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Quantitative heat kernel estimates for diffusions with
distributional drift

Nicolas Perkowski, Willem van Zuijlen

Abstract

We consider the stochastic differential equation on Rd given by

dXt = b(t,Xt) dt + dBt,

where B is a Brownian motion and b is considered to be a distribution of regularity > −1
2 . We

show that the martingale solution of the SDE has a transition kernel Γt and prove upper and lower
heat kernel bounds for Γt with explicit dependence on t and the norm of b.
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1 Introduction and main results

In this paper we consider the stochastic differential equation on Rd given by

dXt = b(t,Xt) dt+ dBt, (1)

where B is a Brownian motion and b is a distribution of regularity > −1
2
. Such singular diffusions

(diffusions with distributional drift) appear as models for stochastic processes in random media (then b
would also be random, but independent ofB), for example in [4, 6, 5]. They also appear as “stochastic
characteristics” in Feynman-Kac type representations of singular SPDEs, for example in [13, 5, 17].
In non-singular SPDEs, the stochastic characteristics would be formulated in terms of the Brownian
motion, and they may be useful tools to infer information about the long time behavior of the SPDE.
For example, the asymptotic behavior of the total mass of the parabolic Anderson model is typically
derived via the Feynman-Kac formula [16], and for that purpose it is important that we understand
the Brownian motion and its transition probabilities very well. When studying singular variants of the
parabolic Anderson model, where the Brownian motion in the Feynman-Kac representation is replaced
by a singular diffusion, we thus need to understand the transition probabilities of this singular diffusion.

1



N. Perkowski, W. van Zuijlen 2

Moreover, since we are interested in the long time behavior, we need quantitative control of the transi-
tion probabilities on arbitrarily long time intervals. This motivates our present work.

We show that the solution to (1) possesses a transition kernel Γt : Rd × Rd → R for all t > 0. This
means that under the measure Px such that X0 = x we have for all φ ∈ Cb(Rd)

Ex[φ(Xt)] =

∫
Rd
φ(y)Γt(x, y) dy.

The following theorem represents the main result of our paper, in which we show that the above
transition kernel satisfies heat kernel bounds.

For any Banach space X and t > 0 we write ‖ · ‖CtX for the norm on C([0, t],X), which is defined
for f ∈ C([0, t],X) by

‖f‖CtX = sup
s∈[0,t]

‖f(s)‖X.

∆−1b denotes the first Littlewood-Payley block and ∆≥0b the sum of the positive Littlewood-Payley
blocks (see Section 1.2). Bs

p,q denotes a Besov space, see [2].

Theorem 1.1. Let α ∈ (0, 1
2
) and c > 1. There exist a C > 1 and a κ ∈ (0, 1) such that for all

b = (bt)t≥0 ∈ C([0,∞), B−α∞,1(Rd,Rd)), µ ∈ Nd
0 with |µ| ≤ 1, and for all t > 0, x, y ∈ Rd:

|∂µxΓt(x, y)| ≤ C exp

(
Ct
[
‖∆−1b‖2

CtL∞ + ‖∆≥0b‖
2

1−α
CtB

−α
∞,1

])
(t−

|µ|
2 ∨ 1)p(ct, x− y), (2)

|Γt(x, y)| ≥ 1

C
exp

(
−Ct

[
‖∆−1b‖2

CtL∞ + ‖∆≥0b‖
2

1−α
CtB

−α
∞,1

])
p(κt, x− yg), (3)

where p(t, x) = (2πt)−
d
2 e−|x|

2/2t is the standard Gaussian kernel.

As a corollary, we obtain the following estimate on the escape probability of the diffusion X to leave a
ball.

Corollary 1.2. Let α ∈ (0, 1
2
). There exists a C > 0 such that for all b ∈ C([0,∞), B−α∞,1(Rd,Rd)),

x ∈ Rd, K > 0 and T ≥ 1, and for X solving (1) with Px(X0 = x) = 1:

Px
(

sup
0≤t≤T

|Xt − x| ≥ K

)
≤ C exp

(
CT
[
‖∆−1b‖2

CTL∞
+ ‖∆≥0b‖

2
1−α
CTB

−α
∞,1

])
exp

(
− K2

CT

)
(4)

Remark 1.3. At least for constant b the heat kernel bounds are sharp: If λ ∈ Rd and b = λ, then

Γt(x, y) = p(t, y − x− λt) and a simple computation shows that supx∈Rd
p(t,x−λt)
p(ct,x)

= c
d
2 e

1
2(c−1)

tλ2

and infx∈Rd
p(t,x−λt)
p(κt,x)

= κ
d
2 e−

1
2(1−κ) tλ

2

. Since in that case ∆≥0b = 0, this corresponds exactly to our
bounds (2) and (3) (for µ = 0).

Remark 1.4. As we consider a time inhomogeneous drift, we could have also formulated the heat
kernel bounds for Γs,t (with 0 ≤ s < t), which is the transition kernel from time s to time t: If Ps,x
is the probability measure under which Xs = x and (1) holds (for t > s), then Es,x[ϕ(Xt)] =∫
Rd ϕ(y)Γs,t(x, y) dy. However, to simplify notation we only consider the case s = 0 and we write

Γt for Γ0,t. The heat kernel bounds for Γs,t follow by applying Theorem 1.1 with b′t = bt+s, t ≥ 0.

DOI 10.20347/WIAS.PREPRINT.2768 Berlin 2020



Quantitative heat kernel estimates for diffusions with distributional drift 3

1.1 Literature

Diffusions with a distributional drift were first considered by Bass and Chen [3] and Flandoli, Russo and
Wolf [8], both in the one-dimensional time-homogeneous setting. More recently, Delarue and Diel [6]
used Hairer’s rough path approach to singular SPDEs [14, 15] to extend the results of [8] to the time-
inhomogeneous case, and they applied this to construct a random directed polymer measure. Flandoli,
Issoglio and Russo [7] were the first to consider multidimensional singular diffusions, but they require
more regularity than in the previous works on the one-dimensional case (they consider the “Young
regime”, i.e., the distributional drift has regularity better than −1/2). Zhang and Zhao [22] study the
ergodicity and they derive heat kernel estimates for singular diffusions in the Young regime. Cannizzaro
and Chouk [5] use paracontrolled distributions to extend the approach of [6] to higher dimensions and
the results of [7] to more singular drifts. They apply this to construct a random polymer measure that
is closely related to the parabolic Anderson model.

In this paper we follow the approach of Cannizzaro and Chouk, although we restrict our attention to
the more regular Young regime. This is crucial for our arguments.

As already mentioned, Zhang and Zhao [22] also prove heat kernel estimates for SDEs with distribu-
tional drifts in the Young regime. More precisely, they prove that there exist c, C ≥ 1 such that for all
t ∈ (0, T ] and x, y ∈ Rd

1
C
p( t

c
, x− y) ≤ |Γt(x, y)| ≤ Cp(ct, x− y).

Moreover, they give an upper bound on the gradient of the transition kernel, ∇Γt. Here, the constant
C implicitly depends on T and ‖b‖C−α .

If b is the gradient of a function that does not dependent on time, then there is a classical heat kernel
estimate for Γ, see for example Stroock [20, Theorem 4.3.9]. In that theorem we have b = ∇U for
a smooth and bounded function U , but the estimate only depends on maxU − minU , so by an
approximation argument it extends to continuous and bounded U . This result is uniform in time, but
also here the dependence of the constants on maxU −minU is implicit.

