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Abstract

The super-Brownian motion X% in a super-Brownian medium % con-

structed in [DF96a] is known to be persistent (no loss of expected mass

in the longtime behaviour) in dimensions one ([DF96a]) and three

([DF96b]). Here we �ll the gap in showing that persistence holds also

in the critical dimension two. The key to this result is that in any

dimension (d � 3); given the catalyst, the variance of the process is

�nite `uniformly in time'. This is in contrast to the `classical' super-

Brownian motion where this holds only in high dimensions (d � 3),

whereas in low dimensions the variances grow without bound, and the

process clusters leading to local extinction.
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1 Introduction and result

We are concerned with the longtime behaviour of `super-Brownian motion
X% in a super-Brownian medium %' in dimension two. Both the process

X% and the catalytic medium % will be started from Lebesgue measure ` at

time zero. This process was constructed in [DF96a] where the study of its

longtime behaviour was also initiated. This was supplemented in [DF96b].

From these papers it is well known that the process is persistent in dimensions

one and three. (In three dimensions the catalyst was actually started from its

stationary distribution rather than from Lebesgue measure at time zero; of

course, this simpli�cation is not possible in lower dimensions where % clusters

in the longtime limit.)
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In this note we are mainly interested in the critical dimension two. Here

matters are more delicate, but we show that, in contrast to what one might

expect at �rst sight, the process is persistent (Theorem 1 at p.4). In partic-

ular, it does not su�er local extinction.

We begin with a heuristic description of the catalytic super-Brownian

motion (SBM). (A formal characterisation will be given in Section 2.) Re-

call that `classical' SBM motion in R
d arises as a di�usion approximation to

critical binary branching Brownian motion (in�nite particle model) and so

can loosely be thought of as a large number of small particles, each moving

around according to an independent Brownian motion for a short (indepen-

dent) random lifetime at the end of which it dies and is replaced (at the

location where it died) by zero or two o�spring with equal probability. O�-

spring continue to evolve in the same way as their parent. In this classical

setting, the rate at which a particle dies is proportional to some constant


 > 0 called the branching rate.

In the catalytic setting, the heuristic picture is the same except that

particles only die when they are in contact with a catalyst. This is a natural
model if one is thinking of chemical reaction di�usion systems. Of course the
catalyst itself may vary in time and space and may only be present in some

localised regions such as networks of �laments. We are interested in the case

where the catalyst is itself a SBM with constant branching rate 
 > 0. We

will denote the catalyst process by %t and the corresponding catalytic SBM

by X
%

t at time t. As a rule, we will take both %0 and X
%

0 to be Lebesgue

measure `.

Somewhat more formally then, if one thinks in terms of Dynkin's additive

functional approach to superprocesses ([Dyn91]), given the medium %, an

intrinsic X-particle following a Brownian path W branches according to the

clock given by the collision local time, L[W;%](ds), of W with � ([BEP91]),

L[W;%](ds) :=

�Z
�y(Ws) %s(dy)

�
ds: (1)

Although the measures %s(dy) are singular in dimensions d � 2 ([DH79]),

these collision local times L[W;%] make sense non-trivially for d � 3 ([EP94]).

For this reason, in these dimensions the catalytic SBM X% could successfully

be constructed in [DF96a] as a continuous measure-valued (time-inhomoge-

neous) Markov process (X%; P %

r;�
), given the catalyst process % (quenched ap-

proach). In particular, P
%

0;` denotes the law of the process X% (for �xed %)
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started at time zero from Lebesgue measure `: The law of the catalyst % is

denoted by IP̀ :

In [DF96a] the longtime behaviour ofX
%

t was studied in one dimension. In

contrast to the classical SBM, the one-dimensional process X% is persistent.

Indeed

X
%

t �!
t"1

`; in P
%

0;`�probability; for IP̀�almost all %; (2)

([DF96a, Theorem 51]). That is, we have convergence without loss of ex-

pected mass. The intuitive explanation for this behaviour of X% is that at

large times the one-dimensional catalyst process % forms huge clusters that

move out to in�nity ([DF88]). In particular, any �nite window in R even-

tually becomes empty, and the surviving (recurrent) Brownian X{particles

moving in that window will not die (branch) since they do not meet any

catalyst. An averaging e�ect then leads to the expected mass ` in the limit.

