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Absence of percolation in graphs based on stationary point
processes with degrees bounded by two

Benedikt Jahnel, András Tóbiás

Abstract

We consider undirected graphs that arise as deterministic functions of stationary point pro-
cesses such that each point has degree bounded by two. For a large class of point processes
and edge-drawing rules, we show that the arising graph has no infinite connected component,
almost surely. In particular, this extends our previous result for SINR graphs based on stabilizing
Cox point processes and verifies the conjecture of Balister and Bollobás that the bidirectional
k-nearest neighbor graph of a two-dimensional homogeneous Poisson point process does not
percolate for k = 2.

1 Introduction

Continuum percolation was introduced by Gilbert [G61] in order to model connectivity in large telecom-
munication networks. In his graph model, the vertices form a homogeneous Poisson point process
(PPP) in R2, and two points are connected whenever their distance is less than a fixed connection ra-
dius r > 0. He showed that this model undergoes a phase transition: if the spatial intensity λ > 0 of
the PPP is sufficiently small, then the graph consists of finite components only, almost surely, whereas
for large enough λ, the graph percolates, i.e., it has an unbounded connected component, also almost
surely.

This model has been widely extended, for instance to the case of random connection radii and for
various point processes, see [MR96, BY13, CD14, GKP16, HJC19, J16, S13, JTC20]. A drawback of
Gilbert’s model is that it allows for an arbitrarily large degree of the vertices, whereas for many applica-
tions, it is a reasonable assumption that the vertices should have bounded degree. Incorporating this
property, Häggström and Meester [HM96] studied percolation in the so-called undirected k-nearest
neighbor (U-kNN) graph, based on a stationary PPP in Rd, d ≥ 1, see top line of Figure 1. Here, all
points of the point process are connected to their k-nearest neighbors, for some fixed k ∈ N. This re-
sults in a graph that is the undirected variant of a directed graph with out-degrees bounded by k, which
itself also has degrees larger than k. Let us write kU,d for the minimum of all k ∈ N such that the
U-kNN-graph of the stationary PPP in Rd percolates with positive probability. It was shown in [HM96]
that kU,d > 1 for all d ∈ N, however, kU,d = 2 for all sufficiently large d. This was complemented in
[TY07] by the assertion that kU,d <∞ for all d ≥ 2.

Balister and Bollobás [BB13] studied the case d = 2. They also introduced another undirected graph,
which is contained in the U-kNN graph, called the bidirectional k-nearest neighbor (B-kNN) graph,
see bottom line of Figure 1. Here, one connects two points of the point process if and only if they are
mutually among the k-nearest neighbors of each other. This graph has in fact degrees bounded by
k, which immediately implies that there is no percolation for k = 1, whatever the vertex set is (note
that in the PPP case this also follows from the results of [HM96]). Define the critical out-degree kB,d
analogously to kU,d but with U replaced by B. It was shown in [BB13] that kU,2 ≤ 11 and kB,2 ≤ 15.
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Further, high-confidence results of [BB13] indicate kU,2 = 3 and kB,2 = 5. These results follow once
one shows that a certain deterministic integral exceeds a certain deterministic value, however, the
integrals were only evaluated via Monte–Carlo methods so far.

Figure 1: Top: Realizations of U-kNN graphs based on a PPP with k = 1 (left), k = 2 (center) and
k = 3 (right). Bottom: Realizations of B-kNN graphs based on a PPP with k = 2 (left), k = 4
(center) and k = 5 (right).

Another line of research on percolation of bounded-degree spatial graphs with unbounded-range de-
pendences, which is also close to applications in wireless networks, is signal-to-interference ratio
(SINR) percolation, introduced in [DBT05, DFM+06]. Here, a transmission in the network is consid-
ered successful if and only if, measured at the receiver, the incoming signal power of the transmitter
is larger than a given threshold times the interference (sum of signal powers) coming from all other
users plus some external noise. Then, the SINR graph is constructed by drawing an edge between two
vertices whenever the transmission between them is successful in both directions, see Section 4.2 for
more details. This graph has bounded degrees (see [DBT05, Theorem 1]), where the smallest degree
bound k depends on the model parameters. If the transmitted signal powers are all equal, then the
SINR graph is contained in the corresponding B-kNN graph (see [T19, Lemma 4.1.13]) and hence
also of the U-kNN graph.

In general, if in an undirected graph all degrees are bounded by k = 2, all infinite connected compo-
nents must be path graphs (no cycles, no branchings), infinite in one or two directions, which makes
the graph similar to a one-dimensional continuum percolation model, indicating that under rather gen-
eral conditions, there should be no infinite connected component. Certainly, there are deterministic
point processes where percolation is possible, but a little bit of randomness can be expected to suffice
for non-percolation. In our recent paper [JT19], we showed that in SINR graphs based on general sta-
tionary Cox point processes (CPPs) in any dimension, under rather general choices of the parameters
resulting in degrees bounded by 2, there is no percolation.
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Absence of percolation in stationary graphs with degrees bounded by two 3

In the present paper, moving away from the particular setting of SINR graphs, we present analogous
results in a general framework, extending the methods of the proof of [JT19, Theorem 2.2]. We con-
sider a generalization of the B-kNN graph, called the f -kNN graph. Here, points of the underlying
marked point process are connected by an edge whenever they are mutually among the k nearest
neighbors of each other with respect to an ordering that may also depend on some marks of the
points, apart from the (not necessarily Euclidean) distance of the points. The ordering is expressed
in terms of a function f , hence the name f -kNN graph. We show that under suitable conditions on
the underlying stationary marked point process, the f -kNN graph does not percolate for k = 2. This
in particular implies non-percolation of subgraphs of the f -kNN graph depending on additional ran-
domness. Our results extend to many stationary point processes, including all CPPs satisfying a basic
nondegeneracy condition, and all Gibbs point processes satisfying a pointwise monotonicity property
in the Hamiltonian.

