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State-constrained control-affine
parabolic problems II:

Second order sufficient optimality conditions
M. Soledad Aronna, J. Frédéric Bonnans, Axel Kröner

Abstract

In this paper we consider an optimal control problem governed by a semilinear heat equation
with bilinear control-state terms and subject to control and state constraints. The state constraints
are of integral type, the integral being with respect to the space variable. The control is multi-
dimensional. The cost functional is of a tracking type and contains a linear term in the control
variables. We derive second order sufficient conditions relying on the Goh transform.

1 Introduction

This is the second part of two papers on necessary and sufficient optimality conditions for an optimal
control problem governed by a semilinear heat equation containing bilinear terms coupling the control
variables and the state, and subject to constraints on the control and state. While in the first part
[5], first and second order necessary optimality conditions are shown, in this second part we derive
second order sufficient optimality conditions. The control may have several components and enters
the dynamics in a bilinear term and in an affine way in the cost. This does not allow to apply classical
techniques of calculus of variations to derive second order sufficient optimality conditions. Therefore,
we extend techniques that were recently established in the following articles, and that involve the
Goh transform [12] in an essential way. Aronna, Bonnans, Dmitruk and Lotito [1] obtained second
order necessary and sufficient conditions for bang-singular solutions of control-affine finite dimensional
systems with control bounds, results that were extended in Aronna, Bonnans and Goh [2] when adding
a state constraint of inequality type. An extension of the analysis in [1] to the infinite dimensional
setting was done by Bonnans [6], for a problem concerning a semilinear heat equation subject to
control bounds and without state constraints. For a quite general class of linear differential equations
in Banach spaces with bilinear control-state couplings and subject to control bounds, Aronna, Bonnans
and Kröner [3] provided second order conditions, that extended later to the complex Banach space
setting [4].

There exists a series of publications on second order conditions for problems governed by control-
affine ordinary differential equations, we refer to references in [5].

In the elliptic framework, regarding the case we investigate here, this is, when no quadratic control
term is present in the cost (or what some authors call vanishing Tikhonov term), Casas in [7] proved
second order sufficient conditions for bang-bang optimal controls of a semilinear equation, and for one
containing a bilinear coupling of control and state in the recent joint work with D. and G. Wachsmuth
[10].

Parabolic optimal control problems with state constraints are discussed in Rösch and Tröltzsch [16],
who gave second order sufficient conditions for a linear equation with mixed control-state constraints.
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M.S. Aronna, J.F. Bonnans, A. Kröner 2

In the presence of pure-state constraints, Raymond and Tröltzsch [15], and Krumbiegel and Re-
hberg [13] obtained second order sufficient conditions for a semilinear equation, Casas, de Los Reyes,
and Tröltzsch [8] and de Los Reyes, Merino, Rehberg and Tröltzsch [11] obtained sufficient second
order conditions for semilinear equations, both in the elliptic and parabolic cases. The articles men-
tioned in this paragraph did not consider bilinear terms, and their sufficient conditions do not apply to
the control-affine problems that we treat in the current work.

It is also worth mentioning the work [9] by Casas, Ryll and Tröltzsch that provided second order
conditions for a semilinear FitzHugh-Nagumo system subject to control constraints in the case of
vanishing Tikhonov term.

The contribution of this paper are second order sufficient optimality conditions for an optimal control
problem for a semilinear parabolic equation with cubic nonlinearity, several controls coupled with the
state variable through bilinear terms, pointwise control constraints and state constraints that are inte-
gral in space. The main challenge arises from the fact that both the dynamics and the cost function
are affine with respect to the control, hence classical techniques are not applicable to derive second
order sufficient conditions. We rely on the Goh transform [12] to derive sufficient optimality conditions
for bang-singular solutions. In particular, the sufficient conditions are stated on a cone of directions
larger than the one used for the necessary conditions.

The paper is organized as follows. In Section 2 the problem is stated and main assumptions are
formulated. Section 3 is devoted to second order necessary conditions and Section 4 to second order
sufficient conditions.

Notation

Let Ω be an open subset of Rn, n ≤ 3, with C∞ boundary ∂Ω. Given p ∈ [1,∞] and k ∈ N,
let W k,p(Ω) be the Sobolev space of functions in Lp(Ω) with derivatives (here and after, derivatives
w.r.t. x ∈ Ω or w.r.t. time are taken in the sense of distributions) in Lp(Ω) up to order k. LetD(Ω) be
the set of C∞ functions with compact support in Ω. By W k,p

0 (Ω) we denote the closure of D(Ω) with
respect to the W k,p-topology. Given a horizon T > 0, we write Q := Ω × (0, T ). ‖·‖p denotes the
norm in Lp(0, T ), Lp(Ω) and Lp(Q), indistinctly. When a function depends on both space and time,
but the norm is computed only with respect of one of these variables, we specify both the space and
domain. For example, if y ∈ Lp(Q) and we fix t ∈ (0, T ), we write ‖y(·, t)‖Lp(Ω). For the p-norm in

Rm, for m ∈ N, we use | · |p. We set Hk(Ω) := W k,2(Ω) and Hk
0 (Ω) := W k,2

0 (Ω). By W 2,1,p(Q)
we mean the Sobolev space of Lp(Q)-functions whose second derivative in space and first derivative
in time belong to Lp(Q). We write H2,1(Q) for W 2,1,2(Q) and, setting Σ := ∂Ω× (0, T ), we define
the state space as

Y := {y ∈ H2,1(Q); y = 0 a.e. on Σ}. (1.1)

If y is a function over Q, we use ẏ to denote its time derivative in the sense of distributions. As usual
we denote the spatial gradient and the Laplacian by∇ and ∆. By dist(t, I) := inf{‖t− t̄‖ ; t̄ ∈ I}
for I ⊂ R, we denote the distance of t to the set I .

2 Statement of the problem and main assumptions

In this section we introduce the optimal control problem and recall results on well-posedness of the
state equation and existence of solutions of the optimal control problem from [5].
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Optimal control of a semilinear heat equation 3

2.1 Setting

The state equation is given as ẏ(x, t)−∆y(x, t) + γy3(x, t) = f(x, t) + y(x, t)
m∑
i=0

ui(t)bi(x) in Q,

y = 0 on Σ, y(·, 0) = y0 in Ω,

(2.1)

with

y0 ∈ H1
0 (Ω), f ∈ L2(Q), b ∈ W 1,∞(Ω)m+1, (2.2)

γ ≥ 0, u0 ≡ 1 is a constant, and u := (u1, . . . , um) ∈ L2(0, T )m. Lemma A.1 below shows that
for each control u ∈ L2(0, T )

m
, there is a unique associated solution y ∈ Y of (2.1), called the

associated state. Let y[u] denote this solution. We consider control constraints of the form u ∈ Uad,
where

Uad = {u ∈ L2(0, T )m; ǔi ≤ ui(t) ≤ ûi, i = 1, . . . ,m}, (2.3)

for some constants ǔi < ûi, for i = 1, . . . ,m. In addition, we have finitely many linear running state
constraints of the form

gj(y(·, t)) :=

∫
Ω

cj(x)y(x, t)dx+ dj ≤ 0, for t ∈ [0, T ], j = 1, . . . , q, (2.4)

where cj ∈ H2(Ω) ∩H1
0 (Ω) for j = 1, . . . , q, and d ∈ Rq.

We call any (u, y[u]) ∈ L2(0, T )m × Y a trajectory, and if it additionally satisfies the control and
state constraints, we say it is an admissible trajectory. The cost function is

J(u, y) :=1
2

∫
Q

(y(x, t)− yd(x))2dxdt

+ 1
2

∫
Ω

(y(x, T )− ydT (x))2dx+
m∑
i=1

αi

∫ T

0

ui(t)dt,

(2.5)

where

yd ∈ L2(Q), ydT ∈ H1
0 (Ω), (2.6)

and α ∈ Rm. We consider the optimal control problem

Min
u∈Uad

J(u, y[u]); subject to (2.4). (P)

For problem (P), assuming it in the sequel to be feasible, we consider two types of solutions.

Definition 2.1. We say that (ū, y[ū]) is an L2-local solution (resp., L∞-local solution) if there exists
ε > 0 such that (ū, y[ū]) is a minimum among the admissible trajectories (u, y) that satisfy ‖u −
ū‖2 < ε (resp., ‖u− ū‖∞ < ε).

The state equation is well-posed and has a solution in Y . Furthermore, the mapping u 7→ y,L2(0, T )→
Y is of class C∞. Since (P) has a bounded feasible set, it is easily checked that its set of solutions of
(P) is non-empty. For details regarding these assertions see Appendix A.
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2.2 First order optimality conditions

It is well-known that the dual ofC([0, T ]) is the set of (finite) Radon measures, and that the action of a
finite Radon measure coincides with the Stieltjes integral associated with a bounded variation function
µ ∈ BV (0, T ). We may assume w.l.g. that µ(T ) = 0, and we let dµ denote the Radon measure
associated to µ. Note that if dµ belongs to the setM+(0, T ) of nonnegative finite Radon measures
then we may take µ nondecreasing and right-continuous. Set

BV (0, T )0,+ :=
{
µ ∈ BV (0, T ) nondecreasing, right-continuous; µ(T ) = 0

}
. (2.7)

Let (ū, ȳ) be an admissible trajectory of problem (P ). We say that µ ∈ BV (0, T )q0,+ is complemen-
tary to the state constraint for ȳ if∫ T

0

gj(ȳ(·, t))dµj(t)=
∫ T

0

(∫
Ω

cj(x)ȳ(x, t)dx+ dj

)
dµj(t) = 0, j = 1, . . . , q. (2.8)

Let (β, µ) ∈ R+ × BV (0, T )q0,+. We say that p ∈ L∞(0, T ;H1
0 (Ω)) is the costate associated

with (ū, ȳ, β, µ), or shortly with (β, µ), if (p, p0) is solution of (B.5). As explained in Appendix B.2,
p = p1 −

∑q
j=1 cjµj for some p1 ∈ Y . In particular p(·, 0) and p(·, T ) are well-defined and it can

be checked that p0 = p(·, 0).