In another work by the authors together with W. König [17], our heat kernel estimates are applied to
derive the asymptotic behavior of the total mass of the parabolic Anderson model. In that application
it is crucial to understand how the constant grows with t and the norm of b. Therefore, we need our
“quantitative version” of the heat kernel estimate.

1.2 Notation and conventions

We write N = {1, 2, . . . },N0 = {0} ∪ N and N−1 = {−1} ∪ N0. For the whole paper, d is an
element of N and will denote the dimension of the space. For families (ai)i∈I, (bi)i∈I in R for an index
set I, we write ai . bi to denote the existence of a C > 0 such that ai ≤ Cbi for all i ∈ I. We write
Cb for the space of continuous bounded functions and C∞b for the space of C∞ functions for which all
their derivatives are bounded functions. We abbreviate function spaces and Besov spaces by omitting
“(Rd)” in the notation, for example we abbreviate Bβ

p,q(Rd) to Bβ
p,q. Moreover, we write C β for Bβ

∞,∞
and C β

p for Bβ
p,∞. We write u4 v for the paraproduct between u and v (with the low frequencies of u

and the high frequencies of v), and u� v for the resonance product; we adopt the notation from [19]
and refer to [2] as background material.

In the rest of the paper (ρi)i∈N−1 is a dyadic partition of unity, meaning that ρ−1 is supported in
a ball around 0, ρ0 is supported in an annulus, ρi(x) = ρ0(2−ix) for i ∈ N0,

∑
i∈N−1

ρi = 1,

DOI 10.20347/WIAS.PREPRINT.2768 Berlin 2020



N. Perkowski, W. van Zuijlen 4

1
2
≤
∑

i∈N−1
ρ2
i ≤ 1 and supp ρi ∩ supp ρj = ∅ if |i − j| ≥ 2. For i ∈ N−1 we write ∆i for the

corresponding Littlewood-Payley blocks (F denotes the Fourier transform)

∆if = ρi(D)f = F−1(ρiF (f)) = F−1(ρi) ∗ f.

Moreover, we define ∆≥0f to be the sum of all the positive Littlewood-Payley blocks:

∆≥0f =
∑
i∈N0

∆if.

2 Diffusions with distributional drift and their heat kernel bounds

Throughout this section we fix T > 0. Let α ∈ (0, 1
2
). For b ∈ C([0, T ], B−α∞,1(Rd,Rd)) we

consider the stochastic differential equation

dXt = b(t,Xt) dt+ dBt. (5)

For t > 0 let Lt be the operator

Lt = 1
2
∆ + bt · ∇. (6)

We consider the following Cauchy problem for u : [0, T ]× Rd → R with terminal condition φ:{
∂tu+ Ltu = 0 on [0, T )× Rd,

u(T, ·) = φ on Rd.
(7)

The solution theory for the Cauchy problem will be given in Proposition 2.4. We write uφ for the solution
to (7). But let us first discuss how to interpret (5) in terms of a martingale problem.

Definition 2.1. We say that a stochastic process X = (Xt)t∈[0,T ] on a probability space (Ω,P) is a
solution to the SDE (5) on [0, T ] with initial condition X0 = x if it satisfies the martingale problem for
((Lt)t∈(0,T ], δx), i.e., if P(X0 = x) = 1 and for all f ∈ C([0, T ], L∞(Rd)), all φ ∈ C∞c (Rd) and
for u = uφ being the solution to the Cauchy problem (7), the process(

u(t,Xt)−
∫ t

0

f(s,Xs) ds
)
t∈[0,T ]

is a martingale.

The martingale problem has a unique solution:

Theorem 2.2. [5, Theorem 1.2] Let α ∈ (0, 1
2
). For all x ∈ Rd and b ∈ C([0, T ],C −α(Rd,Rd))

there exists a unique solution to the martingale problem for ((Lt)t∈(0,T ], δx), in the sense that there
is a unique probability measure Px on Ω = C([0, T ],Rd) such that the coordinate process Xt(ω) =
ω(t) satisfies the martingale problem for ((Lt)t∈(0,T ], δx). Moreover, X is a strong Markov process
under Px and the measure Px depends (weakly) continuously on the drift b.

Remark 2.3. The continuity of the solution P in terms of the drift is not mentioned in [5, Theorem 1.2],
but it can be extracted from their proof.

Observe that Theorem 2.2 also implies that there exists a unique probability measurePs,x onC([s, T ],Rd)
such that the coordinate process satisfies the martingale problem for ((Lt)t∈(s,T ], δx). This can be
obtained by applying Theorem 2.2 to a shift of the drift, as is mentioned in Remark 1.4.

DOI 10.20347/WIAS.PREPRINT.2768 Berlin 2020



Quantitative heat kernel estimates for diffusions with distributional drift 5

Next, our aim is to show that X admits a transition density Γs,t for 0 ≤ s < t ≤ T (Proposition 2.9),
which means that for ϕ ∈ Cc(Rd) and x ∈ Rd and with Ps,x as in Remark 2.3

Es,x[ϕ(Xt)] =

∫
Rd
ϕ(y)Γs,t(x, y) dy. (8)

We do this by showing that Γt,T (x, y) = uδy(T−t, x) for the solution uδy to (7) with terminal condition
u(T, ·) = δy.

In order to construct the solution uδy we have to slightly extend the results of [5]. Indeed, in [5, Theorem
3.1 and 3.2] the well-posedness of the Cauchy problem is shown for φ ∈ C β with β ∈ (1 + α, 2 −
α), and δz is not in this space. The solution theory in [5] is formulated in terms of mild solutions:
A mild solution of (7) is a fixed point u of Φ (Φu = u), where Φ is defined on C([0, T ],S ′) ∩
[
⋃
p∈[1,∞) C([0, T ),C β

p (Rd))] for β > 1 + α by

(Φu)s = PT−sφ−
∫ T

s

Pr−s(br · ∇ur) dr, (9)

where Ptφ := p(t, ·) ∗ φ for t > 0 and P0φ = φ (that Φ is well defined follows by 2.6). In order to
allow δy as a terminal condition, we will consider a different space that “allows a blowup as t ↑ T ”.
However, for notational elegance, we instead consider a space with “a blowup at 0” and mention that
u is a fixed point of Φ if and only if v given by v(t, ·) = u(T − t, ·) is a fixed point of Ψ, given by

(Ψv)s = Psφ+

∫ s

0

Ps−r(bT−r · ∇vr) dr,

so that we call v a mild solution of{
∂tv −LT−tv = 0 on (0, T ]× Rd,

v(0, ·) = φ on Rd.
(10)

We will show that Ψ has a fixed point in the following space (for suitable δ, β). For δ > 0, β ∈ R and
t > 0 we define

‖u‖Mδ
t C βp

= sup
s∈(0,t]

sδ‖us‖C βp ,

M δ
t C

β
p = {u ∈ C((0, t],C β

p ) : ‖u‖Mδ
t C βp

<∞}.

The following proposition is a slight extension of [5, Theorem 3.1 and 3.2].

Proposition 2.4. Let α ∈ (0, 1
2
), p ∈ [1,∞] and γ > −α. For φ ∈ C γ

p and b ∈ C([0, T ], B−α∞,1)
the Cauchy problem (7) has a unique mild solution uφ,b. For β ∈ (1 + α, 2 − α) and t ∈ (0, T ] we
have uφ,bt ∈ C β . Moreover, the map C γ

p × C([0, T ], B−α∞,1) → C β given by (φ, b) 7→ uφ,b(t, ·) is
locally Lipschitz.