As a special case, our results imply that for general stationary CPPs, the B-2NN graph does not
percolate. This in particular implies that kB,2 ≥ 3, which provides a partial verification of the high-
confidence results of [BB13]. Note that this result does not follow from [JT19, Theorem 2.2] because
in general, if the SINR graph is contained in a B-2NN graph, it is a proper subgraph of it with substan-
tially less edges. After stating and proving our main results, we also present examples of graphs with
degrees bounded by 2 that are not contained in an f -2NN graph but where our proof techniques are
also applicable, and also ones where they are not applicable.

Our setting is also related to the line of research on outdegree-one graphs, which were introduced in
[CDS20]. However, our results do not follow from the results of that paper, and also not the other way
around. We will comment on the similarities and differences of the two models in Section 4.4.

The rest of the paper is organized as follows. In Section 2 we present our setting and main result. In
Section 3 we provide the proofs for our main result. Section 4 is devoted to examples, extensions of
our methods, and discussions.

2 Model definition and main result

In this section we present our model definition and main results. Our setting is as follows. Let d ∈ N,
and let ‖ · ‖ be an arbitrary norm on Rd. Further, let B(Rd) denote the Borel-σ-algebra of Rd (clearly,
‖ · ‖ generates B(Rd)). Moreover, consider the measurable space (M,M), which serves as a mark
space.

Next, let X = {(Xi, Pi)}i∈I be a marked point process in Rd × M , so that X = {Xi}i∈I is a
stationary point process in Rd with finite intensity λ = E[X([0, 1]d)], that is nonequidistant. This
means that for all i, j, k, l ∈ I , ‖Xi − Xj‖ = ‖Xk − Xl‖ > 0 implies {i, j} = {k, l} and
‖Xi‖ = ‖Xj‖ implies i 6= j, almost surely. Clearly, this property implies that the point process
X is simple, i.e., P(Xi 6= Xj,∀i, j ∈ I with i 6= j) = 1. For illustration, note that the randomly
shifted lattice Zd + U , where U is a uniform random variable in [0, 1]d, is a simple stationary but not
nonequidistant point process on Rd.

Next, we introduce a total ordering of the points. For this, let f : [0,∞)×M → [0,∞) be a measur-
able function such that a 7→ f(a, p) is monotone decreasing for all p ∈ M . We call such a function
an ordering function.

Definition 2.1. Let f be an ordering function and (x, p), (y, q), (z, r) ∈ Rd ×M . We say that y is
f -closer to x than to z if one of the following conditions is satisfied:
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1 f(‖x− y‖, p) < f(‖z − y‖, r), or

2 f(‖x− y‖, p) = f(‖z − y‖, r) and ‖x− y‖ < ‖z − y‖.

Then, it is elementary to verify the following lemma.

Lemma 2.2. Let f be an ordering function. For X defined as above and X nonequidistant, almost
surely, the following holds. For all i ∈ I , the relation “Xi is f -closer to Xj than to Xl” is a total
ordering (i.e., irreflexive, antisymmetric and transitive, with any two elements being comparable) on
the set {(j, l) ∈ I × I : j 6= i and l 6= i}, which we call the f -ordering.

Thus, if ω = {(xi, pi)}i∈I is a deterministic, locally finite, infinite, and nonequidistant set of points
in Rd ×M (for some countable index set I) and x ∈ ω := {xi}i∈I , we can represent ω as ω =
{Vf

n(x,ω)}n∈N0 , where Vf
0 (x,ω) = x, and Vf

n(x,ω) is the n-th nearest neighbor of x in ω with
respect to the f -ordering for any n ∈ N0. Next, we build a graph based on the f -ordering.

Definition 2.3. Let f be an ordering function, k ∈ N and X defined as above with X nonequidistant,
almost surely. The f -k-nearest neighbor (f -kNN) graph gk,f (X) is the random graph having vertex
set X and for all i ∈ I and n ∈ {1, . . . , k} an edge between Xi and Vf

n(Xi,X) whenever Xi ∈
{Vf

1 (Vf
n(Xi,X),X), . . . ,Vf

k(Vf
n(Xi,X),X)}.

As the next example shows, the B-kNN graph is an f -kNN graph for a point process with trivial marks.
Let us write {?} for the one-point measurable space (withM = {∅, {?}}).

Example 2.4. Consider a nonequidistant point process X in Rd, d ≥ 1, and equip X with trivial
marks in M = {?}. Then, f(x, p) = f(x) = x yields the B-kNN graph based on X .

We will explain the relations between f -kNN graphs and SINR graphs in Section 4.2.

Apart from the basic requirement of being nonequidistant, the property of stability under local thinning
introduced in the next definition is the most important requirement on the underlying stationarity point
process. For K > 0, let BK(o) denote the open `2-ball of radius K around o. Let XK,p be given as
the union of X \ (BK(o) ×M) and the independent thinning of X ∩ (BK(o) ×M) with survival
probability p ∈ [0, 1]. That is, conditional on X, XK,p ∩ (BK(o) × M) contains each point of
X ∩ (BK(o) × M) with probability p independent of the other points of this point process, and it
contains no other points.

Definition 2.5. The marked point process X is stable under local thinning if the law of XK,p is abso-
lutely continuous with respect to the one of X for any K > 0 and p ∈ [0, 1].

To be more precise, the absolute continuity is meant in this definition in the following way. Let (Ω′,F ′,P′)
be any probability space on which XK,p and X are jointly defined for all K > 0 and p ∈ [0, 1], in
particular, P′(X ∈ ·) = P(X ∈ ·). Let G ∈ F ′ be any event such that P′(XK,p ∈ G) > 0, then we
have P′(X ∈ G) > 0. We will present examples of marked point process that are stable under local
thinning below. Equipped with the above definitions, we are now able to state our main result.

