, 29], we use a physics preserving
finite volume discretization [19, 30]. Finally, we conclude in Section 4. In the appendices, we describe
our numerical method and link our notation to the existing literature.

2 Drift-diffusion model for charge transport in perovskite solar
cells

2.1 Electrostatics and mass balances

We develop our transport model from a general system of nonlinear partial differential equations,
consisting of the self-consistent Poisson equation for the electrostatic potential as well as balance
equations for the particle densities. To this end, we consider a mixture of charged species α with particle
densities nα, and the electrostatic potential ψ which is linked to the electrical field via E = −∇ψ in an
isothermal electrostatic setting. The general system reads

−∇ · (εs∇ψ) = q
∑
α∈M

zαnα, (2.1.1a)

∂tnα +∇ · Jα = rα, α ∈M, (2.1.1b)

where q is the positive elementary charge and zα ∈ Z denotes the charge number of species α. The
species are labeled by a finite index set M. With εs = ε0εr we refer to the dielectric permittivity, where
ε0 is the vacuum dielectric constant and εr the relative permittivity of the material. The particle fluxes
are given by Jα and the density production/reduction rates of species α are denoted by rα. We point
out that system (2.1.1) is formulated in terms of densities. Eventually we will rewrite the system in terms
of quasi Fermi potentials ϕα. In the next sections, we introduce Maxwell-Stefan diffusion and develop
the electrostatics for our specific setup.
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2.2 Maxwell-Stefan diffusion and electrostatic drift

Once partial momenta of the species are relaxed and the system is isothermal, the friction between the
species can be modelled with Maxwell-Stefan diffusion [31, 32] and electrostatic drift via

nα (∇Φα + zαq∇ψ) =
∑

β∈M,β 6=α

ζαβ

(
Jβ
nβ
− Jα
nα

)
, α ∈M, (2.2.1)

where Φα denotes the chemical potential (per particle) of species α (see [33, (18.2.4)]), and ζαβ = ζβα
the symmetric binary friction coefficient between species α and β. The quantities Jα/nα correspond
to the velocities of species α. Let us assume that one of the species within the mixture represents the
lattice with index L and, moreover, that the friction is solely observed as an interaction between the
lattice and the other species,

ζαβ = 0 and ζαL ≥ 0 , α, β ∈M \ {L}.

In order to avoid that the lattice species nL appears in the mass balances (2.1.1b), we describe the
transport of the species α ∈M \ {L} from the viewpoint of the crystalline lattice. In other words, we
set JL = 0 and assume that the lattice species is not produced, rL = 0. This implies by (2.1.1b) that
∂tnL = 0. Finally, we assume that the friction does not cause a deformation of the lattice.

Moreover, we distinguish between mobile and stationary (immobile) species and refer to the latter with
the index set S ⊂M. Hence, we model the different particle fluxes by

Jα = − nα
ζαL

nα (∇Φα + zαq∇ψ) , α ∈M \ (S ∪ {L}), (2.2.2)

Jα = 0, α ∈ S ∪ {L} (2.2.3)

and assume zero production of immobile species, i.e.

rα = 0, for α ∈ S ∪ {L} .

2.2.1 The quasi Fermi vs. electrochemical potential

In analogy to semiconductor theory, we use the following relation between the chemical Φα, the
electrostatic ψ and the quasi Fermi potential ϕα,

ϕα =
1

zαq
Φα + ψ, (2.2.4)

see also [33]. Using this definition, we can highlight the fact that the gradient of the quasi Fermi
potentials are the driving forces of the current particle densities (2.2.2)

Jα = −zαq
nα
ζαL

nα∇ϕα, α ∈M \ (S ∪ {L}).

2.2.2 Continuity equations and electric currents

The charge density carried by species α is given by zαqnα. The electric current jα observed due to the
transport of species α is related to the particle flux Jα by

jα︸︷︷︸
electric current

= zαq Jα,︸︷︷︸
particle current

α ∈M \ (S ∪ {L}). (2.2.5)
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We define the friction coefficients as

ζαL = q
nα
µα
, (2.2.6)

with phenomenological units kg/(m3s), where µα describes the mobility of species α. In other words,
the electric current becomes

jα = −(zαq)
2 nα
ζαL

nα∇ϕα = −(zα)2qµαnα∇ϕα, α ∈M \ (S ∪ {L}). (2.2.7)

For such an electric flux the general drift-diffusion equation (2.1.1b) now finally reads

zαq∂tnα +∇ · jα = zαqrα , α ∈M \ (S ∪ {L}). (2.2.8)

We emphasize that the carrier densities nα depend on the quasi Fermi potentials ϕα and the elec-
trostatic potential ψ, i.e. nα = nα(ψ, ϕα). We will address this in Section 2.6. With this dependence
(2.2.8) can be written exclusively in terms of potentials.

2.3 Perovskite structure

Perovskites have a general crystalline structure of the form ABX3, where A and B denote positively
charged cations and X a negatively charged anion. A perovskite unit cell is depicted in Figure 1.1b.
Since the ABX3 structure is general, several different choices for the anions and cations are possible.
Typically, the cation A is chosen to be an organic ion such as methylammonium (MA) or formamidinium
(FA), whereas the other cation is a metal, frequently B = Pb or B = Sn, and lastly, we have a halide
anion X, which is commonly chosen to be either I, Br, or Cl. The most commonly used combination is
methylammonium (A = CH3NH3 = MA), lead (B = Pb), and iodine (X = I), resulting into methylammonium
lead (tri-)iodide ABX3 = (CH3NH3)(Pb)(I3). These anions and cations interact to some extent with
electrons and holes as we will discuss in the following section.