A persistence result holds also in dimension d = 3 ([DF96b]). Let IP

denote the law of the time-stationary catalyst process % started at time 0

from its ergodic stationary distribution of uniform intensity. (That is the

initial law is taken to be that of %1 := limt"1 %t with %0 = `:) Then again

(X%; P %

r;�
) exists for IP{almost all %; and we may consider X = X% with

respect to the annealed law P := IP

h
P
%

0;`

i
=
R
P
%

0;`f�gIP(d%): Then ([DF96b,

Theorem 18 (a)])

Xt �!
t"1

X1 in P�law; where X1 has full intensity `: (3)

Here the intuitive explanation is that since the `branching rate' % is space-

time stationary, it controls the transient Brownian X{particles in a similar

way to a constant branching rate and so, as in the classical three-dimensional

setting, we should expect persistence. (However, as conjectured in [DF96b],

X1 should di�er from the classical steady state.)

There was some dispute at the meeting on branching processes in Ober-

wolfach in December 1995, as to whether in dimension d = 2 the catalytic

SBM X% dies out locally or not. (See also the open problem in [DF96b, Re-

mark 14].) The situation is delicate in that although the catalyst % dies out

locally in the longtime limit, in contrast to d = 1 it does so only in probabil-

ity. Indeed the time averaged % has a nondegenerate limit (see e.g. [FG86]).
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In particular, there is not a �nite time after which a given ball becomes and

remains empty. Consequently, at late times T , huge clusters of the catalyst

(whose height is of order log T , see [Fle78]) come back to our �nite window

in R
2 and (since critical binary branching with in�nite rate degenerates to

pure killing) could kill all the (recurrent) X{particles there.

The main result of the present paper, Theorem 1 below, contradicts this

intuitive picture. (A somehow detailed heuristic argument for persistence

will be given in x 3.1 below.)

For a precise formulation we introduce a number of laws of random mea-

sures on R
d; d � 3: Note that we reserve the letter Q for laws of states at

a �xed time (including t = 1); whereas P refers to process laws. For t � 0

�xed, the quenched laws

Q
%

t := P
%

0;` fX
%

t 2 (�)g (4)

make sense for IP̀ {almost all %: So Q
%

t is a random law whose distribution

we denote by

Qt := IP̀ fQ%

t 2 (�)g : (5)

On the other hand, integrating (4) with respect to IP̀ ; we obtain the annealed

law

Qt := IP̀ [Q%

t ] =

Z
Q%

tf�g IP̀ (d%): (6)

In words, Q
%

t is the law of the state of the catalytic SBM at time t; given

the medium %; whereas Qt describes the random Q
%

t ; and �nally Qt results

by mixing the Q
%

t : Note that (5) and (6) imply that Qt is the expectation

of Qt : Z
V (�)Qt(dV ) = Qt(�): (7)

Theorem 1 (persistence of catalytic SBM) Suppose d � 3:

(a) (annealed model) Each limit point Q of the annealed laws Qt as

t " 1 has full intensity:

Z
hf; �iQ(d�) = hf; `i ; f 2 B

p

+; (8)

that is,
R
�(�)Q(d�) = `(�):
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(b) (quenched model) Each limit point Q of Qt as t " 1 is concen-

trated on laws V of random measures � on R
d with full intensity:

Q

�
V :

Z
�(�)V (d�) = `(�)

�
= 1: (9)

As already mentioned, in view of the results of [DF96a] and [DF96b] the

principal interest of this theorem is the case d = 2. Note also that in contrast

to classical SBM in dimensions d � 2,

X
%

t (B) �!
t"1

0 in Qt�law is violated; (10)

for any ball B in R
d of (strictly) positive radius (non-extinction).

Remark 2 (open problems)

(i) (convergence) Of course, the existence of limit points follows from the

relative compactness of the Qt and Qt in the corresponding weak topologies

(see step 1� of the proof in x 3.3 below). It would be interesting to know

whether the limit points are unique also in dimension two, that is whether

we have convergence as t " 1. Since the process will encounter catalyst

at arbitrarily large times (see the discussion before Theorem 1), we cannot

expect the analogue of the one-dimensional result to hold. Thus it seems

reasonable to use the weak notions of convergence indicated in the Theorem.