Theorem 2.6. Let f be an ordering function and let the marked point process X be stable under
local thinning and such that the underlying point process X is stationary and nonequidistant. Then,
we have

P(g2,f (X) percolates) = 0.
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Absence of percolation in stationary graphs with degrees bounded by two 5

The proof of this theorem is carried out in Section 3. In Section 4.2 we discuss the relation between
this proof and the one of [JT19, Theorem 2.2]. In Section 4.3 we will explain how it extends to other
graphs that are defined similarly, have degrees bounded by 2, but are not subgraphs of f -kNN graphs.

Note that stability under local thinning is satisfied by many point processes, as is shown by the following
proposition.

Proposition 2.7. The i.i.d. marked point process X whereX is stationary and nonequidistant is stable
under local thinning if X is a

1 Cox point process, or

2 a well-defined Gibbs point process based on a monotone HamiltonianH , whereH is monotone
if for all locally-finite configurations ω, all K > 0 and points x ∈ BK(o)×M , we have that

HBK(o)(ω) ≤ HBK(o)(ω ∪ x).

The monotonicity condition on the Hamiltonian is for example satisfied if H is defined via a non-
negative pair interaction. The proof of this proposition is presented in Section 4.1. The part regarding
CPPs has already been verified before, cf. [JT19, Lemma 5.10], but we present the proof also in
this paper for the reader’s convenience. Note that the class of stationarity and nonequidistant CPPs
includes the homogeneous PPPs. Moreover, there are also well-known point processes that are not
stable under local thinning. Let us discuss a class of such examples. As introduced in [GP12], we say
that the point process X is rigid if for any K > 0, there exists a deterministic measurable function
hK such that,

#(X ∩BK(o)) = hK(X \BK(o)),

almost surely, i.e., X outside BK(o) determines the number of points of X in BK(o). The following
proposition states that rigid point processes fail to be stable under local thinning and will be proven in
Section 4.1.

Proposition 2.8. If the non-marked version X of the marked point process X is stationary and rigid
with positive intensity, then X is not stable under local thinning.

According to [GP12], the Ginibre ensemble and the Gaussian zero process are rigid point processes
in R2, which are also stationary, nonequidistant, and of positive intensity. Hence, the proof of The-
orem 2.6 is not applicable for them. We nevertheless believe that they satisfy the assertion of the
theorem, but the proof would require additional arguments.

3 Proof of Theorem 2.6

The proof of the Theorem 2.6 proceeds along the following line of arguments. We first show that
up to P-null sets, clusters, i.e., maximally connected components, are either finite or infinite in both
directions, i.e., they contain no vertex of degree 1 in case it is infinite, see Lemma 3.1 below. Next,
we assume for a contradiction that there exists an infinite cluster with positive probability. Then, we
introduce a procedure that removes points from the infinite cluster that is closest to the origin in a
certain sense. In the resulting configuration, the infinite cluster still remains infinite, but it contains a
vertex of degree 1. Hence, the probability that the process takes values in the set of the resulting
configurations is zero. Then it remains to show that also the probability that the process takes place in
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the set of original configurations is zero, which leads to the desired contradiction. At this point it will be
useful to compare the resulting configuration with an independent thinning of the original configuration
in a certain ball, and this is where we make use of the stability under local thinning.

Note that for the proof of Theorem 2.6, we can assume that the intensity λ of the underlying stationary
point process is positive, since otherwise Theorem 2.6 is trivially true. We start with the following,
previously proven lemma, which excludes existence of infinite clusters that have a degree-one point in
the case of general random graphs based on stationary marked point processes.

Lemma 3.1. [JT19, Lemma 5.6] Let g(X) be a random graph based on a marked point process
X = {(Xi, Pi)}i∈I with values in Rd ×M , with vertex set X = {Xi}i∈I such that the degree of
all Xi ∈ X , deg(Xi), is bounded by 2, almost surely. Let X be stationary and have a finite intensity,
and consider the point process of degree-one points in infinite clusters

X0 =
∑
i∈I

δXi
1{deg(Xi) = 1, Xi is part of an infinite cluster in g(X)}.

Then, P(X0(Rd) = 0) = 1.

The proof is based on a certain variant of the mass-transport principle (see [CDS20, Section 4.2] for
instance). Informally speaking, the proof goes as follows: if there was an infinite cluster having a point
of degree one, then by stationarity, the point process of degree-1 points of infinite clusters X0 would
have to have a positive density. This however leads to a contradiction because any infinite cluster
can only contain at most one degree-1 point and must contain infinitely many degree-2 points, which
implies that the aforementioned density must be equal to zero. We refer the reader to [JT19, Section
5.2] for further details.

Let us denote by (Ci)0≤i≤L the L-many infinite clusters in g2,f (X), where L ∈ N0 ∪{0,∞}. For the
proof of Theorem 2.6, it then suffices to show that

P(L ≥ 1) = 0. (3.1)

We view X as the canonical process X(ω) = ω on the set N of marked point configurations ω
in Rd × M such that ω = {xi : (xi, pi) ∈ ω} is an infinite, locally-finite, nonequidistant point
configuration on Rd. The set of such point configurations ω will be denoted by N. Note that N and N
are equipped with the corresponding evaluation σ-fields.

Let us, for the remainder of this section, fix an ordering function f . Then, for ω ∈ N and xo ∈ ω,
we can consider the vector V(xo,ω) = (Vn(xo,ω))n∈N0 of the marked points of ω ordered in
increasing f -order of ω, measured from xo. To lighten notation, we suppress the reference to f in V
here and in the remaining document. Then, Vi(xo,ω) defined in Section 2 is the first component of
Vi(xo,ω), which we call the i-th f -nearest neighbor of xo. In particular, V0(xo,ω) = xo.

Now, if xo has degree two in g2,f (ω), then xo must be connected by an edge to both V1(xo,ω)
and V2(xo,ω) since the degree bound applies already for the edges towards xo. Moreover, both
V1(xo,ω) and V2(xo,ω) must also have xo as one of their first two f -nearest neighbors, that is,

xo ∈
{

V1(Vi(xo,ω),ω),V2(Vi(xo,ω),ω)
}
,

for all i ∈ {1, 2}. These f -nearest neighbor relations hold almost surely, in particular for every
nonequidistant configuration ω. The goal of using the configuration space N is to entirely exclude
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Absence of percolation in stationary graphs with degrees bounded by two 7

configurations that offend the degree bound or the f -nearest neighbor relations or are not nonequidis-
tant.

