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Fast reaction limits via Γ-convergence
of the flux rate functional
Mark A. Peletier, D. R. Michiel Renger

Abstract

We study the convergence of a sequence of evolution equations for measures supported on
the nodes of a graph. The evolution equations themselves can be interpreted as the forward
Kolmogorov equations of Markov jump processes, or equivalently as the equations for the con-
centrations in a network of linear reactions.
The jump rates or reaction rates are divided in two classes; ‘slow’ rates are constant, and ‘fast’
rates are scaled as 1{ε, and we prove the convergence in the fast-reaction limit εÑ 0.
We establish a Γ-convergence result for the rate functional in terms of both the concentration at
each node and the flux over each edge (the level-2.5 rate function). The limiting system is again
described by a functional, and characterizes both fast and slow fluxes in the system.
This method of proof has three advantages. First, no condition of detailed balance is required.
Secondly, the formulation in terms of concentration and flux leads to a short and simple proof of
the Γ-convergence; the price to pay is a more involved compactness proof. Finally, the method of
proof deals with approximate solutions, for which the functional is not zero but small, without any
changes.

1 Introduction

The aim of this paper is to prove a fast-reaction limit for a sequence of evolution equations on a graph.
We first specify the system.

Let G “ pV ,Rq be a finite directed diconnected graph with weights κε : RÑ r0,8q. For each edge
r P R we denote r “ pr´, r`q, with r´, r` P V the corresponding source and target nodes. We
consider the classical problem of deriving effective equations for the flow on pV ,Rq with two different
rates:

9ρεptq “ ´ divpκε b ρεptqq, ρεp0q fixed. (1.1)

with discrete divergence pdivAqx :“
ř

r´“x
Ar ´

ř

r`“x
Ar, product pκε b ρqrPR :“ κεrρr´ , and

t P r0, T s, T ą 0. We assume that the space of edges is a disjoint unionR “ RslowYRfast so that

κεr “

#

κr, r P Rslow,
1
ε
κr. r P Rfast.

(1.2)

We are interested in the limiting behaviour as ε Ñ 0, where the fast edges equilibrate instanteously
onto a slow manifold. Such limits, also known as ‘Quasi-Steady-State Approximations’, have a long
history in the literature, see for example [Tik52] and [Sti98].
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M.A. Peletier, D.R.M. Renger 2

1.1 Γ-convergence of the large-deviations rate

Often, one is not only interested in convergence of the dynamics, but also in convergence of some
variational structure such as a gradient structure, or more generally an ‘action’ functional that is min-
imised by the dynamics (1.1). Of course this convergence is particularly relevant if this action has a
physical meaning. The functional that we study in this paper can be interpreted as an action functional
in the following way.

Consider a microscopic system of n independent particles Xε
i ptq P V , i “ 1, . . . , n that randomly

jump from state Xε
i pt´q “ r´ to a new state Xε

i ptq “ r` with Markov intensity κεr. This is a typi-
cal microscopic model for a (bio)chemical system of unimolecular reactions with multiple time scales.
The concentration of particles in state x is then ρn,εx ptq :“ n´1

řn
i“1 1tXε

i ptq“xu
, and the vector of

random concentrations ρn,εptq converges to the deterministic solution ρεptq of (1.1) by Kurtz’ classical
result [Kur70]. For large but finite particle numbers n, there is a small probability that ρn,εptq devi-
ates significantly from ρεptq. These small probabilities are best understood through a large deviations
principle [Fen94, Léo95, ADE18]:

´n´1 log Prob
`

ρn,ε « ρ
˘ nÑ8
„ Iε0pρp0qq ` Iεpρq, where (1.3a)

Iεpρq :“ inf
jPL1pr0,T s;RRq:

9ρ“´div j

ÿ

rPR

ż

r0,T s

s
`

jrptq | κ
ε
rρr ṕtq

˘

dt, (1.3b)

spa | bq :“

$

’

&

’

%

spa | bq “ a log
a

b
´ a` b, a, b ą 0,

spa | bq “ b, a “ 0, b ě 0,

spa | bq “ 8, a ă 0, b ă 0, or a ą 0, b “ 0,
(1.3c)

and Iε0 reflects whatever randomness is taken for the initial concentration ρn,εp0q. We stress that this
formula is typical for Markov jump processes; chosing a different microscopic model for the dynamics
could lead to different functionals.

If the network satisfies detailed balance, then the rate functional (1.3b) can be related to a gradient
flow [Ons31, OM53, MPR14, MPPR17]. We shall revisit the detailed balance condition in Section 1.9.
For a similar interpretation in terms of an action without the detailed balance condition, see [BDSG`15,
Ren18].

Note that Iε is indeed minimised by solutions ρε of (1.1). This implies that we can consider the equation
Iε “ 0 as a variational formulation of the equation (1.1); this is the point of view known as ‘curves
of maximal slope’ [AGS08] or the ‘energy-dissipation principle’ [Mie16a]. An important advantage of
this choice of formulation is that Γ-convergence of Iε implies converge of the minimising dynamics
(see [DM93, Cor. 7.24] and [Mie16a]); in other words, one can prove convergence of the solutions by
proving Γ-convergence of the functionals. This is also the method that we adopt in this paper.

1.2 Γ-convergence of the flux large-deviations rate

One difficulty in proving Γ-convergence of the functional Iε0 ` Iε, however, is that Iε is implicitly de-
fined by a constrained minimisation problem. The constrained infimum of the sum in (1.3b) is an infimal
convolution (see [MPPR17, Sec. 3.4]). This shows that the evolution of the concentrations in different
nodes are strongly intertwined, which considerably complicates the mathematical analysis. For exam-
ple, the related work [DLZ18] requires an orthogonality assumption to decouple the concentrations.
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Fast reaction limits via Γ-convergence of the flux rate functional 3

We can however avoid this difficulty by considering a different functional instead. Observe that the
variable jrptq in (1.3b) has the interpretation of a flux: it measures how much mass is transported
through edge r at time t. Naturally, one can rephrase (1.1) in terms of this flux as the coupled system

9ρεptq “ ´ div jεptq and jεptq “ κε b ρεptq, ρεp0q fixed. (1.4)

On the level of the microscopic particle system one can also define the random particle flux Jn,ε,
which yields the large-deviation principle [BMN09, Ren18, PR19]:

´ n´1 log Prob
`

pρn,ε, Jn,εq « pρ, jq
˘ nÑ8
„ Iε0pρp0qq ` J ε

pρ, jq, where (1.5)

J ε
pρ, jq :“

$

’

’

&

’

’

%

ÿ

rPR

ż

r0,T s

s
`

jrptq | κ
ε
rρr ṕtq

˘

dt, if ρ P W 1,1pr0, T s;RVq, j P L1pr0, T s;RRq,

and 9ρ “ ´ div j,

8, otherwise.

(1.6)

Indeed, the functional J ε is related to (1.3b) by Iεpρq “ inf 9ρ“´div j J
εpρ, jq, which is consistent

with the ‘contraction principle’ in large-deviations theory. Its minimiser (1.4) follows the same evolu-
tion as the minimiser (1.1), but provides with more information: the flux. From a physics perspective,
this additional information is important to understand non-equilibrium thermodynamics; see for ex-
ample [BDSG`15], [MPPR17] and [Ren18, Sec. 4]. From a mathematical perspective, we will use
the property that the flux functional J ε is a sum over edges to decompose networks into separate
components.

The goal of this paper is to prove convergence of the functional Iε0 ` J ε to a limit functional, whose
minimiser describes the effective dynamics for (1.4). As a consequence, we obtain Γ-convergence of
the functional Iε0 ` Iε, convergence of solutions of the flux ODE (1.4), and convergence of solutions
of the ODE (1.1).

In order to track diverging fluxes and vanishing concentrations, we shall introduce a number of rescal-
ings before taking the Γ-limit, as we explain in the next section.

1.3 Network decomposition: nodes

We decompose the network into different components according to their scaling behaviour. To explain
the main ideas, consider the example of Figure 1. Recall from (1.2) that we assume thatR “ RslowY

Rfast, where the slow edges have rates of order 1, and the fast edges of order 1{ε.

1 2

3

4 5

slow edge

fast edge

Figure 1: An example of a network with slow and fast edges.

The first step in the decomposition is to categorise the nodes. In the example, node 5 is expected to
have low concentration, since any mass at node 5 will be quickly transported to node 4. We make this
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M.A. Peletier, D.R.M. Renger 4

statement precise by considering the equilibrium concentration. Since we assume the network to be
diconnected, there exists a unique equilibrium concentration 0 ă πε P RV for the dynamics (1.1); we
will always assume that πε is normalized, i.e.

ř

xPV π
ε
x “ 1. We use the equilibrium concentrations to

subdivide the nodes into two classes, V “ V0 Y V1, where

V0 :“ tx P V : πεx
εÑ0
ÝÝÑ πx ą 0u, and V1 :“ tx P V : 1

ε
πεx

εÑ0
ÝÝÑ π̃x ą 0u, (1.7)

and the tilde is used to stress that the quantity is rescaled. This decomposition implies an assumption
that πεx is either of order 1 or of order ε. In fact, one can construct networks withR “ Rslow YRfast

with stationary states πεx of order ε2, ε3, or higher, but in this paper such networks will be ruled out by
our assumption that there are no ‘leaked’ fluxes (see below). We introduce a further subdivision of the
nodes after categorising the fluxes.

1.4 Network decomposition: fluxes

We expect that jεr is comparable to κεrρ
ε
r´

, which in turn we expect to be comparable to κεrπ
ε
r´

. Hence
the flux or amount of mass being transported through an edge r not only depends on the order of κεr,
but also on the amount of available mass in the source node r´, of order πεr´ . Therefore the scaling
behaviour of the flux falls into one of the following four different categories:

jεr r´ P V0 r´ P V1

r P Rslow Op1q “slow” Opεq “leak”
r P Rfast Op1{εq “fast cycle” Op1q “damped”

In this paper we rule out “leak” fluxes by assumption, so thatR “ Rslow YRfcyc YRdamp, with

Rfcyc :“ tr P Rfast : r´ P V0u and Rdamp :“ tr P Rfast : r´ P V1u.

1 2

3

4 5

V0-node

V1-node

slow flux

fast cycle flux

damped flux

123

4 5

Figure 2: The example from Figure 1, redrawn using the categorisation of nodes and fluxes (left); the
final reduction to a two-node network in the limit εÑ 0 (right).

Let us now explain these four categories in more detail by considering the example network of Figure 1,
which can now be redrawn as Figure 2.

1 What we shall call the slow fluxes are fluxes through a slow edge that start at a node in V0.
Typically, these slow fluxes will be of order Op1q, and they depend on ε only indirectly through
dependence on the other fluxes.

2 For the fast edges however, there is a fundamental difference between the fluxes 1 Ñ 2 Ñ
3 Ñ 1 and the flux 5 Ñ 4. The three fluxes 1 Ñ 2 Ñ 3 Ñ 1 constitute a cycle of fast
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Fast reaction limits via Γ-convergence of the flux rate functional 5

edges, with fluxes of order Op1{εq. Therefore mass will rotate very fast through this cycle, and
in the limit ε Ñ 0, the mass present in the cycle will instanteneously equilibrate over these
three edges. Moreover, any mass inserted into this cycle through the slow flux 4 Ñ 1 will also
instantaneously equilibrate over the nodes in the cycle, and any mass removed from the cycle
through the slow flux 2 Ñ 5 may be withdrawn from any node in the cycle. Practically this
means that in the limit the cycle/diconnected component 1 Ñ 2 Ñ 3 Ñ 1 acts as one node
c :“ t1, 2, 3u. We shall see in Lemma 3.1 that all edges with r P Rfast and r´ P V0 are indeed
part of a cycle, which justifies the name fast cycle.

3 By contrast, the fast edge 5 Ñ 4 is not part of a fast diconnected component. One does expect
mass in node 5 to be transported very fast into node 4, but since there is no fast inflow, the
mass in node 5 will be strongly depleted after the initial time. After this, the amount of mass that
will be actually transported through edge 5 Ñ 4 is fully subject to the amount of inflow of mass
into node 5 by the slow fluxes 2 Ñ 5 and 4 Ñ 5, and will therefore be of Op1q. We shall call
the flux 5 Ñ 4 a damped flux ; its corresponding edge is fast, but the flux is damped by the
fact that there is not enough mass available in the source node 5. In the limit, any mass that is
inserted into node 5 from node 2 or 4 will be immediately pushed into node 4.

4 Now imagine a flux 5 Ñ 1, not drawn in the picture. Since there is a damped flux going out of
node 5, almost all mass from node 5 will follow that flux into node 4, whereas very little mass
from node 5 would leak away into node 1. We shall call such fluxes leak fluxes. Since they
contribute little to the behaviour of the whole network we rule out this possibility by assumption.
This also rules out the possibility of higher orders of πεx as mentioned above.

An even further subdivision of Rdamp will be discussed in Section 1.8, but this will not be needed in
the general discussion.

1.5 Network decomposition: connected components

After categorising the fluxes, we now further subdivide the nodes of V0 into V0 “ V0fcyc Y V0slow,
consisting of nodes that are part of a fast cycle and the remainder:

V0fcyc :“ tx P V0 : Dr P Rfcyc, r´ “ xu, and V0slow :“ V0zVfcyc.