Definition 2.2. We say that the triple (β, p, µ) ∈ R+ × L∞(0, T ;H1
0 (Ω)) × BV (0, T )q0,+ is a

generalized Lagrange multiplier if it satisfies the following first-order optimality conditions: µ is com-
plementary to the state constraint, p is the costate associated with (β, µ), the non-triviality condition
(β, dµ) 6= 0 holds and, for i = 1 to m, defining the switching function by

Ψp
i (t) := βαi +

∫
Ω

bi(x)ȳ(x, t)p(x, t)dx, for i = 1, . . . ,m, (2.9)

one has Ψp ∈ L∞(0, T )m and
m∑
i=1

∫ T

0

Ψp
i (t)(ui(t)− ūi(t))dt ≥ 0, for every u ∈ Uad. (2.10)

We let Λ(ū, ȳ) denote the set of generalized Lagrange multipliers associated with (ū, ȳ). If β = 0 we
say that the corresponding multiplier is singular. Finally, we write Λ1(ū, ȳ) for the set of pairs (p, µ)
with (1, p, µ) ∈ Λ(ū, ȳ). When the nominal solution is fixed and there is no place for confusion, we
just write Λ and Λ1.

We recall from [5, Lem. 3.5(i)] the following statement on first order conditions.

Lemma 2.3. If (ū, y[ū]) is an L2-local solution of (P ), then the associated set Λ of multipliers is
nonempty.

3 Second order necessary conditions

We start this section by recalling some results obtained in [5], the main one being the second order
necessary condition of Theorem 3.6. We then introduce the Goh transform and apply it to the quadratic
form and the critical cone, and then obtain necessary conditions on the transformed objects (see
Theorem 3.13). We show later in Section 4 that these necessary conditions can be strengthened to
get sufficient conditions for optimality (see Theorem 4.5).

Let us consider an admissible trajectory (ū, ȳ).
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Optimal control of a semilinear heat equation 5

3.1 Assumptions on the control structure and additional state regularity

Consider the contact sets associated to the control bounds defined, up to null measure sets, by Ǐi :=
{t ∈ [0, T ]; ūi(t) = ǔi}, Îi := {t ∈ [0, T ]; ūi(t) = ûi}, Ii := Ǐi ∪ Îi. For j = 1, . . . , q, the
contact set associated with the jth state constraint is ICj := {t ∈ [0, T ]; gj(ȳ(·, t)) = 0}. Given
0 ≤ a < b ≤ T , we say that (a, b) is a maximal state constrained arc for the jth state constraints, if
ICj contains (a, b) but it contains no open interval strictly containing (a, b). We define in the same way
a maximal (lower or upper) control bound constraints arc (having in mind that the latter are defined up
to a null measure set).

We will assume the following finite arc property:{
the contact sets for the state and bound constraints are,
up to a finite set, the union of finitely many maximal arcs.

(3.1)

In the sequel we identify ū (defined up to a null measure set) with a function whose ith component is
constant over each interval of time that is included, up to a zero-measure set, in either Ǐi or Îi. For
almost all t ∈ [0, T ], the set of active constraints at time t is denoted by (B̌(t), B̂(t), C(t)) where

B̌(t) := {1 ≤ i ≤ m; ūi(t) = ǔi},
B̂(t) := {1 ≤ i ≤ m; ūi(t) = ûi},
C(t) := {1 ≤ j ≤ q; gj(ȳ(·, t)) = 0}.

(3.2)

These sets are well-defined over open subsets of (0, T ) where the set of active constraints is constant,
and by (3.1), there exist time points called junction points 0 =: τ0 < · · · < τr := T , such that the
intervals (τk, τk+1) are maximal arcs with constant active constraints, for k = 0, . . . , r − 1. We may
sometimes call them shortly maximal arcs. Form = 1 we call junction points where a BB junction if we
have active bound constraints on both neighbouring maximal arcs, a CB junction (resp. BC junction) if
we have a state constrained arc and an active bound constrained arc.

Definition 3.1. For k = 0, . . . , r − 1, let B̌k, B̂k, Ck denote the set of indexes of active lower and
upper bound constraints, and state constraints, on the maximal arc (τk, τk+1), and setBk := B̌k∪B̂k.

In the discussion that follows we fix k in {0, . . . , r−1}, and consider a maximal arc (τk, τk+1), where
the junction points. Set B̄k := {1, . . . ,m} \Bk and

Mij(t) :=

∫
Ω

bi(x)cj(x)ȳ(x, t)dx, 1 ≤ i ≤ m, 1 ≤ j ≤ q. (3.3)

Let M̄k(t) (of size |B̄k| × |Ck|) denote the submatrix of M(t) having rows with index in B̄k and
columns with index in Ck.

For the remainder of the article we make the following set of assumptions.

Hypothesis 3.2. The following conditions hold:

1. the finite maximal arc property (3.1),

2. the problem is qualified (cf. also [5, Sec. 3.2.1]), i.e., for j = 1, . . . , q:{
there exists ε > 0 and u ∈ Uad such that v := u− ū satisfies:
gj(ȳ(·, t)) + g′j(ȳ(·, t))z[v](·, t) < −ε, for all t ∈ [0, T ].

(3.4)

DOI 10.20347/WIAS.PREPRINT.2778 Berlin 2020



M.S. Aronna, J.F. Bonnans, A. Kröner 6

3. We assume that |Ck| ≤ |B̄k|, for k = 0, . . . , r − 1, and that the following (uniform) local
controllability condition holds:{

there exists α > 0, such that |M̄k(t)λ| ≥ α|λ|, for all λ ∈ R|Ck|,

a.e. over each maximal arc (τk, τk+1), for k = 0, . . . , r − 1.
(3.5)

4. the discontinuity of the derivative of the state constraints at corresponding junction points, i.e.,

for some c > 0: gj(ȳ(·, t)) ≤ −c dist(t, ICj ), for all t ∈ [0, T ], j = 1, . . . , q, (3.6)

5. the uniform distance to control bounds whenever they are not active, i.e. there exists δ > 0
such that,

dist
(
ūi(t), {ǔi, ûi}

)
≥ δ, for a.a. t /∈ Ii, for all i = 1, . . . ,m, (3.7)

6. the following regularity for the data (we do not try to take the weakest hypotheses) for some
r > n+ 1:

y0, ydT ∈ W 1,r
0 (Ω) ∩W 2,r(Ω), yd, f ∈ L∞(Q), b ∈ W 2,∞(Ω)m+1, (3.8)

7. the control ū has left and right limits at the junction points τk ∈ (0, T ), (this will allow to apply
[5, Lem. 3.8]).

Remark 3.3. Hypotheses 3.2 4 and 5 are instrumental for constructing feasible perturbations of the
nominal trajectory, used in the proof of Theorem 3.6 made in [5].

In view of point 2 above, we consider from now on β = 1 and thus we omit the component β of the
multipliers.

Theorem 3.4. The following assertions hold.

(i) For any u ∈ L∞(0, T )m, the associated state y[u] belongs toC(Q̄). If u remains in a bounded
subset of L∞(0, T )m then the corresponding states form a bounded set in C(Q̄). In addition,
if the sequence (u`) of admissible controls converges to ū a.e. on (0, T ), then the associated
sequence of states (y` := y[u`]) converges uniformly to ȳ in Q̄.

(ii) The set Λ1 is nonempty and for every (p, µ) ∈ Λ1, one has that µ ∈ W 1,∞(0, T )q and p is
essentially bounded in Q.

Proof. We refer to [5, Thm. 4.2]. Note that the non-emptiness of Λ1 follows from (3.4).

3.2 Second variation

For (p, µ) ∈ Λ1, set κ(x, t) := 1− 6γȳ(x, t)p(x, t), and consider the quadratic form

Q[p](z, v) :=

∫
Q

(
κz2 + 2p

m∑
i=1

vibiz

)
dxdt+

∫
Ω

z(x, T )2dx. (3.9)
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Optimal control of a semilinear heat equation 7

Let (u, y) be a trajectory, and set

(δy, v) := (y − ȳ, u− ū). (3.10)

Recall the definition of the operator A given in (B.1). Subtracting the state equation at (ū, ȳ) from the
one at (u, y), we get that

d

dt
δy + Aδy =

m∑
i=1

vibiy − 3γȳ(δy)2 − γ(δy)3 in Q,

δy = 0 on Σ, δy(·, 0) = 0 in Ω.

(3.11)

See the definition of the Lagrangian function L given in equation (B.4) of the Appendix.

Proposition 3.5. Let (p, µ) ∈ Λ1, and let (u, y) be a trajectory. Then

L[p, µ](u, y, p)− L[p, µ](ū, ȳ, p)

=

∫ T

0

Ψp(t) · v(t)dt+ 1
2
Q[p](δy, v)− γ

∫
Q

p(δy)3dxdt. (3.12)

Here, we omit the dependence of the Lagrangian on (β, p0) being equal to (1, p(·, 0)).

Proof. We refer to [5, Prop. 4.3].

3.3 Critical directions

Recall the definitions of Ǐi, Îi and ICj given in Section 3.1, and remember that we use z[v] to denote
the solution of the linearized state equation (B.2) associated to v.

We define the cone of critical directions at ū in L2, or in short critical cone, by

C :=



(z[v], v) ∈ Y × L2(0, T )m;

vi(t)Ψ
p
i (t) = 0 a.e. on [0, T ], for all (p, µ) ∈ Λ1

vi(t) ≥ 0 a.e. on Ǐi, vi(t) ≤ 0 a.e. on Îi, for i = 1, . . . ,m,∫
Ω

cj(x)z[v](x, t)dx ≤ 0 on ICj , for j = 1, . . . , q


. (3.13)

The strict critical cone is defined below, and it is obtained by imposing that the linearization of active
constraints is zero,

Cs :=


(z[v], v) ∈ Y × L2(0, T )m; vi(t) = 0 a.e. on Ii, for i = 1, . . . ,m,∫

Ω

cj(x)z[v](x, t)dx = 0 on ICj , for j = 1, . . . , q

 . (3.14)

Hence, clearly Cs ⊆ C, and Cs is a closed subspace of Y × L2(0, T )
m
.