In the event {L ≥ 1}, let Z = (Z,R) denote the closest point to the origin that has degree two and
is contained in an infinite cluster. Without loss of generality, we will assume that this cluster is always
equal to C1. Now, Theorem 2.6 immediately follows once we have verified the following proposition.

Proposition 3.2. Consider the event {L ≥ 1} and define the random variable

J = inf{i ≥ 3: Vi(Z,X) ∈ C1}.

Then, under the assumptions of Theorem 2.6, for any i ≥ 3, we have

P({L ≥ 1} ∩ {J = i}) = 0. (3.2)

Proof of Theorem 2.6. Using a union bound and noting that {L ≥ 1} ⊂ {J < ∞}, Proposition 3.2
implies P(L ≥ 1) = 0, which is (3.1), and thus finishes the proof of Theorem 2.6.

Proof of Proposition 3.2. For ω ∈ {L ≥ 1}, by definition, we have that Z(ω) is connected by an
edge both to V1(Z(ω),ω) and V2(Z(ω),ω) in g2,f (ω). Further, thanks to the degree bound of
two, in the event {L ≥ 1}, V1(Z(ω),ω) and V2(Z(ω),ω) have no further joint neighbor in g2,f (ω)
since otherwise C1(ω) has a loop and can not be infinite by the degree bound. This way, for any
i ≥ 3, there exists l ∈ {1, 2} such that Vi(Z(ω),ω) and Vl(Z(ω),ω) are not connected by an
edge in g2,f (ω). Let us denote the corresponding Vl(Z(ω),ω) by Mi(ω), and define Mi(ω) =
V1(Z(ω),ω) if neither V1(Z(ω),ω) nor V2(Z(ω),ω) is connected to Vi(Z(ω),ω) by an edge.
The element of {V1(Z(ω),ω),V2(Z(ω),ω)} not being equal to Mi(ω) is denoted by Ni(ω). We
will write Q for the mark of Mi(ω).

Let us fix i ≥ 3. Let ω ∈ {L ≥ 1} be such that J(ω) = i. Let us define a thinned configuration

ωi = ω \ {(Mi(ω), Q),V3(Z(ω),ω), . . . ,Vi−1(Z(ω),ω)}.

We claim for P-almost all ω ∈ {L ≥ 1} ∩ {J = i} also ωi ∈ {L ≥ 1}. For this, first note that
the removal of finitely many points and their associated edges from an infinite cluster does not change
the property of the cluster to be infinite. However, the removal of points can still change the edge
structure of the remaining points. In order to exclude this, we can use the fundamental property of the
f -kNN graph that, if we remove points from a configuration, then edges between remaining points are
preserved.

Definition 3.3. Let g : N → N × (N × N), ω 7→ g(ω) = (ω,Eg(ω)) be a function that maps
a marked point configuration ω to a graph with vertex set ω. We say that g is edge-preserving if
for all ω,ω′ ∈ N with ω ⊆ ω′, for all (x, p), (y, q) ∈ ω such that (x, y) ∈ Eg(ω

′), one has
(x, y) ∈ Eg(ω).

It is easy to see that the f -kNN graph gk,f : ω 7→ gk,f (ω) is edge-preserving for all k ∈ N. In
particular, for all ω ∈ {L ≥ 1}∩ {J = i}, since g2,f is edge-preserving, also all edges between two
points of ωi in g2,f (ω) exist in g2,f (ω

i). This implies that L(ωi) ≥ 1, hence the claim. Let us note
that in Section 4.3 we will also present some examples that are not subgraphs of the f -kNN graph but
constructed similarly and are still edge-preserving.

Then, the next claim is that for ω ∈ {L ≥ 1} ∩ {J = i}, we have that ωi is contained in

B = {η : L(η) ≥ 1 and C1(η) contains a point of degree one} ⊂ {L ≥ 1}.
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Z V1 = M3V2 = N3V3

Figure 2: An illustration of the case J(ω) = 3 for some realization ω ∈ {L ≥ 1}. V3 =
V3(Z(ω),ω) is contained in the infinite cluster C1 = C1(ω) including Z = Z(ω), and it is
not a neighbor of M3 = M3(ω), which in this example equals V1 = V1(Z(ω),ω), whereas
V2 = V2(Z(ω),ω) = N3 = N3(ω). Hence, if V3 has degree two in C1, then there are vari-
ous possibilities respecting the degree bound of two to connect V3 to C1 so that it is not connected to
M3 by an edge. V3 can either be a direct neighbor of V2 (see dashed line) or a later point of the path
from Z to infinity starting with the edge from Z to V2 (dash-dotted lines) or a non-direct neighbor of
V1 on the path from Z to infinity starting with the edge from Z to V1 (dotted lines). Now, removing
M3 from the realization, both edges adjacent to V3 are preserved. Also all edges from Z to infinity
starting with the edge from Z to V2 are preserved, hence Z is still contained in an infinite cluster, but
the edge from Z to V1 is removed. In the resulting new configuration, the second-nearest f -neighbor
towards Z is V3, and hence this is the only point of the configuration that could be connected to Z by
an edge. But V3 still cannot have degree 3 or more, hence it cannot be connected to Z , which implies
that in the new configuration Z is in an infinite cluster containing a point of degree one.

The proof of this claim in the simplest case i = 3 is illustrated in Figure 2. For general i ≥ 3, recall that
Z cannot have degree higher than two in g2,f (ω

i), whereas it has degree at least one and its cluster
C1(ωi) is infinite in g2,f (ω

i). Note also that the edge betweenZ(ω) andNi(ω) still exists in g2,f (ω
i).