The notation reflects the expectation that the concentration in the nodes in V0fcyc will instantenously
equilibrate over the diconnected components of the graph pV0,Rfcycq. We collect these components
in the set

C :“
 

c Ă V0 : @x, y P c, DprkqKk“1 Ă Rfcyc, r
1
´ “ x, rk` “ rk`1

´ , rK` “ y
(

.

To each c P C corresponds the equilibrium mass

πεc :“
ÿ

xPc

πεx, c P C. (1.8)

We will see in Lemma 3.1 that a component c P C can be considered a union of cycles in the graph
pV0fcyc,Rfcycq. Consequently, if there exists a fast-cycle path from x to y then there also exists a
fast-cycle path from y to x. This remark also implies that each fast component c is a subset of V0fcyc.

Observe that, as illustrated in Figure 2, we do not combine the nodes in V1 and V0 into single nodes;
instead we preserve the nodes, and we keep track of the fast cycle as well as the damped fluxes.
This is motivated by our Theorem 1.1, which yields sufficient compactness in the V1-concentrations,
damped fluxes and fast cycle fluxes.

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020
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1.6 Rescaled flux and initial functionals

In Sections 1.3 and 1.4 we categorised the nodes and fluxes by their typical scaling behaviour. We shall
prove that the scaling behaviour of these categories is not only typical for the effective dynamics but
actually for any dynamics with finite large-deviation cost. In order to do so we rescale all concentrations
and fluxes according to their respective scalings.

We expect concentrations ρεx to follow πεx, and therefore to be of order order 1 on V0 and of order ε on
V1. This motivates the rescaling the concentrations by working with the densities uε, defined by

uεxptq :“
ρεxptq

πεxptq
,

where x P V or x P Ṽ0 Y V1, using (1.8). Although V0fcyc “
Ť

C, we study uεxptq for x P V0slow Y

V0fcyc Y C, assuming that uεc and uεx, x P c are related by

πεcu
ε
cptq “

ÿ

xPc

πεxu
ε
xptq, (1.9)

which we consider as a special continuity equation, additional to 9ρε “ ´ div jε. The distinction be-
tween uεx and uεc allows for two different notions of compactness: a weaker compactness for uεx with
x P V0fcyc, and a stronger compactness for uεc for any c P C.

As explained in Section 1.4, the fluxes are expected to scale as jεrptq “ Opκεrπεr´q. The slow and
damped fluxes are of order 1 and therefore need not be rescaled. For fast cycle fluxes, of order 1{ε,
we introduce the rescaled flux ̃εr , defined by

jεrptq “: κεrρ
ε
r ṕtq `

1
?
ε
̃εr “

1

ε
κrπ

ε
r ṕtqu

ε
r ṕtq `

1
?
ε
̃εr, r P Rfcyc.

It turns out that this deviation from κεrρ
ε
r of order 1{

?
ε is the right choice for sequences along which

Iε0`J ε is bounded, since this scaling is natural in the context of the compactness and Γ-limit results
that we prove below.

To shorten the expressions we shall write

uV0slow
:“ puxqxPV0slow

, uV0fcyc
:“ puxqxPV0fcyc

, uC :“ pucqcPC, uV1 :“ puxqxPV1 ,

jRslow
:“ pjrqrPRslow

, jRdamp
:“ pjrqrPRdamp

, ̃Rfcyc
:“ p̃rqrPRfcyc

,

and finally by a slight abuse of notation pu, jq :“ puV0slow
, uV0fcyc

, uC, uV1 , jRslow
, jRdamp

, ̃Rfcyc
q.
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Fast reaction limits via Γ-convergence of the flux rate functional 7

With these rescalings and notation we now rewrite the large-deviations rate functional (1.6) as:

J̃ ε
pu, jq “ J̃ ε

`

uV0slow
, uV0fcyc

, uC, uV1 , jRslow
, jRdamp

, ̃Rfcyc

˘

:“ J ε
`

πεu, pjRslow
, jRdamp

, ε´1κb πεuε ` ε´1{2̃Rfcyc
q
˘

“
ÿ

rPRslow

ż

r0,T s

s
`

jrptq | κrπ
ε
r´
ur ṕtq

˘

dt

looooooooooooooooooooomooooooooooooooooooooon

“:J̃ ε
slowpuV0slow

,uV0fcyc
q

`
ÿ

rPRdamp

ż

r0,T s

s
`

jrptq |
1
ε
κrπ

ε
r´
ur ṕtq

˘

dt

looooooooooooooooooooooomooooooooooooooooooooooon

“:J̃ ε
damppuV1

,jRdamp
q

`
ÿ

rPRfcyc

ż

r0,T s

s
´

1
ε
κrπ

ε
r´
ur ṕtq `

1
?
ε
̃rptq

ˇ

ˇ

ˇ

1
ε
κrπ

ε
r´
ur ṕtq

¯

dt

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

“:J̃ ε
fcycpuV0fcyc

,̃Rfcyc
q

, (1.10)

where J̃ ε “ 8 if one of the conditions of (1.6) and (1.9) is violated. Recall that πεr´ « πr´ for

r P Rslow and πεr´ « επ̃r´ for r P Rdamp, so that the two functionals J̃ ε
slow and J̃ ε

damp are very
similar.

In order to control the initial condition we include the initial large-deviation rate function Iε0 in the
analysis. As mentioned in Section 1.1, this function depends on the choice of the initial probability.
As is common, we choose the random dynamics to start independently at the invariant measure.
Since linear reactions correspond to independent copies of the process, the particles modelled by the
invariant measure are also independent, and hence Iε0

`

ρp0q
˘

“
ř

xPV s
`

ρxp0q | π
ε
˘

by Sanov’s
Theorem [DZ87, Th. 6.2.10]. We again rescale this functional to work with densities instead:

Ĩε0
`

up0q
˘

“ Ĩε0
`

uV0slow
p0q, uV0fcyc

p0q, uCp0q, uV1p0q
˘

:“ Iε0
`

πε b up0q
˘

:“
ÿ

xPV0slow

s
`

πεxuxp0q | π
ε
x

˘

`
ÿ

xPV0fcyc

s
`

πεxuxp0q | π
ε
x

˘

`
ÿ

xPV1

s
`

πεxuxp0q | π
ε
x

˘

. (1.11)

The minimiser of Ĩ0 is the vector of densities all equal to one.

1.7 Main results: compactness and Γ-convergence

We now focus on the Γ-limit of the rescaled functional Ĩε0 ` J̃ ε, in the space

Θ :“ Cpr0, T s;RV0slowq ˆ L8pr0, T s;RV0fcycq ˆ Cpr0, T s;RC
q ˆMpr0, T s;RV1q

ˆ LC
pr0, T s;RRslowq ˆMpr0, T s;RRdampq ˆ LC

pr0, T s;RRfcycq,

where C is the space of continuous functions, M denotes spaces of bounded measures, and LC

denote Orlicz spaces corresponding to the nice Young function (see Section 2.2):

C paq :“ inf
p´q“a

spp | 1q ` spq | 1q.

We always make the implicit assumption that uC and uV0fcyc
are connected by (1.9).

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020



M.A. Peletier, D.R.M. Renger 8

We make Θ into a topological space by equipping each space C with the uniform topology, each L8

and LC with their weak-∗ topologies and each measure spaceM with the narrow topology (defined
by duality with continuous functions).

Of course Γ-convergence properties strongly depend on the chosen topology. In fact, it is known that
different topologies may lead to different Γ-limits [DM93, Ch. 6], [Mie16b, Sec. 2.6]. The choice of this
particular topological space Θ is motivated by our first main result:

Theorem 1.1 (Equicoercivity). Let puε, jεqεą0 Ă Θ such that

Ĩε0
`

uεp0q
˘

` J̃ ε
puε, jεq ď C for some C ą 0.

Then there exists a Θ-convergent subsequence.

This equicoercivity identifies a topology that is generated by the sequence of functionals itself, and
therefore natural for the Γ-convergence. Note that the topologies for uV0 and uC are much stronger
than the other ones. This will be needed to interchange limits limεÑ0 limtÓ0 u

ε
V0slow

ptq and limtÓ0 limεÑ0 u
ε
V0slow

ptq
in order to converge in the continuity equation later on. By contrast, such strong compactness is not
to be expected for uεV1

, nor is it needed, since the uεV1
p0q will not play a role in the limit due to instan-

taneous equilibration.

Our second main result is the Γ-convergence:

Theorem 1.2. In the topological space Θ:

Ĩε0 ` J̃ ε
slow ` J̃ ε

fcyc ` J̃ ε
damp “: Ĩε0 ` J̃ ε Γ

ÝÝÑ
εÑ0
Ĩ0

0 ` J̃ 0 :“ Ĩ0
0 ` J̃ 0

slow ` J̃ 0
fcyc ` J̃ 0

damp,

where, setting ur´ :“ uc for any r´ P c,

Ĩ0
0

`

up0q
˘

:“
ÿ

xPV0slow

s
`

πxuxp0q | πx
˘

`
ÿ

cPC

s
`

πcucp0q | πc
˘

,

J̃ 0
slowpuV0slow

, uV0fcyc
, jRslow

q :“
ÿ

rPRslow

ż

r0,T s

s
`

jrptq | κrπr´ur ṕtq
˘

dt,

J̃ 0
damppuV1 , jRdamp

q :“
ÿ

rPRdamp

ż

r0,T s

s
`

jr | κrπ̃r´ur´
˘

pdtq,

J̃ 0
fcycpuV0fcyc

, ̃Rfcyc
q :“

1

2

ÿ

rPRfcyc

ż

r0,T s

̃rptq
2

κrπr´
ur ṕtq

dt,

and we set J̃ 0 “ 8 if the limit continuity equations (3.11) are violated.

The explicit form (3.11) of the limit continuity equations will be derived in Lemma 3.12, after the re-
quired notions are introduced and the required results about the network and continuity equations
are proven. In our third main result, explained in the next section, we show that both the densities
uV1 and the damped fluxes jRdamp

may become measure-valued in time; therefore we use a slight
generalisation of the function s to measure-valued trajectories, i.e.:

ż

r0,T s

s
`

jr | κrπ̃r´ur´
˘

pdtq :“

$

&

%

ż

r0,T s

s
´

djr
κrπ̃r´

dur´

ptq | 1
¯

κrπ̃r´ur ṕdtq, if jr ! ur´ ,

8, otherwise.
(1.12)
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Fast reaction limits via Γ-convergence of the flux rate functional 9

Comparing Theorem 1.2 with Figure 1, we see that the limit functional contains additional information
about the V1 nodes that contract to a single node in the limit, and about all slow, fast cycle and damped
fluxes. Due to this additional information, the proof of the Γ-convergence is relatively straightforward,
e.g. without the need of unfolding techniques. This illustrates our ‘philosophical’ message that the
mathematics becomes easier if one takes fluxes into account, which was also observed in [PR19]
where the large-deviation principle (1.6) was proven.

1.8 Main result: the development of spikes

The equicoercivity of uεV1
and jεdamp will be derived by uniform L1-bounds in Lemmas 3.4 and 3.6.

From these bounds one can only extract compactness as measures, in the narrow sense, so that uεV1

and jεdamp may develop measure-valued singularities or spikes in time.

For the densities uεV1
, such spikes can not be ruled out, regardless of the network structure. This is

easy to see from the fact that these densities become fully uncoupled in the limit continuity equa-
tion (3.11d). From (1.12) one sees that one may choose large ur for r P V1, provided jr ! ur´ .

For the fluxes jεdamp, the occurrence of spikes is related to the presence of damped cycles, i.e. cycles
of damped reactions. The example of Figures 1 and 2 has no such damped cycles, but Figure 3
illustrates the concept.

1 2

3

4

1 2

3

4

Figure 3: An example of a network with a cycle of damped fluxes. On the left the network with the
distinction between fast and slow edges; on the right the redrawn network with the node and flux
classification as in Figure 2.

To study this we further subdivideRdamp into damped cycles and the rest,Rdamp “ RdcycYRdnocyc,
where

Rdcyc :“
 

r0
P Rdamp : DprkqKk“1 Ă Rdamp, r

k
` “ rk´1

´ , rK` “ r0
´

(

, Rdnocyc :“ RdampzRdcyc.

The relation between damped cycles and spikes in the damped fluxes is summarised in our third main
result:

Theorem 1.3.

(i) For any sequence puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

` J̃ εpuε, jεq ď C for some C ą 0 and

puε, jεq
Θ
ÝÑ pu, jq, we have jRdnocyc

P LC pr0, T s;RRdnocycq.

(ii) IfRdcyc ­“ H then there exists a sequence puε, jεqεą0 Ă Θ with Ĩε0
`

uεp0q
˘

` J̃ εpuε, jεq ď C

for some C ą 0 and puε, jεq
Θ
ÝÑ pu, jq such that

jRdcyc
PMpr0, T s;RRdcycqzL1

pr0, T s;RRdcycq.