3.4 Second order necessary condition

We recall from [5, Thm. 4.7].

Theorem 3.6 (Second order necessary condition). Let the admissible trajectory (ū, ȳ) be anL∞-local
solution of (P ). Then

max
(p,µ)∈Λ1

Q[p](z, v) ≥ 0, for all (z, v) ∈ Cs. (3.15)

DOI 10.20347/WIAS.PREPRINT.2778 Berlin 2020
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3.5 Goh transform

Given a critical direction (z[v], v), set

w(t) :=

∫ t

0

v(s)ds; B(x, t) := ȳ(x, t)b(x); ζ(x, t) = z(x, t)−B(x, t) · w(t). (3.16)

Then ζ satisfies the initial and boundary conditions

ζ(x, 0) = 0 for x ∈ Ω, ζ(x, t) = 0 for (x, t) ∈ Σ. (3.17)

Remembering the definition (B.1) of the operator A, we obtain that

ζ̇+Aζ =

(
ż + Az −

m∑
i=1

viBi

)
−

m∑
i=1

wi(ABi+Ḃi), ζ(·, 0) = 0, ζ(x, t) = 0 on Σ. (3.18)

In view of the linearized state equation (B.2), the term between the large parentheses in the latter
equation vanishes. Since Ḃi = bi ˙̄y it follows that

ζ̇(x, t) + (Aζ)(x, t) = B1(x, t) · w(t), ζ(·, 0) = 0, ζ(x, t) = 0 on Σ, (3.19)

where
B1
i := −fbi + 2∇ȳ · ∇bi + ȳ∆bi − 2γȳ3bi, for i = 1, . . . ,m. (3.20)

Equation (3.19) is well-posed since b ∈ W 2,∞(Ω), and the solution ζ belongs to Y . We use ζ[w] to
denote the solution of (3.19) corresponding to w.

3.6 Goh transform of the quadratic form

Recall that (ū, ȳ) is a feasible trajectory. Let p̄ = p[ū] be the costate associated to ū, and set

W := Y × L2(0, T )m × Rm. (3.21)

Let S(t) be the time dependent symmetric m×m−matrix with generic term

Sij(t) :=

∫
Ω

bi(x)bj(x)p(x, t)ȳ(x, t)dx, for 1 ≤ i, j ≤ m. (3.22)

Set

χ :=
d

dt
(pȳ) = pf + p∆ȳ − ȳ∆p+ 2pȳ3 − ȳ(ȳ − yd)− ȳ

q∑
j=1

cjµ̇j. (3.23)

Observe that

Ṡij(t) =

∫
Ω

bibj
d

dt
(pȳ)dx =

∫
Ω

bibjχdx. (3.24)

Since ȳ, p belong to L∞(0, T,H1
0 (Ω)), and yd, ȳ3, µ̇ are essentially bounded, integrating by parts

the terms in (3.23) involving the Laplacian operator and using (3.8), we obtain that Ṡij is essentially
bounded. So we can define the continuous quadratic form on W :

Q̂[p, µ](ζ, w, h) :=

∫ T

0

q̂I(t)dt+ q̂T , (3.25)
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where

q̂I :=

∫
Ω

κ

(
ζ + ȳ

m∑
i=1

biwi

)2

dx− w>Ṡw

− 2
m∑
i=1

wi

∫
Ω

[
ζ
(
−∆bip− 2∇bi · ∇p+ bi(ȳ − yd) + bi

q∑
j=1

cjµ̇j
)
− pB1 · w

]
dx, (3.26)

and

q̂T :=∫
Ω

[(
ζ(x, T ) + ȳ(x, T )

m∑
i=1

hibi(x)
)2

+ 2
m∑
i=1

hibi(x)p(x, T )ζ(x, T )

]
dx+ h>S(T )h. (3.27)

Lemma 3.7 (Transformed second variation). For v ∈ L2(0, T )m, and w ∈ AC([0, T ])m given by
the Goh transform (3.16), and for all (p, µ) ∈ Λ1, we have

Q[p](z[v], v) = Q̂[p, µ](ζ[w], w, w(T )). (3.28)

Proof. We first replace z by ζ +B · w = ζ + ȳ
∑m

i=1wibi inQ, and define

Q̃ :=

∫
Q

[
κ(ζ + ȳ

m∑
i=1

wibi)
2 + 2p

m∑
i=1

vibi(ζ + ȳ
m∑
j=1

wjbj)
]
dxdt

+

∫
Ω

(
ζ(T ) + ȳ(T )

m∑
i=1

wi(T )bi
)2

dx. (3.29)

We aim at proving that Q̃ coincides with Q̂. This will be done by removing the dependence on v from
the above expression. For this, we have to deal with the bilinear term in Q̃, namely with

Q̃b := Q̃b,1 + 2
m∑
i=1

Q̃b,2i, (3.30)

where, omitting the dependence on the multipliers for the sake of simplicity of the presentation,

Q̃b,1 := 2

∫ T

0

v>Swdt and Q̃b,2i :=

∫ T

0

vi

∫
Ω

bipζdxdt, for i = 1, . . . ,m. (3.31)

Concerning Q̃b,1, since S is symmetric, we get, integrating by parts,

Q̃b,1 =
[
w>Sw

]T
0
−
∫ T

0

w>Ṡwdt. (3.32)

Hence Q̃b,1 is a function of w and w(T ). Concerning Q̃b,2i defined in (3.31), integrating by parts, we
get

Q̃2,bi = wi(T )

∫
Ω

bip(x, T )ζ(x, T )dx−
∫ T

0

wi

∫
Ω

bi
d

dt

(
pζ
)
dxdt. (3.33)
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For the derivative inside the latter integral, one has

d

dt

(
p(x, t)ζ(x, t)

)
= −∆pζ + p∆ζ − ζ

(
(ȳ − yd) +

q∑
j=1

cjµ̇j

)
+ pB1 · w. (3.34)

By Green’s Formula:∫
Q

wibi
(
−∆pζ + p∆ζ

)
dxdt =

∫
Q

wi
(
∆bip+ 2∇bi · ∇p)ζdxdt. (3.35)

Using (3.34) and (3.35) in the expression (3.33) yields

Q̃b,2i = wi(T )

∫
Ω

bip(x, T )ζ(x, T )dx+

∫
Q

wi

[
ζ
(
−∆bip− 2∇bi · ∇p

+ bi(ȳ − yd) + bi

q∑
j=1

cjµ̇j
)
− pB1 · w

]
dxdt. (3.36)

Hence, Q̃b,2 is a function of (ζ, w, w(T )). Finally, putting together (3.29), (3.30), (3.32) and (3.36)

yields an expression for Q̃ that does not depend on v and coincides with Q̂ (in view of its definition
given in (3.25)-(3.27)). This concludes the proof.

Remark 3.8. The matrix appearing as coefficient of the quadratic term w in Q̂ (see (3.26)) is the
symmetric m×m time dependent matrix R(t) with entries

Rij :=

∫
Ω

(
κbibj ȳ

2 − Ṡij + p(biB
1
j + bjB

1
i )
)

dx, for i, j = 1, . . . ,m. (3.37)

3.7 Goh transform of the critical cone

Here, we apply the Goh transform to the critical cone and obtain the cone PC in the new variables
(ζ, w, w(T )). We then define its closure PC2, that will be used in the next section to prove second
order sufficient conditions. In Proposition 3.12, we characterize PC2 in the case of scalar control.

3.7.1 Primitives of strict critical directions

Define the set of primitives of strict critical directions as

PC :=

{
(ζ, w, w(T )) ∈ Y ×H1(0, T )m × Rm;

(ζ, w) is given by (3.16) for some (z, v) ∈ Cs

}
, (3.38)

which is obtained by applying the Goh transform (3.16) to Cs, and let

PC2 := closure of PC in Y × L2(0, T )m × Rm. (3.39)

Remember Definition 3.1 of the active constraints sets B̌k, B̂k, Bk = B̌k ∪ B̂k, Ck.

Lemma 3.9. For any (ζ, w, h) ∈ PC , it holds

wBk
(t) =

1

τk+1 − τk

∫ τk+1

τk

wBk
(s)ds, for k = 0, . . . , r − 1. (3.40)
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Proof. Immediate from the constancy of wBk
a.e. on each (τk, τk+1), for any (ζ, w, h) ∈ PC.

Take (z, v) ∈ Cs, and let w and ζ[w] be given by the Goh transform (3.16). Let k ∈ {0, . . . , r − 1}
and take an index j ∈ Ck. Then 0 =

∫
Ω

cj(x)z(x, t)dx on (τk, τk+1). Therefore, letting Mj(t)

denote the jth column of the matrix M(t) (defined in (3.3)), one has

Mj(t) · w(t) = −
∫

Ω

cj(x)ζ[w](x, t)dx, on (τk, τk+1), for j ∈ Ck. (3.41)

We can rewrite (3.40)-(3.41) in the form

Ak(t)w(t) =
(
Bkw

)
(t), on (τk, τk+1), (3.42)

whereAk(t) is anmk×mmatrix withmk := |Bk|+ |Ck|, and Bk : L2(0, T )m → H1(τk, τk+1)mk .
We can actually consider B := (B1, . . . ,Br) as a linear continuous mapping from L2(0, T )m to
Πr−1
k=0H

1(τk, τk+1)mk , andA := (A1, . . . ,Ar) as a linear continuous mapping from L2(0, T )m into
Πr−1
k=0L

2(τk, τk+1)mk . For each t ∈ (τk, τk+1), let us use A(t) to denote the matrix Ak(t). We have
that, for a.e. t ∈ (0, T ), A(t) is of maximal rank, so that there exists a unique measurable λ(t)
(whose dimension is the rank ofA(t) and depends on t) such that

w(t) = w0(t) +A(t)>λ(t), with w0(t) ∈ KerA(t). (3.43)

Observe that A(t)A(t)> has a continuous time derivative and is uniformly invertible on [0, T ]. So,
(A(t)A(t)>)−1 is linear continuous from H1 into H1 (with appropriate dimensions) over each arc,
and A(t)A(t)>λ(t) = (Bw)(t) a.e. We deduce that t 7→ (λ(t), w0(t)) belongs to H1 over each
arc (τk, τk+1). So, in the subspace Ker(A − B), w 7→ λ(w) is linear continuous, considering the
L2(0, T )m-topology in the departure set, and the Πr−1

k=0H
1(τk, τk+1)mk -topology in the arrival set.