Further, if Z(ω) has degree two in g2,f (ω
i), then it is connected to the second-nearest f -neighbor

towards Z(ω) in ωi, which is V2(Z(ω),ωi) = Vi(Z(ω),ω), whereas V1(Z(ω),ωi) = Ni(ω).
Now, since ω /∈ B, ω ∈ {L ≥ 1} and Vi(Z(ω),ω) ∈ C1(ω), it follows that Vi(Z(ω),ω)
has degree equal to two in g2,f (ω). Further, it is neither connected to Mi(ω) by an edge nor to
Z(ω) in this graph. Hence, both edges adjacent to Vi(Z(ω),ω) also exist in g2,f (ω

i). But since
Vi(Z(ω),ω) has degree at most two in g2,f (ω

i), it follows that Z(ω) and Vi(Z(ω),ω) are not
connected by an edge in this graph. Hence, ωi ∈ B, which implies the claim.

Note that by Lemma 3.1, the set B is a P-null set, i.e.,

P({ωi : ω ∈ {L ≥ 1} ∩ {J = i}}) = 0. (3.3)

This implies (3.2) and concludes the proof of Proposition 3.2 as soon as the following lemma is verified.

Lemma 3.4. Under the assumptions of Theorem 2.6, for any i ≥ 3, P({L ≥ 1} ∩ {J = i}) > 0
implies P({ωi : ω ∈ {L ≥ 1} ∩ {J = i}}) > 0.

By Lemma 3.4, where we show that if the collection of thinned configurations is contained in a P-
null set, also the non-thinned configurations form a P-null set, we see that (3.3) implies (3.2), which
concludes the proof of Proposition 3.2.

Proof of Lemma 3.4. The proof strongly relies on the stability under local thinning. Let us fix i ≥ 3
and assume that P({L ≥ 1} ∩ {J = i}) > 0. Then, by continuity of measures, there exists K > 0
such that

P
({
ω ∈ {L ≥ 1} ∩ {J = i} : Vj(Z(ω),ω) ∈ BK(o), ∀j ∈ {1, . . . , i}

})
> 0,
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whereBK(o) denotes the open Euclidean ball of radiusK in Rd. Hence, there exists n ≥ i such that
P(Ci,K,n) > 0, where

Ci,K,n =
{
ω ∈ {L ≥ 1} ∩ {J = i} : #

(
ω ∩BK(o)

)
= n+ 1

and Vj(Z(ω),ω) ∈ BK(o),∀j ∈ {1, . . . , i}
}
.

Conditional on the event Ci,K,n, the marked point process (X\{Z})∩BK(o) has precisely n points
X1, . . .Xn.

Now, for some fixed p ∈ (0, 1), we can represent X as XK,p ∪ X′, where XK,p is the thinning
of X corresponding to Definition 2.5, and X′ is the complementary thinning. Then, X′ and XK,p ∩
(BK(o) × M) are independent thinnings of X ∩ (BK(o) × M) with survival probability 1 − p
respectively p, further, XK,p = X \X′, X′ \ (BK(o) ×M) = ∅, and XK,p \ (BK(o) ×M) =
X \ (BK(o) ×M). In order to provide a precise construction of the thinned processes, we choose
a sequence (Tm)m∈N of i.i.d. Bernoulli random variables with parameter p that is independent of X,
and given the realizationω = X(ω) = (Vi(Z(ω),ω))i∈N0 , the realizations of XK,p(ω) and X′(ω)
are defined as follows, depending also on (Tm)m∈N:

XK,p(ω) = XK,p(ω, (Tm)m∈N) = {Z(ω)} ∪ {Vm(Z(ω),ω) : Tm = 1,Vm(Z(ω),ω) ∈ BK(o)}
∪ {Vm(Z(ω),ω) : Vm(Z(ω),ω) ∈ Rd \BK(o)}

and

X′(ω) = X′(ω, (Tm)m∈N) = {Vm(Z(ω),ω) : Tm = 0,Vm(Z(ω),ω) ∈ BK(o)}.

Clearly, the projections XK,p and X ′ of XK,p respectively X′ to Rd are nonequidistant, further, XK,p

can be represented as a random variable with values in N, defined on an enlarged probability space
(Ω′,F ′,P′) governing both the point process X and the sequence (Tm)m∈N. In particular, P′(X ∈
·) = P(X ∈ ·).

Now, thanks to the assumption that P(Ci,K,n) > 0 and using the definition of XK,p,

P′
(
XK,p ∈{ωi : ω ∈ {L ≥ 1} ∩ {J = i}}

)
≥ P′

(
XK,p ∈ {ωi : ω ∈ Ci,K,n}

)
≥ P′

(
XK,p ∈ {ωi : ω ∈ Ci,K,n},X ∈ Ci,K,n

)
= P(Ci,K,n)P′

(
XK,p ∈ {ωi : ω ∈ Ci,K,n}|X ∈ Ci,K,n

)
= P(Ci,K,n)pn−i+2(1− p)i−2 > 0.

(3.4)

Finally, sinceX is stable under local thinning, underP′ the distribution ofXK,p is absolutely continuous
with respect to the one of X. Hence, it follows from (3.4) that

P
(
X ∈ {ωi : ω ∈ {L ≥ 1} ∩ {J = i}}

)
> 0,

which implies the lemma.