As a consequence of Theorem 1.2 and Theorem 1.3(ii), ifRdcyc ‰ H then there is a pu, jq P Θ with
jRdcyc

PMpr0, T s;RRdcycqzL1pr0, T s;RRdcycq for which Ĩ0
0

`

up0q
˘

` J̃ 0pu, jq ď 8.
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1.9 Related literature

As mentioned in the introduction, this work is related to classical quasi-steady state approximation
theory; see e.g. [HS96, Sec. 4.2] or [Kue15, Sec. 3.1]. We mention two recent works [DLZ18, MS19]
that study fast-reaction limits in connection with another underlying structure, namely a gradient struc-
ture. A gradient structure consists of an energy 1

2
Iε0pcq and a non-negative convex dissipation poten-

tial Ψε
cpξq such that the evolution equation (1.1) can be rewritten as Ψε

cptqp 9cptqq “ ´D 1
2
Iε0pcptqq.

Both studies work on the level of concentrations rather than fluxes, under the assumption that the ε-
dependent evolution equation (1.1) satisfies detailed balance, and under the assumption that damped
fluxes do not occur. The detailed balance condition is needed for the ε-dependent equation to have
a gradient structure, and the absence of damped fluxes guarantees that the gradient structure is not
destroyed in the limit.

Disser, Liero, and Zinsl [DLZ18] study general, possibly non-linear reaction networks with mass-
action kinetics. Under the detailed balance assumption such equations have a gradient structure with
quadratic dissipation potential, as discovered in [Maa11, Mie13]. The authors show the convergence
of that gradient structure by the notion of E-convergence as defined in [Mie16b]. In order to do so they
assume linearly independent stoichiometric coefficients, which can be seen as a decoupling or or-
thogonality between the slow and the fast reactions. In this paper we do not need such an assumption
because the flux setting automatically decouples the reactions.

Mielke and Stephan [MS19] study the linear setting, similarly to the current paper. Contrary to Disser
et al., they use the gradient structure that is related to the large-deviation principle (1.3b) in the sense
of [MPR14], again under the detailed balance assumption. They prove the convergence of that gra-
dient structure, using the stronger notion of tilted EDP-convergence; see [Mie13, LMPR17, MMP20].
This result implies convergence of the large-deviation rate functions Iε, under the more restrictive
assumptions mentioned above, but also for a wide range of tilted energies simultaneously. In a paper
that is soon to appear, Mielke, Peletier, and Stephan generalise this to the case of nonlinear systems,
modelled on the class of chemical reactions with mass-action kinetics that satisfy the detailed balance
condition.

1.10 Overview

Section 2 contains preliminaries that are needed throughout the paper. In Section 3, we study prop-
erties of the network, the continuity equations, and their limits, and we derive equicoercivity in Θ.
In Section 4 we prove our main Γ-convergence result, Theorem 1.2. In Section 5 we prove the re-
lation between spikes and damped cycles, Theorem 1.3. Finally, in Section 6 we derive implications
for Γ-convergence of the density large deviations, and for convergence of solutions to the effective
dynamics.

2 Preliminaries

We first provide a list of basic facts that will be used throughout the paper. After this we introduce the
Orlicz space LC . Next we recall a FIR inequality that bounds the free energy and Fisher information
by the rate functional which will be needed to derive compactness of densities later on. Finally, we
state a number of convex dual formulations of a number of relevant functionals.
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2.1 Basic properties

We will use the following properties of the functions sp¨|¨q and C . For any a, b ě 0 and p P R, we
have:

spa | bq :“ a log
a

b
´ a` b

“ p1´ αqb` a logα `
8
ÿ

n“2

1

npn´ 1q
bα
´

bα´ a

bα

¯n

ě p1´ αqb` a logα @α ą 0,

(2.1)

spa | bq ď
a2

b
´ 2a` b (using log x ď x´ 1q, (2.2)

C paq :“ inf
p´q“a

spp | 1q ` spq | 1q

“ s
`

1
2
a`

a

1` a2{4 | 1
˘

` s
`

´ 1
2
a`

a

1` a2{4 | 1
˘

“

ż a

0

sinh´1
pâ{2q dâ “ 2

`

cosh˚pa{2q ` 1
˘

,

C ˚
ppq :“ sup

aPR
pa´ C paq (2.3)

“ 2
`

coshppq ´ 1
˘

, (2.4)

spa | bq “ b
`

spa{b | 1q ` sp1 | 1q
˘

ě bC pa´b
b
q, (2.5)

C pδpq “ δ

ż p

0

sinh´1
pδq{2q dq

(concave)
ě δ2

ż p

0

sinh´1
pq{2q dq “ δ2C ppq @δ P r0, 1s, (2.6)

C pδpq
(convex)
ď δC ppq @δ P r0, 1s. (2.7)

2.2 Orlicz space

The functions C ,C ˚ defined above form a convex dual pair of N-functions (“nice Young functions” [RR91,
Sec. 1.3]). The primal function C satisfies the ∆2 property: C p2pq ď 4C ppq (but C ˚ does not). We
shall use the corresponding Orlicz space (see [RR91, Th. 3.3.13]):

LC
pr0, T s;RR

q :“
!

j : r0, T s Ñ RR, Da ą 0 such that
ř

rPR
ş

r0,T s
C
`

1
a
jrptq

˘

dt ă 8
)

,

‖j‖LC :“ sup
ζPLC˚pr0,T s;RRq:

ř

rPR
ş

r0,T sC
˚p|ζrptq|q dtď1

ż

r0,T s

|jptq ¨ ζptq| dt “ inf
aą0

1

a

´

1`
ř

rPR
ş

r0,T s
C
`

a jrptq
˘

dt
¯

.

(2.8)

The final characterization above implies that

a}j}LC ď 1`
ÿ

r

ż

r0,T s

C
`

a jrptq
˘

dt for all a ą 0. (2.9)

We also introduce the space (see [RR91, Prop. 3.4.3])

MC˚
pr0, T s;RR

q :“
!

ζ : r0, T s Ñ RR, @a ą 0 there holds
ř

rPR
ş

r0,T s
C ˚

`

1
a
ζrptq

˘

dt ă 8
)

“ span
!

step functions ζ P LC˚pr0, T s;RRq
)LC˚

Ĺ LC˚
pr0, T s;RR

q.
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Then
`

MC˚pr0, T s;RRq
˘˚
» LC pr0, T s;RRq [RR91, Thms 4.1.6 & 4.1.7], and, since C satisfies

the ∆2-property, also
`

LC pr0, T s;RRq
˘˚
» pLC˚pr0, T s;RRq [RR91, Cor. 4.1.9]. In particular, the

first of these isomorphisms defines the weak-∗ topology on LC pr0, T s;RRq.

2.3 An FIR inequality

There are various related notions of Fisher information for discrete systems in the literature [BT06,
Maa17, FS18]. The notion that we use is:

FIεpuq :“
1

2

ÿ

rPR

ż

r0,T s

κεrπ
ε
r´

´
b

ur ṕtq ´
b

ur p̀tq
¯2

dt, (2.10)

where κεrπ
ε
r´
ur`ptq “ κεr

πεr´
πεr`

ρr`ptq appears as the backward jump rate for the time-reversed pro-
cess.

Recall the definitions of Ĩ0 from (1.11) and J̃ ε from (1.10). Using arguments from Macroscopic Fluc-
tuation Theory, one can show the following inequality, that is sometimes known as the FIR inequality
in the literature [HPST19, KJZ18, RZ20]:

Lemma 2.1 (FIR inequality). Let puεV0
, uεV1

, jεRslow
, jεRdamp

, ̃εRfcyc
q P Θ be such that Ĩε0puεp0qq `

J εpuεπε, jεq ă 8. Then

sup
0ďtďT

1
2
Ĩε0puεptqq ` FIεpuεq ď 1

2
Ĩε0puεp0qq ` J ε

puεπε, jεq. (2.11)

The proof is a simple rewriting of the results of [HPST19], [KJZ18, Cor. 4] and [RZ20], and we omit
it. From the boundedness of Ĩε0puεp0qq ` J εpuεπε, jεq assumed above, the inequality (2.11) implies
boundedness of both Ĩε0puεpT qq and FIεpuεπεq; this will be important in deducing compactness for
the densities uεV1

.

2.4 Dual formulations

We recall convex dual formulations for the entropic and quadratic functionals and the Fisher informa-
tion.

Lemma 2.2 ([PR19, Prop. 3.5],[AGS08, Lemma 9.4.4]). If u P L1pr0, T sq,

sup
ζPCpr0,T sq

ż

r0,T s

“

ζptqjptq´uptqpeζptq´ 1q
‰

dt “

#

ş

r0,T s
spjptq | uptqq dt, j P L1pr0, T sq, j ! u,

8, otherwise,

and if u PMpr0, T sq,

sup
ζPCpr0,T sq

ż

r0,T s

“

ζptqjpdtq ´ updtqpeζptq ´ 1q
‰

“

#

ş

r0,T s
spj | uqpdtq, j PMpr0, T sq, j ! u,

8, otherwise.

Lemma 2.3 ([AGS08, Lemma 9.4.4]). If u P L1pr0, T sq,

sup
ζPCpr0,T sq

ż

r0,T s

”

ζptq̃ptq ´ 1
2
uptqζptq2

ı

dt “

#

1
2

ş

r0,T s
̃ptq2

uptq
dt, if ̃ P L2

1{upr0, T sq, ̃ ! u,

8, otherwise.
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Proposition 2.4. For u P L1pr0, T s;RVq,

FIεpuq “ sup
pPCpr0,T s;R2Rq:
pr´ă1, pr`ă1,

ppr´´1qppr`´1qą1

ÿ

rPR
κεr π́

ε
r´

ż

r0,T s

κεr π́
ε
r´

“

pr ṕtqur ṕtq ` pr p̀tqur p̀tq
‰

dt.

Proof. Note that upon writing fipa, bq for the argument in the integral in (2.10),

fipa, bq :“ p
?
a´

?
bq2

we can characterize the function fi by

fipa, bq “ sup
p,q

ap` bq ´ fi˚pp, qq “ sup
pă1,qă1,pp´1qpq´1qą1

ap` bq

where

fi˚pp, qq :“ sup
a,bě0

ap` bq ´ fipa, bq “ χtp ă 1, q ă 1, pp´ 1qpq ´ 1q ą 1u. (2.12)

We use this to write for u P L1pr0, T s;RV
`q,

FIεpuq “ sup
pPMpr0,T s;R2Rq:
pr´ă1, pr`ă1,

ppr´´1qppr`´1qą1

ÿ

rPR
κεr π́

ε
r´

ż

r0,T s

ppr´ur´ ` pr`ur`q dt.

After checking that a cut-off from below and a convolution leave the conditions invariant, the result
follows by a standard approximation argument.

Remark 2.5. The definition of the Fisher information can easily be extended to measures if we use
the dual formulation. In fact, the supremum remains finite when the measure is finite:

sup
pPCpr0,T s;R2Rq:
pr´ă1,pr`ă1,

ppr´´1qppr`´1qą1

ÿ

rPR
κεr π́

ε
r´

ż

r0,T s

“

pr ṕtqur ṕdtq ` pr p̀tqur p̀dtq
‰

“ sup
qPCpr0,T s;R2Rq:
qr´ą0,qr`ą0,
qr´qr`ą1

ÿ

rPR
κεr π́

ε
r´

ż

r0,T s

“

p1´ qr ṕtqqur ṕdtq ` p1´ qr p̀tqqur p̀dtq
‰

ď
ÿ

rPR
κεr π́

ε
r´

`

‖ur´‖TV ` ‖ur ‖̀TV

˘

.

This shows that a uniform bounded Fisher information does not rule out the development of singulari-
ties in the densities, as explained in Section 1.8.
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3 Network properties and compactness

In this section we study the network decomposition introduced in Sections 1.5, 1.4, 1.3, and in par-
ticular the implications for the continuity equation. We derive estimates for sublevel sets of the rate
functional and deduce compactness of these sublevel sets in the topological space Θ as defined in
Section 1.7. We then use that topology to derive the limiting continuity equations. In addition, we show
that any sequence of bounded cost will equilibrate over the fast cycle components, and then prove
a stronger equilibration result that will be needed in the construction of the recovery sequence in
Section 4.

3.1 Network properties and the continuity equations

Recall that we assumed that any node x is either in V0 (when πεx “ Op1q) or in V1 (when πεx “ Opεq),
and that leak edges, through which the non-equilibrium steady state flux is of order ε, do not occur.
Moreover, we further decomposed V0 into V0fcyc and V0slow, where V0fcyc is defined as all nodes
x P V0 such there is at least least one fast reaction that leaves x.

The name V0fcyc (‘fast cycle’) reflects the fact that all nodes in this set belong to a cycle of fast fluxes,
as the following simple lemma shows:

Lemma 3.1. The subgraph pV0fcyc,Rfcycq consists purely of cycles. More explicitly, let x1 P V0fcyc.
Then there exists a cycle prkqKk“1 Ă Rfcyc, r

k
` “ rk`1

´ , r1
´ “ x1 “ rK` . Similarly any r P Rfcyc is

part of such a fast cycle.

Proof. Let r1 P Rfcyc with r1
´ “ x1, which exists by assumption x0 P V0fcyc, and let x2 :“ r1

`. The
equilibrium equation in x2 reads:

πεx2
ÿ

rPR:r´“x2

κεr “
ÿ

rPR:r`“x2

κεrπ
ε
r´
ě κεr1π

ε
x1 .