Since (A− B) is linear continuous over L2(0, T )m we have that

w ∈ Ker(A− B), for all (ζ, w, h) ∈ PC2. (3.44)

While the inclusion induced by (3.44) could be strict, we see that for any (ζ, w, h) ∈ PC2, λ(w) and
Aw are well-defined in the H1 spaces, and the following initial-final conditions hold:

(i) wi = 0 a.e. on (0, τ1), for each i ∈ B0,

(ii) wi = hi a.e. on (τr−1, T ), for each i ∈ Br−1,

(iii) g′j(ȳ(·, T ))[ζ(·, T ) +B(·, T ) · h] = 0 if j ∈ Cr−1.

(3.45)

From the definitions of Cs (see (3.14)) and of PC2, we can obtain additional continuity conditions at
the bang-bang junction points:

if i ∈ Bk−1 ∪Bk, then wi is continuous at τk, for all (ζ, w, h) ∈ PC2. (3.46)

Remark 3.10. Another example is whenm = 1, the state constraint is active for t < τ and the control
constraint is active for t > τ , then w is continuous at time τ . This is similar to the ODE case studied
in [2, Remark 5].

We have seen that over each arc (τk, τk+1), λk := λ(w) is pointwise well-defined, and it possesses
right limit at the entry point and left limit at the exit point, denoted by λ(τ+

k ) and λ(τ−k+1), respectively.
Let ck+1 ∈ Rm be such that, for some νk+i,

ck+1 = Ak+i(τk+1)>νk+i, for i = 0, 1, (3.47)

meaning that ck+1 is a linear combination of the rows ofAk+i(τk+1) for both i = 0, 1.
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Lemma 3.11. Let k = 0, . . . , r − 1, and let ck+1 satisfy (3.47). Then, the junction condition

ck+1 ·
(
w(τ+

k+1)− w(τ−k+1)
)

= 0, (3.48)

holds for all (ζ, w, h) ∈ PC2.

Proof. Let (ζ, w, h) in PC , and set c := ck+1 and τ := τk+1 in order to simplify the notation. Then

c · w(τ) = (νk)>Ak(τ)w(τ) = (νk)>Ak(τ)(Ak(τ))>λk(τ). (3.49)

By the same relations for index k + 1 we conclude that

(νk)>Ak(τ)(Ak(τ))>λk(τ) = (νk+1)>Ak+1(τ)(Ak+1(τ))>λk+1(τ). (3.50)

Now let (ζ, w, h) ∈ PC2. Passing to the limit in the above relation (3.50) written for (ζ[w`], w`, h`) ∈
PC , w` → w in L2(0, T )m, h` → h (which is possible since λ(t) is uniformly Lipschitz over each
arc), we get that (3.50) holds for any (ζ, w, h) ∈ PC2, from which the conclusion follows.

By junction conditions at the junction time τ = τk ∈ (0, T ), we mean any relation of type (3.48). Set

PC ′2 := {(ζ[w], w, h); w ∈ Ker(A− B), (3.48) holds, for all c satisfying (3.47)}. (3.51)

We have proved that
PC2 ⊆ PC ′2. (3.52)

In the case of a scalar control (m = 1) we can show that these two sets coincide.

3.7.2 Scalar control case

The following holds:

Proposition 3.12. If the control is scalar, then

PC2 =


(ζ[w], w, h) ∈ Y × L2(0, T )× R; w ∈ Ker(A− B);

w is continuous at BB, BC, CB junctions

limt↓0w(t) = 0 if the first arc is not singular

limt↑T w(t) = h if the last arc is not singular

 . (3.53)

For a proof we refer to [2, Prop. 4 and Thm. 3].

3.8 Necessary conditions after Goh transform

The following second order necessary condition in the new variables follows.

Theorem 3.13 (Second order necessary condition). If (ū, ȳ) is an L∞-local solution of problem (P),
then

max
(p,µ)∈Λ1

Q̂[p, µ](ζ, w, h) ≥ 0, on PC2. (3.54)
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Proof. Let (ζ, w, h) ∈ PC2. Then there exists a sequence (ζ` := ζ[w`], w`, w`(T )) in PC with

(ζ`, w`, w`(T ))→ (ζ, w, h), in Y × L2(0, T )× R. (3.55)

Let (z`, v`) denote, for each `, the corresponding critical direction in Cs. By Lemma 3.7 and Theorem
3.6, there exists (p`, µ`) ∈ Λ1 such that

0 ≤ Q[p`](z`, v`) = Q̂[p`, µ`](ζ`, w`, h`). (3.56)

We have that (µ̇`) is bounded in L∞(0, T ) (this is an easy variant of [5, Cor. 3.12]). Extracting if
necessary a subsequence, we may assume that (µ̇`) weak* converges in L∞(0, T ) to some dµ.
Consequently, the corresponding solutions p` of (B.9) weakly converge to p in Y , p being the costate
associated with µ. In view of the definition of Q̂ in (3.25), we will show that, by strong/weak conver-
gence,

lim
`→∞
Q̂[p`, µ`](ζ`, w`, h`) = lim

`→∞
Q̂[p`, µ`](ζ, w, h) = Q̂[p, µ](ζ, w, h). (3.57)

The first equality is an easy consequence of (3.55) combined with the boundedness of p`, µ`. We next
discuss the second equality. For the terms having integral in time it is enough to detail the most delicate
term that is the contribution of ∆p to Ṡ. Denote by S` the matrix S in (3.22) for p equal to p`. Since
w belongs to L2(0, T )m, it is enough to show that Ṡ` weakly* converges in L∞(0, T )m×m. Again we
detail the contribution of the most delicate term in Ṡ`, namely for all 1 ≤ i, j ≤ m,

∫
Ω
bibj ȳ∆p`, and

it is enough to check that it weakly* converges in L∞(0, T ) to
∫

Ω
bibj ȳ∆p.

Integrating by parts in space, we see that we only need to check that ν` :=
∫

Ω
bibj∇ȳ · ∇p` weakly*

converges in L∞(0, T ) to ν :=
∫

Ω
bibj∇ȳ · ∇p. That is,

∫ T
0
ν`(t)ϕ(t)dt →

∫ T
0
ν(t)ϕ(t)dt, for all

ϕ ∈ L1(0, T ). But since ν` is bounded in L∞(0, T ) (using H2,1(Q) ⊂ L∞(0, T ;H1
0 (Ω))) say of

norm less than M > 0, it is enough to take the test functions ϕ in L∞(0, T ) instead of L1(0, T ).
Indeed assume that∫ T

0

ν`(t)ϕ(t)dt→
∫ T

0

ν(t)ϕ(t)dt, for all ϕ ∈ L∞(0, T ). (3.58)

Then, let ϕ ∈ L1(0, T ). Given ε > 0, there exists ϕε in L∞(0, T ) such that ‖ϕε − ϕ‖1 < ε. Then

lim sup
`→∞

∫ T

0

ν`(t)ϕ(t)dt ≤
∫ T

0

ν(t)ϕε(t)dt+Mε ≤
∫ T

0

ν(t)ϕ(t)dt+ 2Mε. (3.59)

So it suffices to prove (3.58). Let ϕ in L∞(0, T ). Since (extracting if necessary a subsequence) p`
weakly converges to p in H2,1(Q) we have that∇p` weakly converges to∇p in L2(Q), hence (3.58)
easily follows.

On the other hand, for the contribution of the final time it is enough to observe that p`(x, T ) does not
depend on `.

4 Second order sufficient conditions

In this section we derive second order sufficient optimality conditions.

Definition 4.1. We say that an L2-local solution (ū, ȳ) satisfies the weak quadratic growth condition
if there exist ρ > 0 and ε > 0 such that,

F (u)− F (ū) ≥ ρ(‖w‖2
2 + |w(T )|2), (4.1)

where (u, y[u]) is an admissible trajectory, ‖u− ū‖2 < ε, v := u− ū, and w(t) :=
∫ t

0
v(s)ds.
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Remark 4.2. Note that (4.1) is a quadratic growth condition in the L2-norm of the perturbations
(w,w(T )) obtained after Goh transform.

The main result of this part is given in Theorem 4.5 and establishes sufficient conditions for a trajectory
to be a L2-local solution with weak quadratic growth.

Throughout the section we assume Hypothesis 3.2. In particular, we have by Theorem 3.4 that the
state and costate are essentially bounded.

Consider the condition

g′j(ȳ(·, T ))(ζ̄(·, T ) +B(·, T )h̄) = 0, if T ∈ ICj and [µj(T )] > 0, for j = 1, . . . , q. (4.2)

We define

PC∗2 :=

{
(ζ[w], w, h) ∈ Y × L2(0, T )m × Rm; wBk

is constant on each arc;

(3.19), (3.41), (3.45)(i)-(ii), (4.2) hold.

}
. (4.3)

Note that PC∗2 is a superset of PC2.

Definition 4.3. Let W be a Banach space. We say that a quadratic form Q : W → R is a Legendre
form if it is weakly lower semicontinuous, positively homogeneous of degree 2, i.e., Q(tx) = t2Q(x)
for all x ∈ W and t > 0, and such that if x` ⇀ x and Q(x`)→ Q(x), then x` → x.

We assume, in the remainder of the article, the following strict complementarity conditions for the
control and the state constraints.