4 Examples, discussion and extensions

4.1 Stability under local thinning

In this section, we prove Propositions 2.7 and 2.8. In general, Proposition 2.7 claims that under P′,
the distribution of XK,p is absolutely continuous with respect to the one of X. Let F be an element
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of the evaluation σ-algebra of N such that P′(XK,p ∈ F ) > 0. We have to show that then also
P(X ∈ F ) > 0. Under the assumption that P′(XK,p ∈ F ) > 0, by continuity of measures, we can
find K, l ∈ N such that

ε := P′(XK,p ∈ F,#(XK,p ∩ (BK(o)×M)) = l) > 0. (4.1)

In other words, we have 0 < ε = P′(XK,p ∈ G) whereG = {ω ∈ F : #(ω∩(BK(o)×M)) = l}.
Thus,

P(X ∈ F ) ≥ P′(X ∈ G,XK,p = X) ≥ P′(XK,p ∈ G)P′(XK,p = X|XK,p ∈ G)

= εP′(XK,p = X|XK,p ∈ G),

and further,

P′(XK,p = X|XK,p ∈ G) ≥ P′(XK,p = X,XK,p ∈ G) = P′(X′ = ∅,XK,p ∈ G). (4.2)

Now we perform a case distinction depending of the type of the point process. We start with the case
of CPPs.

Proof of Proposition 2.7 for Cox point processes. Let X be a stationary CPP based on the stationary
random intensity measure Λ. Recall that a CPP is characterized by the property that conditional on
its directing measure Λ, it is a PPP with intensity measure Λ, see e.g. [LP17, Section 13]. According
to (4.1), we have

0 < ε = P′(XK,p ∈ G) =
∞∑
n=0

an,

where an = E′
[
P′(XK,p ∈ G|Λ)1{Λ(BK(o)) ∈ [n, n + 1)}

]
, and thus there exists m ∈ N0

with am > 0. Now, conditional on Λ, XK,p is an i.i.d. marked PPP, and hence a PPP on Rd ×M ,
which also implies that the complementary thinnings XK,p and X′ are independent given Λ, see [K93,
Colouring Theorem and Marking Theorem]. Hence, we obtain

P′(X′ = ∅,XK,p ∈ G) = E′
[
P′(X′ = ∅|Λ)P′(XK,p ∈ G|Λ)

]
=
∞∑
n=0

E′
[
e−(1−p)Λ(BK(o))P′(XK,p ∈ G|Λ)1{Λ(BK(o)) ∈ [n, n+ 1)}

]
≥

∞∑
n=0

e−(1−p)(n+1)an ≥ e−(1−p)(m+1)am > 0,

which verifies the claim that the distribution of XK,p is absolutely continuous with respect to the one
of X.

Next, we handle the case of Gibbs point processes.

Proof of Proposition 2.7 for Gibbs point processes. We consider a well-defined infinite-volume Gibbs
point process X based on the stationary and monotone Hamiltonian H , i.e., the distribution of X is a
solution for the DLR equations for the family of finite-volume Gibbs measures

Z−1
Λ (ωΛc)

∫
P(dωΛ)e−HΛ(ωΛωΛc ),
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whereZΛ is the partition function associated to the HamiltonianH ,ωΛc is a given boundary condition,
and PΛ is an i.i.d. marked homogeneous PPP with some intensity λ > 0 in Λ. We use the convention
and write ωΛωΛc instead of ωΛ ∪ ωΛc For details on infinite-volume Gibbs point processes see for
example [D19]. Again, by an application of the [K93, Colouring Theorem and Marking Theorem], via
the DLR equation with Λ = BK(o), for the canonical process, we have that

0 < ε = P′(XK,p ∈ G)

=

∫
P(dωΛc)Z−1

Λ (ωΛc)

∫
P1

Λ(dω1
Λ)1{ω1

ΛωΛc ∈ G}
∫
PΛ2(dω2

Λ)e−HΛ(ω1
Λω

2
ΛωΛc ),

where P1
Λ is an i.i.d. marked homogeneous PPP with intensity pλ in Λ and P2

Λ is an i.i.d. marked
homogeneous PPP with intensity (1 − p)λ, also in Λ. Hence, using the condition of monotonicity of
the Hamiltonian, we obtain

P′(X′ = ∅,XK,p ∈ G)

=

∫
P(dωΛc)Z−1

Λ (ωΛc)

∫
P1

Λ(dω1
Λ)1{ω1

ΛωΛc ∈ G}
∫
P2

Λ(dω2
Λ)1{ω2

Λ = ∅}e−HΛ(ω1
Λω

2
ΛωΛc )

= e−(1−p)λ|Λ|
∫

P(dωΛc)Z−1
Λ (ωΛc)

∫
P1

Λ(dω1
Λ)1{ω1

ΛωΛc ∈ G}e−HΛ(ω1
ΛωΛc )

≥ e−(1−p)λ|Λ|
∫

P(dωΛc)Z−1
Λ (ωΛc)

∫
P1

Λ(dω1
Λ)1{ω1

ΛωΛc ∈ G}
∫
P2

Λ(dω2
Λ)e−HΛ(ω1

Λω
2
ΛωΛc )

> e−(1−p)λ|Λ|ε > 0,

as desired.

Finally, we prove Proposition 2.8.

Proof of Proposition 2.8. Assume that X is stationary with positive intensity and rigid, and fix K > 0.
Let XK,p be the thinning obtained from X via keeping all points of X in Rd \ BK(o) ×M and the
points of X within BK(o) ×M independently with survival probability p ∈ (0, 1). Let X and XK,p

be the non-marked versions of X and XK,p respectively. Since X is of positive intensity, we can fix
n ∈ N such that P(X∩BK(o) = n) > 0. Then, using the configuration spaces N andN introduced
in the proof of Theorem 2.6, let us define the event

F =
{
ω ∈ N : #(ω ∩BK(o)) = 0, ω ∩ (Rd \BK(o)) ∈ h−1

K (n)
}
.

Then, we have that P(X ∈ F ) = 0 since rigidity implies that {X ∩ Rd \ BK(o) = g−1
K (n)} =

{#(X ∩BK(o)) = n} apart from P-nullsets. However, we have

P
(
XK,p ∈ F

)
≥ P

(
#(X ∩BK(o)) = n

)
P
(
#(XK,p ∩BK(o)) = 0|#(X ∩BK(o)) = n

)
= P(#(X ∩BK(o)) = n)(1− p)n > 0.