(ii) (absolutely continuous states) Recall also that by self-similarity in

dimension two (see (24) below), a persistent convergence Qt !Q as t " 1 is

related to an absolute continuity of the measures X%

t with annealed law Qt ;

for each �xed t ([DF96b, Remark 14]). 3

Recall that for classical SBM we see the following dichotomy of behaviour.
In dimensions one and two, the variance of the amount of mass in a ball B

of positive radius grows unboundedly with time, re
ecting the clumping of

the process, and the process su�ers local extinction. On the other hand

in dimensions three (and above), the variance of the amount of mass in B

remains bounded and the process survives, and is actually persistent.

In the catalytic SBM the situation changes drastically. Here even in low

dimensions the variances, given the medium (catalyst), remain �nite as the

process evolves (see Theorem 3 at p.11 below). This is our key result, valid
in any dimension d � 3; from which it is easy to conclude persistence.



6 A. M. Etheridge and K. Fleischmann

The rest of the note is laid out as follows. In Section 2 we recall the formal

characterisation of the catalytic SBM X%. In Section 3 we provide a rigor-

ous (if intuitively unhelpful) proof, which we preface in x 3.1 by a heuristic

argument in the critical dimension two which perhaps better explains why

persistence in the case d = 2 is true (even if the formal proof is simpler in

a sense). x 3.2 contains the �niteness of variances result with a surprisingly

straightforward proof. In the �nal x 3.3 the persistence proof is completed.

For a comprehensive reference on SBM we recommend [Daw93].

2 Notation and background

In this section we recall the formal characterisation of the catalytic SBM in

terms of its Laplace transition functional and also recall expressions for the

mean and variance of the integral of the process against a test function.

Fix a number p > d; and introduce the reference function

�p(x) :=
1

(1 + jxj2)
p=2

; x 2 R
d: (11)

Write B
p

+ for the set of all functions f on R
d such that 0 � f � cf �p for

some (�nite) constant cf : Let Mp denote the set of all (non-negative) mea-

sures � de�ned on R
d such that h�p ; �i :=

R
�p(x)�(dx) < 1 (p{tempered

measures). Mp is endowed with the coarsest topology such that the map

� 7! hf; �i is continuous for f = �p and for each continuous f � 0 on R
d

with compact support.

Fix a constant 
 > 0: The catalyst process % with rate 
 is a continuous

Mp{valued time-homogeneous Markov process (%; IP�) with Laplace transi-

tion functional

IP� exp h�f; %ti = exp h�u(t); �i ; t � 0; � 2 Mp ; f 2 B
p

+ : (12)

Here1 u = fu(t) : t � 0g =
n
u(t; x) : t � 0; x 2 R

d

o
is the unique non-

negative solution to the basic cumulant equation

@

@t
u =

1

2
�u� 
 u2 on (0;1)� R

d (13)

1Where the meaning is clear, we suppress dependence on the space variable and write

simply u(t).
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with initial condition u(0; x) = f(x); x 2 R
d: (Where necessary, `solution'

has to be understood in a mild sense.) In other words, % is a continuous

(critical) SBM with constant branching rate 
: It will serve as our random
medium (catalyst).

To characterise the catalytic SBM, roughly speaking, we have to replace

the constant rate 
 in (13) by the (randomly) varying rate %t(x); where %t(x)

is the generalised derivative
%t(dx)
dx

(x) of the measure %t(dx): Because of the

time-inhomogeneity, it is convenient to write the related formal equation in

a backward setting:

�
@

@r
v
%

t (r; x) =
1

2
�v

%

t (r; x)� %r(x) v
%

t (r; x)
2; (14)

0 � r � t; x 2 R
d: The initial condition becomes a terminal condition:

v
%

t (t) = f: After a formal integration, we can rewrite (14) probabilistically

as

v
%

t (r; x) = �r;x

�
f(Wt)� 


Z
t

r

v
%

t (s;Ws)
2 L[W;%](ds)

�
; (15)