Another difference with [5] is that we consider b ∈ C([0, T ], B−α∞,1) instead of b ∈ C([0, T ],C −α).
SinceB−α∞,p ⊂ C −α ⊂ B−α−ε∞,p (as continuous embeddings), this does not make much of a difference.
But our heat kernel bounds depend on the B−α∞,1-norm and for their derivation it is more convenient to
work with B−α∞,1.

Before we prove Proposition 2.4 we present two auxiliary facts, Lemma 2.5 and 2.6.

We write B for the beta function (see e.g. [1, Section 1.1]), which is the function B : (0,∞)2 →
(0,∞) given by

B(β, γ) =

∫ 1

0

θγ−1(1− θ)β−1 dθ. (11)

DOI 10.20347/WIAS.PREPRINT.2768 Berlin 2020
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Lemma 2.5. Let p ∈ [1,∞], κ ≥ 0, δ ∈ [0, 1), α, γ ∈ R and β ∈ [−α, 2− α).

There exists a C > 0 such that for all t ∈ (0, 1]

‖s 7→ Psφ‖
M

κ
2
t C γ+κp

≤ C‖φ‖C γp ,
∥∥∥∥s 7→ ∫ s

0

Ps−rwr dr

∥∥∥∥
Mδ
t C βp

≤ Ct1−
α+β
2 ‖w‖Mδ

t C−αp
. (12)

Proof. In [12, Lemma A.7] it is proven that for all κ ≥ 0 and γ ∈ R there exists a C > 0 such that for
all t ∈ (0, 1]

‖Ptφ‖C γ+κp
≤ Ct−

κ
2 ‖φ‖C γp , (13)

which implies the first bound in (12). The second bound is also proven in [12, Lemma A.9], we give
the proof to be self-contained. By applying (13) we obtain for t ∈ (0, 1]∥∥∥∥∫ t

0

Pt−sws ds

∥∥∥∥
C βp

.
∫ t

0

(t− s)−
α+β
2 s−δ ds‖w‖Mδ

TC−αp

. t−δ+1−α+β
2 B

(
1− α+β

2
, 1− δ

)
‖w‖Mδ

TC−αp
. (14)

This proves the second bound in (12).

2.6. Let α > 0 and let β > 1 + α and ε > 0 be such that 1 + α + ε ≤ β. Then we have by
Theorem A.1 together with Bernstein’s inequality ([2, Lemma 2.1 or 2.78]):

‖a · ∇w‖B−αp,∞ . ‖a‖B−α∞,1‖∇w‖Bα+εp,∞
. ‖a‖B−α∞,1‖w‖Bβp,∞ .

Proof of Proposition 2.4. Without loss of generality we may assume γ < β.

By combining the observation in 2.6 with Lemma 2.5 (with κ = β − γ and δ = β−γ
2

) for t ∈ (0, 1] we

see that Ψ maps M
β−γ
2

t C β
p to itself, as

‖Ψv‖
M

β−γ
2

t C βp
. ‖φ‖C γp + t1−

α+β
2 ‖b‖C1B

−α
∞,1
‖v‖

M
β−γ
2

t C βp
,

and, moreover

‖Ψv −Ψṽ‖
M

β−γ
2

t C βp
= ‖s 7→

∫ s

0

Ps−r(b · ∇(vr − ṽr)) dr‖
M

β−γ
2

t C βp

. t1−
α+β
2 ‖s 7→ b · ∇(vs − ṽs)‖

M
β−γ
2

t C−αp

. t1−
α+β
2 ‖b‖C1B

−α
∞,1
‖v − ṽ‖

M
β−γ
2

t C βp
. (15)

So for sufficiently small t0 the map Ψ is a contraction on the Banach space M
β−γ
2

t0 C β
p and it has

a unique fixed point. As Ψ maps C((0, t0],C β
p ) into C([0, t0],C α

p ) (which follows in a similar way

by 2.6) and thus in C([0, t0],S ′) we interpret the fixed point to be in C([0, t0],S ′) ∩M
β−γ
2

t0 C β
p .

Moreover, the length t0 of the time interval does not depend on the initial condition. So we can repeat
the argument iteratively and construct v(t, ·) ∈ C β

p for all t ≥ 0.

DOI 10.20347/WIAS.PREPRINT.2768 Berlin 2020



Quantitative heat kernel estimates for diffusions with distributional drift 7

To see the continuity of the solution in b and in the initial condition, let b1, b2 ∈ C([0, T ], B−α∞,1) and
φ1, φ2 ∈ C γ

p . Let vi be the solution to (10) with drift bi (so with L i
L−t = ∆ + bi,T−s · ∇) and initial

condition φi, for i ∈ {1, 2}. By Lemma 2.5 and by 2.6 we have

‖v1 − v2‖
M

β−γ
2

t C βp
. ‖φ1 − φ2‖C βp + t1−

α+β
2 ‖b1‖CtB−α∞,1 ‖v1 − v2‖

M
β−γ
2

t C βp

+ t1−
α+β
2 ‖b1 − b2‖CtB−α∞,1 ‖v2‖

M
β−γ
2

t C βp
.

The continuous dependence on b and φ then follows by taking t small, and for large t we again iterate
the argument.

It remains to show that we can increase the integrability from p to∞, i.e., that vt ∈ C β for all t > 0
and that also as an element of C β the solution vt for fixed t > 0 depends continuously on b and φ.
First we show that if t > 0, then vs ∈ C β for all s > t. To simplify notation we only consider the most
extreme case p = 1, but the argument for general p is essentially the same. Let n ∈ N0 be such that

n(β − γ) < d, (n+ 1)(β − γ) ≥ d.

Write p0 = 1 and for i ∈ {1, . . . , n}

pi =
d

d− i(β − γ)
∈ (1,∞).

Then β− d
pn
≥ γ and β−d( 1

pi−1
− 1

pi
) = γ for all i ∈ {1, . . . , n− 1}, hence the Besov embedding

theorem [2, Proposition 2.71] gives C β
pi−1
⊂ C γ

pi
for all i ∈ {1, . . . , n − 1}, and C β

pn ⊂ C γ . We

have v t
n
∈ C β

1 ⊂ C γ
p1

. By considering the equation (7) with initial condition v t
n

we obtain that vs
is in C β

p1
for s > t

n
, in particular v 2

n
t ∈ C γ

p2
. Repeating the argument we obtain v i

n
t ∈ C γ

pi
for all

i ∈ {1, . . . , n − 1} and vt ∈ C γ , so indeed vs ∈ C β for all s > t. As t was arbitrary, we have
shown that vt ∈ C β for all t > 0. The continuity of the solution with respect to φ and b follows from
the continuity shown above.

2.7. A direct computation shows that the Dirac delta δz is in C
−d(1− 1

p
)

p for all p ∈ [1,∞], so in
particular δz ∈ C 0

1 . Moreover, for ε > 0 the map Rd 3 z 7→ δz ∈ C −ε1 is continuous.

Corollary 2.8 (of Proposition 2.4). Let α ∈ (0, 1
2
) and b ∈ C([0, T ], B−α∞,1(Rd,Rd)).

For t ∈ (0, T ] and n ∈ N let b(n)
t =

∑n
i=1 ∆ibt ∈ C∞b (Rd,Rd) and let Γt,T (x, y) = uδy ,b(t, x)

and Γ
(n)
t,T (x, y) = uδy ,b

(n)
(t, x) (notation as in Proposition 2.4). Then Γt,T and Γ

(n)
t,T are continuous on

Rd × Rd and we have for all µ ∈ Nd
0 with |µ| ≤ 1:

sup
x,y∈Rd

|∂µx [Γt,T (x, y)− Γ
(n)
t,T (x, y)]| n→∞−−−→ 0.