Since P(XK,p ∈ F ) > 0 but P(X ∈ F ) = 0, the distribution of XK,p is not absolutely continuous
with respect to the one of X, which finishes the proof.
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4.2 SINR graphs as subgraphs of f -kNN graphs

Let us briefly summarize the relation between Theorem 2.6 and [JT19, Theorem 2.2]. Indeed, the two
proofs are similar, in particular, two steps of the proof, Lemma 3.1 and the part of Proposition 2.7
regarding the Cox case already appeared in [JT19]. However, in [JT19] we focused on the particular
case of SINR graphs based on stationary and nonequidistant CPPs, having concrete applications in
telecommunications in mind, and we did not aim at checking whether our proof works also for a wider
class of point processes or graphs. Thus, the main novelty in this paper is not that we exploit new proof
techniques (although the proofs of Proposition 2.8 and the part of Proposition 2.7 regarding Gibbs point
processes have no analogues in [JT19]). Instead, we highlight that apart from the general combinato-
rial condition of working with undirected and stationary random graphs with degrees bounded by two,
two properties are crucial for a straightforward generalization of the proof in [JT19]: (1) the stability of
the underlying point process under local thinning and (2) the edge-preserving property of the graph.
The latter observation allows for the extensions of Theorem 2.6 presented in Section 4.3.

This puts the result into a general framework and allows for generalizations of the result both with
respect to the type of graph and with respect to the kind of point process. Here, let us note that the
SINR graph is not a special case of an f -kNN graph, but a proper subgraph of an f -2NN graph under
particular choices of the parameters, which is itself edge-preserving. Non-percolation in f -2NN graphs
was not even known before the present paper in the simplest case represented by the B-2NN graph.

In order to make the relation between f -kNN graphs and SINR graphs explicit we recall the definition
and interpretation of the latter graphs. Let M = N = [0,∞), ‖ · ‖ = ‖ · ‖2, Po be a nonnegative
random variable, and X = {(Xi, Pi)}i∈I an i.i.d. marked point process in Rd × [0,∞) such that
all Pi are distributed as Po. Let ` : (0,∞) → [0,∞), the so-called path-loss function, be a mono-
tone decreasing function. Typical examples of path-loss functions correspond to Hertzian propagation
(see [DBT05, DFM+06]), e.g., for α > d, the unbounded function `(r) = r−α, its truncated variant
`(r) = min{1, r−α}, and its “shifted” variant `(r) = (1+r)−α. Now, define f(x, p) = 1/(p`(‖x‖)).
In a telecommunication context, for (Xi, Pi) ∈ X and x ∈ Rd, Pi expresses the signal power trans-
mitted by a device at spatial positionXi, and ` describes propagation of signal strength over distance.
Note that ` need not be strictly decreasing, which gives relevance to Part (2) of Definition 2.1 in order
to make the f -ordering well-defined. We observe that in case Po is almost surely equal to a fixed
positive constant, then the arising f -kNN graph is the B-kNN graph.

In this setting, the SINR graph [DBT05] is usually introduced in the following way. Let No be another
nonnegative random variable independent of X. Choose two further parameters γ, τ > 0, the so-
called interference-cancellation factor and the SINR threshold, respectively, and for i, j ∈ I , i 6= j,
connect Xi and Xj by an edge whenever the SINR constraint is satisfied in both directions, i.e.,

Pi`(|Xi −Xj|) > τ
(
No + γ

∑
k∈I\{i,j}

Pk`(|Xk −Xj|)
)
, (4.3)

and the same holds with the roles of i and j interchanged. Then, it is known from [DBT05, Theorem
1] that if X is a simple point process (even if not stationarity or not nonequidistant), all degrees in the
SINR graph are less than k = 1 + 1/(τγ). Using the elementary arguments of [T19, Lemma 4.1.13],
one can easily verify that if X = {Xi}i∈I is also nonequidistant, then the SINR graph is a subgraph
of the f -kNN graph of the present example. Further, if No > 0 is deterministic, then the SINR graph
has bounded edge lengths and hence is a subgraph of the Gilbert graph introduced in [G61]. The
same assertion holds also for No = 0 in case ` has bounded support. For positive assertions about
percolation in SINR graphs based on various kinds of point processes, we refer the reader e.g. to
[DBT05, DFM+06, BY13, T19, T20, L19, JT19].
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Hence, for point processes satisfying the conditions of Theorem 2.6, there is no percolation in the
SINR graph if its degrees are bounded by 2, which is always the case if γ ≥ 1/(2τ). Thanks to
Proposition 2.7, in particular, Gibbs point processes are covered by this result. To the best of our
knowledge, there have been no results about SINR percolation for Gibbs point processes before (apart
from the degree bounds themselves). Regarding non-percolation in case degrees are bounded by two,
the case of CPPs was handled in [JT19, Theorem 2.2]. Here, based on the observation [JT19, Section
5.2, Proof of Proposition 5.8] that SINR graphs are edge-preserving on their own right in the sense of
Definition 3.3, we carried out a certain variant of the proof of Theorem 2.6 for the SINR graph directly,
with no direct reference to f -kNN (or even B-kNN) graphs.

The aforementioned positive results on SINR percolation guarantee that for various kinds of point
processes, the SINR graph percolates with positive probability for some positive γ given that λ is
sufficiently large, while all the other parameters (depending on the type of point process) are fixed. In
other words, we know that k∗ < ∞ holds for the infimum k∗ of all degree bounds k such that there
exists an SINR graph with largest degree equal to k that percolates. There are multiple interesting
open questions related to this. First, what is the smallest value of such k∗, and how does it depend
on the type of the point process? The main results of the present paper imply that for stationary
and nonequidistant point processes that are stable under local thinning, we have k∗ ≥ 3. Further,
according to the high-confidence results of [BB13], k∗ ≥ 5 for the two-dimensional PPP. Second,
is the smallest such degree bound the same for SINR graphs as for the underlying B-kNN graph?
While the relationship between Gilbert graphs and SINR graphs is clear (namely, Gilbert graphs are
increasing limits of SINR graphs as γ ↓ 0), we are not aware of results stating that the B-kNN graph
is an increasing limit of certain SINR graphs with degree bound k, and such a result may not be true
in general. Namely, it may be the case that an SINR constraint of the form (4.3) with degree bound
k ∈ N poses stronger restrictions on the edges of the graph than a B-kNN constraint for the same k.
We defer the investigation of such questions to future work, noting that numerical evidence indicates
that the two critical degree bounds are not the same in general, see e.g. Figure 3.