Hypothesis 4.4. The following conditions hold:
(i) for all i = 1, . . . ,m :

max
(p,µ)∈Λ1

Ψp
i (t) > 0 in the interior of Ǐi, at t = 0 if 0 ∈ Ǐi, at t = T if T ∈ Ǐi,

min
(p,µ)∈Λ1

Ψp
i (t) < 0 in the interior of Îi, at t = 0 if 0 ∈ Îi, at t = T if T ∈ Îi,

(ii) there exists (p, µ) ∈ Λ1 such that supp dµj = ICj , for all j = 1, . . . , q.

(4.4)

Theorem 4.5. Let Hypotheses 3.2 and 4.4 be satisfied. Then the following assertions hold.

a) Assume that

(i) (ū, ȳ) is a feasible trajectory with nonempty associated set of multipliers Λ1;

(ii) for each (p, µ) ∈ Λ1, Q̂[p, µ](·) is a Legendre form on the space
{(ζ[w], w, h) ∈ Y × L2(0, T )m × Rm}; and

(iii) the uniform positivity holds, i.e. there exists ρ > 0 such that

max
(p,µ)∈Λ1

Q̂[p, µ](ζ[w], w, h) ≥ ρ(‖w‖2
2 + |h|2), for all (w, h) ∈ PC∗2 . (4.5)

Then (ū, ȳ) is a L2-local solution satisfying the weak quadratic growth condition.

b) Conversely, for an admissible trajectory (ū, y[ū]) satisfying the growth condition (4.1), it holds

max
(p,µ)∈Λ1

Q̂[p, µ](ζ[w], w, h) ≥ ρ(‖w‖2
2 + |h|2), for all (w, h) ∈ PC2. (4.6)

The remainder of this section is devoted to the proof of Theorem 4.5. We first state some technical
results.
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4.1 A refined expansion of the Lagrangian

Combining with the linearized state equation (B.2), we deduce that η given by η := δy − z, satisfies
the equation {

η̇ −∆η = rη + r̃ in Q,

η = 0 on Σ, η(·, 0) = 0 in Ω
(4.7)

where r and r̃ are defined as

r := −3γȳ2 +
m∑
i=0

ūibi, r̃ :=
m∑
i=1

vibiδy − 3γȳ(δy)2 − γ(δy)3. (4.8)

Let (ū, ȳ) be an admissible trajectory. We start with a refinement of the expansion of the Lagrangian
of Proposition 3.5.

Lemma 4.6. Let (u, y) be a trajectory, (δy, v) := (u− ū, y − ȳ), z be the solution of the linearized
state equation (B.2), and (w, ζ) be given by the Goh transform (3.16). Then

(i) ‖z‖L2(Q) + ‖z(·, T )‖L2(Ω) = O(‖w‖2 + |w(T )|),
(ii.a) ‖δy‖L2(Q) + ‖δy(·, T )‖L2(Ω) = O(‖w‖2 + |w(T )|),
(ii.b) ‖δy‖L∞(0,T ;H1

0 (Ω)) = O(‖w‖∞),

(iii) ‖η‖L∞(0,T ;L2(Ω)) + ‖η(·, T )‖L2(Ω) = o(‖w‖2 + |w(T )|).

(4.9)

Before doing the proof of Lemma 4.6, let us recall the following property:

Proposition 4.7. The equation

Φ̇−∆Φ + aΦ = f̂ , Φ(x, 0) = 0, (4.10)

with a ∈ L∞(Q), f̂ ∈ L1(0, T ;L2(Ω)), and homogeneous Dirichlet conditions on ∂Ω× (0, T ), has
a unique solution Φ in C([0, T ];L2(Ω)), that satisfies

‖Φ‖C([0,T ];L2(Ω)) ≤ c‖f̂‖L1(0,T ;L2(Ω)). (4.11)

Proof. This follows from the estimate for mild solutions in the semigroup theory, see e.g. [3, Theorem
2].

Proof of Lemma 4.6. (i) Since ζ is solution of (3.19), it satisfies (4.10) with

a := −3γȳ2 +
m∑
i=0

ūibi, f̂ :=
m∑
i=1

wiB
1
i , (4.12)

where B1
i is given in (3.20). One can see, in view of Hypothesis 3.2, that f̂ ∈ L1(0, T ;L2(Ω)) since

the terms in brackets in (4.12) belong to L∞(0, T ;L2(Ω)). Thus, from Proposition 4.7 we get that
ζ ∈ C([0, T ];L2(Ω)) and

‖ζ‖L∞(0,T ;L2(Ω)) = O(‖f̂‖L1(0,T ;L2(Ω))) = O(‖w‖1). (4.13)

Thus, due to Goh transform (3.16) and Lemma A.1, we get that z belongs to C([0, T ];L2(Ω)) and
we obtain the estimate (i).
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We next prove the estimate (ii) for δy. Set ζδy := δy − (w · b)ȳ. Then

ζ̇δy −∆ζδy + aδyζδy = f̂δy, (4.14)

with
aδy := 3γȳ2 + 3γȳζδy + γ(ζδy)

2 − (ū · b),

f̂δy :=
m∑
i=1

wi
[
ȳ∆bi +∇bi · ∇ȳ − bi(2γȳ3 + f)

]
.

(4.15)

By Theorem 3.4, ζδy is in L∞(Q), hence aδy is essentially bounded. Furthermore, in view of the

regularity Hypothesis 3.2 and Lemma A.1, f̂δy ∈ L1(0, T ;L2(Ω)). We then get, using Proposition
4.7,

‖ζδy‖L∞(0,T ;H1
0 (Ω)) ≤ O(‖w‖1). (4.16)

From the latter equation and the definition of ζδy we deduce (ii.a). Since

∇(δy) = ∇(ζδy) +
m∑
i=1

wi(ȳ∇bi + bi∇ȳ), (4.17)

applying the L∞(0, T ;L2(Ω))-norm to both sides, and using (4.16) and Lemma A.1 we get (ii.b).

The estimate in (iii) follows from the following consideration. To apply Proposition 4.7 to equation (4.7)
we easily verify that r is in L∞(Q) and r̃ in L1(0, T ;L2(Ω)). Consequently, we have

‖η‖C([0,T ];L2(Ω)) ≤ c

∥∥∥∥∥
m∑
i=1

vibiδy − 3γȳ(δy)2 − γ(δy)3

∥∥∥∥∥
L1(0,T ;L2(Ω))

≤ ‖v‖2 ‖b‖∞ ‖δy‖2 + 3γ ‖ȳ‖∞
∥∥(δy)2

∥∥
L1(0,T ;L2(Ω))

+ γ
∥∥(δy)3

∥∥
L1(0,T ;L2(Ω))

.

(4.18)

Now, since ‖v‖2 → 0 and ‖δy‖∞ → 0 (by similar arguments to those of the proof of (i) in Theo-
rem 3.4), we get (iii).

Proposition 4.8. Let (p, µ) ∈ Λ1. Let (u`) ⊂ Uad and let us write y` for the corresponding states.
Set v` := u` − ū and assume that v` → 0 a.e. Then,

L[p, µ](ū+ v`, y`) = L[p, µ](ū, ȳ)

+

∫ T

0

Ψp(t) · v`(t)dt+ 1
2
Q̂[p, µ](ζ`, w`, w`(T )) + o(‖w`‖2

2 + |w`(T )|2), (4.19)

where w` and ζ` are given by the Goh transform (3.16).

Proof. Since (v`) is bounded in L∞(0, T )m and converges a.e. to 0, it converges to zero in any
Lp(0, T )m. For simplicity of notation we omit the index ` for the remainder of the proof. Set δy :=
y[ū+ v]− ȳ. By Proposition 3.5 it is enough to prove that∣∣∣Q[p](δy, v)− Q̂[p, µ](w,w(T ), ζ)

∣∣∣ = o(‖w‖2
2 + |w(T )|2), (4.20)∣∣∣∣∫

Q

p(δy)3

∣∣∣∣ = o(‖w‖2
2 + |w(T )|2). (4.21)
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Optimal control of a semilinear heat equation 17

We have, setting as before η := δy − z where z := z[v],

Q[p](δy, v)− Q̂[p, µ](ζ, w, w(T )) = Q[p](δy, v)−Q[p](z, v)

= 2

∫
Q

(v · b)pηdxdt+

∫
Q

κ(δy + z)ηdxdt+

∫
Ω

(δy(x, T ) + z(x, T ))η(x, T )dx,
(4.22)

and therefore, since the state and costate are essentially bounded:∣∣Q[p](δy, v)−Q̂[p, µ](ζ, w, w(T ))
∣∣ ≤ 2

∣∣∣∣∫
Q

(v · b)pηdxdt

∣∣∣∣+O(‖δy + z‖2‖η‖2)

+O(‖(δy + z)(·, T )‖L2(Ω)‖η(·, T )‖L2(Ω)).

(4.23)

In view of lemma 4.6, the ‘big O’ terms in the r.h.s. are of the desired order and it remains to deal with
the integral term. We have, integrating by parts in time,∫

Q

(v · b)pηdxdt =

∫
Ω

(
w(T ) · b(x)

)
p(x, T )η(x, T )dx−

∫
Q

(w · b) d

dt
(pη)dxdt. (4.24)

For the first term in the r.h.s. of (4.24) we get, in view of (4.9)(ii),∣∣∣∣∫
Ω

(w(T ) · b(x))p(x, T )η(x, T )dx

∣∣∣∣
= O(|w(T )|‖η(·, T )‖L2(Ω)) = o(‖w‖2

2 + |w(T )|2). (4.25)

And, for the second term in the r.h.s. of (4.24), since b is essentially bounded, and p and η satisfy (B.9)
and (4.7), respectively, we have that,

d

dt
(pη) = ϕ0 + ϕ1 + ϕ2,

ϕ0 := p∆η − η∆p; ϕ1 := (v · b)pδy; ϕ2 := pe(δy)2 − η

(
y − yd +

q∑
j=1

cjµ̇j(t)

)
.