Proof. The continuity follows from Proposition 2.4.

Because ‖b(n)
s ‖Bα∞,1 . ‖bs‖Bα∞,1 and ‖b(n)

s − bs‖B−α∞,1 → 0 we obtain by a “3ε argument” that

‖b(n) − b‖CtB−α∞,1 → 0

As moreover supy∈Rd ‖δy‖B0
1,∞

. 1, Proposition 2.4 yields

sup y ∈ Rd‖Γt(·, y)− Γt,n(·, y)‖C β → 0,

for all β < 2− α.

DOI 10.20347/WIAS.PREPRINT.2768 Berlin 2020
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Proposition 2.9. Let α ∈ (0, 1
2
) and b ∈ C([0, T ], B−α∞,1(Rd,Rd)). For t ∈ [0, T ) let Γt,T : Rd ×

Rd → R be defined by Γt,T (x, y) = uδy(t, x). Let Pt,x be the unique probability measure on
C([t, T ],Rd) such that the coordinate processX is a solution to the SDE (5) on [t, T ] with initial con-
ditionXt = x. Then Γt,T (x, ·) is the density ofXT underPt,x, i.e.,Et,x[φ(XT )] =

∫
Rd φ(y)Γt,T (x, y) dy

for all φ ∈ Cc(Rd).

Proof. For b with values in C∞b this is classical, see for example [10, Theorem 6.5.4]. So let b(n) and

Γ
(n)
t,T be as in Corollary 2.8 and for x ∈ Rd let P(n)

t,x be the unique probability measure onC([t, T ],Rd)

such that the coordinate process X is a solution to the martingale problem for ((L (n)
s )s∈(t,T ], δx),

where L (n)
s = 1

2
∆ + b

(n)
T−s · ∇. Using that P(n)

t,x weakly converges to Pt,x (Theorem 2.2) and the
uniform convergence in Corollary 2.8 we obtain for φ ∈ Cc(Rd):

Et,x[φ(XT )] = lim
n→∞

E(n)
t,x [φ(XT )] = lim

n→∞

∫
Rd
φ(y)Γ

(n)
t,T (x, y) dy =

∫
Rd
φ(y)Γt,T (x, y) dy.

3 Heat kernel upper bounds

Here we prove the upper bound (2) of the heat kernel estimates. We follow the “parametrix” approach
from Friedman’s book [9] to prove the heat kernel bounds presented in Theorem 1.1. This means that
we write Γt as a series (see Lemma 3.3) and bound each term in that series to obtain a bound for the
whole series and thus for Γt. Usually the point of the parametrix is to deal with non-constant diffusion
coefficients, but the approach is still useful for us despite the fact that we deal with constant diffusion
coefficients.

Because of Corollary 2.8 we can restrict our attention to b in C([0, T ], C∞b (Rd,Rd)) and then extend
the bounds to b in C([0, T ], B−α∞,1(Rd,Rd)) by a limiting argument.

For the rest of this section we fixα ∈ (0, 1
2
), and c > 1 as in Theorem 1.1 and b ∈ C([0,∞), C∞b (Rd,Rd)).

(Instead of [0, T ] we consider [0,∞) for notational convenience.)

3.1. Let g ∈ L1(Rd,Rd) and a ∈ C∞b (Rd,Rd). Let (ρ̃i)i∈N−1 be another dyadic partition of unity,
but such that supp ρ̃−1 ∩ supp ρi = ∅ for i ∈ N0 so that

∫
Rd

(∆ia)(z)(∆̃−1g)(z) dz =

∫
Rd

F−1(ρiâ)(z)F−1(ρ̃−1ĝ)(z) dz

=

∫
Rd
â(−z)ρi(z)ρ̃−1(z)ĝ(z) dz = 0,

and thus ∫
Rd

(∆≥0a)(z)g(z) dz =

∫
Rd

(∆≥0a)(z)(∆̃≥0g)(z) dz.
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Quantitative heat kernel estimates for diffusions with distributional drift 9

By duality and Bernstein’s inequality, see [2, Proposition 2.76 and Lemma 2.1], we have∣∣∣ ∫
Rd
a(z)·g(z) dz

∣∣∣ ≤ ∣∣∣∣∫
Rd

∆−1a(z) · g(z) dz

∣∣∣∣+

∣∣∣∣∫
Rd

∆≥0a(z) · g(z) dz

∣∣∣∣
. ‖∆−1a‖L∞‖g‖L1 + ‖∆≥0a‖B−α∞,1‖∆̃≥0g‖Bα1,∞

. ‖∆−1a‖L∞‖g‖L1 + ‖∆≥0a‖B−α∞,1

(
sup
j≥0

{
‖∆̃jg‖1−α

L1 (2j‖∆̃jg‖L1)α
})

. ‖∆−1a‖L∞‖g‖L1 + ‖∆≥0a‖B−α∞,1‖g‖
1−α
L1 ‖∇g‖αL1 . (16)

We will apply the above bound for functions g that are Gaussian, therefore we will need estimates for
derivatives of Gaussian functions. So we recall the following bound:

3.2. Let p(t, x) = (2πt)−
d
2 e−

1
2t
|x|2 for (t, x) ∈ (0,∞) × Rd be the standard Gaussian kernel. For

the space derivatives ∂µp we have the following estimate:

∀µ ∈ Nd
0 ∃C > 0 ∀(t, x) ∈ (0,∞)× Rd : |∂µp(t, x)| ≤ Ct−

|µ|
2 p(ct, x), (17)

The proof of the upper bound (2) essentially follows by iterating the previous two observations. To
carry out the argument we need the following result, which allows us to write Γ as an infinite series.

Lemma 3.3. For x, y ∈ Rd and s, t > 0 with s < t we define

Ψy,1
s,t (x) = −b(t− s, x) · ∇p(s, x− y), (18)

and for k ≥ 2

Ψy,k+1
s,t (x) = −

∫ s

0

∫
Rd
b(t− s, x) · ∇p(s− r, x− z)Ψy,k

r,t (z) dz dr. (19)

Then for all t > 0 and k ∈ N the map s 7→ Ψy,k
s,t is in L∞((0, t], L1(Rd)). Moreover, (with Γs,t as in

Proposition 2.9)

Γs,t(x, y) = p(t− s, x− y) +
∞∑
k=1

∫ t−s

0

∫
Rd
p(t− s− r, x− z)Ψy,k

r,t (z) dz dr. (20)

Proof. By (17) we know that ‖Ψy,1
s,t ‖L1(Rd) . t−

1
2 and therefore s 7→ Ψy,1

s,t is in L1((0, t], L1(Rd)).
For k = 2 we have (for the last inequality remember the definition of the beta function (11) )

‖Ψy,2
s,t ‖L1(Rd) .

∫ t−s

0

‖∇p(t− s− r, ·) ∗Ψy,1
r,t ‖L1(Rd) dr

.
∫ t−s

0

(t− s− r)−
1
2 r−

1
2 dr = B(1

2
, 1

2
) . 1.

One can repeat this line of argument and obtain ‖Ψy,k+1
s,t ‖L1(Rd) . 1 for k ≥ 2, locally uniformly in s.