The right-hand side is of order 1{ε, and so for the left-hand side πεx2 must be order 1 (or higher,
which is ruled out by assumption), and the sum contains at least one r2 :“ r P Rfast. It follows
that x2 P V0fcyc and r2 P Rfcyc. We then repeat the same argument, which only terminates when
xK`1 “ x1. The second claim is true by the same argument.

We can then enumerate all possible edges from and to V0slow, V0fcyc, and V1.

Lemma 3.2.

(i) If x P V0slow, then all incoming edges r P R, r` “ x are either in Rslow or in Rdamp, and all
outgoing edges r P R, r` “ x are inRslow.

(ii) If x P V0fcyc, then the incoming edges could be of any type, and all outgoing edges r P R, r´ “
x are either inRslow or inRfcyc.

(iii) If x P V1, then all incoming fluxes r P R, r` “ x are either inRslow orRdamp, and all outgoing
fluxes r P R, r´ “ x are inRdamp.
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Proof. For x P V0slow orV0fcyc, the statement follows immediately from the definitions ofRslow,Rdamp

and Rfcyc. For x P V1 any slow outgoing edge will be of leak type that we ruled out by assumption
and any fast outgoing edge is damped. Since all outgoing edges are of order 1, an incoming fast cy-
cle edge of order 1{ε would imply that πεx is of order 1{ε, which is ruled out by the conservation of
mass.

We can now write down the rescaled continuity equations. Although for ε ą 0 all densities u and fluxes
j and ̃ have W 1,1 and L1 regularity respectively, provided the rate functional (1.6) is finite, some of
this regularity is lost in the regime ε Ñ 0. Therefore it will be useful to write the continuity equations
in a different form. In the following we will say that

πεx 9uεx “
ÿ

r

jεr in the weak sense,

whenever

´

ż

r0,T s

9φptq πεxu
ε
xpdtq “

ÿ

r

ż

r0,T s

φptqjεrpdtq for all φ P C1
0pr0, T sq, (3.1)

where we identify uxpdtq “ uxptq dt and jrpdtq “ jrptq dt wherever possible. If for a fixed ε ą 0 we
have Ĩε0 ` J̃ ε ă 8, then by (1.6) we know that all densities are absolutely continuous and all fluxes
have L1-densities. We will then say that

πεx 9uεx “
ÿ

r

jεr in the mild sense,

whenever for all 0 ď t0 ď t1 ď T ,

πεxu
ε
xpt1q ´ π

ε
xu

ε
xpt1q “

ÿ

r

jεrrt0, t1s, (3.2)

using the notation

jεrrt0, t1s :“

#

ş

rt0,t1s
jεrptq dt, jεr P L

1pr0, T sq,
ş

rt0,t1s
jεrpdtq, jεr PMpr0, T sq.

Corollary 3.3. After rescaling, the continuity equations (1.4) and (1.9) are, for fixed ε ą 0, in the weak
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sense,

πεcu
ε
c “

ÿ

xPc

πεxu
ε
x for c P C,

(3.3a)

πεx 9uεx “
ÿ

rPRslow:
r`“x

jεr `
ÿ

rPRdamp:
r`“x

jεr ´
ÿ

rPRslow:
r´“x

jεr for x P V0slow,

(3.3b)

πεx 9uεx “
ÿ

rPRslow:
r`“x

jεr `
ÿ

rPRdamp:
r`“x

jεr ´
ÿ

rPRslow:
r´“x

jεr

`
ÿ

rPRfcyc:
r`“x

´

1
ε
κrπ

ε
r´
uεr´ `

1?
ε
̃εr

¯

´
ÿ

rPRfcyc:
r´“x

´

1
ε
κrπ

ε
r´
uεr´ `

1?
ε
̃εr

¯

, for x P V0fcyc,

(3.3c)

πεx 9uεx “
ÿ

rPRslow:
r`“x

jεr `
ÿ

rPRdamp:
r`“x

jεr ´
ÿ

rPRdamp:
r´“x

jεr, for x P V1.

(3.3d)

If in addition Ĩε0puεp0qq` J̃ εpuε, jεq ă 8, then these equations also hold in the mild sense of (3.2).

3.2 Boundedness of densities and fluxes

The aim of this section is to prove uniform bounds that are needed to derive the equicoercivity Theo-
rem 1.1 later on.

Lemma 3.4 (Boundedness of densities). Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

`J̃ εpuε, jεq ď C
for some C ą 0. Then

1 puεV0slow
, uεCq and uεV0fcyc

are uniformly bounded inCpr0, T s;RV0slowYCq andL8pr0, T s;RV0fcycq;

2 puεV0slow
, uεV0fcyc

, uεV1
q is uniformly bounded in L1pr0, T s;RV0slowYV0fcycYV1q;

3 ε}uεx}Cpr0,T sq ÝÑ 0 for all x P V1 as εÑ 0.

Proof. From (2.1) and mass conservation we derive a uniform bound on the total mass for each
t P r0, T s:

ÿ

xPV
πεxu

ε
xptq “

ÿ

xPV
πεxu

ε
xp0q ď Ĩε0puεp0qq ` pe´ 1q

ÿ

x

πεx ď C ` e´ 1. (3.4)

This implies the C-bounds on uεV0slow
, uεC, and the L8 bound on uεV0fcyc

.

From the FIR inequality (2.11) we deduce that

C ě 1
2
Ĩε0
`

uεp0q
˘

` J̃ ε
`

uεV0
, uεV1

, jεRslow
, jεRdamp

, ̃εRfcyc

˘

ě FIεpuεq “
1

2

ÿ

rPR
κεrπ

ε
r´

ż

r0,T s

´b

uεr ṕtq ´
b

uεr p̀tq
¯2

dt. (3.5)

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020



Fast reaction limits via Γ-convergence of the flux rate functional 17

Hence by (1.7), for ε sufficiently small and any r P R:

ż

r0,T s

´b

uεr ṕtq ´
b

uεr p̀tq
¯2

dt ď

$

’

’

&

’

’

%

4C
κrπr´

, r P Rslow,

4C
κrπ̃r´

, r P Rdamp,

4C
κrπr´

ε, r P Rfcyc.

Since V is finite, V0 cannot be empty, since otherwise the total mass in the system would vanish. Take
an arbitrary x0 P V0; by (3.4) we have ‖uεx0‖L8p0,T q ď 2pC ` e ´ 1q{πx0 for sufficiently small ε.
Now take an arbitrary y P V . By irreducibility of the graph pV ,Rq there exists a sequence of edges

x0 r01
ÝÝÑ x1 r12

ÝÝÑ . . .Ñ xn “ y. For the first edge we find, using the inequality a ď 2p
?
a´
?
bq2`2b,

ż

r0,T s

uεx1ptq dt ď 2

ż

r0,T s

´
b

uεx0ptq ´
b

uεx1ptq
¯2

dt`2

ż

r0,T s

uεx0ptq dt ď
8C

κ01πx0
`4T

C ` e´ 1

πx0
.

Repeating this procedure for all edges yields that uεy is uniformly bounded in L1p0, T q.

Finally we prove the vanishing of εuεV1
. We also deduce from (2.11) that for all 0 ď t ď T ,

C ě
1

2
Ĩε0
`

uεptq
˘

ě
1

2

ÿ

xPV1

spεuεxptqπ̃
ε
x | επ̃

ε
xq “

1

2

ÿ

xPV1

επ̃εx spu
ε
xptq | 1q ě

ÿ

xPV1

επ̃εx η
`

uεxptq
˘

,

with ηpτq :“

#

1
2

“

τ log τ ´ τ ` 1
‰

if τ ě 1,

0 if 0 ď τ ď 1.

Since the π̃εx are bounded away from zero, we find that

η
`

uεxptq
˘

ď
C

ε
ùñ 0 ď uεxptq ď η´1

´C

ε

¯

,

where η´1 is the right-continuous generalized inverse of η. Since η is superlinear at infinity, εη´1pC{εq Ñ
0 as εÑ 0, and we find that ε}uεV1

}Cpr0,T sq ÝÑ 0 as εÑ 0.

Lemma 3.5 (Boundedness of slow fluxes). Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

` J̃ εpuε, jεq ď
C for some C ą 0. Then the slow fluxes jεRslow

are uniformly bounded in LC pr0, T s;RRslowq. It
follows that there is a non-decreasing function ω : r0,8q Ñ r0,8q with limσÓ0 ωpσq “ 0 such that
for all 0 ď t0 ď t1 ď T , (using the notation from (3.2))

sup
εą0

ÿ

rPRslow

jεrprt0, t1sq ď ωpt1 ´ t0q. (3.6)

Proof. Again by (1.6) we know that jεRslow
and ρεV0

both have L1-densities. Writing Z :“ pC ` e ´
1q
ř

rPRslow
κr,

C
(1.10)
ě

ÿ

rPRslow

ż

r0,T s

“

s
`

jεrptq | π
ε
r´
uεr´κrq

˘

´ πεr´u
ε
r ṕtqκr

looooooooooooooooooooomooooooooooooooooooooon

non-increasing in πεr´u
ε
r´
ptqκr

` πεr´u
ε
r ṕtqκr

looooomooooon

ě0

‰

dt

(3.4)
ě

ÿ

rPRslow

ż

r0,T s

“

s
`

jεrptq | Z
˘

´ Z
‰

dt

(2.5)
ě Z

ÿ

rPRslow

ż

r0,T s

C
`jεrptq ´ Z

Z

˘

dt´ Z|Rslow|T

(2.9)
ě ‖jε ´ Z‖LC pr0,T s;RRslow q ´ Zp|Rslow|T ` 1q.
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The proof of estimate (3.6) follows from the definition (2.8) of the Orlicz norm and the superlinearity of
C . Define the function

ω : r0,8q Ñ r0,8q, ωpσq :“ inf
βą0

!

rC

β
: |Rslow|C

˚
pβq ď

1

σ

)

,

where rC is the bound on jεRslow
in LC pr0, T s;RRslow

` q. The function ω is non-decreasing by construc-
tion, and limσÓ0 ωpσq “ 0 because C ˚ is finite on all of R.

Fix 0 ď t0 ď t1 ď T and take β ą 0 such that pt1 ´ t0q|Rslow|C ˚pβq ď 1. Set

ζpt̂q :“

#

1rt0,t1spt̂q if r P Rslow,

0 otherwise,

and use this function ζ in (2.8) to estimate,

ÿ

rPRslow

jεrrt0, t1s “
ÿ

rPRslow

1

β

ż

r0,T s

jεrpt̂qζpt̂q dt̂ ď
1

β
}jεRslow

}LC pr0,T s;RRslow q ď
rC

β
.

The estimate (3.6) follows from taking the infimum over β.

Although the form of the rate functional is almost the same for the slow and damped fluxes, the damped
fluxes lack an Cpr0, T sq-bound on the corresponding densities. Therefore we obtain a weaker bound
on the damped fluxes:

Lemma 3.6 (Boundedness of damped fluxes). Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

`J̃ εpuε, jεq ď
C for some C ą 0. Then the damped fluxes jεRdamp

are uniformly bounded in L1pr0, T s;RRdampq. In
addition, for all σ ą 0,

lim sup
εÑ0

sup
|t1´t0|ăσ

ÿ

rPRdamp:
r`PV0

jεrrt0, t1s ď ωpσq, (3.7)

where ω is the modulus of continuity of Lemma 3.5.

Proof. Again by (1.10) we can assume that uεV1
and jεRdamp

have L1-densities, at least for ε ą 0. This
allows us to write

C
(1.10)
ě

ÿ

rPRdamp

ż

r0,T s

s
`

jεrptq |
1
ε
κrπ

ε
r´
uεr ṕtq

˘

dt

(2.1)
ě

ÿ

rPRdamp

ż

r0,T s

`

p1´ eq1
ε
κrπ

ε
r´
uεr´ ` j

ε
rptq

˘

dt,

and so ‖jεRdamp
‖L1pr0,T s;Rdampq

ď C ` pe ´ 1q‖uεV1
‖
L1pr0,T s;RV1

` q
supεą0,rPRdamp

1
ε
κrπ

ε
r´, which is

uniformly bounded by Lemma 3.4 and the assumption 1
ε
πεr´ Ñ π̃r´ .

Next we prove the estimate (3.7) by summing the mild formulation of the continuity equations (3.3d)
over all x P V1, for arbitrary 0 ď t0 ď t1 ď T :

ÿ

rPRdamp:
r´PV1

jεrrt0, t1s ´
ÿ

rPRdamp:
r`PV1

jεrrt0, t1s “
ÿ

rPRslow:
r`PV1

jεrrt0, t1s ´
ÿ

xPV1

πεx
`

uεxpt1q ´ u
ε
xpt0q

˘

.
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Since the first two sums have common terms corresponding to r´, r` P V1, we can remove them to
find

ÿ

rPRdamp:
r´PV1
r`PV0

jεrrt1, t0s ´
ÿ

rPRdamp:
r´PV0
r`PV1

jεrrt1, t0s “
ÿ

rPRslow:
r`PV1

jεrrt1, t0s ´
ÿ

xPV1

πεx
`

uεxpt1q ´ u
ε
xpt0q

˘

.