(4.26)

Contribution of ϕ2. Since y, p and µ̇ are essentially bounded (see Theorem 3.4), we get∣∣∣∣∫
Q

(w · b)ϕ2

∣∣∣∣ = O
(
‖w(δy)2 + wη‖2

)
= o(‖w‖2

2 + |w(T )|2), (4.27)

where the last equality follows from the estimates for δy and η obtained in Lemma 4.6.
Contribution of ϕ1. Integrating by parts in time, we can write the contribution of ϕ1 as

1
2

∫
Q

d

dt
(w · b)2pδy = 1

2

∫
Ω

(w(T ) · b)2p(x, T )δy(x, T )− 1
2

∫
Q

(w · b)2 d

dt
(pδy) (4.28)

The contribution of the term at t = T is of the desired order. Let us proceed with the estimate for the
last term in the r.h.s. of (4.28). We have

d

dt
(pδy) = (−δy∆p+ p∆δy)

+

(
−(ȳ − yd)−

q∑
j=1

cjµ̇j

)
δy +

(
m∑
i=1

vibiy − 3γȳ(δy)2 − γ(δy)3

)
p.

(4.29)
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For the contribution of first term in the r.h.s. of latter equation we get∫
Q

(w · b)2(−δy∆p+ p∆δy) =
m∑

i,j=1

∫ T

0

wiwj

∫
Ω

∇(bibj) · (δy∇p− p∇δy). (4.30)

Using [5, Lem. 2.2], since∇(bibj) is essentially bounded for every pair i, j, it is enough to prove that∫
Ω

∇(bibj) · (δy∇p− p∇δy)→ 0 (4.31)

uniformly in time. For this, in view of the estimate for ‖δy‖L∞(0,T ;H1
0 (Ω)) obtained in Lemma 4.6 item

(ii.b), and since p is essentially bounded, it suffices to prove that p is in L∞(0, T ;H1(Ω)) which
follows from Corollary B.1.

Let us continue with the expression in (4.29). The terms containing δy go to 0 in L∞(0, T ;L2(Ω))
and that is sufficient for our purpose. The only term that has to be estimated is∫

Q

(w · b)2(v · b)yp =
1

3

∫
Q

d

dt
(w · b)3yp

=
1

3

∫
Ω

(w(T ) · b)3y(·, T )p(·, T )− 1

3

∫
Q

(w · b)3 d

dt
(yp). (4.32)

We consider the pair of state and costate equations with g := y − yd given as

ẏ −∆y + γy3 = (u · b)y + f ; y(0) = y0;

−ṗ−∆p+ γy2p = (u · b)p+ g + cµ̇; p(T ) = 0.
(4.33)

and so for sufficiently smooth ϕ : Ω× (0, T )→ R we have∫
Q

ϕ
d

dt
(yp) =

∫
Q

ϕ(ẏp+ yṗ)

=

∫
Q

ϕ
[
(∆y − γy3 + (u · b)y + f)p+ y(−∆p+ γy2p− (u · b)p− g − cµ̇)

]
=

∫
Q

ϕ [fp− yg + cµ̇y] +∇ϕ · (−p∇y + y∇p),

(4.34)

and, consequently, we have for ϕ = (w · b)3,∫
Q

(w · b)3 d

dt
(yp) =

∫
Q

(w · b)3 [fp− yg + cµ̇y] +∇(w · b)3 · (−p∇y + y∇p). (4.35)

By Hypothesis 3.2, f and b are sufficiently smooth, µ̇ is essentially bounded, y, p ∈ L∞(0, T ;H1
0 (Ω)).

We estimate∣∣∣∣∫
Q

(w · b)3 d

dt
(yp)

∣∣∣∣ ≤ ‖b‖3
∞‖w‖∞‖w‖2

2 ‖fp− yg + cµ̇y‖L∞(0,T ;L1(Ω))

+O(‖b‖2
∞‖∇b‖∞)‖w‖∞‖w‖2

2

(
‖y‖L∞(0,T ;H1

0 (Ω)) ‖p‖L∞(0,T ;H1
0 (Ω))

)
= o(‖w‖2).

Contribution of ϕ0. Integrating by parts, we have that∫ T

0

wi

∫
Ω

biϕ0 =

∫ T

0

wi

∫
Ω

bi(p∆η − η∆p) =

∫ T

0

wi

∫
Ω

∇bi · (−p∇η + η∇p)

=

∫ T

0

wi

∫
Ω

(
pη∆bi + 2η∇p · ∇bi).

(4.36)
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Recalling that b ∈ W 2,∞(Ω) (see (3.8)) and that p is essentially bounded (due to Theorem 3.4), we
get for the first term in the r.h.s. of the latter display,∣∣∣∣∫ T

0

wi

∫
Ω

pη∆bi

∣∣∣∣ ≤ ‖∆bi‖∞‖wi‖2‖p‖∞‖η‖L2(0,T ;L2(Ω)), (4.37)

that is a small-o of ‖w‖2
2 in view of item (iii.a) of Lemma 4.6. For the second term in the r.h.s. of (4.36)

we get ∣∣∣∣∫ T

0

wi

∫
Ω

η∇p · ∇bi
∣∣∣∣ ≤ ‖∇bi‖∞‖wi‖2‖η‖L2(0,T ;L2(Ω))‖∇p‖L∞(0,T ;L2(Ω)n) (4.38)

Since p ∈ L∞(0, T ;H1(Ω)) as showed some lines above and in view of item (iii.a) of Lemma 4.6,
we get that the r.h.s. of latter equation is a small-o of ‖w‖2

2, as desired.

Collecting the previous estimates, we get (4.20). Similarly, since δy → 0 uniformly and the costate p
is essentially bounded, with (4.9)(i) we get∣∣∣∣∫

Q

pb(δy)3dxdt

∣∣∣∣ = o
(
‖δy‖2

2

)
= o

(
‖w‖2

2 + |w(T )|2
)
. (4.39)

The result follows.

Corollary 4.9. Let u = ū + v be an admissible control. Then, setting w(t) :=
∫ t

0
v(s)ds, we have

the reduced cost expansion

F (u) = F (ū) +DF (ū)v +O(‖w‖2
2 + |w(T )|2). (4.40)

Proposition 4.10. Let (p, µ) ∈ Λ1, and let (z, v) ∈ Y × L2(0, T )m satisfy the linearized state
equation (B.2). Then,∫ T

0

Ψp(t) · v(t)dt = DJ(ū, ȳ)(z, v) +

q∑
j=1

∫ T

0

g′j(ȳ(·, t)z(·, t)dµj(t), (4.41)

where

DJ(ū, ȳ)(z, v) =
m∑
i=1

∫ T

0

αividt+

∫
Q

(ȳ − yd)zdxdt+

∫
Ω

(ȳ(T )− ydT )z(T )dx,

and it coincides with DF (ū)v.

Proof. It follows from (B.2), (B.7) and (2.9).

4.2 Proof of Theorem 4.5

What remains to prove is similar to what has been done in Aronna, Bonnans and Goh [2, Theorem 5],
in a finite dimensional setting, except that here the control variable may be multidimensional and in [2]
it is scalar.

We start by showing item a). If the conclusion does not hold, there must exist a sequence (u`, y`) of
admissible trajectories, with u` distinct from ū, such that v` := u`−ū converges to zero inL2(0, T )m,
and

J(u`, y`) ≤ J(ū, ȳ) + o(Υ2
`), (4.42)
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where (w`, ζ`) is obtained by Goh transform (3.16), h` := w`(T ) and

Υ` :=
√
‖w`‖2

2 + |w`(T )|2.

Let (p, µ) ∈ Λ1. Adding
∫ T

0
g(y`)dµ ≤ 0 on both sides of (4.42) leads to

L[p, µ](u`, y`) ≤ L[p, µ](ū, ȳ) + o(Υ2
`). (4.43)

Set (v̄`, w̄`, h̄`) := (v`, w`, h`)/Υ`. Then (w̄`, h̄`) has unit norm in L2(0, T )m × Rm. Extracting if
necessary a subsequence, we may assume that there exists (w̄, h̄) in L2(0, T )m × Rm such that

w̄` ⇀ w̄ and h` → h̄, (4.44)

where the first limit is given in the weak topology of L2(0, T )m. Set ζ̄ := ζ[w̄]. The remainder of the
proof is split in two parts:

Fact 1: The triple (ζ̄ , w̄, h̄) belongs to PC∗2 (defined in (4.3)).

Fact 2: The inequality (4.42) contradicts the hypothesis of uniform positivity (4.5).

Proof of Fact 1. We divide this part in four steps: (a) w̄i is constant on each maximal arc of Ii, for
i = 1, . . . ,m, (b) (3.45)(i),(ii) hold, (c) (3.41) holds, and (d) (4.2) holds.

(a) From Proposition 4.8, inequality (4.43), and (2.10) we have

−Q̂[p, dµ](ζ`, w`, h`) + o(Υ2
`) ≥

m∑
i=1

∫ T

0

Ψp
i (t) · v`,i(t)dt ≥ 0. (4.45)

By the continuity of the quadratic form Q̂[p, dµ] over the space L2(0, T )m × Rm, we deduce that

0 ≤
∫ T

0

Ψp
i (t)v`,i(t)dt ≤ O(Υ2

`), for all i = 1, . . . ,m. (4.46)

Hence, since the integrand in previous inequality is nonnegative for all ` ∈ N, we have that

lim
`→∞

∫ T

0

Ψp
i (t)ϕ(t)v̄`,i(t)dt = 0 (4.47)

for any nonnegative C1 function ϕ : [0, T ] → R. Let us consider, in particular, ϕ having its support
[c, d] ⊂ Ii. Integrating by parts in (4.47) and using that w̄` is a primitive of v̄`, we obtain

0 = lim
`→∞

∫ T

0

d

dt
(Ψp

iϕ)w̄`,idt =

∫ d

c

d

dt
(Ψp

i (t)ϕ)w̄idt. (4.48)

Over [c, d], v̄`,i has constant sign and, therefore, w̄i is either nondecreasing or nonincreasing. Thus,
we can integrate by parts in the latter equation to get∫ d

c

Ψp
i (t)ϕ(t)dw̄i(t) = 0. (4.49)

Take now any t0 ∈ (c, d). Assume, w.l.g. that t0 ∈ Ǐi. By the strict complementary condition for
the control constraint given in (4.4), there exists a multiplier such that the associated Ψp verifies
Ψp
i (t0) > 0. Hence, in view of the continuity of Ψp

i on Ii, there exists ε > 0 such that Ψp
i > 0 on
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(t0 − 2ε, t0 + 2ε) ⊂ (c, d). Choose ϕ such that suppϕ ⊂ (t0 − 2ε, t0 + 2ε), and Ψp
iϕ ≡ 1 on

(t0 − ε, t0 + ε), then w̄i(t0 + ε)− x̄i(t0 − ε) = 0. Since dw̄i ≥ 0, we obtain dw̄i = 0 a.e. on Ǐi.
Since t0 is an arbitrary point in the interior of Ii, we get

dw̄i = 0 a.e. on Ǐi. (4.50)

This concludes step (a).