2.4 Schottky defects in perovskites

Ionic movement in perovskites is due to Schottky defects [6] which can be expressed via the Kröger-Vink
notation, namely

nil︸︷︷︸
ideal unit cell

−−→ V
′

A + V
′′

B + 3 V•X︸ ︷︷ ︸
vacancies

+ ABX3.︸ ︷︷ ︸
perturbed/realistic

unit cell︸ ︷︷ ︸
Schottky defect

(2.4.1)

Here, nil denotes the ideal perovskite crystalline lattice. The ions dislocate from their ideal positions,
forming vacancies Vα in the ideal lattice. The superscript ′ denotes a negative charge and the
superscript • denotes a positive charge. We assume that each Schottky defect creates the oppositely
charged vacancies V’

A, V”
B and 3 V•X and, furthermore, that each vacancy Vα can be occupied by an

ionic species α ∈ I, where I = {A,B,X} is the index set of all ionic species.

Hence, assuming imperfections of the unit cell, allows (at least in theory) both cation as well as the
anion species to move. Thus, for the ion and vacancy densities we have the following relationship:

nα︸︷︷︸
reality

= n̄α︸︷︷︸
ideal

− nVα ,︸︷︷︸
vacancy

α ∈ I. (2.4.2)
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Additionally, the ideal ion density n̄α can be linked to the ideal lattice density n̄L via

βαn̄L = n̄α, α ∈ I, (2.4.3)

where βα denotes a dimensionless lattice weight. The parameter βα can be determined by counting
the number of ionic species in each ideal unit cell, respecting shared faces and edges with neighboring
unit cells, see Figure 1.1b. Since we assume no defect in the ideal lattice, n̄L = nL holds. The charge
numbers zα with the corresponding lattice weights βα are given in Table 2.1. For the ion vacancies we
have zVα = −zα and βVα = βα.

A B X n p NA ND L
charge number zα 1 2 −1 −1 1 −1 1 0

lattice weight βα 1 8
8

= 1 12
4

= 3 − − − − −

Table 2.1: Charge numbers zα and lattice weights βα.

The relationship in (2.4.3) becomes apparent, when considering that

n̄L =
#(unit cells)

volume of material
=

1

volume of unit cell
,

and identifying βα as the ideal weighted number of ion α in the unit cell.

2.5 Poisson equation for intrinsic perovskites and doped semiconductors

From this section on, we focus more on the specific index set M = I ∪ {n, p} ∪ {L} ∪ S where the
stationary species are given by S = {NA, ND} and the ionic species by I = {A,B,X}. Here n and
p refer to the electron and hole indices. For simplicity, we introduce the abbreviation NA = nNA and
ND = nND , which refer to the density of singly ionized donor and acceptor atoms, respectively. The
corresponding charge numbers can be found in Table 2.1. Next, we adapt the right-hand side of the
general Poisson equation (2.1.1a) to several more specific cases. These choices become evident in
Section 2.6 where we formulate the final drift-diffusion model.

Case 1 Doped non-perovskite semiconductor material:

−∇ · (εs∇ψ)= q
(

(np −NA)− (nn −ND)
)
. (2.5.1)

Case 2 Intrinsic perovskite material (three mobile ions):

q
∑
α∈M

zαnα
(2.4.2)
= q (np − nn) + q

∑
α∈I

zα(n̄α − nVα).

From (2.4.3) we know that we can relate the ideal ionic density n̄α, α ∈ I, to the lattice density n̄L.
Since the perovskite unit cell is electroneutral, we have qn̄L

∑
α∈I zαβα = 0, see also Table 2.1.

Hence,

−∇ · (εs∇ψ) = q (np − nn)− q
∑
α∈I

zαnVα . (2.5.2)
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Case 3 Intrinsic perovskite material (one mobile X ion):
As reported in [6], for ABX3 = CH3NH3PbI3, the hopping of X = I– seems to have the lowest energy
barrier and according to experiments [9], it is reasonable to assume that both cations A and B move on
significantly larger time scales. Therefore, in some applications it is convenient to consider a simplified
model, where only the anion species X is assumed to be mobile, as done in [9, 10].

Let us assume local electroneutrality, that is the left-hand side of (2.5.2) vanishes. In this case, we
assume a temperature dependent density of the Schottky defects

NSD = NSD(T ) =
#(defective cells)

volume of material
,

which is linked to the vacancy densities nVα via

nVα = βαNSD if locally electroneutral.

Further, we can relate the Schottky defect density NSD to the lattice density n̄L with a parameter
κSD ∈ [0, 1] by

κSDn̄L = NSD.

Then, for the immobile vacancies the following expression can be inserted in (2.5.2)

nVα = βακSDn̄L, α ∈ {A,B}.

We define a constant and uniform density of immobile cation vacancies (see also [11]): C0 :=(
zAβA + zBβB

)
κSDn̄L. Then the Poisson equation becomes

−∇ · (εs∇ψ) = q
(
np − nn + nVX

− C0

)
. (2.5.3)

In the literature [9, 11] it is suggested to choose C0 equal to the average anion vacancy density.

Case 4 Intrinsic perovskite material (mobile A and X ion):
There are modeling approaches known [8, 12, 20, 23], where mobile A and X ions are assumed. In
analogy to case 3, the Poisson equation in (2.1.1a) can be simplified. We assume a constant and
uniform density of immobile B vacancies C0 := zBβBκSDn̄L and obtain

−∇ · (εs∇ψ) = q
(
np − nn + nVX

− nVA
− C0

)
. (2.5.4)

2.6 Final drift-diffusion model

In the following, we consider a bounded spatial domain Ω ⊆ Rd, d ∈ {1, 2, 3}, such that

Ω = ΩHTL ∪Ωintr ∪ΩETL,

where ΩHTL,Ωintr,ΩETL ⊆ Ω are pairwise disjoint, open subsets. Here, Ωintr refers to the intrinsic
perovskite region and ΩHTL,ΩETL to the doped non-perovskite semiconductor regions, respectively.
The aim now is to carefully establish a potential-based drift-diffusion model for the description of charge
transport in perovskite solar cells which takes into account that there must be a natural limit for the
amount of ion vacancies, whose index set is given by IV = {VA,VB,VX} in the following for the sake of
readability. Since we consider vacancies instead of ions, see (2.4.2), certain adjustments with respect
to the index set in (2.1.1) are necessary. Let t ∈ [0, tF ], then the model for charge transport in PSCs
consists of two different parts:
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Drift-diffusion model for PSCs

1 In the perovskite for x ∈ Ωintr :

� Poisson equation (2.5.2) for α ∈ {n, p} ∪ I,
� drift-diffusion equation (2.2.8) for α ∈ {n, p} ∪ IV with
rn = rp = G(x)−R(n, p) and rα = 0 for α ∈ IV.