4.3 Extensions and limitations of the proof of Theorem 2.6

We now present examples of graphs with degrees bounded by two that are not contained in an f -2NN
graph but have rather similar properties to it, to the extent that the proof techniques of Theorem 2.6
are applicable to it.

Example 4.1 (Locally furthest neighbors). The edge-preserving property of f -kNN graphs (see Defini-
tion 3.3) also holds if we replace the “k-nearest neighbors with respect to the f -ordering” in their defini-
tion by “k-furthest neighbors in a bounded (possibly random) set shifted to the point, w.r.t. f -ordering”.
For the sake of simplicity of notation, let us explain how this works in the case of B-kNN graph. The
case of general f -kNN graphs can be handled similarly, taking into account also the marks and using
the f -ordering instead of the ordering of Euclidean norms. We assume throughout this discussion that
the point process X is stationary, nonequidistant, and stable under local thinning.

Let us fix a deterministic measurable set A ⊆ Rd of finite Lebesgue measure and define a random
graph with vertex set X via connecting two different points Xi, Xj of the point process X by an edge
whenever Xj is one of the k ∈ N furthest neighbors in (A + Xi) \ {Xi} and the same holds with
the roles of i and j interchanged. It is easy to see that this graph is well-defined and edge-preserving.
Clearly, for k = 2 it has degrees bounded by two. Hence, non-percolation of the graph can be verified
along the lines of the proof of Theorem 2.6 also in the case of this graph. If A is bounded, then the
graph has bounded edge lengths (unlike the B-kNN graph).

DOI 10.20347/WIAS.PREPRINT.2774 Berlin 2020



B. Jahnel, A. Tóbiás 14

Figure 3: B-kNN graphs (in the first line) and SINR graphs with degree bound k (in correspond-
ing order in the second line) for k = 2, 4, 5, for X being a stationary CPP. The random intensity
measure Λ is given as the edge-length measure (i.e., the one-dimensional Hausdorff measure) of a
two-dimensional Poisson–Voronoi tessellation. The simulation leads to the conjecture that the small-
est k such that the B-kNN graph percolates is k = 5, which would mean that it equals the one of
the two-dimensional PPP (which is 5 according to the high-confidence results of [BB13]). Further, it is
known from [T20] that in this case, for large enough λ and accordingly chosen small γ > 0, there is
also percolation in the SINR graph. However, it does not seem to be the case that this already hap-
pens when the degree bound equals 5, as the simulation suggests. Here, γ is just slightly bigger than
1/(5τ), i.e., a small further increase of γ would increase the degree bound to 6, but the SINR graph
is still much less connected than the corresponding B-5NN graph.
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This approach can be extended to the case when the deterministic set A + Xi is replaced by a
random set AXi

in such a way that {AXi
}i∈I are stationary, since the edge-preserving property

and the degree bound of two are still preserved. E.g., the proof techniques of Theorem 2.6 are still
applicable if {AXi

}i∈I is a Boolean model with random radii based onX = {Xi}i∈I [MR96]. Instead
of connecting Xi to the two furthest neighbors in X ∩ AXi

by an edge, one can also connect it to
the two nearest neighbors in X ∩AXi

and obtain the same result. We refrain from presenting further
details here.

The next example shows that there are graphs defined very similarly to the f -2NN graph for which our
methods are not applicable.

Example 4.2 (k1-th and k2-th nearest neighbors). Let k1, k2 ∈ N such that k1 < k2. Similarly to
Definition 2.3, the f -k1-th or k2-th-nearest neighbor (f -(k1, k2)NN) graph g(k1,k2),f (X) is defined
as the random graph having vertex set X and for all i ∈ I and n ∈ {1, 2} an edge between
Xi and Vf

n(Xi,X) whenever Xi ∈ {Vf
k1

(Vf
n(Xi,X),X), . . . ,Vf

k2
(Vf

n(Xi,X),X)}. In the case
k1 = 1 and k2 = 2, g(1,2),f (X) is equal to the f -2NN graph g2,f (X). However, it is easy to see that
if (k1, k2) 6= (1, 2), then the f -(k1, k2)NN graph is in general not edge-preserving in the sense of
Definition 2.3. This is a major obstacle for generalizing the proof of Theorem 2.6 to the case (k1, k2) 6=
(1, 2), despite the fact that many of the proof ingredients of the theorem are still available in this case.

4.4 Relation of our model to outdegree-one graphs

In the setting of outdegree-one graphs [CDS20], one considers directed percolation in a directed graph
arising as a deterministic and stationary function of a PPP in Rd, where each vertex has precisely one
out-degree. It was shown in [CDS20] that under certain stabilization and looping conditions of the
edge-drawing mechanism, this model does not percolate, in the sense that the out-component (or the
in-component) of any vertex is almost-surely finite, see also [H16]. In [S18], it was shown that this
result is applicable for the example of the k-th nearest neighbor graph, where the outgoing edge of a
vertex points to the k-th nearest neighbor of the vertex in the point process. This setting looks rather
similar to the one that we are considering but is still different from it, for at least two reasons. First,
although it is tempting to think that the B-kNN graph can be obtained as a deterministic transformation
of a (stationary) outdegree-one graph satisfying the conditions of [CDS20], we were not able to find
such an outdegree-one graph. Second, the k-th nearest neighbor graph is only contained in the U-
kNN graph, not in the B-kNN one; in particular, the results of [S18] cannot be derived from our ones.
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