The second sum is a sum over the empty set, and applying the estimate (3.6) we find
ÿ

rPRdamp:
r´PV1
r`PV0

jεrrt1, t0s ď ωpt1 ´ t0q `
ÿ

xPV1

πεx}u
ε
x}Cpr0,T s.

The estimate (3.7) then follows from part 3 of Lemma 3.4 together with 1
ε
πεr´ Ñ π̃r´ .

Lemma 3.7 (Boundedness of fast fluxes). Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

`J̃ εpuε, jεq ď C
for some C ą 0. Then the fast cycle fluxes ̃εRfcyc

are uniformly bounded in LC pr0, T s;RRfcycq.

Proof. Similar to the proof of Lemma 3.5 we writeZ :“ pC`e´1q
ř

rPRfcyc
κr, so that κrπεr´u

ε
r´
ptq{Z ď

1 for each r P Rfcyc due to the total mass estimate (3.4). Again using the existence of L1-densities:

C
(1.10)
ě

ÿ

rPRfcyc

ż

r0,T s

s
´

1
ε
κrπ

ε
r´
uεr ṕtq `

1
?
ε
̃εrptq

ˇ

ˇ

ˇ

1
ε
κrπ

ε
r´
uεr ṕtq

¯

dt

(2.5)
ě

ÿ

rPRfcyc

ż

r0,T s

1
ε
κrπ

ε
r´
uεr ṕtqC

ˆ 1?
ε
̃εrptq

1
εκrπ

ε
r´
uεr ṕtq

˙

dt

(2.6)
ě

ÿ

rPRfcyc

ż

r0,T s

Z
κrπ

ε
r´
uεr ṕtq

Z
C

ˆ

̃εrptq{Z

κrπεr´
uεr ṕtq{Z

˙

dt

(2.7)
ě

ÿ

rPRfcyc

ż

r0,T s

Z C
´

̃εrptq

Z

¯

dt

(2.9)
ě ‖̃ε‖

LC pr0,T s;RRfcyc q
´ Z.

Lemma 3.8 (Equicontinuity of uεV0slow
and uεC.). Let puεV0

, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

`J̃ εpuε, jεq ď
C for some C ą 0. Then there exists a continuous non-decreasing function ω : r0,8q Ñ r0,8q
with limσÓ0 ωpσq “ 0 such that for all 0 ď t0 ď t1 ď T ,

lim sup
εÑ0

ÿ

cPC

|uεcpt1q ´ u
ε
cpt0q| `

ÿ

xPV0slow

|uεxpt1q ´ u
ε
xpt0q| ď ωpt1 ´ t0q. (3.8)

Proof. Fix 0 ď t0 ď t1 ď T . Take x P V0slow and note that by (3.3b) and (3.6)

πεx
`

uεxpt1q ´ u
ε
xpt0q

˘

ě ´
ÿ

rPRslow:
r´“x

jεrrt1, t0s ě ´ωpt1 ´ t0q,

where we again used the mild formulation of the continuity equations. To estimate the difference from
the other side we write

πεx
`

uεxpt1q ´ u
ε
xpt0q

˘

ď
ÿ

rPRslow:
r`“x

jεrrt0, t1s `
ÿ

rPRdamp:
r`“x

jεrrt0, t1s ď ωpt´ sq `
ÿ

rPRdamp:
r`“x

jεrrt0, t1s,
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and by (3.7) one part of (3.8) follows.

The same line of reasoning leads to a corresponding statement about |uεcpt1q´u
ε
cpt0q| for any c P C,

after one sums the continuity equations (3.3c) over all x P c to find
ÿ

xPc

πεx
`

uεxpt1q ´ u
ε
xpt0q

˘

“
ÿ

rPRslow:
r`Pc

jεrrt0, t1s `
ÿ

rPRdamp:
r`Pc

jεrrt0, t1s ´
ÿ

rPRslow:
r´Pc

jεrrt0, t1s.

We omit the details.

3.3 Compactness of densities and fluxes

In this brief section we derive the compactness of level sets, and hence the equicoercivity of Theo-
rem 1.1.

Corollary 3.9. Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

` J̃ εpuε, jεq ď C for some C ą 0. Then
one can choose a sequence εn Ñ 0 and a limit point pu, jq P Θ such that

uεnV0slow
ÝÑ uV0slow

in Cpr0, T s;RV0slowq, (3.9a)

uεnV0fcyc

˚
Ýá uV0fcyc

in L8pr0, T s;RV0fcycq, (3.9b)

uεnC ÝÑ uC in Cpr0, T s;RC
q, (3.9c)

uεnV1

narrow
ÝÝÝá uV1 inMpr0, T s;RV1q, (3.9d)

ε uεV1
ÝÑ 0 in Cpr0, T s;RV1q, (3.9e)

jεnRslow

˚
Ýá jRslow

in LC
pr0, T s;RRslowq, (3.9f)

jεnRdamp

narrow
ÝÝÝá jRdamp

inMpr0, T s;RRdampq, (3.9g)

̃εnRfcyc

˚
Ýá ̃Rfcyc

in LC
pr0, T s;RRfcycq. (3.9h)

It follows that uV0slow
and uC are continuous.

Proof. The boundedness given by Lemmas 3.4, 3.5, and 3.6 immediately implies the weak-∗ and
narrow compactness of (3.9b), (3.9d), (3.9e), (3.9f), (3.9g), and (3.9h); we extract a subsequence that
converges in this sense.

The additional uniform convergences of (3.9a) and (3.9c) follow from an alternative version of the
classical Arzelà-Ascoli theorem, which we state and prove in the appendix. This version applies to
sequences that are uniformly bounded and asymptotically uniformly equicontinuous. The uniform
boundedness of uεnV0slow

and uεnC follow by Lemma 3.4, and the asymptotic uniform equicontinuity is
the statement of Lemma 3.8. The uniform convergences (3.9a) and (3.9c) then follow by Theorem A.1
(up to extraction of a subsequence).

From now on we shall consider sequences that converge in the sense of (3.9).

3.4 Equilibration on fast cycle components

In this section we prove that all mass on fast cycles will instaneously spread over each node in the fast
cycle component.
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Lemma 3.10. Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

` J̃ εpuε, jεq ď C converge to pu, jq in Θ
in the sense of (3.9). Then uxptq ” ucptq on each component c P C and div ̃Rfcyc

“ 0.

Proof. For any x P c P C and t P r0, T s, the mild formulation of the continuity equation is:

πεxu
ε
xptq ´ π

ε
xu

ε
xp0q “

ÿ

rPRslow:
r`“x

jεrr0, ts `
ÿ

rPRdamp:
r`“x

jεrr0, ts ´
ÿ

rPRslow:
r´“x

jεrr0, ts

`
ÿ

rPRfcyc:
r`“x

1
ε
κrπ

ε
r´
uεr´r0, ts `

1?
ε
̃εrr0, ts

´
ÿ

rPRfcyc:
r´“x

1
ε
κrπ

ε
r´
uεr´r0, ts `

1?
ε
̃εrr0, ts. (3.10)

All terms in the first line are uniformly bounded in L1p0, T q, and the same holds for the uε and ̃ in the
second and third lines. First multiplying the equation by ε, and then letting εÑ 0 thus yields:

ÿ

rPRfcyc:
r`“x

κrπr´ur ṕtq “
ÿ

rPRfcyc:
r´“x

κrπr´ur ṕtq.

Without the ur´ptq factors, this is exactly the equation for the steady state π for a network consisting
only of the fast edges. Since the component c containing x is diconnected, this equation has a unique
solution up to a multiplicative constant, i.e. uxptq ” acptq on c, for some ac P L8pr0, T sq. To identify
ac, use (3.3a) together with the convergences (3.9b) and (3.9c) to find for the limit

πcuc Ð πεcu
ε
c “

ÿ

xPc

πεxu
ε
x á

ÿ

xPc

πxux “ πcac,

so that indeed ux ” ac “ uc.

The same argument, multiplying (3.10) by
?
ε and letting εÑ 0, shows that

ÿ

rPRfcyc:
r`“x

̃rptq “
ÿ

rPRfcyc:
r´“x

̃rptq.

Remark 3.11. Alternatively, the fact that u is constant on c can also be seen from the FIR inequal-
ity (3.5) together with the lower semicontinuity that follows from Proposition 2.4. The FIR inequality
can however not be used to make a similar statement about divergence-free fast fluxes.

3.5 The limiting continuity equations

We again place ourselves in the setting of Section 3.3 and derive the continuity equations satisfied in
the limit.

Lemma 3.12. Let puε, jεqεą0 Ă Θ be such that Ĩε0
`

uεp0q
˘

` J̃ εpuε, jεq ď C , and assume that
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puε, jεq converges to pu, jq in the sense of (3.9). Then the limit satisfies the continuity equations

πx 9ux “
ÿ

rPRslow:
r`“x

jr `
ÿ

rPRdamp:
r`“x

jr ´
ÿ

rPRslow:
r´“x

jr, for x P V0slow, (3.11a)

πc 9uc “
ÿ

rPRslow:
r`Pc

jr `
ÿ

rPRdamp:
r`Pc

jr ´
ÿ

rPRslow:
r´Pc

jr, for c P C, (3.11b)

ux “uc and
ÿ

rPRfcyc:
r`“x

̃r “
ÿ

rPRfcyc:
r´“x

̃r, for x P c P C, (3.11c)

0 “
ÿ

rPRslow:
r`“x

jr `
ÿ

rPRdamp:
r`“x

jr ´
ÿ

rPRdamp:
r´“x

jr, for x P V1. (3.11d)

These equations hold in the sense of distributions on r0, T s as in (3.1).

Proof. Equation (3.11a) follows directly from equation (3.3b) by the convergence properties of Corol-
lary 3.9. For fixed c P C we sum equation (3.3c) over all x P c to find

ÿ

xPc

πεx 9uεx “
ÿ

rPRslow:
r`Pc

jεr `
ÿ

rPRdamp:
r`Pc

jεr ´
ÿ

rPRslow:
r´Pc

jεr.

Note that the final two sums in (3.3c) cancel by Lemma 3.1. The left-hand side equals πεc 9uεc and
converges in distributional sense by (3.9c); the remaining terms also converge by (3.9f) and (3.9g).
The limit equation is (3.11b).

Equation (3.11c) is the content of Lemma 3.10. Finally, to prove (3.11d) we write (3.3d) for x P V1 as

επ̃εx 9uεx “
ÿ

rPRslow:
r`“x

jεr `
ÿ

rPRdamp:
r`“x

jεr ´
ÿ

rPRdamp:
r´“x

jεr.

The left-hand side converges to zero in distributional sense by (3.9e), and the right-hand side again
converges by (3.9f) and (3.9g).

As an immediate consequence, the Γ-limit Ĩ0
0 ` J̃ 0 from Theorem 1.2 can only be finite if these limit

continuity equations (3.11) hold.

Note that although the densities uV1 do appear in the limit rate functional J̃ 0
damp, they become de-

coupled from the other variables in the sense that they have vanished completely from the continuity
equations. Furthermore, if one does not take fluxes into account, the mass flowing into a V1 node
will be instantaneously distributed over the next nodes, which would lead to a contracted network as
drawn on the right of Figure 2. At the level of fluxes this is contraction is reflected in (3.11d).

Remark 3.13. Note that L8pr0, T sq Q ux
a.e.
“ uc P Cpr0, T sq, so that in general uxp0q ‰ ucp0q;

the mass that is initially present will be spread out over the component c at every positive time t ą 0,
but not at t “ 0. The same principle can be seen seen in the strengthened equilibration in the next
section, which only holds in the time interval rt0, T s for any t0 ą 0.

Remark 3.14. If there are no damped cycles, as in Section 1.8, then Lemmas 3.6 and 3.12 show that
uV0slow

P W 1,C pr0, T s;RV0slowq and similarly uC P W 1,C pr0, T s;RCq.
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3.6 Strengthened equilibration on fast cycle components

In the previous sections we derived that for a sequence with uniformly bounded cost Ĩε0 ` J̃ ε, con-
centrations uεx in a fast cycle x P c P C converge weakly-* in L8pr0, T sq, whereas the weighted sum
uεc converges uniformly in Cpr0, T sq. We now show that the convergence of uεx can be strengthened
to uniform convergence as well, as long as one does not include time 0 in the interval. This result will
be needed later on for the construction of the recovery sequence, see Section 4.2.

Recall from Section 3.2 that sequences with bounded cost have uniformly bounded fluxes in L1.
Together with the continuity equations, this will be the only requirement of the following result.

Lemma 3.15. Let puε, jεqεą0 in Θ such that each puε, jεq satisfy the continuity equations (3.3), and
assume that all fluxes jεRslow

, jεRdamp
, ̃εRfcyc

areL1-valued and uniformly bounded inL1p0, T ;RRslowq,

L1p0, T ;RRdampq and L1p0, T ;RRfcycq, and that uεC Ñ uC in Cpr0, T s;RCq. Then for all t0 ą 0,

uεx Ñ uc strongly in L8prt0, T sq for each x P c P C.