2 In transport layers for x ∈ ΩHTL ∪ΩETL :

� Poisson equation (2.5.1) for α ∈ {n, p} ∪ {ND, NA},
� drift-diffusion equation (2.2.8) for α ∈ {n, p} with
rn = rp = G(x)−R(n, p).

In summary, the model is given by six coupled equations in the intrinsic layer and three coupled
equations in the transport layers supplemented with initial and boundary conditions which will be given
in Section 2.10. Furthermore, G denotes the photogeneration and R the recombination rate. Both rates
will be defined more carefully in Section 2.11.
As mentioned earlier, it is possible to link the densities nα with their quasi Fermi potentials ϕα via some
statistical relation [18], namely

nα = NαFα
(
ηα(ψ, ϕα)

)
, ηα = zα

q(ϕα − ψ) + Eα
kBT

, (2.6.1)

where Fα describes the carrier statistics, Nα denotes an effective density and Eα an energy. We
assume that Fα is continuously differentiable and monotonously increasing. Several different physically
relevant choices for Fα will be discussed in Section 2.7. To see the connection to the literature, we
express the electric fluxes (2.2.7) mathematically equivalent in terms of densities. For this, we introduce
the generalized Einstein relation

Dα = µαUTgα (ηα) , (2.6.2)

where UT = kBT/q is the thermal voltage, kB denotes the Boltzmann constant, T the constant
absolute temperature, and g the nonlinear diffusion enhancement [34] given by

gα(ηα) =
Fα(ηα)

Fα′(ηα)
. (2.6.3)

Mathematically, the diffusion enhancement can be seen as nonlinear, potential-dependent diffusion.
With the help of the generalized Einstein relation (2.6.2) it is now possible to derive the electric currents
in drift-diffusion form

jα = −q
(
zαDα∇nα + z2αµαnα∇ψ

)
, (2.6.4)

where the diffusion may be nonlinear. We stress that the diffusion enhancement gα in (2.6.3) can be
equivalently reformulated in terms of densities

gα

(
nα
Nα

)
=
nα
Nα

(
F−1α

)′( nα
Nα

)
. (2.6.5)

For different statistics functions Fα the expression for the diffusion enhancement gα in (2.6.5) is
portrayed in Figure 2.1b.
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2.7 Statistics function

In the following, we specify the functions Fα in (2.6.1). Three common choices are conceivable:

Fα(η) = exp(η), (Boltzmann) (2.7.1)

Fα(η) = FB,γ(η) :=
1

exp(−η) + γ
, (Blakemore) (2.7.2)

Fα(η) = Fj(η) :=
1

Γ(j + 1)

∫ ∞
0

ξj

exp(ξ − η) + 1
dξ, j > −1. (Fermi-Dirac) (2.7.3)

The Fermi-Dirac integral of order one-half [18], denoted by F1/2, with Γ(1/2 + 1) =
√
π/2, is

fundamental in the simulation of inorganic, classical three-dimensional (3D) semiconductors [19, 35].
The Gauss-Fermi integral [36] is the statistics of choice in the context of organic semiconductors. These
integrals can be approximated by Blakemore (γ = 0.27) [37] and by Boltzmann statistics in the low
density limit.

Remark 2.7.1. Via the relation F ′j(η) = Fj−1(η), the Fermi-Dirac statistics (2.7.3) can be defined for
negative integers j as well [22]. In particular, for order −1, we have

F−1(η) =
1

exp(−η) + 1
.

We observe that F−1 = FB,1. This type of statistics corresponds physically to a mean-field ideal lattice
gas, see [38, Eqn. 3.5.1].

Figure 2.1 shows different Fα along with their corresponding diffusion enhancements. Statistics
functions deviating from the Boltzmann approximation lead to nonlinear diffusion which grows for larger
densities/potentials as can be seen from (2.6.2) and (2.6.3) or visually in Figure 2.1b. This complicates
the numerical solution of the model.

(a) (b)

Figure 2.1: (a) Semi-logarithmic plot of the introduced distribution functionsFα for−5 ≤ ηα ≤ 5. (b) Logarithmic
plot of the diffusion enhancement gα for the statistics functions in (a), where we used (2.6.5). It can be observed
that the charge carrier density can be limited by the Blakemore function (γ = 1) which agrees with the Fermi-Dirac
integral of order −1.
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2.7.1 Charge carrier densities

We assume that the electron density nn and the hole density np are linked to the quasi Fermi potentials
via

nn = NcFn
(
q(ψ − ϕn)− Ec

kBT

)
and np = NvFp

(
q(ϕp − ψ) + Ev

kBT

)
, (2.7.4)

where Nc and Nv denote the conduction and valence band density of states. The conduction and
valence band-edge energies Ec and Ev are defined as material parameters. Since in the literature the
definition of band-edge energies is rather heterogeneous, we give an overview in B.1 of how similar
definitions, such as in [9, 10], are related. We assume Fermi-Dirac statistics (2.7.3) for electrons and
holes, i.e. Fn = Fp = F1/2, if not mentioned otherwise.