(b) We now have to prove (3.45)(i),(ii). Assume now that B0 6= ∅ or, w.l.g., that B̌0 6= ∅, and let
i ∈ B̌0. By the previous step, w̄i is equal to some constant θ a.e. over (0, τ1). Let us show that
θ = 0. By the strict complementarity condition for the control constraint (4.4) there exist t, δ > 0 and
a multiplier such that the associated Ψp satisfies Ψp

i > δ on [0, t] ⊂ [0, τ1). By considering in (4.47)
a nonnegative Lipschitz continuous function ϕ : [0, T ]→ R being equal to 1/δ on [0, t], with support
included in [0, τ1), and since v̄`,i ≥ 0 a.e. on [0, τ1], we obtain, for any τ ∈ [0, t],

w̄`,i(τ) =

∫ τ

0

v̄`,i(s)ds ≤
∫ t

0

Ψp
i (s)ϕ(s)v̄`,i(s)ds→ 0, when `→∞. (4.51)

Thus w̄i = 0 a.e. on [0, t]. Consequently, from (4.50) we get w̄i = 0 a.e. on [0, τ1). The case when
i ∈ Br−1 follows by a similar argument. This yields item (b).

(c) Let us prove (3.41). We have, since y` is admissible and g linear,

0 ≥ gj(y`(·, t))− gj(ȳ(·, t)) =

∫
Ω

cj(x)(y` − ȳ)(x, t)dx, on [τk, τk+1], (4.52)

whenever k, j are such that k ∈ {0, . . . , r − 1} and j ∈ Ck. Let z` denote the linearized state
corresponding to v`, and let η` := y` − ȳ − z`. By Lemma (4.6)(iii), we deduce that∫

Ω

cj(x)z`(x, t)dx ≤ −
∫
cj(x)η`(x, t)dx ≤ o(Υ`), on [τk, τk+1]. (4.53)

Thus, by the Goh transform (3.16),∫
Ω

cj(x)(ζ̄`(x, t) +B(x, t) · w̄`(t))dx ≤ o(1), on [τk, τk+1], (4.54)

where ζ̄` is the solution of (3.19) corresponding to w̄`. Let ϕ be some time-dependent nonnegative
continuous function with support included in ICj . From (4.54), we get that∫ τk+1

τk

ϕ

∫
Ω

cj(ζ̄` +B · w̄`)dxdt ≤ o(1). (4.55)

Taking the limit `→∞ yields ∫ τk+1

τk

ϕ

∫
Ω

cj(ζ̄ +B · w̄)dxdt ≤ 0, (4.56)

where ζ̄ is the solution of (3.19) associated to w̄. Since (4.56) holds for any nonnegative ϕ, we get
that ∫

Ω

cj(ζ̄(x, t) +B(x, t) · w̄(t))dx ≤ 0, a.e. on [τk, τk+1]. (4.57)
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In particular, if T ∈ ICj , we get from (4.54) that∫
Ω

cj(ζ̄(x, T ) +B(x, T ) · h̄)dx ≤ 0. (4.58)

We now have to prove the converse inequalities in (4.56) and (4.58).

By Proposition 4.10 and since u` is admissible, we have

q∑
j=1

∫ T

0

g′j(ȳ(·, t))z(·, t)dµj(t) +DJ(ū, ȳ)(z, v) =

∫ T

0

Ψp(t) · v`(t)dt ≥ 0. (4.59)

By Proposition 4.9, we have F (u`) = F (ū) +DF (ū)v` + o(Υ`). This, together with (4.59), yield

0 ≤ F (u`)− F (ū) + o(Υ`) +

q∑
j=1

∫ T

0

g′j(ȳ(·, t))z(·, t)dµj(t). (4.60)

Using (4.42) in latter inequality implies that

−o(Υ`) ≤
q∑
j=1

∫ T

0

g′j(ȳ(·, t))z(·, t)dµj(t), (4.61)

thus

o(1) ≤
q∑
j=1

∫ T

0

g′j(ȳ(·, t))(ζ̄`(·, t) +B(·, t) · w̄`(t))dµj(t). (4.62)

Since, for every j = 1, . . . , q, the measure dµj has an essentially bounded density over [0, T ) (in
view of Theorem 3.4), we have that

0 ≤ lim inf
`→∞

q∑
j=1

∫
[0,T ]

g′j(ȳ(·, t))(ζ̄`(·, t) +B(·, t) · w̄`(t))dµj

= lim
`→∞

q∑
j=1

∫
[0,T )

g′j(ȳ(·, t))(ζ̄`(·, t) +B(·, t) · w̄`(t))dµj.
(4.63)

Using (4.57) and the strict complementarity for the state constraint (4.4)(ii), we get (3.41). This con-
cludes the proof of item (c).
(d) Let us now prove (4.2). Assume that j ∈ {1, . . . , q} is such that T ∈ ICj . One inequality was
already proved in (4.58). If we further have that [µj(T )] > 0, condition (4.2) follows from (4.63).

We conclude that the limit direction (ζ̄ , w̄, h̄) belongs to PC∗2 .

Proof of Fact 2. From Proposition 4.8 we obtain

Q̂[p, dµ](ζ`, w`, h`)

= L[p, µ](u`, y`)− L[p, µ](ū, ȳ)−
∫ T

0

Ψp · v`dt+ o(Υ2
`) ≤ o(Υ2

`),
(4.64)

where the last inequality follows from (4.43) and since Ψp · v` ≥ 0 a.e. on [0, T ] in view of the first
order condition (2.10). Hence,

lim inf
`→∞

Q̂[p, µ](ζ̄`, ȳ`, h̄`) ≤ lim sup
`→∞

Q̂[p, µ](ζ̄`, w̄`, h̄`) ≤ 0. (4.65)
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Let us recall that, in view of the hypothesis (iii) of the current theorem, the mapping Q̂[p, dµ] is a
Legendre form in the Hilbert space {(ζ[w], w, h) ∈ Y × L2(0, T )m × Rm}. Furthermore, for the
critical direction (ζ̄ , w̄, h̄), due to the uniform positivity condition (4.5), there is a multiplier (p̄, µ̄) ∈ Λ1

such that

ρ(‖w̄‖2
2 + |h̄|2) ≤ Q̂[p̄, µ̄](ζ̄ , w̄, h̄) = lim inf

`→∞
Q̂[p̄, µ̄](ζ̄`, w̄`, h̄`) ≤ 0, (4.66)

where the equality holds since Q̂[p̄, µ̄] is a Legendre form and the inequality is due to (4.64). From
(4.66) we get (w̄, h̄) = 0 and lim

k→∞
Q̂[p̄, µ̄](ζ̄`, w̄`, h̄`) = 0. Consequently, (w̄`, h̄`) converges

strongly to (w̄, h̄) = 0 which is a contradiction, since (w̄`, h̄`) has unit norm in L2(0, T )m×Rm. We
conclude that (ū, ȳ) is an L2-local solution satisfying the weak quadratic growth condition.

Conversely, assume that the weak quadratic growth condition (4.1) holds at (ū, ȳ) for ρ > 0. Note
that (ū, ȳ, w̄), with w̄(t) =

∫ t
0
ū(s)ds, is a L2-local solution of the problem

min
u∈Uad

J(u, y[u])− ρ
(∫ T

0

(w − w̄)2dt+ |w(T )− w̄(T )|2
)
,

s.t. ẇ = u, w(0) = 0, (2.4) holds,

(4.67)

Applying the second order necessary condition in Theorem 3.6 to this problem (4.67), followed by
the Goh transform, yields the uniform positivity (4.6). For further details we refer to the corresponding
statement for ordinary differential equations in [1, Theorem 5.5]. �

A Well-posedness of state equation and existence of optimal con-
trols

In this section we recall some statements from [5], for proofs we refer to the latter reference.

Lemma A.1. The state equation (2.1) has a unique solution y = y[u, y0, f ] in Y . The mapping
(u, y0, f) 7→ y[u, y0, f ] is C∞ from L2(0, T )m ×H1

0 (Ω) × L2(Q) to Y , and nondecreasing w.r.t.
y0 and f . In addition, there exist functions Ci, i = 1 to 2, not decreasing w.r.t. each component, such
that

‖y‖L∞(0,T ;L2(Ω)) + ‖∇y‖2 ≤ C1(‖y0‖2, ‖f‖2, ‖u‖2‖b‖∞), (A.1)

‖y‖Y ≤ C2(‖y0‖H1
0 (Ω), ‖f‖2, ‖u‖2‖b‖∞). (A.2)

Moreover, the state y also belongs to C([0, T ];H1
0 (Ω)), since Y is continuously embedded in that

space [14, Theorem 3.1, p.23].

Theorem A.2. The mapping u 7→ y[u] is of class C∞, from L2(0, T )m to Y .