If in addition,

´
`

div jεptq
˘

x
:“

ÿ

rPRslow:
r`“x

jεrptq `
ÿ

rPRdamp:
r`“x

jεrptq ´
ÿ

rPRslow:
r´“x

jεrptq,

and

´
1
?
ε

`

div ̃εptq
˘

x
:“

1
?
ε

ÿ

rPRfcyc:
r`“x

̃εrptq ´
1
?
ε

ÿ

rPRfcyc:
r´“x

̃εrptq

are both uniformly bounded in L8p0, T ;RV0fcycq and uεxp0q “ uεcp0q for each x P c P C, then

uεx Ñ uc strongly in L8pr0, T sq for each x P c P C.

Proof. We prove the result for one fast cycle c P C. To exploit the stochastic structure we temporarily
write ρεxptq :“ πεxu

ε
xptq, and

`

ATρεptq
˘

x
:“

ÿ

rPRfcyc:
r`“x

κrρ
ε
r´
ptq ´ ρεxptq

ÿ

rPRfcyc:
r´“x

κr,

so that A is simply the generator matrix of the Markov chain that consists of the irreducible fast cycle
c, which does not depend on ε. Recall from (3.3c) that for each x P c:

9ρεxptq “ ´
`

div jεptq
˘

x
` 1

ε

`

ATρεptq
˘

x
´ 1?

ε

`

div ̃εptq
˘

x
.

The vector ρεptq P Rc can be orthogonally decomposed into ρε,0ptq P NullpATq and ρε,K P ColpAq.
For the column space part we estimate:

d

dt

1

2
|ρε,Kptq|22 “ ρε,Kptq ¨ 9ρε,Kptq “ ρε,Kptq ¨ 9ρεptq

“ ´ρε,Kptq ¨ div jεptq `
1

ε
ρε,Kptq ¨ ATρε,Kptq ´

1
?
ε
ρε,K ¨ div ̃εptq

ď |div jεptq|1 `
1
?
ε
|div ̃εptq|1 `

2λ

ε

1

2
|ρε,K|22,
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using |ρε|1 ď 1 and Lemma B.1 with largest negative eigenvalue λ ă 0 of A. By Gronwall:

1

2
|ρε,Kptq|22 ď

´

1

2
|ρε,Kp0q|22 `

şt

0
|div jεpsq|1 ds` 1?

ε

şt

0
|div ̃εpsq|1 ds

¯

e2λt{ε (3.12)

Since the L1-norms of the fluxes are uniformly bounded, ρε,K Ñ 0 strongly in L8prt0, T s;Rcq.

We now focus on the other part ρε,0 P NullpATq. Since the fast cycle c is irreducible, NullpATq “

spantpπxqxPcu, so we may write ρε,0x ptq “ πxa
εptq for some aεptq P R. Summing over the cycle

gives

πca
ε
ptq “

ÿ

xPc

ρε,0x ptq “
ÿ

xPc

`

ρεxptq ´ ρ
ε,K
x ptq

˘

“ πεcu
ε
cptq ´

ÿ

xPc

ρε,Kx ptq.

By assumption the first term on the right-hand side converges uniformly to πcuc, and we just proved
above that the second term vanishes uniformly on rt0, T s. This implies that aε Ñ uc uniformly, and so
πεxu

ε
x “ ρεx “ πxa

ε ` ρε,Kx Ñ πxuc uniformly on rt0, T s.

Now assume that´
`

div jεptq
˘

x
and´

`

div ̃εptq
˘

x
{
?
ε are uniformly bounded and uεxp0q “ uεcp0q.

In that case ρε,Kp0q “ 0, and so (3.12) becomes:

1

2
|ρε,Kptq|22 ď

´

‖div jε‖L8 ` ‖ 1?
ε

div ̃ε‖L8
¯

te2λt{ε
ď ´

´

‖div jε‖L8 ` ‖ 1?
ε

div ̃ε‖L8
¯

ε

2λe
,

showing that ρε,K Ñ 0 uniformly in r0, T s. The uniform convergence of ρε,0x “ πεxa
ε follows by the

same argument as above.

4 Γ-convergence

This section is devoted to the proof of the main Γ-convergence Theorem 1.2, which consists of the
lower bound, Proposition 4.1, and the existence of a recovery sequence in Proposition 4.5.

4.1 Γ-Lower bounds

The Γ-lower bound is summarised in the following.

Proposition 4.1 (Γ-lower bound). For any sequence puε, jεq Ñ pu, jq in Θ,

lim inf
εÑ0

Ĩε0
`

uεp0q
˘

` J̃ ε
puε, jεq ě Ĩ0

0

`

up0q
˘

` J̃ 0
pu, jq.

Proof. We treat each functional Ĩε0, J̃ ε
slow, J̃ ε

damp and J̃ ε
fcyc separately, and without loss of generality

we may always assume that Ĩε0 ` J̃ ε ď C for some C ě 0 and hence the continuity equations (3.3)
hold; otherwise the lower bound is trivial. This is carried out in the next Lemmas 4.2, 4.3 and 4.4.

For the initial condition, recall the definitions of Ĩε0 and Ĩ0 from (1.11) and Section 1.7, and observe that
the first one depends on uV0fcyc

p0q whereas the second depends on uCp0q, which may be different,

see Remark 3.13. Hence the Γ-convergence of Ĩε0 to Ĩ0 does not hold in RV0slowˆRV0fcycˆRCˆRV1 ,
but only in the path-space convergence of (3.9).
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Lemma 4.2 (Γ-lower bound for the initial condition). Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

`

J̃ εpuε, jεq ď C converge to pu, jq P Θ in the sense of (3.9). Then:

lim inf
εÑ0

Ĩε0
`

uεp0q
˘

ě Ĩ0
0

`

up0q
˘

.

Proof. By uniform convergence, uεV0slow
p0q Ñ uV0slow

p0q so that
ÿ

xPV0slow

s
`

πεxu
ε
xp0q | π

ε
x

˘

Ñ
ÿ

xPV0slow

s
`

πxuxp0q | πx
˘

,

and clearly
ÿ

xPV1

s
`

πεxu
ε
xp0q | π

ε
x

˘

ě 0.

Lemma 3.1 shows that every x P V0fcyc is part of exactly one component c P C. From (1.8), Jensen’s
inequality and the continuity equation (3.3a),

ÿ

xPV0fcyc

s
`

πεxu
ε
xp0q | π

ε
x

˘

“
ÿ

cPC

πεc
ÿ

xPc

s
`

uεxp0q | 1
˘πεx
πεc

ě
ÿ

cPC

πεcs
`
ř

xPc u
ε
xp0q

πεx
πεc
| 1
˘

“
ÿ

cPC

s
`

πεcu
ε
cp0q | π

ε
c

˘

Ñ
ÿ

cPC

s
`

πcucp0q | πc
˘

,

again by uniform convergence of uεC.

Lemma 4.3 (Γ-lower bound for the slow and damped fluxes). Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

`

J̃ εpuε, jεq ď C converge to pu, jq P Θ in the sense of (3.9). Then:

lim inf
εÑ0

J̃ ε
slowpu

ε
V0slow

, uεV0fcyc
, jεRslow

q ě J̃ 0
slowpuV0slow

, uV0fcyc
, jRslow

q,

and

lim inf
εÑ0

J̃ ε
damppu

ε
V1
, jεRdamp

q ě J̃ 0
damppuV1 , jRdamp

q.

Proof. Recall the uniform L1-bounds on the slow and damped fluxes from Lemmas 3.5 and 3.6. The
statement for slow fluxes follows directly from rewriting

J̃ 0
slowpu

ε
V0
, jεRslow

q “
ÿ

rPRslow

ż

r0,T s

”

s
´

jεrptq
ˇ

ˇ

ˇ
κrπr´u

ε
r ṕtq

¯

` jεrptq log
πr´

πεr´

´πεr´`πr´

ı

dt, (4.1)

together with the joint lower semicontinuity from Lemma 2.2, and πε Ñ π ą 0. The argument for the
damped fluxes is the same after generalising to possible measure-valued trajectories in time.

Lemma 4.4 (Γ-lower bound for the fast cycle fluxes). Let puε, jεqεą0 Ă Θ such that Ĩε0
`

uεp0q
˘

`

J̃ εpuε, jεq ď C converge to pu, jq P Θ in the sense of (3.9). Then:

lim inf
εÑ0

J̃ ε
fcycpu

ε
V0fcyc

, ̃εRfcyc
q ě J̃ 0

fcycpuV0fcyc
, ̃Rfcyc

q.
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A similar statement is proven in [BP16, Th. 2].

Proof. To simplify notation we prove the statement for one arbitrary r P Rfcyc. We first note that

πεr´u
ε
r´
Ýá πr´u

ε
r´

in L1
pr0, T sq and sup

εą0
‖πεr´u

ε
r´
‖L1 ă 8,

and that for any test function ζ P Cpr0, T sq,

1
ε
e
?
εζ
´ 1

ε
´ 1?

ε
ζ

L8
ÝÝÑ
εÑ0

1
2
ζ2.

It then follows that the following integral converges:
ż

r0,T s

κrπ
ε
r´
uεr ṕtq

`

1
ε
e
?
εζptq

´ 1
ε
´ 1?

ε
ζptq

˘

dtÑ 1
2

ż

r0,T s

κrπr´ur ṕtqζptq
2 dt.

Using the dual formulations of Lemmas 2.2 and 2.3,

lim inf
εÑ0

ż

r0,T s

s
´

1
ε
κrπ

ε
r´
uεr ṕtq `

1
?
ε
̃εrptq

ˇ

ˇ

ˇ

1
ε
κrπ

ε
r´
uεr ṕtq

¯

ě sup
ζPCpr0,T sq

lim inf
εÑ0

ż

r0,T s

”

ζptq̃εrptq ´ κrπ
ε
r´
uεr ṕtq

`

1
ε
e
?
εζptq

´ 1
ε
´ 1?

ε
ζptq

˘

ı

dt

“ sup
ζPCpr0,T sq

ż

r0,T s

”

ζptq̃rptq ´
1
2
κrπr´ur ṕtqζptq

2
ı

dt

“

$

&

%

1
2

ż

r0,T s

̃rptq
2

κrπr´ur ṕtq
dt, if ̃r P L2

1{κrπr´ur´
pr0, T sq,

8, otherwise.

4.2 Γ-recovery sequence

For each of the four functionals separately, convergence is easily shown using a constant sequence
puε, jεq ” pu, jq. However, such a constant sequence is not a valid recovery sequence as it vio-
lates the continuity equations (3.3). The construction of the recovery sequence is summarised in the
following proposition.

Proposition 4.5 (Γ-recovery sequence). For any pu, jq in Θ there exists a sequence puε, jεqε Ă Θ
such that puε, jεq Ñ pu, jq in Θ and

lim
εÑ0
Ĩε0
`

uεp0q
˘

` J̃ ε
puε, jεq “ Ĩ0

0

`

up0q
˘

` J̃ 0
pu, jq.

Proof. In Lemma 4.7 we first show that pu, jq can be approximated by a regularised puδ, jδq such
that the limit functional converges, i.e. such that Ĩ0

`

uδp0qq` J̃ 0puδ, jδq Ñ Ĩ0
`

up0qq` J̃ 0pu, jq as
δ Ñ 0. In Lemma 4.9 we construct a recovery sequence puε, jεq corresponding to such regularised
puδ, jδq, and then use a diagonal argument to construct a recovery sequence for arbitrary pu, jq, see
for example [DLR13, Prop. 6.2].
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Remark 4.6. So far, we only assumed
ř

xPV π
ε
x “ 1, whereas the total mass

ř

xPV π
ε
xu

ε
xptq is only

bounded above by (3.4). All arguments in this paper can be extended to the case where the total mass
is fixed. In that case the construction of the recovery sequence becomes slightly more involved, since
adding mass to certain nodes must be balanced by subtracting mass from other nodes.

Lemma 4.7 (Approximation of the limit functional). Let pu, jq P Θ such that Ĩ0
0 pup0qq ` J̃ 0pu, jq ă

8, so pu, jq satisfies the limit continuity equations (3.11). Then there exists a sequence puδ, jδqδą0 P

Θ such that for each δ ą 0,

1 puδ, jδq P C8b
`

r0, T s;RV0slow ˆ RV0fcyc ˆ RC ˆ RV1 ˆ RRslow ˆ RRdamp ˆ RRfcyc
˘

,

2 puδ, jδq satisfies the limit continuity equations (3.11),

3 inftPr0,T s u
δ
xptq ą 0 for all x P V0slow Y V0fcyc Y CY V1,

4 jδr ě
ř

xPV1
δπ̃x‖ 9uδx‖L8 for all r P Rslow YRdamp,

and as δ Ñ 0,

5 puδ, jδq Ñ pu, jq in Θ,

6 Ĩ0
0 pu

δp0qq ` J̃ 0puδ, jδq Ñ Ĩ0
0 pup0qq ` J̃ 0pu, jq.

Proof. We construct the approximation in three steps.