2.7.2 Ionic vacancies

To model the statistical relationship between densities and potentials (2.6.1) for the ion vacancy
densities nα, α ∈ IV, we make the following physically meaningful assumptions:

1 The lower bound for the concentrations of the vacancies can become zero. In this case, all
vacancies introduced due to Schottky defects are occupied.

2 There exists a temperature dependent, upper saturation density for the vacancy concentration
denoted with Nα = Nα(T ). That is, we cannot create arbitrarily many vacancies. For this
saturation density, we have βαNSD ≤ Nα ≤ βαnL.

To the best of our knowledge, the second assumption has been neglected in the perovskite literature
apart from the simulation tool [23, 24]. So far, the standard statistics (2.6.1) for the ions has been the
Boltzmann approximation, see [8, 10, 12, 20]. Such a modelling assumption, however, is unphysical as
there is no saturation limit for creating vacancies. The latter statement is equivalent to limiting the ion
depletion. We will now derive a statistical relationship between ionic vacancy densities nα, α ∈ IV and
potentials ϕα which respects both assumptions above.

Grand-canonical formalism of ideal lattice gas Let us assume that in a volume Ωvol of perovskite
material exist nα|Ωvol| vacancies for α ∈ IV which do not interact with other species. The upper
bound for the number of the vacancies in the volume Ωvol is thus Nα|Ωvol| according to our second
assumption above. There exist

W (nα, Nα) =
(Nα|Ωvol|)!

(nα|Ωvol|)!(Nα|Ωvol| − nα|Ωvol|)!
, α ∈ IV, (2.7.5)

distinguishable configurations of the vacancies in the volume Ωvol since the vacancies are indistin-
guishable whereas the Schottky defects are not 1. Every vacancy brings in an energy of zαqψ − zαEα ,
where the second term corresponds to the energy brought to the system scaled by the elementary
charge. The canonical partition function of the system reads

Z(nα, Nα, T, ψ) = W (nα, Nα) exp

(
−nα|Ωvol|

−zαEα + zαqψ

kBT

)
. (2.7.6)

1The location of the Schottky defects is assumed to be fixed in the lattice. Otherwise one could distribute the vacancies
among all possible βαn̄L|Ωvol| sites. Such assumption seems to be more realistic, however, it would lead to estimating
cumulative binomial distribution instead of using the binomial formula in (2.7.7).
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The grand-canonical partition sum reads

Ξ(zαqϕα, Nα, T, ψ) =

(Nα|Ωvol|)∑
(nα|Ωvol|)=0

Z(nα, Nα, T, ψ) exp

(
nα|Ωvol|

zαqϕα
kBT

)

=

[
1 + exp

(
zαqϕα + zαEα − zαqψ

kBT

)]Nα|Ωvol|

, (2.7.7)

where zαqϕα is the electrochemical potential. The grand-canonical potential is then

J = −kBT log Ξ

= −kBTNα|Ωvol| log

[
1 + exp

(
zαqϕα + zαEα − zαqψ

kBT

)]
. (2.7.8)

The number of the vacancies nα|Ωvol| in the volume Ωvol is given as a derivative of the grand-canonical
potential J with respect to the electrochemical potential of the vacancies zαqϕα, that is,

nα|Ωvol| = −
∂

∂(zαqϕα)
J = Nα|Ωvol|

exp
(
zα

qϕα+Eα−qψ
kBT

)
1 + exp

(
zα

qϕα+Eα−qψ
kBT

) . (2.7.9)

Thus, the density distribution given by the formula (2.7.9) is equivalent to the Fermi-Dirac integral of
order −1, namely

nα = NαF−1

(
zα
q(ϕα − ψ) + Eα

kBT

)
, α ∈ IV. (2.7.10)

From Figure 2.1b, one can clearly see that the ion vacancy density can never become larger than Nα.
Similar ideas have been implemented in the drift-diffusion FEM code [24] and have been included in
YSZ models [39]. In [40] the relation in (2.7.10) was derived from a phenomenological free energy under
the assumption that a vacancy Vα can be occupied by an ionic species β with α, β ∈ {A,B,X}, where
it not necessarily holds that α 6= β, whereas we assume that α = β as stated in Section 2.4. The
band-edge energy Eα and the upper bound of the vacancy concentration Nα are model parameters. In
analogy to semiconductor theory, we refer to the latter as effective density of states.

2.8 Thermodynamic equilibrium

To avoid unphysical state dissipation [19], thermodynamic consistency is crucial. A model for charge
transport is said to be thermodynamically consistent, if it satisfies

jα = 0 implying ϕα = const., for all α ∈ {n, p} ∪ IV. (2.8.1)

Without loss of generality we assume that ϕα = 0. Due to the gradient structure of the fluxes (2.2.7)
thermodynamic consistency of our model follows directly.

2.9 Local electroneutrality

Assuming thermodynamic equilibrium and a vanishing left-hand side in (2.1.1a), at times it may be of
interest to compute a locally electroneutral solution ψ0. Due to our more general setting we have to
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distinguish two cases. For x ∈ Ωintr we have

0 = np(ψ0, 0)− nn(ψ0, 0)−
∑
α∈IV

zαnα (2.9.1)

= NvFp
(
Ev − qψ0

kBT

)
−NcFn

(
qψ0 − Ec
kBT

)
−
∑
α∈IV

zαNαF−1

(
zα
Eα − qψ0

kBT

)
and for x ∈ ΩHTL ∪ΩETL

0 = NvFp
(
Ev − qψ0

kBT

)
−NcFn

(
qψ0 − Ec
kBT

)
+ND −NA, (2.9.2)

where the relations (2.7.4) and (2.7.10) are inserted for the vacancy, electron and hole densities.
Assuming linear diffusion of the electric current, i.e. modeling the charge carrier statistics with a
Boltzmann approximation (2.7.1), the equation (2.9.2) can be solved analytically, yielding