Theorem A.3. (i) The function u 7→ J(u, y[u]), from L2(0, T )m to R, is weakly sequentially l.s.c. (ii)
The set of solutions of the optimal control problem (P) is weakly sequentially closed in L2(0, T )m. (iii)
If (P) has a bounded minimizing sequence, the set of solutions of (P) is non empty. This is the case in
particular if (P) is admissible and Uad is a nonempty, closed bounded convex subset of L2(0, T )m.
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B First order analysis

Here, we recall some properties from [5].

Throughout the section, (ū, ȳ) is a trajectory of problem (P). We recall the hypotheses (2.2) and (2.6)
on the data.

We fix a trajectory (ū, ȳ = y[ū]). Let A be linear continuous from L2(0, T ;H2(Ω)) to L2(Q) such
that, for each z ∈ L2(0, T ;H2(Ω)) and (x, t) ∈ Q,

(Az)(x, t) := −∆z(x, t) + 3γȳ(x, t)2z(x, t)−
m∑
i=0

ūi(t)bi(x)z(x, t). (B.1)

B.1 The linearized state equation

The linearized state equation at (ū, ȳ) is given by

ż + Az =
m∑
i=1

vibiȳ in Q; z = 0 on Σ, z(·, 0) = 0 on Ω. (B.2)

For v ∈ L2(0, T )
m

, equation (B.2) above possesses a unique solution z[v] ∈ Y and the mapping
v 7→ z[v] is linear from L2(0, T )

m
to Y. Particularly, the following estimate holds:

‖z‖L∞(0,T ;L2(Ω)) ≤M1

m∑
i=1

‖bi‖∞‖vi‖1, (B.3)

where M1 := e
T
2

+
∑m

i=0 ‖ūi‖1‖bi‖∞‖ȳ‖L∞(0,T ;L2(Ω)).

B.2 The costate equation

The generalized Lagrangian of problem (P ) is, choosing the multiplier of the state equation to be
(p, p0) ∈ L2(Q)×H−1(Ω) and taking β ∈ R+, dµ ∈M+(0, T ),

L[β, p, p0, µ](u, y) := βJ(u, y)− 〈p0, y(·, 0)− y0〉H1
0 (Ω)

+

∫
Q

p
(

∆y(x, t)− γy3(x, t) + f(x, t) +
m∑
i=0

ui(t)bi(x)y(x, t)− ẏ(x, t)
)

dxdt

+

q∑
j=1

∫ T

0

gj(y(·, t))dµj(t).

(B.4)

The costate equation is the condition of stationarity of the Lagrangian L with respect to the state that
is, for any z ∈ Y :∫

Q

p(ż + Az)dxdt+ 〈p0, z(·, 0)〉H1
0 (Ω) =

q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t)

+ β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx. (B.5)
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To each (ϕ, ψ) ∈ L2(Q)×H1
0 (Ω), let us associate z = z[ϕ, ψ] ∈ Y , the unique solution of

ż + Az = ϕ; z(·, 0) = ψ. (B.6)

Since this mapping is onto, the costate equation (B.5) can be rewritten, for z = z[ϕ, ψ] and arbitrary
(ϕ, ψ) ∈ L2(Q)×H1

0 (Ω), as (see [5, Equation (3.7)])∫
Q

pϕdxdt+ 〈p0, ψ〉H1
0 (Ω) =

q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t),

+ β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx. (B.7)

Next consider the alternative costates

p1 := p+

q∑
j=1

cjµj; p1
0 := p0 +

q∑
j=1

cjµj(0), (B.8)

where µ ∈ BV (0, T )q0,+ is the function of bounded variation associated with dµ. By [5, Lem. 3.2],
p1 ∈ Y and p1(·, 0) = p1

0. Therefore p(·, 0) makes sense as an element of H1
0 (Ω), and it follows

that p(·, 0) = p1(·, 0)−
∑q

j=1 cjµj(0) = p0.

Corollary B.1. If µ ∈ H1(0, T )q then p ∈ Y and

−ṗ+ Ap = β(ȳ − yd) +

q∑
j=1

cjµ̇j. (B.9)

C An example

We recall an example from [5, Appendix B] , and show that it satisfies the sufficient condition for
quadratic growth (condition (a) of Theorem 4.5).

We consider the following setting: Let Ω = (0, 1), and denote by c1(x) :=
√

2 sinπx the first
(normalized) eigenvector of the Laplace operator. We assume that γ = 0, the control is scalar (m =
1), b0 ≡ 0 and b1 ≡ 1 in Ω, and that f ≡ 0 in Q. Then the state equation with initial condition c1

reads

ẏ(x, t)−∆y(x, t) = u(t)y(x, t); (x, t) ∈ (0, 1)× (0, T ), y(x, 0) = c1(x), x ∈ Ω. (C.1)

The state satisfies y(x, t) = y1(t)c1(x), where y1 is solution of

ẏ1(t) + π2y1(t) = u(t)y1(t); t ∈ (0, T ), y1(0) = y10 = 1. (C.2)

We set T = 3 and consider the state constraint (2.4) with q = 1 and d1 := −2, and the cost function
(2.5) with α1 = 0. The state constraint reduces to

y1(t) ≤ 2, t ∈ [0, 3]. (C.3)

As target functions we take ydT := c1 and yd(x, t) := ŷd(t)c1(x) with

ŷd(t) :=


1.5et for t ∈ (0, log 2),

3 for t ∈ (log 2, 1),

4− t for t ∈ (1, 3).

(C.4)
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We assume that the lower and upper bounds for the control are ǔ := −1 and û := π2 + 1. The
optimal control is given by

ū(t) :=


û for t ∈ (0, log 2),

π2 for t ∈ (log 2, 2),

π2 − 1/ŷd for t ∈ (2, 3).

(C.5)

and the optimal state by

ȳ1(t) :=


et for t ∈ (0, log 2),

2 for t ∈ (log 2, 2),

4− t for t ∈ (2, 3).

(C.6)

The above control is feasible. The trajectory (ū, ȳ) is optimal. The costate equation is

−ṗ+ Ap = c1(ȳ1 − ŷd) + c1µ̇1, p(·, T ) = ȳ(T )− ydT = 0. (C.7)

Since ȳ and yd are colinear to c1, it follows that p(x, t) = p1(t)c1(x), and

−ṗ1 + π2p1 = ūp1 + ȳ1 − ŷd + µ̇1; p1(3) = 0. (C.8)

Over (2, 3), µ̇1 = 0 (state constraint not active) and ȳ1 = ŷd, therefore p1 and p identically vanish.
Over (log 2, 2), ū is out of bounds and therefore

0 =

∫
Ω

p(x, t)ȳ(x, t) = p1(t)ȳ1(t)

∫
Ω

c1(x)2 = 2p1(t). (C.9)

It follows that p1 and p also vanish on (log 2, 2) and that

µ̇1 = −(ȳ1 − ŷd) > 0, a.a. t ∈ (log 2, 2). (C.10)

Over (0, log 2), the control attains its upper bound, then

−ṗ1 = p1 − 1
2
et (C.11)

with final condition p1(log 2) = 0, so that

p1(t) =
et

4
− e−t. (C.12)

As expected, p1 is negative.

Lemma C.1. The hypothesis (a) of Theorem 4.5 holds.

Proof. (i) This has been obtained in part I [5]. Note that the multiplier is unique.
(ii) We check the Legendre form condition. For this, we apply the Goh transformation to the example.
For (v, z) solution of the linearized state equation we define

B := ȳb = ȳ1(t)c1(x); ξ := z −Bw = (z1 − ȳ1w)c1 (C.13)

and we observe that ξ = ξ1c1 is solution of

ξ̇ + Aξ = −(AB + Ḃ)w; ξ(0) = 0; (C.14)
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where

AB + Ḃ = (π2 − ū)B + ˙̄y1c1 = ((π2 − ū)ȳ1 + ˙̄y1)c1 (C.15)

so that

ξ̇1 + (π2 − ū)ξ1 = B1w, B1 := (π2 − ū)ȳ1 + ˙̄y1. (C.16)

For checking the Legendre condition ((ii) of Theorem 4.5), we have to check the uniform positivity of
the coefficient ofw2 in Q̂. This trivially holds on the second and third arcs, since then p and therefore χ
vanish, so that the coefficient of w2 reduces to

∫
Ω
κȳ2 = ȳ1(t)2 ≥ 1. We now detail the computation

for the first arc. Replacing z by ξ +Bw in the quadratic formQ[p](v, z) we have

Q̃ =

∫
Q

((ξ +Bw)2 + pv(ξ +Bw))dxdt+

∫
Ω

(ξ(·, T ) +B(·, T )w(T ))2dx. (C.17)

For the second term in the first integral we have∫
Q

pv(ξ +Bw)dxdt =

∫ T

0

(
p1ξ

d

dt
w + 1

2
p1ȳ1

d

dt
(w2)

)
dt

= −
∫ T

0

(
d

dt
(p1ξ)w + 1

2

d

dt
(p1ȳ1)w2

)
dt+ [boundary-terms].

= −
∫ T

0

(
p1B

1 + 1
2

d

dt
(p1ȳ1)

)
w2dt+ [boundary-terms].

(C.18)

Finally we obtain that over the first arc, the coefficient of w2 in the integral term of Q̃ is 2 + e2t/4. It
follows that Q̂[p](w, ξ[w]) is a Legendre form.
(iii) We check the uniform positivity condition. Any (w, h) ∈ PC∗2 is such that w vanishes on the two
first arcs, and since the costate vanishes on the third arc we have that, using ȳ(x, t) = (4− t)c1(x)
on the third arc

Q̂[p, µ](ξ, w, h) =

∫ 3

2

∫
Ω

(ξ(x, t) + (4− t)c1(x)w(t))2dxdt+

∫
Ω

(ξ(x, T ) + hc1(x))2dx

=

∫ 3

2

(ξ1(t) + (4− t)w(t))2dt+ (ξ1(T ) + h)2.

(C.19)

This is a Legendre form over L2(2, 3), and so it is coercive iff it has positive values except at 0. If
the value is zero then w(t) = ξ1(t)/(t − 4) so that ξ vanishes identically and therefore w also, and
h = 0. The conclusion follows.
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