It remains to show (20). As Γs,t(x, y) = uδy(s, x) where uδy being the fixed point of the map Φ as in
(9) with φ = δy, that is, with u = uδy ,

(Φu)s = Pt−sδy −
∫ t

s

Pq−s(bq · ∇uq) dq

= Pt−sδy −
∫ t−s

0

Pt−s−r(bt−r · ∇ut−r) dr.
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From a Picard iteration it follows that Γ is the limit of the sequence Γ0
t = 0,

Γk+1
s,t (x, y)

= p(t− s, x− y)−
∫ t−s

0

∫
Rd
p(t− s− r, x− z)(b(t− r, z) · ∇zΓ

k
t−r,t(z, y)) dz dr.

Therefore, Γ1
s,t(x, y) = p(t− s, x− y) and we obtain recursively (see also [9, Chapter 1.4])

Γk+1
s,t (x, y) = p(t− s, x− y) +

k∑
`=1

∫ t−s

0

∫
Rd
p(t− s− r, x− z)Ψy,`

r,t (z) dz dr.

This proves (20).

3.4. Now let us get back to Remark 1.4. Observe that in the right-hand side in (20) the dependence
on t is in the Ψy,k functions, and we see that the rest is a function of t− s. This allows us to take the
first time variable, s, equal to zero, and proof the heat-kernel bounds as in Theorem 1.1. From now on
we write “Γt” for “Γ0,t”.

Note that the first term appearing in the right-hand side of (20) is already bounded by the right-hand
side of (2). Therefore, we will recursively estimate∫ t

0

∫
Rd
p(t− s, x− z)Ψy,k

s,t (z) dz ds.

This will be done with the help of some auxiliary lemmas, which follow below.

3.5. Let µ ∈ Nd
0, t > 0, k ∈ N, x, y ∈ Rd and g ∈ L1(Rd). As we write Ptg = p(t, ·) ∗ g (see (9)),

we have ∂µPtg = ∂µp(t, ·) ∗ g.

For any given norm ‖ · ‖ we will write ‖∇f‖ =
∑d

i=1 ‖∂if‖ and ‖∇2f‖ =
∑d

i,j=1 ‖∂ijf‖ .

Lemma 3.6. There exists a C > 0 (independent of b) such that for all µ ∈ Nd
0 with |µ| ≤ 2, y ∈ Rd

and t, s, r ∈ (0,∞) with t > s > r and all f ∈ L1(Rd), with gt,s,r(z) = b(t− r, z) ·
∫
Rd∇p(s−

r, z − w)f(w) dw

|∂µPt−sgt,s,r(x)| ≤ C(t− s)−
|µ|
2 p(ct, x− y)

(
‖∆−1bt−r‖L∞

∥∥∥ ∇Ps−rfp(cs,·−y)

∥∥∥
L∞

+ ‖∆≥0bt−r‖B−α∞,1
[
(t− s)−

α
2

∥∥∥ ∇Ps−rfp(cs,·−y)

∥∥∥
L∞

+
∥∥∥ ∇Ps−rfp(cs,·−y)

∥∥∥1−α

L∞

∥∥∥∇2Ps−rf
p(cs,·−y)

∥∥∥α
L∞

])
. (21)

Proof. We abbreviate gt,s,r by g. Observe that g(z) = b(t−r, z) ·∇Ps−rf(z). Then, with h : Rd →
Rd, h(z) = ∂µp(t− s, x− z)∇Ps−rf(z), by (16)

|∂µPt−sg(x)| =
∣∣∣∣∫

Rd
∂µp(t− s, x− z)b(t− r, z) · ∇Ps−rf(z) dz

∣∣∣∣
. ‖∆−1bt−r‖L∞‖h‖L1 + ‖∆≥0bt−r‖B−α∞,1‖h‖

1−α
L1 ‖∇h‖αL1 .
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Quantitative heat kernel estimates for diffusions with distributional drift 11

We estimate both ‖h‖L1 and ‖∇h‖L1 . We use (17) and
∫
Rd p(c(t − s), x − z)p(cs, z − y) dz =

p(ct, x− y) to obtain

‖h‖L1 =

∫
Rd
|∂µp(t− s, x− z)∇Ps−rf(z)| dz

.
∫
Rd

(t− s)−
|µ|
2 p(c(t− s), x− z)p(cs, z − y)

∥∥∥∥ ∇Ps−rfp(cs, · − y)

∥∥∥∥
L∞

dz

= (t− s)−
|µ|
2 p(ct, x− y)

∥∥∥∥ ∇Ps−rfp(cs, · − y)

∥∥∥∥
L∞

.

Similarly, in combination with Leibniz’s rule, we obtain

‖∇h‖L1 =
∥∥∇(∂µp(t− s, x− ·)∇Ps−rf)∥∥L1

≤
∥∥∂µ∇p(t− s, x− ·)∇Ps−rf∥∥L1 +

∥∥∂µp(t− s, x− ·)∇2Prf
∥∥
L1

. (t− s)−
|µ|
2 p(ct, x− y)

[
(t− s)−

1
2

∥∥∥∥ ∇Ps−rfp(cs, · − y)

∥∥∥∥
L∞

+

∥∥∥∥ ∇2Ps−rf

p(cs, · − y)

∥∥∥∥
L∞

]
.

Using the above and that (a+ b)α ≤ aα + bα for a, b ≥ 0 we obtain (21).

3.7. Now we apply the above lemma to our setting. But first, let us introduce some notation. For k ∈ N,
t ≥ 0, i ∈ {0, 1}, and β ∈ {0, α} we write

I β
i,k(t) = sup

y∈Rd

∫ t

0

∥∥∥∥∥∇iPt−s[Ψ
y,k
s,t ]

p(ct, · − y)

∥∥∥∥∥
1−β

L∞

∥∥∥∥∥∇i+1Pt−s[Ψ
y,k
s,t ]

p(ct, · − y)

∥∥∥∥∥
β

L∞

ds.

We are interested in the bounds for I 0
i,k only. But in order to describe a recursive relation for them, as

we will see in the next lemma, we also need the I α
i,k ’s.

Lemma 3.8. Let C > 0 be as in Lemma 3.6. For all k ∈ N, t ≥ 0, i ∈ {0, 1} and β ∈ {0, α}

I β
i,k+1(t) ≤ C

∫ t

0

(t− s)−
i+β
2

(
‖∆−1b‖CtL∞I 0

1,k(s)

+ ‖∆≥0b‖CtB−α∞,1 [(t− s)
−α

2 I 0
1,k(s) + I α

1,k(s)]
)

ds. (22)

Proof. We claim that the following holds. For all k ∈ N, y ∈ Rd and i ∈ {0, 1, 2}∥∥∥∥∇iPt−s[Ψy,k+1
s,t ]

p(cs,·−y)

∥∥∥∥
L∞
≤ C(t− s)−

i
2

(
‖∆−1b‖CtL∞

∫ s

0

∥∥∥∥∇Ps−r[Ψy,kr,t ]

p(cs,·−y)

∥∥∥∥
L∞

dr

+ ‖∆≥0b‖CtB−α∞,1
[
(t− s)−

α
2

∫ s

0

∥∥∥∥∇Ps−r[Ψy,kr,t ]

p(cs,·−y)

∥∥∥∥
L∞

dr

+

∫ s

0

∥∥∥∥∇Ps−r[Ψy,kr,t ]

p(cs,·−y)

∥∥∥∥1−α

L∞

∥∥∥∥∇2Ps−r[Ψ
y,k
r,t ]

p(cs,·−y)

∥∥∥∥α
L∞

dr
])
. (23)

From this (22) follows by definition of I β
k . Now let us prove (23). Let gt,s,r be as in Lemma 3.6 with

f = Ψy,k
r,t . Observe that by definition of Ψy,k+1

s,t (19) we can write

Ψy,k+1
s,t (z) =

∫ s

0

b(t− r, z) · ∇Ps−r[Ψy,k
r,t ](z) dr =

∫ s

0

gt,s,r(z) dr,
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N. Perkowski, W. van Zuijlen 12

so that (one can verify the interchange of integrals by Fubini’s theorem and using Lemma 3.3)

|∇iPt−s[Ψ
y,k+1
s,t ](x)| ≤

∫ s

0

|∇iPt−sgt,s,r(x)| dr.