ψ0|ΩHTL∪ΩETL =
Ec + Ev

2q
− 1

2
UT log

Nc

Nv

+ UTarcsinh

(
ND −NA

2Nintr

)
, (2.9.3)

where Nintr is the intrinsic carrier density defined by

N2
intr = NcNv exp

(
−Ec − Ev

kBT

)
. (2.9.4)

2.10 Initial and boundary conditions

For t = 0 , we have to provide initial conditions ψ0 and ϕ0
α for α ∈ {n, p} ∪ IV on the whole domain

Ω. More precisely, this means

ψ(x, 0) = ψ0(x), and ϕα(x, 0) = ϕ0
α(x), for x ∈ Ω. (2.10.1)

2.10.1 External boundary conditions

Ideal ohmic contacts at the metal interfaces are modeled by Dirichlet boundary conditions. On the
remaining interfaces one usually imposes homogeneous Neumann boundary conditions. This means,
we assume that the external boundary of the spatial domain ∂Ω is decomposed into NO = 2 ohmic
contacts and an artificial interface ΓN, where we impose Neumann conditions

∂Ω =

(
NO⋃
j=1

ΓD,j

)
∪ ΓN.

For any j = 1, ..., NO we set for all x ∈ ΓD,j, t ∈ [0, tF ]

ψ(x, t) = ψ0(x) + Uj(t), (2.10.2a)

ϕn(x, t) = Uj(t), (2.10.2b)

ϕp(x, t) = Uj(t), (2.10.2c)

where Uj corresponds to an applied voltage. The potential ψ0 can be computed iteratively (or explicitly
when assuming a Boltzmann relation), see Section 2.9. Note that by construction of the device
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architecture, it holds ΓD,j ⊂ (∂ΩHTL ∪ ∂ΩETL) \ ∂Ωintr and, thus, no boundary conditions for the
vacancy quasi Fermi potentials are needed at the ohmic contacts. On the remaining boundaries, we
assume homogeneous Neumann boundary conditions for all x ∈ ΓN, t ∈ [0, tF ] read as follows

∇ψ(x, t) · ν = jn(x, t) · ν = jp(x, t) · ν = 0, on ΓN,

jα(x, t) · ν = 0, on ∂Ωintr ∩ ΓN, α ∈ IV,

where ν is the outer normal vector on the external interface. Other boundary conditions are possible.

2.10.2 Internal boundary conditions

Due to the heterojunctions, we need additional internal boundary conditions on the interfaces between
neighboring subdomains. We assume ∂ΩHTL ∩ ∂ΩETL = ∅, i.e. we only need additional conditions
at the junctions between the intrinsic layer with the transport layers. For this, we define the set
Σk = ∂Ωk ∩ ∂Ωintr of codimension 1 for k ∈ {HTL,ETL}. This set corresponds to a point in the
one-dimensional case, an edge in 2D and a face in 3D. Let xk ∈ Σk. For f : Ω→ Rd, d ∈ {1, 2, 3},
we define a one-sided limit by

f(xk; l) := lim
x→xk
x∈Ωl

xk∈Σk

f(x).

In our case, we have either Ωl = Ωintr or Ωl = Ωk for k ∈ {HTL,ETL}. First, we assume continuity

Figure 2.2: Intrinsic domain Ωintr and neighboring domain Ωk, k ∈ {HTL,ETL} with the corresponding notation
for interfacial conditions.

on the internal boundaries for the electrostatic potential and the electric displacement [7, 10]:

ψ(xHTL; HTL) = ψ(xHTL; intr), ψ(xETL; intr) = ψ(xETL; ETL),(
εHTL
s ∇ψ(xHTL; HTL)− εintr

s ∇ψ(xHTL; intr)
)
·νk = 0, k ∈ {HTL, intr}(

εintr
s ∇ψ(xETL; intr)− εETL

s ∇ψ(xETL; intr)
)
·νk = 0, k ∈ {ETL, intr}.

Note that the electric permittivity εs is a material dependent parameter. Second, we need conditions for
the conservation of the species flux and its associated current density [10], thus we have for α ∈ {n, p}

jα(xHTL; HTL) · νHTL = −jα(xHTL; intr) · ν intr,

jα(xETL; intr) · ν intr = −jα(xETL; ETL) · νETL,
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where νk is the outward unit normal pointing to the set Ωk, k ∈ {HTL,ETL}. Third, since ionic species
are only present in the intrinsic region, we assume zero flux conditions for the ionic vacancies, i.e. for
all α ∈ IV it holds

jα(x) · ν intr = 0, for x ∈ Σk, k ∈ {HTL,ETL}.

Remark 2.10.1. In [10] it is necessary to include additional jump conditions on the charge carrier densi-
ties nn and np by multiplying them with specified constants. However, since the quasi Fermi potentials
are continuous at the material interfaces our model does not need to take additional internal boundary
conditions into account. Interfacial recombination for the charge transfer across the heterojunctions as
suggested in the literature [9, 10, 26, 27] is neglected.

2.11 Photogeneration and Recombination

2.11.1 Photogeneration

The photogeneration, i.e. the generation of charge carriers due to the absorption of light, is the most
important feature for photovoltaic devices. We can define the generation rate as

G(x) = Fphαg exp(−αgz), x = (x, y, z)T . (2.11.1)

Here, Fph denotes the incident photon flux and αg the material absorption coefficient which depends on
the light wave length. We assume that light enters through one of the transport layers, see Figure 1.1a.
Thus, the photogeneration rate can be described as an exponential decay in z direction, following the
Beer-Lambert law of light absorption [41].