0 � r � t; x 2 R
d; where �r;x is the law of (standard) Brownian motion

W starting at time r from x; and L[W;%] is the collision local time of W with

%; formally introduced in (1). Based on the �nite measure case [EP94], in

[DF96a, Theorem 42] it was shown that this collision local time L[W;%] makes

sense non-trivially for IP̀ {almost all %; as a continuous additive functional

of Brownian motion W; provided that d � 3: From now on we assume d �

3: Moreover ([DF96a, Proposition 6]), for t; f �xed, and IP̀ {a.a. %, there

is a unique non-negative solution v
%

t to (15). Finally ([DF96a, x 5.4]), for

IP̀ {almost all %, there exists a continuous Mp{valued time-inhomogeneous

Markov process (X%; P %

r;�
) with Laplace transition functional

P %

r;�
exp h�f;X

%

t i = exp h�v
%

t (r); �i ; (16)

0 � r � t; � 2 Mp ; f 2 B
p

+ ; and v%t the solution to (15). This is the

desired catalytic SBM, with catalyst %; which was intuitively introduced in

Section 1.

By the criticality of the branching mechanism, X% has expectation

P %

r;�
[hf;X%

t i] = hSt�rf; �i (17)
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which is independent of the medium %: Here S = fSt : t � 0g is the semi-

group of Brownian motion. In particular,

P
%

0;` [X
%

t ] � `; IP̀ �a:s:; (18)

is even independent of time. For the related variances (given %); following

[DF96a] we have

Var
%

0;` [hf;X
%

t i] = 2

Z
�0;x

�Z
t

0
((St�sf) (Ws))

2
L[W;%](ds)

�
`(dx): (19)

Using the (intuitive) de�nition (1) of the collision local time L[W;%] ; and

computing the �0;x{expectation, the r.h.s. of (19) becomes

2

Z Z
t

0

Z
p(s; y � x) (St�sf(y))

2
%s(dy) ds `(dx):

Here p denotes the Brownian transition density

p(t; x) = (2�t)�d=2 exp

 
�jxj2

2t

!
; t > 0; x 2 R

d: (20)

Interchanging the order of integration gives, for IP̀ {almost all paths %;

Var
%

0;` [hf;X
%

t i] = 2

Z
t

0

D
(St�sf)

2
; %s
E
ds; (21)

t � 0; f 2 B
p

+ ([DF96a, formula (95)]).

We shall also require an expression for the Laplace transform of this vari-

ance. Using (21), an application of Iscoe's [Isc86] characterisation of the

`weighted occupation time' for classical SBM now gives

IP̀ exp
�
�Var

%

0;` [hf;X
%

t i]
�
= exp h�wf(t); `i ; f 2 B

p

+ ; (22)

where the log-Laplace functional wf is the unique non-negative solution to2

@

@t
wf =

1

2
�wf � 
 w2

f
+ 2 [Stf ]

2
on (0;1)� R

d (23)

2By an abuse of notation, we retain the t{dependence only where it requires emphasis.
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with initial condition wf(0; x) � 0: Although this equation looks a bit com-

plicated at �rst sight, in step 1� of proof of Theorem 3 below we will show

that wf has a very simple bound which implies all we need regarding the

L1{behaviour of solutions as t " 1.

Finally, recall that in the critical dimension d = 2 the catalytic SBM

X = X% is self-similar with respect to the annealed law P` := IP̀

h
P
%

0;`

i
:

K�1XKt(K
1=2� )

L
= Xt(�); t � 0; K > 0; (24)

([DF96b, Proposition 13 (b)]).

3 Proof of the persistence theorem

Before presenting a rigorous proof of Theorem 1, we give a heuristic argument

for persistence in the critical dimension d = 2:

3.1 Heuristic argument (d = 2)

Here we restrict our attention to the critical dimension two, where the per-

sistence result is completely new.

Consider the case f = p(a) with a := 2e4. Then Srf = p(a + r); and

using the identity

p(r)2 =
1

4�r
p (r=2) ; r > 0; (25)

the corresponding (random) variance (recall (21)) becomes

Var%0;` [hp(a);X
%

t i] =
1

2�

Z
t

0

1

a+ t� s

�
p

�
a+ t� s

2

�
; %s

�
ds: (26)

We can view the r.h.s. of (26) as

1

2�
log(a+ t)

Z
t

0

�
p

�
a+ t� s

2

�
; %s

�
�t(ds): (27)

Here �t is the following (probability) law on [0; t] :

1

log(a+ t)

Z
t

0

1

a+ t� s
�s(�) ds =

Z 1

0

1

log(a+ t)
�
a

t
+ 1 � s

� �ts(�) ds � �t
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as t " 1: Hence, (27) should be approximately