With this, (23) follows from (21).

In the proof of Lemma 3.10 we will use the following bound for the beta function (see (11)).

Lemma 3.9. Let δ ∈ (0, 1]. Then Mδ := sup{B(β, γ)γβ : (β, γ) ∈ [δ, 1]× [δ,∞)} <∞. Hence,
for all (β, γ) ∈ [δ, 1]× [δ,∞),

B(β, γ) = B(γ, β) ≤Mδγ
−β.

Proof. By [1, Theorem 1.1.4 and Theorem 1.4.1] we have for γ, β > 0

B(β, γ) =
Γ(γ)Γ(β)

Γ(γ + β)
, and lim

γ→∞

Γ(γ)
√

2πγγ−
1
2 e−γ

= 1.

From this we deduce the following. Let βn → β for some β ∈ [δ, 1] and γn →∞. Then

lim
n→∞

B(βn, γn)γβnn
Γ(βn)

= lim
n→∞

√
2πγ

γn− 1
2

n e−γnγβnn√
2π(γn + βn)γn+βn− 1

2 e−(γn+βn)

= lim
n→∞

(1 +
βn
γn

)−(γn+βn− 1
2

)eβn

= lim
γ→∞

(1 +
βn
γn

)−γneβn = e−βneβn = 1.

Therefore

lim
n→∞

B(βn, γn)γβnn = Γ(β),

so that from the continuity of Γ it follows that (β, γ) 7→ B(β, γ)γβ is a bounded function on [δ, 1] ×
[δ,∞).

Let us now use the recursive relation for I β
i,k and the bounds on the beta function to obtain estimates

for I β
i,k:

Lemma 3.10. Let C > 0 be as in Lemma 3.6 and let M = 8M 1
2
−α with Mδ as in Lemma 3.9. There

exists a K > 0 (independent of b) such that for all k ∈ N, t > 0, β ∈ {0, α} and i ∈ {0, 1}

I β
i,k(t) ≤ K

∑
m,n∈N0:
m+n=k

t−
i+β
2

(CM‖∆−1b‖CtL∞t
1
2 )m

(m!)
1−β
2

(CM‖∆≥0b‖CtB−α∞,1t
1−α
2 )n

(n!)
1−α−β

2

. (24)

Proof. We give a proof by induction. Instead of “‖∆−1b‖CtL∞” and “‖∆≥0b‖CtB−α∞,1” we will write “X”

and “Y ”, respectively.

• The induction start, k = 1:
We have for µ ∈ Nd

0 with |µ| ≤ 2

∂µPt−s[Ψ
y,1
s,t ](x) =

∫
Rd
∂µp(t− s, x− z)Ψy,1

s,t (z) dz =

∫
Rd
b(z) · gµ(z) dz
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with gµ(z) = ∇p(s, z−y)∂µp(t−s, x−z). By (17) there exists aK > 0 such that for all µ, ν ∈ Nd
0

with |µ| ≤ 2 and |ν| ≤ 1:

|gµ(z)| ≤ K(t− s)−
|µ|
2 s−

1
2p(cs, z − y)p(c(t− s), x− z),

|∂νgµ(z)| ≤ K(t− s)−
|µ|
2 s−

1
2 [(t− s)−

1
2 + s−

1
2 ]p(cs, z − y)p(c(t− s), x− z).

Therefore, by (16), for j ∈ {0, 1, 2}∥∥∥∥∥∇jPt−s[Ψ
y,1
s,t ]

p(ct, · − y)

∥∥∥∥∥
L∞

≤ K(t− s)−
j
2 s−

1
2

(
X + Y [(t− s)−

α
2 + s−

α
2 ]
)
,

so that for i ∈ {0, 1}

I β
i,1(t) ≤ K

∫ t

0

(t− s)−
i+β
2 s−

1
2

(
X + Y [(t− s)−

α
2 + s−

α
2 ]
)

ds

≤ t−
i+β
2 K

(
B(2−i−β

2
, 1

2
)Xt

1
2 +

[
B(2−i−α−β

2
, 1

2
) +B(2−i−β

2
, 1−α

2
)
]
Y t

1−α
2

)
.

Hence, for k = 1, the inequality (24) follows by applying Lemma 3.9 for the beta functions and using
that δ 7→Mδ is decreasing:

B(2−i−β
2

, 1
2
) ≤M 2−i−β

2
(
1

2
)−

2−i−β
2 ≤ 2M 1

2
−α ≤M,

B(2−i−α−β
2

, 1
2
) ≤M 2−i−α−β

2
2

1−α−β
2 ≤M,

B(2−i−β
2

, 1−α
2

) ≤M 2−i−β
2

(1−α
2

)−
1−β
2 ≤M 1

2
−α4

1−β
2 ≤M.

• The induction step, from k to k + 1:
Let k ∈ N and assume that (24) holds. Then by Lemma 3.8

I β
i,k+1(t) ≤ C

∫ t

0

(t− s)−
i+β
2

(
XI 0

1,k(s) + Y [(t− s)−
α
2 I 0

1,k(s) + I α
1,k(s)]

)
ds

≤ KC
∑

m,n∈N0:
m+n=k

(CMX)m

(m!)
1−β
2

(CMY )n

(n!)
1−α−β

2

×
∫ t

0

(t− s)−
i+β
2 s−

1
2

+m
2

+n 1−α
2

(
X + Y [(t− s)−

α
2 + s−

α
2 ]
)

ds.

We bound the latter integral, for which we have the following identity:∫ t

0

(t− s)−
i+β
2 s−

1
2

+m
2

+n 1−α
2

(
X + Y [(t− s)−

α
2 + s−

α
2 ]
)

ds

= t−
i+β
2 t

m
2

+n 1−α
2

(
Xt

1
2B(1−β

2
, m+1+n(1−α)

2
)

+ Y t
1−α
2

[
B(1−α−β

2
, m+1+n(1−α)

2
) +B(1−β

2
, m+(n+1)(1−α)

2
)
])
.

This shows that the power of t is the right one. We bound the beta function terms to finish the proof.
By Lemma 3.9 we have

B(1−β
2
, m+1+n(1−α)

2
) ≤M 1−β

2

(
m+1+n(1−α)

2

)− 1−β
2 ≤ 4M 1

2
−α (m+ 1)−

1−β
2 ,

B(1−α−β
2

, m+1+n(1−α)
2

) ≤M 1−α−β
2

(
m+1+n(1−α)

2

)− 1−α−β
2 ≤ 4M 1

2
−α (n+ 1)−

1−α−β
2 ,

B(1−β
2
, m+(n+1)(1−α)

2
) ≤M 1−β

2

(
m+(n+1)(1−α)

2

)− 1−β
2 ≤ 4M 1

2
−α (n+ 1)−

1−α−β
2 .
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Remark 3.11. The restriction α ∈ (0, 1
2
) in Lemma 3.10 is necessary since M = 4M 1

2
−α diverges

as α ↑ 1
2

(see see the definition of Mδ in Lemma 3.9). This is not unexpected, since for α > 1
2

we
are no longer in the Young regime and we would need techniques like paracontrolled distributions or
regularity structures to solve the equation for Γ.