Step 1: convolution. Note that for each x P V0 the concentration t ÞÑ uxptq is continuous; for
x P V0slow this follows from the definition of Θ, and for x P V0fcyc this follows from the continuity of
t ÞÑ uCptq in Θ and the continuity equation (3.11c). We first extend uV0 beyond r0, T s by constants,
and uV1 and j by zero. Observe that with this extension the pair pu, jq satisfies the continuity equa-
tion (3.11) in the sense of distributions on the whole time interval R (which is a stronger statement
than the usual interpretation (3.1)). We then approximate pu, jq by convoluting with the heat kernel:
puδ, jδq :“ pu ˚ θδ, j ˚ θδq, where θδptq :“ p4πδq´1{2e´t

2{p4δq. Since pu, jq satisfies the linear con-
tinuity equations (3.11) in the sense of distributions on R, they are also satisfied for the convolution
puδ, jδq.

It is easily checked that puδ, jδq
ˇ

ˇ

r0,T s
Ñ pu, jq

ˇ

ˇ

r0,T s
in Θ. The initial conditions uδxp0q converge for

x P V0slow Y C and so by continuity Ĩ0
0 pu

δp0qq Ñ Ĩ0
0 pup0qq. The bound lim infδÑ0 J̃ 0puδ, jδq ě

J̃ 0pu, jq is for free because of lower semicontinuity (see Section 2.4). The bound in the other direction
is obtained by exploiting the joint convexity of pu, jq ÞÑ J̃ 0pu, jq and applying Jensen’s inequality to
the probability measure θδ; see [Ren18, Lem. 3.12].

Step 2: add constants to the densities. For the next step we further approximate the sequence
puδ, jδq, but to reduce clutter we now assume that the procedure above is already applied so that we
are given a smooth and bounded pu, jq. We make all densities positive by adding a constant δ ą 0,
i.e.

uδxptq :“ uxptq ` δ for 0 ď t ď T, x P V .
It follows automatically that uδc “ uc ` δ. We leave the fluxes j invariant, and the resulting pair
puδ, jδq again satisfies the limiting continuity equations (3.11). The following lemma shows that the
limit functional Ĩ0

0 ` J̃ 0 converges along the sequence puδ, jδq.
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Lemma 4.8. Let a, b PMě0pr0, T sq satisfy
ż

r0,T s

spa|bq pdtq ă 8.

Then setting bδpdtq :“ bpdtq ` δdt we have

lim
δÑ0

ż

r0,T s

spa|bδq pdtq “

ż

r0,T s

spa|bq pdtq.

Proof of Lemma 4.8. We write

spa|bδqpdtq “ apdtq log
da

dbδ
ptq ´ apdtq ` bδpdtq.

After integration over r0, T ] the final term bδpr0, T sq converges to bpr0, T sq as δ Ñ 0; in the first
term the argument of the logarithm is decreasing in δ, and therefore the first term converges by the
Monotone Convergence Theorem.

Step 3: add constant fluxes. Again to reduce clutter we may assume that we are given an pu, jq
satisfying properties 1, 2, and 3 of the Lemma. By irreducibility of the network there exists a cycle
prkqKk“1 Ă Rfcyc, r

k
` “ rk`1

´ , r1
´ “ x1 “ rK` , such that each damped flux r P Rdamp is contained

in the cycle at least once. Note that some fluxes r may occur multiple times, namely nprq :“ #tk “
1, . . . , K : rk “ ru times in the cycle. For each k “ 1, . . . , K we define the new approximation:

#

jδ
rk

:“ jrk ` npr
kq
ř

yPV1
δπ̃y‖ 9uy‖L8 , rk P Rdamp YRslow,

̃δ
rk

:“ ̃rk `
?
εnprkq

ř

yPV1
δπ̃y‖ 9uy‖L8 , rk P Rfcyc.

Substituting these modified fluxes into the limit continuity equations (3.11) shows that the concentra-
tions are left unchanged, since some extra mass is being pushed around in cycles. Since the fluxes are
only changed by adding a constant, it is easily checked that pu, jδq Ñ pu, jq in Θ, and by Lemma 4.8
we find J̃ 0pu, jδq Ñ J̃ 0pu, jq as δ Ñ 0.

We now construct a recovery sequence puε, jεq for a pu, jq P Θ that is regularised by Lemma 4.7.
The difficulty is to construct the sequence such that the continuity equations hold in the V1 and V0fcyc

nodes. The problem with the V1 nodes is that the continuity equations (3.3d) and (3.11d) are differ-
ent, but uεV1

needs to converge to uV1 . This will be done by transporting exactly the right amount of
mass from certain V0-nodes to the V1-nodes. To satisfy the continuity equations in the V0fcyc nodes,
we define uεV0fcyc through the continuity equations, and use the strengthened convergence result of
Section 3.6 to pass to the limit.

Lemma 4.9 (Recovery sequence for regularised paths). Let pu, jq P Θ satisfy properties 1, 2, 3 and
4 of Lemma 4.7. Then there exists a sequence puε, jεq P Θ such that:

1 puε, jεq satisfies the ε-dependent continuity equations (3.3);

2 puεV0slow
, uεRfcyc

, uεC, u
ε
V1
, jεRslow

, jεRdamp
, ̃εRfcyc

q Ñ puV0slow
, uRfcyc

, uC, uV1 , jRslow
, jRdamp

, ̃Rfcyc
q

uniformly on r0, T s;

3 Ĩε0
`

uεp0q
˘

Ñ Ĩ0
0

`

up0q
˘

and J̃ εpuε, jεq Ñ J̃ 0pu, jq.
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Proof. For ease of notation we pick only one node x̂ P V0slow, whose density is bounded from below
by assumption. We will approximate all fluxes such that a little mass is transported from node x̂ to
all V1-nodes, as follows. Since the network is irreducible, there exists, for each y P V1, a connecting
chain Qpx̂, yq :“ prk,yq

Ky
k“1 Ă R, rk,y` “ rk`1,y

´ , r1,y
´ “ ŷ, and rKy “ y. For these connecting

chains we may assume without loss of generality that no r P R occurs multiple times in a chain
Qpx̂, yq. Define for all r P R:

#

jεr :“ jr `
ř

yPV1:rPQpx̂,yq π
ε
y 9uy, r P Rslow YRdamp,

̃εr :“ ̃r `
1?
ε

ř

yPV1:rPQpx̂,yq π
ε
y 9uy, r P Rfcyc.

Note that by the assumed properties 1 and 3 of Lemma 4.7 together with πεV1
Ñ 0, all approximated

fluxes jεr, ̃
ε
r are non-negative for ε small enough. Clearly all fluxes jε converge uniformly to j, since

πεV1
{
?
εÑ 0. For the initial conditions, set

uεxp0q :“ πεx
πx
uxp0q, for all x P V0slow,

uεcp0q “ uεxp0q :“ uxp0q “ ucp0q, for all x P c P C, (4.2)

uεxp0q :“ uxp0q, for all x P V1,

and define the paths uε by the continuity equations (3.3).

More precisely, by construction for x P V0slow:

πεxu
ε
xptq

(3.3b)
:“ πxuxp0q `

ÿ

rPRslow:
r`“x

jεrr0, ts `
ÿ

rPRdamp:
r`“x

jεrr0, ts ´
ÿ

rPRslow:
r´“x

jεrr0, ts

“ πxuxptq ´ 1tx“x̂u
ÿ

yPV1

πεyuyptq,

which is bounded away from zero (for ε small enough) by the assumed properties 1 and 3 of Lemma 4.7
together with πεV1

Ñ 0. Clearly uεx Ñ ux uniformly.

For x P V1, the densities will be constant in ε, since:

πεxu
ε
xptq

(3.3d)
:“ πεxuxp0q `

ÿ

rPRslow:
r`“x

jεrr0, ts `
ÿ

rPRdamp:
r`“x

jεrr0, ts ´
ÿ

rPRdamp:
r´“x

jεrr0, ts “ πεxuxptq.

For x P c P C, the density uεxptq is defined as the solution of the coupled equations:

πεx 9uεx
(3.3c)
:“

ÿ

rPRslow:
r`“x

jεr `
ÿ

rPRdamp:
r`“x

jεr ´
ÿ

rPRslow:
r´“x

jεr

`
ÿ

rPRfcyc:
r`“x

´

1
ε
κrπ

ε
r´
uεr´ `

1?
ε
̃εr

¯

´
ÿ

rPRfcyc:
r´“x

´

1
ε
κrπ

ε
r´
uεr´ `

1?
ε
̃εr

¯

(4.3)

with initial condition (4.2). Summing over x P c yields:

πεc 9uεc
(3.3a)
:“

ÿ

xPc

πεx 9uεx “
ÿ

rPRslow:
r`Pc

jεr `
ÿ

rPRdamp:
r`Pc

jεr ´
ÿ

rPRslow:
r´Pc

jεr

`
ÿ

rPRfcyc:
r`Pc

´

1
ε
κrπ

ε
r´
uεr´ `

1?
ε
̃εr

¯

´
ÿ

rPRfcyc:
r´Pc

´

1
ε
κrπ

ε
r´
uεr´ `

1?
ε
̃εr

¯

(3.11b),(3.11c)
“ πc 9uc.
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Together with the initial condition (4.2) this shows that uεc Ñ uc uniformly. Since all fluxes are uni-
formly bounded (and actually div ̃ε ” 0) and uεxp0q “ uεcp0q for x P c P C we can apply
Lemma 3.15 to (4.3) to derive that uεx Ñ uc uniformly on r0, T s for all x P c. Thus indeed all variables
puεV0slow

, uεRfcyc
, uεC, u

ε
V1
, jεRslow

, jεRdamp
, ̃εRfcyc

q Ñ puV0slow
, uRfcyc

, uC, uV1 , jRslow
, jRdamp

, ̃Rfcyc
q uni-

formly, which was to be shown.

To show convergence of Ĩεpuεp0qq,

Ĩε0
`

uεp0q
˘

“
ÿ

xPV0slow

πεxs
`

πεx
πx
uxp0q | 1

˘

`
ÿ

cPC

ÿ

xPc

πεxs
`

ucp0q | 1
˘

`
ÿ

xPV1

πεxs
`

uxp0q | 1
˘

Ñ
ÿ

xPV0slow

πxs
`

uxp0q | 1
˘

`
ÿ

cPC

πcs
`

ucp0q | 1
˘

“ Ĩ0
0

`

up0q
˘

.

To show convergence of J̃ εpuε, jεq, we use the fact that all fluxes and densities are uniformly bounded,
that is for ε sufficiently small and all t P r0, T s,

0 ďjεrptq ď 2‖jr‖L8 ă 8, r P Rslow YRdamp,

0 ď̃εrptq ď 2‖j̃r‖L8 ă 8, r P Rfcyc,

0 ă 1
2

inf
tPr0,T s

uxptq ďu
ε
xptq ď 2‖ux‖L8 , x P V0slow Y V0fcyc Y CY V1.

The convergence of the integrals for r P Rslow and r P Rdamp then follows by dominated conver-
gence:

ż

r0,T s

s
`

jεrptq | κrπ
ε
r´
uεr´ptq

˘

dtÑ

ż

r0,T s

s
`

jrptq | κrπr´ur´ptq
˘

dt, r P Rslow,

ż

r0,T s

s
`

jεrptq |
1
ε
κrπ

ε
r´
uεr´ptq

˘

dtÑ

ż

r0,T s

s
`

jrptq | κrπ̃r´ur´ptq
˘

dt, r P Rdamp.

Similarly for r P Rfcyc, by dominated convergence,

ż

r0,T s

s
´

1
ε
κrπ

ε
r´
uεr ṕtq `

1
?
ε
̃εrptq

ˇ

ˇ

ˇ

1
ε
κrπ

ε
r´
uεr´ptq

¯

dt
(2.2)
ď

ż

r0,T s

̃εrptq
2

κrπεr´u
ε
r´
ptq

dtÑ

ż

r0,T s

̃rptq
2

κrπεr´ur´ptq
dt.

The inequality in the other direction follows from Lemma 4.4.

5 Spikes and damped cycles

As explained in Section 1.8, the uniform L1-bounds on the damped fluxes jεRdamp
and small concen-

trations uεV1
can not prevent limits from becoming measure-valued in time, that is, both may develop

atomic or Cantor parts. The question when these spikes in damped fluxes may occur is answered in
our Theorem 1.3; this section is devoted to the proof of both statements in that theorem. The first part
of Theorem 1.3 rules out spikes for damped fluxes that are not chained in a cycle. The second part
shows that spikes may occur in damped flux cycles.

Recall the subdivisionRdamp “ Rdcyc YRdnocyc from Section 1.8
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5.1 No spikes in damped fluxes outside cycles

Proof of Theorem 1.3(i). For this argument we again work with the fluxes in integrated form jεr0, ts.
Since jεr0, 0s “ 0,

jεRslow
r0, ¨s Ñ jRslow

r0, ¨s in L1
pr0, T s;RRslowq and

jεRdamp
r0, ¨s Ñ jRdamp

r0, ¨s in L1
pr0, T s;RRdampq. (5.1)

Take an arbitrary r0 P Rdnocyc coming out of node r0
´ “: x P V1. By Lemma 3.2, all fluxes flowing

out of node x are damped, and all fluxes flowing into node x are either slow or damped. The mild
formulation of the continuity equation in x now reads:

ÿ

r1PRdamp:

r1´“x

jεr1r0, ts ´
ÿ

r1PRslow:
r1`“x

jεr1r0, ts ´
ÿ

r1PRdamp:

r1`“x

jεr1r0, ts “ ´π
ε
xu

ε
xptq ` π

ε
xu

ε
xp0q.