2.11.2 Recombination

For the sake of readability, in the following the charge carrier densities of electrons and holes are
denoted by n = nn and p = np. Within the transport layers and the perovskite, electrons and holes may
recombine. The recombination rate R(n, p) on the right-hand side of the charge carrier conservation
laws is given by the sum of the most common recombination processes [19]:

R(n, p) =
(
rrad(n, p) + rSRH(n, p) + rAuger(n, p)

)
np

(
1− exp

(
qϕn − qϕp
kBT

))
,

i.e. structurally all these rates can be modeled by the following formula

Rr(n, p) = rr(n, p)np

(
1− exp

(
qϕn − qϕp
kBT

))
, (2.11.2)

where the model dependent rate rr will be defined in the following. We note that, the recombination
processes stated in the references for the simulation of PSCs [9, 10, 12, 20] assume a Boltzmann
relation between the charge carrier densities and the quasi Fermi potentials, yielding an expression

R̃r(n, p) = rr(n, p)
(
np−N2

intr

)
,

where the intrinsic carrier density Nintr is defined as in (2.9.4). If using the latter recombination rate
and assuming a nonlinear diffusion (2.6.2) consistency with thermodynamic equilibrium in the sense of
Section 2.8 is violated.
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Radiative recombination The radiative recombination (frequently called bimolecular or band-to-band
recombination) is given by

rrad(n, p) = r0,rad (2.11.3)

for a constant rate coefficient r0,rad.

Shockley-Read-Hall recombination One of the most common recombination processes is the
Shockley-Read-Hall (SRH) recombination, which models trapping of electrons. In general, this process
can be described by an electron trap continuity equation [42], which implies different recombination
rates for electrons and holes. However, a simplified version of this physical process can be given in a
closed form when we assume the system to be stationary, namely

rSRH(n, p) =
1

τp(n+ nτ ) + τn(p+ pτ )
, (2.11.4)

where τn, τp are the carrier lifetimes and nτ , pτ reference carrier densities. These reference densities
can be computed with

nτ = n exp

(
Eτ + q(ϕn − ψ)

kBT

)
, pτ = p exp

(
−Eτ + q(ψ − ϕp)

kBT

)
,

where Eτ denotes the trap energy/level. Choosing the simplified version (2.11.4) is applicable, when
assuming that the trapping and detrapping processes are faster than the time scale of measurements
[43]. Otherwise this way of defining the SRH recombination needs to be extended as in [12, 20].

Auger recombination For the Auger recombination we have

rAuger(n, p) = Cnn+ Cpp

with rate constants Cn and Cp. It does not seem to be customary to consider the Auger recombination
in perovskites. An exception is given by [44].

2.12 Drift-diffusion model for one mobile ionic species

Since computational experiments [12] show that considering mobile anions as well as mobile cations
compared to assuming only mobile anions has relatively little influence, we develop here the special
case of only one mobile species, namely the mobile anions X. We denote the corresponding vacancy
density by a = nVX

with the corresponding abbreviation in the index, e.g. Ea = EVX
. As before, we

identify n and p as electron and hole indices with corresponding carrier densities n = nn and p = np.
In this special case, the Poisson equation in the perovskite is given by (2.5.3), in the transport layers by
(2.5.1) and the drift-diffusion model can be formulated as follows: For x ∈ Ωintr, t ∈ [0, tF ] we have

−∇ · (εs∇ψ) = q
(
p− n+ a− C0

)
,

∂tn−
1

q
∇ · jn = G(x)−R(n, p),

∂tp+
1

q
∇ · jp = G(x)−R(n, p),

∂ta+
1

q
∇ · ja = 0,

(2.12.1a)

(2.12.1b)

(2.12.1c)

(2.12.1d)
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and for x ∈ ΩHTL ∪ΩETL, t ∈ [0, tF ],

−∇ · (εs∇ψ) = q
(

(p−NA)− (n−ND)
)
,

∂tn−
1

q
∇ · jn = G(x)−R(n, p),

∂tp+
1

q
∇ · jp = G(x)−R(n, p),

(2.12.1e)

(2.12.1f)

(2.12.1g)

where the electric currents are defined in (2.2.7).

3 Device simulation

We discretize our model from Section 2.12 via a Scharfetter-Gummel type finite volume method. A
short summary of the discretization technique can be found in Appendix A. The parameter set is based
on [23, Section 4.4], where the authors compare their drift diffusion solver Driftfusion [24] with
Ionmonger [10]. Even though our model is derived for 3D, we perform the following calcuations in
1D to be able to compare our results with Driftfusion. It is important to keep in mind that the
following 1D simulations are performed along the z axis of the 3D model, cf. Figure 1.1a.

physical quantity symbol value unit

ETL perovskite layer HTL

layer thickness 9.9× 10−6 4.02× 10−5 1.99× 10−5 cm

relative permittivity εr 10 24.1 3.0

conduction band-edge energy Ec −4.0 −3.7 −3.1 eV

valence band-edge energy Ev −6.0 −5.4 −5.1 eV

conduction band DoS Nc 5.0× 1019 8.1× 1019 5.0× 1019 cm−3

valence band DoS Nv 5.0× 1019 5.8× 1019 5.0× 1019 cm−3

electron mobility µn 3.89 66.2 0.389 cm2/(Vs)

hole mobility µp 3.89 66.2 0.389 cm2/(Vs)

ion mobility µa – 3.93× 10−12 – cm2/(Vs)

density of cation vacancies C0 – 1.6× 1019 – cm−3

doping density NA 0.0 8.32× 107 1.03× 1018 cm−3

doping density ND 1.03× 1018 0.0 0.0 cm−3

photogeneration rate G 0.0 0.0 0.0 cm−3s−1

Table 3.1: Parameter values from [23] for a constant temperature T = 300K.