Lemma 3.10 together with the following basic inequality constitutes the proof of Theorem 1.1.

Lemma 3.12. Let β ∈ (0, 1). Then there exists an L > 0 such that for z ≥ 0

∞∑
k=0

zk

(k!)β
≤ L exp(Lz

1
β ).

Proof. Let δ > 0. By writing zk = ((1 + δ)z)k(1 + δ)−k we get with Hölder’s inequality

∞∑
k=0

zk

(k!)β
≤

(
∞∑
k=0

(
((1 + δ)z)k

(k!)β

) 1
β

)β ( ∞∑
k=0

(1 + δ)−
k

1−β

)1−β

' exp(β(1 + δ)
1
β z

1
β ).

Lemma 3.13. There exists a C > 0 (independent of b) such that for all µ ∈ Nd
0 with |µ| ≤ 1, and for

all t > 0, x, y ∈ Rd,

∂µxΓt(x, y) = ∂µxp(t, x− y) +
∞∑
k=1

∫ t

0

∫
Rd
∂µxp(t− s, x− z)Ψy,k

s,t (z) dz ds, (25)

|∂µxΓt(x, y)− ∂µxp(t, x− y)|

≤ Ct−
|µ|
2 p(ct, x− y)(‖∆−1b‖CtL∞t

1
2 ∨ ‖∆≥0b‖CtB−α∞,1t

1−α
2 )

× exp

(
Ct
[
‖∆−1b‖2

CtL∞ + ‖∆≥0b‖
2

1−α
CtB

−α
∞,1

])
. (26)

Proof. To show both (25) and (26) it is sufficient to estimate the series with the modulus of each term
in the series in the right-hand side of (25) by the right-hand side of (26).

Let K, C,M be as in Lemma 3.10. Again, we will write “X” and “Y ” instead of “‖∆−1b‖CtL∞” and
“‖∆≥0b‖CtB−α∞,1”. With i = |µ|

∞∑
k=1

∫ t

0

∣∣∣∣∫
Rd
∂µxp(t− s, x− z)Ψy,k(s, z) dz

∣∣∣∣ ds ≤

(
∞∑
k=1

I 0
i,k(t)

)
p(ct, x− y)

≤ Kt−
i
2p(ct, x− y)

∑
m,n∈N0:
m+n≥1

(CMXt
1
2 )m

(m!)
1
2

(CMY t
1−α
2 )n

(n!)
1−α
2

≤ Kt−
i
2p(ct, x− y)CM(Xt

1
2 + Y t

1−α
2 )

×

(∑
m∈N0

(CMXt
1
2 )m

(m!)
1
2

)(∑
n∈N0

(CMY t
1−α
2 )n

(n!)
1−α
2

)
.
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Indeed, for a, b > 0

∑
m,n∈N0:
m+n≥1

am

(m!)
1
2

bn

(n!)
1−α
2

≤
∑

m,n∈N0

am+1

((m+ 1)!)
1
2

bn

(n!)
1−α
2

+
∑

m,n∈N0

am

(m!)
1
2

bn+1

((n+ 1)!)
1−α
2

≤ (a+ b)
∑

m,n∈N0

am

(m!)
1
2

bn

(n!)
1−α
2

.

Now by applying Lemma 3.12 we obtain the desired bound.

Proof of the heat-kernel upper bound (2) of Theorem 1.1. This is a direct consequence of Lemma 3.13,
as there exists a K > 0 such that for all t ≥ 0

Ct(X ∨ Y t−
α
2 ) ≤ exp

(
Kt[X2 + Y

2
1−α ]

)
.

4 Heat kernel lower bounds

The lower bound follows from Lemma 3.13 together with the next result, which is a small variation of
[20, Lemma 4.3.8].

Lemma 4.1. Let qt : Rd × Rd → [0,∞) for all t ∈ [0,∞). Suppose that (qt)t∈[0,∞) satisfies the
Chapman-Kolmogorov equations, i.e., qt+s(x, y) =

∫
Rd qt(x, z)qs(z, y) dz. Let a, b > 0. Suppose

that qt(x, y) ≥ bt−
d
2 for all t ∈ (0, a] and x, y ∈ Rd with |x−y| ≤

√
t. Then there exist a κ ∈ (0, 1)

and an M > 1, which only depends on b and d, such that for all t ∈ [0,∞) and x, y ∈ Rd

qt(x, y) ≥M−1− t
ap(κt, x− y).

Proof. By following the first step of the proof of [20, Lemma 4.3.8] we find a κ ∈ (0, 1) and a M > 1
which depend only on b and d such that for all t ∈ (0, a] and x, y ∈ Rd

qt(x, y) ≥M−1p(κt, x− y).

Let t > a and n = d t
a
e. Then for all x, y ∈ Rd

qt(x, y) =

∫
(Rd)n−1

q t
n
(x, z1)q t

n
(z1, z2) · · · q t

n
(zn−1, y) dz

≥
∫

(Rd)n−1

M−np(κ t
n
, x− z1)p(κ t

n
, z1 − z2) · · · p(κ t

n
, zn−1 − y) dz

≥M−1− t
ap(κt, x− y).

Now we can prove the heat kernel lower bounds:
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Proof of the heat-kernel lower bound (3) of Theorem 1.1. We want to apply Lemma 4.1. Therefore we
will find an a such that the condition is satisfied. Once more we will write “X” and “Y ” instead of
“‖∆−1b‖CtL∞” and “‖∆≥0b‖CtB−α∞,1”. Let us also take X = ‖∆−1b‖CtL∞ and Y = ‖∆≥0b‖CtB−α∞,1 .

Let α ∈ (0, 1
2
), c > 1 and C > 0 be as in Lemma 3.13. Then (26) gives for a > 0, t ∈ (0, a] and

x, y ∈ Rd with |x− y| ≤
√
t:

Γt(x, y) ≥ p(t, x− y)− C(Xt
1
2 ∨ Y t

1−α
2 ) exp

(
Ct[X2 + Y

2
1−α ]

)
p(ct, x− y)

≥ (2πt)−
d
2 e−

1
2 − C((X2a)

1
2 ∨ (Y

2
1−αa)

1−α
2 ) exp

(
Ca[X2 + Y

2
1−α ]

)
c−

d
2 (2πt)−

d
2 .

Therefore, it holds that Γt(x, y) ≥ 1
2
(2πt)−

d
2 e−

1
2 if

C((X2a)
1
2 ∨ (Y

2
1−αa)

1−α
2 ) exp

(
Ca[X2 + Y

2
1−α ]

)
c−

d
2 ≤ e−

1
2

2
.

Hence there exists a K ∈ (0, 1) (which only depends on c, C and α) such that the choice a =

K[X2 + Y
2

1−α ]−1 works. So by Lemma 4.1 there exist a κ ∈ (0, 1) and a M > 1 such that for all
t ∈ [0,∞) and x, y ∈ Rd,

Γt(x, y) ≥M−1− t
ap(κt, x− y) =

1

M
exp

(
− t logM

K
[X2 + Y

2
1−α ]

)
p(κt, x− y).

This proves that (3) holds for a large enough C .