�
1

2�
log(a+ t) hp (a=2) ; %ti :

But hp (a=2) ; %ti su�ers extinction in IP̀ {probability as t " 1, and should in

fact be of order 1= log t; compensating log(a+ t): More precisely, from (12)

we obtain

IP̀ exp
D
� " log(a+ t) p

�
a

2

�
; %t
E
= exp h�u"(t); `i ; " � 0;

with u" solving (13) but this time with initial condition

u"(0) = " log(a+ t)p
�
a

2

�

(depending on t): Using well-known super-solutions to (13) (see e.g. [BCG93,

Lemma 1]), one easily veri�es that

lim sup
t"1

hu"(t); `i = O(") as " # 0:

Hence, the IP̀ {laws of the variances P
%

0;` hp(a);X
%

t i should be relatively com-
pact, which indicates that hp(a);X%

t i ; with respect to the annealed law P`

(de�ned before (24)) should be persistent.

Theorem 3 below is a rigorous version of the above. Notice however that

things are rather delicate. Indeed, IP̀ [%s] � `; and so for the IP̀ {expectation

of the P %

0;`{variance of hp(a);X
%

t i, from (26) we obtain

IP̀

h
Var

%

0;` [hp(a);X
%

t i]
i
=

1

2�

Z
t

0

1

a+ t� s
ds =

1

2�
log(a+ t) �!

t"1
1:

Consequently, since the expectation (18) is independent of %; the P`{variance

of hp(a);X
%

t i grows without bound as t " 1, even though the random vari-

ance remains �nite (in IP̀ {law, according to Theorem 3 below).

3.2 Finiteness of variances (d � 3)

Here is our key result on the variances:
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Theorem 3 (relative compactness of the law of variances) In any

dimension d � 3; for f 2 B
p

+ �xed, the laws

qt(�) := IP̀

n
Var

%

0;` [hf;X
%

t i] 2 (�)
o
; t � 0;

of the random variances Var
%

0;` [hf;X
%

t i] of hf;X
%

t i form a relatively compact

family.

Proof Set �
%

t (f) := Var
%

0;` [hf;X
%

t i]: Recall that the Laplace functional of �
%

t

is given by (22) and is determined by the unique solution wf � 0 of equation

(23).

1� (domination of the log-Laplace functional ) We claim that wf is domi-

nated by the heat 
ow

wf (t) :=
q
2=
 Stf; t � 0:

In fact, wf solves the heat equation

@

@t
wf =

1

2
�wf with wf (0) =

q
2=
 f:

Subtracting and adding again 
 w2
f
on the r.h.s. of this equation shows that

wf solves (23). But since wf (0) � 0 = wf(0); by uniqueness of solutions

and monotonicity in the initial data, the claim follows.

2� (relative compactness of the laws of the variances) Let " > 0: Then

IP̀

�
�%t (f) �

1

"2

�
= IP̀

�
1 � exp

�
�"2 �%t (f)

�
� 1 �

1

e

�
:

Writing c := (1 � e�1)
�1

; the r.h.s. can be estimated from above by

c IP̀
h
1� exp

�
�"2 �%t (f)

�i
= c

�
1� exp

D
� w"f (t); `

E�
� c

D
w"f(t); `

E

where we used the Laplace functional representation (22) with f replaced by

"f: But by step 1�; the latter term can be dominated by

c
D
w"f (t); `

E
= c

q
2=


D
St ("f) ; `

E
= " c

q
2=
 hf; `i

which is independent of t and converges to 0 as " # 0: This implies the relative

compactness of the family fqt : t � 0g ; �nishing the proof.
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3.3 Completion of the persistence proof (d � 3)

Now we turn to the proof of our main result, Theorem 1 from p.4. Recall

the notations (4){(6).

1� (existence of weak limit points) By the expectation formula (18),Z
�(�)Q

%

t (d�) � `(�); for IP̀�almost all %; (28)

which after integration with IP̀ gives
R
�(�)Qt(d�) � `(�): Therefore, the sub-

set fQt : t � 0g ofM1 (Mp) (the set of probability laws onMp endowed with

the topology of weak convergence) is relatively compact (see, e.g. [Daw92,

Lemma 3.2.8]). On the other hand, fQt : t � 0g belongs to the compact

space M1 (M1 (Mp)) (again with the weak topology). Hence, the sets of

limit points Q and Q of the Qt and Qt ; respectively, are not empty. We

have to show that they satisfy the claims in (a) and (b), respectively, of the

theorem.