In the following the importance to correctly model the ion vacancy densities (2.7.10) shall become
apparent. To verify our results, we compare them with Driftfusion [24]. Just like Driftfusion
we use the Boltzmann approximation (2.7.1) for the charge carrier densities (2.7.4), i.e. Fn = Fp =
exp. The model parameter Na for the mobile anion vacancies is set equal to the uniform density of
cation vacancies, i.e. Na = C0 = 1.6× 1019cm−3. All depicted figures state the physical quantities
in an equilibrium state. What we clearly can observe is that limiting the anion vacancy density with
the Fermi-Dirac integral of order −1 produces densities and band-edge energies similar to the case
without mobile ions. This implies that already in equilibrium the influence of the ions is unphysically
overestimated when not limiting the anion vacancy densities as proposed by our modeling approach.
Figure 3.1 (e) and (f) reveal that the choice ofEa directly impacts the densities and band-edge energies.
For Ea = −3.9eV we obtain agreement with Driftfusion which limits the anion vacancy density
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Figure 3.1: Equilibrium charge carrier densities (left) and band-edge energies (right) without mobile ions ((a) and
(b)), with mobile ions using Boltzmann statistics ((c) and (d)) and with mobile ions using the Fermi-Dirac integral
of order −1 for the anion vacancy density ((e) and (f)). For (c) and (d) we chose Ea = −4.33eV, whereas two
different values for Ea were chosen for (e) and (f). Electrons and holes are modeled throughout with Boltzmann
statistics. The black dotted lines indicate the corresponding solutions calculated with Driftfusion [24].
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with (2.7.10) as well. However, this value differs from Ea = −4.33eV which was chosen in Figure 3.1
(c) and (d) to produce agreement with Driftfusion and Ionmonger. Thus, modeling the charge
transport with quasi Fermi potentials as suggested in this paper allows to choose the band-edge energy
in agreement with experiments. Our code is based on ChargeTransportInSolids which in
turn is based on VoronoiFVM [45].

4 Conclusion and future research

We derived a general model for charge transport in perovskite solar cells (PSCs) from Maxwell-Stefan
diffusion and electrostatics. In this model any ion in the perovskite layer may be mobile even though
one mobile ion seems to be sufficient [12]. Unlike other models in the literature, our model is based on
quasi Fermi potentials instead of densities, naturally allowing discontinuities across heterojunctions in
the densities. This way we can easily include nonlinear diffusion (via the diffusion enhancement factor
based on e.g. Fermi-Dirac, Gauss-Fermi or Blakemore statistics) as well as a limit for ion depletion
(via Fermi-Dirac statistics of order −1). This limit is properly justified by a grand-canonical formalism.
From a modeling point of view ion depletion is physically unrealistic as it would destroy the perovskite
structure. For our new model we discussed the thermodynamic equilibrium, electroneutrality as well as
generation/recombination mechanisms. Finally, we presented numerical simulations which highlight
the importance of limiting ion depletion. Even in equilibrium the impact of the ions on electrons and
holes will be grossly overestimated if one does not limit the ion vacancies. In contrast to the literature
on perovskites, we base our simulation on a finite volume method which preserves relevant physical
properties such as positivity of densities or constant equilibrium quasi Fermi potentials.

Future research may be directed at including surface recombination for the charge transfer at hetero-
junctions as already done in [26, 27] as well as coupling our model to another continuity equation for
the trap density as has been suggested in [12, 20]. Also more extensive out-of equilibrium numerical
simulations are in preparation.

Acknowledgments This work was partially supported by the German Research Foundation, DFG
project no. FU 316/14-1 as well as the Leibniz competition.

A Finite volume discretization

For the one-dimensional spatial discretization of the model (2.12.1), i.e. Ω = ΩETL ∪ Ωintr ∪ ΩHTL,
where ΩETL =]0, xE[, Ωintr =]xE, xH[, and ΩHTL =]xH, xF[, we make use of a thermodynamically
consistent Voronoi finite volume technique [19, 35, 46]. For this, we introduce a non-uniform mesh
0 =: x1 < ... < xE < ... < xH < ... < xn := xF. Each node xk is identified with a control
volume ωk, which is defined as ω1 = [x1,

x1+x2
2

], ωk = [xi−1+xi
2

, xi+xi+1

2
], i = 1, ..., n − 1, and

wn = [xn−1+xn
2

, xn].
In the following, we pay particular attention to the choice of flux approximations. A correct choice of
the numerical fluxes is a rather delicate issue as the wrong choice may lead either to instabilities
or violation of thermodynamic principles. For Boltzmann statistics (2.7.1), the classical Scharfetter-
Gummel scheme [47] leads to a stable and thermodynamic consistent scheme. Since we consider the
system to be potentially non-Boltzmann, we need to handle the nonlinearity in the diffusive part of the
current densities jα, α ∈ {n, p, a}. In the literature, Scharfetter-Gummel based flux discretizations
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which likewise preserve physical properties of the model while still being numerical stable, have recently
been developed [19, 30, 48, 49].

We use the following flux approximation. For a node xk it reads as follows

jα;k,k+1 = − qµαNαUT
zα(xk+1 − xk)

(
B(−Qα;k,k+1)Fα (ηα;k+1)−B (Qα;k,k+1)Fα (ηα;k)

)
,

where

Qα;k,k+1 = zα
ψk+1 − ψk

UT
+ (ηα;k+1 − ηα,k)− log

Fα(ηα;k+1)

Fα(ηα;k)

with

ηα;k = zα
q(ϕα;k − ψk) + Eα

kBT
.

The Bernoulli function is given by B(ξ) = ξ/(eξ − 1) with B(0) = 1. The unknowns ψk and ϕα;k
correspond to the electrostatic potential as well as the quasi Fermi potentials for species α evaluated at
node xk. By construction of the mesh, each node xk corresponds to a set of homogeneous material
parameters which makes it possible to handle the heterojunctions in the simulation. The earliest
reference, we could find for this thermodynamically consistent flux discretization scheme is in [50]. This
scheme was compared in [51, 52] and numerically analyzed in [53].