5 Proof of Corollary 1.2

As before, we consider b ∈ C([0, T ], B−α∞,1) for some α ∈ (0, 1
2
) and we let X = (Xt)t∈[0,T ] be

the solution to the martingale problem for ((Lt)t∈(0,T ], δx). We prove Corollary 1.2, which means
that we estimate the probability that X escapes a box of size K before time T . The estimate is a
consequence of our heat kernel bounds (Theorem 1.1), Markov’s inequality and the Garsia-Rademich-
Rumsey inequality. By the latter (see [21, Theorem 2.1.3]) we have for κ > 0

κ|Xt −Xs| ≤ 4

∫ t−s

0

u−
1
2

√
log

(
1 +

4(FT,κ − T 2)

u2

)
du, (27)

where

FT,κ =

∫ T

0

∫ T

0

exp

(
κ

(
|Xr2 −Xr1|
|r2 − r1|

1
2

)2)
dr1 dr2. (28)

In the proof of Corollary 5.2 we will bound the right-hand side of (27) in terms of a function ζ . In the
next lemma we start by gathering some auxiliary facts about ζ .

Lemma 5.1. Let ζ, ψ : (0,∞)→ (0,∞) be given by

ζ(r) :=

∫ r

0

u−
1
2

(√
log(1 + u−2) ∨ 1

)
du, ψ(r) := r

1
2

√
(log(1

r
) ∨ 1).

There exist m,M > 0 such that mζ(r) ≤ ψ(r) ≤ Mζ(r) for all r > 0. Moreover, ψ(rs) ≤√
2ψ(r)ψ(s) for all r, s > 0 and ψ is strictly increasing.
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Proof. That ψ is strictly increasing on (e,∞) will be clear, whereas on [0, e) it follows by calculating
its derivative. Sinceψ and ζ are continuous and bounded away from 0 and∞ on compact subintervals
of (0,∞), the existence of such m and M follows once we show that limr→0

ζ(r)
ψ(r)

and limr→∞
ζ(r)
ψ(r)

exist and are in (0,∞). By applying L’Hospital’s rule we obtain

lim
r→0

ζ(r)

ψ(r)
= lim

r→0

∫ r
0
u−

1
2

√
log(1 + u−2) du

r
1
2

√
log(1

r
)

∈ (0,∞).

And also for r →∞ we have

lim
r→∞

ζ(r)

ψ(r)
= lim

r→∞

∫ √e−1

0
u−

1
2

√
log(1 + u−2) du+

∫ r√
e−1

u−
1
2 du

r
1
2

∈ (0,∞).

Furthermore

ψ(rs) = (rs)
1
2

(√
(log(1

r
) + log(1

s
)) ∨ 1

)
and for all x, y ∈ R we have (x+ y) ∨ 1 ≤ x ∨ 1 + y ∨ 1 ≤ 2(x ∨ 1)(y ∨ 1). Therefore,

ψ(rs) ≤
√

2(rs)
1
2

(√
log(1

r
) ∨ 1

)(√
log(1

s
) ∨ 1

)
=
√

2ψ(r)ψ(s).

Corollary 5.2. Let ψ be as in Lemma 5.1 and let C > 0 be as in Theorem 1.1. Then there exists an
M > 0 such that for all T ≥ 1

Ex
[

exp

(
1

M

(
sup

0≤s<t≤T

|Xt −Xs|
ψ(t− s)

)2)]
≤M exp

(
CT
[
‖∆−1b‖2

CTL∞
+ ‖∆≥0b‖

2
1−α
CTB

−α
∞,1

])
.

(29)

Proof. The proof is inspired by [11, Corollary A.5]. Unfortunately we cannot directly apply that result,
because the constant they derive depends on the time interval [0, T ] (even though this is not explicitly
stated).

Let us define GT,κ := 2
√
FT,κ ∨ 4, where FT,κ is as in (28). Let ζ be as in Lemma 5.1. By (27) and

using 4(FT,κ−T 2) ≤ G2
T,κ we have by a substitution and by Lemma 5.1 (observe thatGT,κ ≥ 4 ≥ e)

that for T ≥ 1, κ > 0, s, t ∈ [0, T ] with s < t and by writing G = GT,κ

κ|Xt −Xs| ≤ 4
√
G

∫ t−s
G

0

u−
1
2

√
log
(
1 + 1

u2

)
du .

√
Gζ( t−s

G
)

.
√
Gψ( t−s

G
) .
√
Gψ(t− s)ψ( 1

G
) . ψ(t− s)

√
logG.

Let M > 0 be such that κ|Xt − Xs| ≤
√
Mψ(t − s)

√
logGT,κ for all T ≥ 1, κ > 0 and

s, t ∈ [0, T ] with s < t. Then

Ex

[
exp

(
κ2

M

(
sup

0≤s<t≤T

|Xt −Xs|
ψ(t− s)

)2
)]
≤ Ex[GT,κ].
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As by Jensen’s inequality Ex[GT,κ] = 2Ex[
√
FT,κ ∨ 4] ≤ 2

√
Ex[FT,κ] + 4 we will obtain a bound

of Ex[GT,κ], by estimating Ex[FT,κ]. Let c ∈ (0, 1) and κ > 0 be such that κ < 1
2c

. Then for all
r2, r1 > 0 with r2 6= r1∫

Rd
p(c|r2 − r1|, y) exp(κ

( |y|
|r2 − r1|

1
2

)2

) dy = ( 1
1−2cκ

)
d
2 <∞. (30)

Hence, by Theorem 1.1

Ex[FT,κ] =

∫ T

0

∫ T

0

Ex

∫
Rd

Γ|r2−r1|(y,Xr1) exp(κ

(
|y −Xr1|
|r2 − r1|

1
2

)2

) dy

 dr1 dr2

≤ C( 1
1−2cκ

)
d
2

∫ T

0

∫ T

0

exp

(
C|r2 − r1|

[
‖∆−1b‖2

CtL∞ + ‖∆≥0b‖
2

1−α
CtB

−α
∞,1

])
dr1 dr2.

The proof is completed by observing that for A ≥ 1∫ T

0

∫ T

0

exp (A|r2 − r1|) dr1 dr2 = 2

∫ T

0

∫ t

0

eA(t−s) ds dt . eAT .

Proof of Corollary 1.2. As T ≥ 1 ≥ e−1 we have ψ(T ) =
√
T . Therefore, by Markov’s inequality for

all M,K > 0 and the fact that ψ is strictly increasing:

Px
(

sup
0≤t≤T

|Xt − x| ≥ K
)
≤ Ex

[
exp

( 1

MT
sup

0≤t≤T
|Xt − x|2

)]
exp

(
− K2

MT

)
≤ Ex

[
exp

( 1

M

(
sup

0≤s<t≤T

|Xt −Xs|
ψ(t− s)

)2)]
exp

(
− K2

MT

)
.

So (4) follows from Corollary 5.2.

A Appendix

Theorem A.1. Suppose α < 0 and β > 0 are such that α+ β > 0. Let p, p1, p2, q1, q2 ∈ [1,∞] be
such that

1
p

= min{1, 1
p1

+ 1
p2
}. (31)

For all r ≥ q1

‖u · v‖Bαp,r . ‖u‖Bαp1,q1‖v‖Bβp2,q2 . (32)

Proof. For the proof see also [18, Corollary 2.1.35]. By slightly adapting [2, Theorem 2.82] and by
using the Hölder inequality and [2, Theorem 2.79] (for (34)), we obtain implies the following two esti-
mates.

‖u4 v‖Bα+βp,q
. ‖u‖Bαp1,q1‖v‖Bβp2,q2 , (33)

‖u5 v‖Bαp,r . ‖v‖Lp2‖u‖Bαp1,r . ‖v‖Bβp2,q2‖u‖Bαp1,q1 . (34)

As [2, Theorem 2.52] implies ‖u � v‖Bα+βp,q
. ‖u‖Bαp1,q1‖v‖Bβp2,q2 , combining the above inequalities

proves (32).
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