2� ((b) implies (a)) Let Q be any (weak) limit point of the Qt : Then we

may choose a sequence tn " 1 so that for some (weak) limit point Q of the

Qt

Qtn ! Q and Qtn ! Q; as n " 1: (29)

Combined with
R R

F (�)V (d�)Qt(dV ) =
R
F (�)Qt(d�); for each bounded

and continuous F : Mp ! R+ ; (which holds by (7)), the limit statements

(29) imply the identity Z
V (�)Q(dV ) = Q(�): (30)

Then by (30) and (b),Z
�(�)Q(d�) =

Z Z
�(�)V (d�)Q(dV ) =

Z
`(�)Q(dV ) = `(�);

that is, we get the claim (a) of the theorem. Thus it su�ces to prove (b).

3� (upper bound `) Let Q be any limit point of the Qt : Choose again a

sequence tn " 1 such that the second convergence statement in (29) holds.

We begin by proving that Q{a.s. all intensity measures are bounded by ` :

Q

�
V :

Z
�(�)V (d�) � `(�)

�
= 1: (31)
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Fix " > 0 and let ' � 0 denote a continuous function on R
d with compact

support. Assume for the moment that

Q

�
V :

Z
h';�iV (d�) > h'; `i+ 2"

�
=: 2� > 0: (32)

Then there exists a number K > 0 such that

Q

�
V :

Z
( h';�i ^K)V (d�) > h'; `i+ "

�
� 2� > 0: (33)

The function � 7! h';�i ^ K is bounded and continuous, hence the map

V 7!
R
( h';�i ^K) V (d�) is bounded and continuous too. Thus the set of

V in (33) is an open subset of M1 (Mp) : Then from the assumed second

weak convergence statement in (29) we conclude

Qtn

�
V :

Z
( h';�i ^K)V (d�) > h'; `i+ "

�
� � > 0;

for some su�ciently large n: Hence

Qtn

�
V :

Z
h';�iV (d�) > h'; `i + "

�
� � > 0:

But this contradicts

Qtn

�
V :

Z
h';�iV (d�) �= h'; `i

�
= 0

which holds by (28). Consequently, for all considered " and '; the l.h.s. of

formula line (32) vanishes. Hence,

Q

�
V :

Z
h';�iV (d�) > h'; `i

�
= 0;

and a separability argument yields (31).

It remains to show thatZ
�(�)V (d�) � `(�) for Q�almost all V:

For this purpose, we may �x any continuous function ' � 0 on R
d with

compact support and h'; `i > 0. Then it su�ces to showZ
h';�iV (d�) � h'; `i for Q�almost all laws V: (34)
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4� (lower bound `) Fix 0 < " < h'; `i : Consider the probability

Q

�
V :

Z
h';�iV (d�) � h'; `i � "

�
: (35)

For each K > 0; it is bounded below by

Q

�
V :

Z
( h';�i ^K) V (d�) � h'; `i � "

�
:

Since the set of these V is closed, again by the second weak convergence

statement in (29) this expression is bounded below by

lim sup
n"1

Qtn

�
V :

Z
( h';�i ^K) V (d�) � h'; `i � "

�
:

NowZ
( h';�i ^K)V (d�) =

Z
h';�i V (d�) �

Z �
h';�i � ( h';�i ^K)

�
V (d�):

The �rst term on the r.h.s. is Qtn{a.s. h'; `i (recall (18)), and so it su�ces

to estimate

Qtn

�
V :

Z �
h';�i � ( h';�i ^K)

�
V (d�) � "

�

from below, uniformly in n: Observe �rst thatZ �
h';�i � ( h';�i ^K)

�
V (d�) �

Z
h';�i�K

h';�iV (d�)

�
1

K

Z
h';�i

2
V (d�):

Rewriting the second moment
R
h';�i

2
V (d�) as h'; `i

2
plus the related

variance expression, we see from the relative compactness Theorem 3 that

Qtn

�
V :

Z
h';�i

2
V (d�) � "K

�
�! 1 as K " 1;

uniformly in n: Thus (35) is equal to one, and since " was arbitrary, this

implies (34), and the proof is complete.
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