B Consistency with literature

At first glance, the procedure in Section 2.8 to compute the boundary conditions for the electrostatic
potential ψ seems to differ from the approaches known in the literature. Hence, we will show now that
they in fact agree. For simplicity, we assume Ω = [x0, xd] ⊂ R.

B.1 Relating different notations

Comparing e.g. [7, 9, 10, 12], it becomes evident that there are various different terminologies and
notations used in the literature. In the following, we focus on the argument of the statistics for electrons
and holes, which occurs in (2.7.4) and relate different notations with the one used here. In [9], the quasi
Fermi potentials are replaced by the quasi Fermi levels with qϕn = −EFn and qϕp = −EFp . Due
to not necessarily well-defined band-edge energies in the hole and electron transport layers, some
references introduce the electron affinity φea and the ionization potential φip and replace the band-edge
energies in (2.7.4)by these energies, i.e. Ec = φea, Ev = φip. Furthermore, it is common to define

Ẽc = φea − qψ, Ẽv = φip − qψ,

as the band-edge energy, i.e. they include the scaled electrostatic potential ψ [7, 9]. Moreover, [12]
considers the lowest unoccupied (LUMO) ELUMO and the highest occupied molecular orbital (HOMO)
level EHOMO instead of the energies φea and φip. From a physical or chemical point of view we need
to distinguish between Ec, Ev on the one hand and ELUMO, EHOMO on the other hand. Since we can
assume that ELUMO, Ev, φip and EHOMO , Ec and φea play mathematically identical roles, for the sake
of readability, we refer to the electron affinity and the ionization potential still as band-edge energies,
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denoted by Ec and Ev and stick with (2.7.4) even though this is an abuse of terminology.

The built-in voltage is defined as the equilibrium difference between the work functions of the electrodes
[7, 10, 12], i.e.

ψbi =
ϕcath − ϕanod

q
, (B.1.1)

where ϕanod is the anode work function, ϕcath is the cathode work function. In case of ideal ohmic
contacts (B.1.1) is equal to the difference in equilibrium Fermi levels scaled by the elementary charge.
In our terminology this means that the potential ψbi is the difference of the quasi Fermi potentials at the
metal contacts, i.e.

ψbi = ϕn(xd)− ϕn(x0) = ϕp(xd)− ϕp(x0)
(2.10.2)

= U2 − U1.

B.2 Boundary conditions

First, we note that relaxing the procedure in Section 2.8 by replacing ϕn = ϕp = 0 with ϕn = ϕp =
K/2 for K ∈ R, yields a modified equation (2.9.2) when assuming a Boltzmann relation (2.7.1),
namely

0 = Nv exp

(
Ev + q(ϕp − ψ̂0)

kBT

)
−Nc exp

(
q(ψ̂0 − ϕn)− Ec

kBT

)
+ND −NA.

When omitting the unphysical solution, this yields

ψ̂0|ΩHTL∪ΩETL =
1

2
(ϕn + ϕp) +

Ec + Ev
2q

− 1

2
UT log

Nc

Nv

+ UTarcsinh

(
ND −NA

2Nintr

)
(B.2.1)

= K + ψ0|ΩHTL∪ΩETL (B.2.2)

with ψ0 defined by (2.9.3). We see that the conditions in (2.10.2) are shifted by the equilibrium values
of the quasi Fermi potentials ϕn and ϕp. Then, the corresponding boundary conditions are

ψ(x0) = K + ψ0(x0) + U1, ψ(xd) = K + ψ0(xd) + U2, (B.2.3a)

ϕp(x0) = U1, ϕp(xd) = U2, (B.2.3b)

ϕn(x0) = U1, ϕn(xd) = U2. (B.2.3c)

In [9], the authors use (ψ, n, p, a) as set of unknowns and impose Dirichlet-Neumann boundary
conditions on the external metal contact boundary. In the following, we want to show agreement
between (B.2.3) and a modified version of the boundary conditions in [9], namely

ψ(x0) = 0,

p(x0) = pD,

n(x0) = nD̃,

ψ(xd) = ψbi − ψap,

p(xd) = pD̃,

n(xd) = nD,

(B.2.4)

where ψap denotes the applied voltage and the boundary values are set as

nD = Nc exp

(
qϕn(xd)− Ec

kBT

)
, pD = Nv exp

(
Ev − qϕp(x0)

kBT

)
, (B.2.5)

nD̃ = Nc exp

(
qϕn(x0)− Ec

kBT

)
, pD̃ = Nv exp

(
Ev − qϕp(xd)

kBT

)
. (B.2.6)
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To show consistency, we assume the following: (1) U1 = 0, U2 = ψap and (2) K = −ψ0(x0).
Equations (B.2.5) and (B.2.6) indicate that the conditions for the quasi Fermi potentials (B.2.4) and the
conditions for the densities (B.2.3) are equivalent. The conditions for the densities n and p translate
directly into conditions for the quasi Fermi potentials. Hence, we focus on the conditions for the
electrostatic potential ψ: With Assumptions (1), (2), we see immediately from (B.2.3) that at x = x0, it
holds

ψ(x0) = 0. (B.2.7)

On the other hand, we have at x = xd

−ψ0(x0) + ψ0(xd) + ψap
(B.2.3)
= ψ(xd)

(B.2.4)
= ψbi(xd)− ψap.

Hence, we need to show that

ψ0(xd)− ψ0(x0) + 2ψap = ψbi = ψ(xd) + ψap.

By Assumptions (1), (2) and (B.2.7) it follows

ψ0(xd)− ψ0(x0) + 2ψap
(B.2.3)
= (ψ(xd)− U2)− (ψ(x0)− U1) + 2ψap

= ψ(xd)− ψ(x0) + ψap
(B.2.7)
= ψ(xd) + ψap.

Hence, the choices of boundary conditions are compatible.
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