By the uniform L1-bounds on uε and the vanishing πεxu
ε
xp0q, the right-hand side above converges to

zero in L1p0, T q, and so by (5.1):

ÿ

r1PRdamp:

r1´“x

jr1r0, ts ´
ÿ

r1PRslow:
r1`“x

jr1r0, ts ´
ÿ

r1PRdamp:

r1`“x

jr1r0, ts “ 0.

Therefore, by the uniqueness of derivatives of functions of bounded variation (for arbitrary sets dt),

0 ď jr0pdtq ď
ÿ

r1PRdamp:

r1´“r
0
´p“xq

jr1pdtq “
ÿ

r1PRslow:
r1`“r

0
´

jr1ptq dt`
ÿ

r1PRdamp:

r1`“r
0
´

jr1pdtq.

Applying the same inequality for each damped flux r1
` “ r0

´, we get:

0 ď jr0pdtq ď
ÿ

r1PRslow:
r1`“r

0
´

jr1ptq dt`
ÿ

r1PRdamp:

r1`“r
0
´

”

ÿ

r2PRslow:
r2`“r

1
´

jr2ptq dt`
ÿ

r2PRdamp:

r2`“r
1
´

jr2pdtq
ı

.

We now apply this procedure recursively until the right-hand side contains slow fluxes only. This is
possible because by assumption any damped flux that already appeared during this procedure can
not reappear in the inequality. Exploiting that eventually the right-hand side is a sum over slow fluxes
that are in LC p0, T q, by the Radon-Nikodym Lemma the left-hand jr0 also has a LC -density.

5.2 Finite-cost spikes in damped flux cycles

We now prove that fluxes inRdcyc may actually develop singularities.

Proof of Theorem 1.3(ii). If Rdcyc ‰ H then there exists a diconnected damped component d Ă
V1 such that @x, y P d DprkqKk“1 Ă Rdcyc, r

1
´ “ x, rk` “ rk`1

´ , rK` “ y (cf. Section 1.5). By
irreducibility and mass conservation there exists at least one rin P Rslow YRdnocyc with rin

` P d and
at least one rout P Rdnocyc with rout

´ P d. We first assume 1) that all edges in d are chained in a
cycle, i.e. d :“ pxkqKk“1,Rdcyc X tr´ P du “ prkqKk“1 with rk´ “ xk, rk` “ xk`1, rK` “ x1, 2) that
rin
` “ x1 and rout

´ “ xl, and 3) that x0 :“ rin
´ and xK`1 :“ rout

` both lie in V0, see Figure 4.
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x1 xl

x0 xK`1

r
1

rK

r
in

r o
u
t

Figure 4: A diconnected component d of damped fluxes, chained in a cycle.

Initially we concentrate all mass in x0, i.e. uεx0p0q :“ 1{πεx0 , and uεxp0q “ 0 for all other nodes x P V .
The rate functional of the initial condition is indeed uniformly bounded:

Ĩε0
`

uεp0q
˘

“ sp1 | πεx0
loomoon

Op1q

q `
ř

x‰x0 π
ε
x

looomooon

ď1

.

Define:

∆ε
T ptq :“

$

’

’

’

&

’

’

’

%

0, 0 ď t ď 1
2
T ´ 1

2

?
ε,

t´ 1
2
T ` 1

2

?
ε, 1

2
T ´ 1

2

?
ε ă t ď 1

2
T,

1
2
T ` 1

2

?
ε´ t, 1

2
T ă t ď 1

2
T ` 1

2

?
ε,

0, 1
2
T ` 1

2

?
ε ă t ď T.

For the dynamics, we will first transport a little bit of mass from x0 into each node of the cycle d, then
develop a spike at t “ T {2, and then release all mass from the cycle through rout.

jεrinptq :“ K1pT {2´?ε{2,T {2qptq,

jεrkptq :“ ak1pT {2´?ε{2,T {2qptq `
1
ε
∆ε
T ptq ` bk1pT {2,T {2`

?
ε{2qptq,

jεroutptq :“ K1pT {2,T {2`?ε{2qptq,

where ak :“ K ´ k and bk :“ k´ l`K1tkălu. We set all other fluxes jεr, ̃
ε
r in the network to 0. By

construction, jεr
narrow
ÝÝÝá 1

4
δT {2, which is singular as was to be shown.

We now show that the functional J̃ ε is uniformly bounded. To calculate the densities, note that the
1
ε
∆ε
T terms in jε

rk
are divergence free. The mild formulation of the continuity equation (3.3d) thus

yields for all k “ 1, . . . , K and t P r0, T s,

πεx0u
ε
x0ptq ´ 1 “

$

’

&

’

%

0, 0 ď t ă T {2´
?
ε{2,

´Kpt´ 1
2
T ` 1

2

?
εq, T {2´

?
ε{2 ă t ď T {2,

´1
2
K
?
ε, t ě T {2,

πεxku
ε
xkptq “ 1tk“1uj

ε
rinr0, ts ` j

ε
rk´1r0, ts ´ j

ε
rkr0, ts ´ 1tk“luj

ε
routr0, ts “ ∆ε

T ptq,

πεxK`1u
ε
xK`1ptq “

$

’

&

’

%

0, 0 ď t ă T {2´
?
ε{2,

Kpt´ 1
2
T ` 1

2

?
εq, T {2´

?
ε{2 ă t ď T {2,

1
2
K
?
ε, t ě T {2.
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The dynamic part of the rate functional is:

J̃ ε
`

uεV0
, uεV1

, jεRslow
, jεRdamp

, ̃εRfcyc

˘

“

ż

r0,T s

s
`

jεrinptq | κrinπ
ε
x0u

ε
x0ptq

˘

dt
looooooooooooooooooomooooooooooooooooooon

pIq

`

K
ÿ

k“1

ż

r0,T s

s
`

jεrkptq |
1
ε
κrkπ

ε
xku

ε
xkptq

˘

dt
looooooooooooooooooomooooooooooooooooooon

pIIq

`

ż

r0,T s

s
`

jεroutptq |
1
ε
κroutπ

ε
xlu

ε
xlptq

˘

dt
looooooooooooooooooooomooooooooooooooooooooon

pIIIq

`
ÿ

rin‰rPRslow:r´“x0

ż

r0,T s

s
`

0 | κr´π
ε
x0u

ε
x0ptq

˘

dt
looooooooooooooomooooooooooooooon

pIV q

`
ÿ

rout‰rPRslow:r´“xK`1

ż

r0,T s

s
`

0 | κr´π
ε
xK`1u

ε
xK`1ptq

˘

dt
looooooooooooooooooomooooooooooooooooooon

pV q

.

By a long but simple calculation, these integrals can be calculated explicitly:

pIq “ κrin
`

T ´
?
εp1

2
` 1

4
KT q

˘

` 1
2

?
εpK log

K

κrin
´Kq ` sp1´ 1

2
K
?
ε | 1q ` 1

8
κrinKε,

pIIq “

ż

?
ε{2

0

s
`

ak `
1
ε
t | 1

ε
κrkπ

ε
xkt

˘

dt`

ż

?
ε{2

0

s
`

bk `
1
ε
t | 1

ε
κrkπ

ε
xkt

˘

dt

“
1

2
εa2
k log

´εak `
1
2

?
ε

εak

¯

` p1
2

?
εak `

1
8
q log

`2
?
εak ` 1

κrk

˘

´ 1
4

?
εak `

1
8
κrk ´

1
8

`
1

2
εb2
k log

´εbk `
1
2

?
ε

εbk

¯

` p1
2

?
εbk `

1
8
q log

`2
?
εbk ` 1

κrk

˘

´ 1
4

?
εbk `

1
8
κrk ´

1
8
,

pIIIq “

ż

?
ε{2

0

s
`

0 | 1
ε
κroutt

˘

dt`

ż

?
ε{2

0

s
`

K | 1
ε
κroutt

˘

dt “
1

2
K
?
ε log

´2K
?
ε

κrout

¯

`
1

4
κrout ,

pIV q “ κr´

ż

r0,T s

πεx0u
ε
x0ptq

looomooon

ď1

dt and pV q “ κr´

ż

r0,T s

πεxK`1u
ε
xK`1ptq

looooooomooooooon

ď1

dt.

It thus follows that Ĩε0 ` J̃ ε is uniformly bounded as claimed.

Recall the three assumptions we made in the beginning of the proof. The second assumption is just
notational. The first assumption, that all edges in d are chained in a cycle, can easily be relaxed by
fixing additional concentrations and damped fluxes to 0, which keeps the rate functional finite. The
third assumption would be violated if there were a chain of damped fluxes between a V0-node x0 and
x1 or between a V0-node xl and xK`1; in that case we can again set these fluxes equal to jεrin , j

ε
rout

respectively, without having the rate functional blowing up, which relaxes the last assumption.
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6 Implications for large deviations and the effective dynamics

We now prove two consequences: the Γ-convergence of the density large deviations, and the conver-
gence of ε-level solutions to the solution of the effective dynamics.

6.1 Γ-convergence of the density large deviatons

As a consequence of our main Γ-convergence result, we obtain the Γ-convergence for the density
large-deviation rate functional Ĩε0 ` Ĩε given by

ĨεpuV0slow,uV0fcyc
, uC, uV1q :“

inf
jRslow

PLC pr0,T s;RRslow q,

jRdamp
PMpr0,T s;RRdamp q,

̃Rfcyc
PLC pr0,T s;RRfcyc q

J̃ ε
puV0slow, uV0fcyc

, uC, uV1 , jRslow
, jRdamp

, ̃Rfcyc
q.

Corollary 6.1. InCpr0, T s;RV0slowqˆL8pr0, T s;RV0fcycqˆCpr0, T s;RCqˆMpr0, T s;RV1q (equipped
with the uniform, uniform, uniform, and narrow topologies),

Ĩε0 ` Ĩε
Γ
ÝÑ Ĩ0

0 ` Ĩ0,

where
Ĩ0
puV0 , uV1q :“ inf

jRslow
PLC pr0,T s;RRslow q,

jRdamp
PMpr0,T s;RRdamp q,

̃Rfcyc
PLC pr0,T s;RRfcyc q

J̃ 0
puV0 , uV1 , jRslow

, jRdamp
, ̃Rfcyc

q.

Proof. The proof is more-or-less classic but we include it here for completeness. For brevity we write
u “ puV0slow, uV0fcyc

, uC, uV1q and j “ pjRslow
, jRdamp

, ̃Rfcyc
q.

To prove the Γ-lower bound, take an arbitrary convergent sequence uεV0
Ñ uV0 , uεV1

narrow
ÝÝÝá uV1 , and

choose a corresponding sequence jε that satisfies for each ε ą 0 the inequality

J̃ ε
puε, jεq ď inf

j
J̃ ε
puε, jq ` ε.

Without loss of generality we assume that supεą0 Ĩε0
`

uεp0q
˘

` J̃ εpuε, jεq ă 8. Hence by Corol-
lary 3.9 there exists a subsequence puε, jεq (without changing notation) that converges in the sense
of (3.9) to a limit pu, jq. From the Γ-lower bound Lemmas 4.2, 4.3 and 4.4, we find that:

lim inf
εÑ0

Ĩε0puεp0qq ě Ĩ0
0 pup0qq, and

lim inf
εÑ0

inf
j
J̃ ε
puε, jq ě lim inf

εÑ0
J̃ ε
puε, jεq ´ ε ě J̃ 0

pu, jq ě inf
j
J̃ 0
pu, jq.

This proves the lower bound

lim inf
εÑ0

Ĩε0puεp0qq ` Ĩεpuεq ě Ĩ0
0 pup0qq ` Ĩ0

puq.

For the recovery property, take an arbitrary u with Ĩ0
0 pup0qq` Ĩ0puq ă 8, and for an arbitrary δ ą 0,

a flux jδ such that
J̃ 0
pu, jδq ď inf

j
J̃ 0
pu, jq ` δ “ Ĩ0

puq ` δ.
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Proposition 4.5 provides a recovery sequence puε, jεq for pu, jδq and the sequences pĨε0qε and pJ̃ εqε,
hence:

lim sup
εÑ0

Ĩε0puεp0qq ď Ĩ0
0 pup0qq, and

lim sup
εÑ0

Ĩεpuεq ď lim sup
εÑ0

J̃ ε
puε, jεq ď J̃ 0

pu, jδq ď Ĩ0
puq ` δ.

Since δ ą 0 is arbitrary, the recovery property follows.

Remark 6.2. By the same argument one may also contract further to obtain Γ-convergence of the
functional

uV0 ÞÑ inf
uV1

,jRslow
,jRdamp

,̃Rfcyc

Ĩε0
`

uV0slowp0q, uV0fcyc
p0q, uCp0q, uV1p0q

˘

` J̃ ε
puV0slow, uV0fcyc

, uC, uV1 , jRslow
, jRdamp

, ̃Rfcyc
q. (6.1)

6.2 Convergence to the effective equations

For any pair pu, jq at which the limiting functional J 0 vanishes, the densities satisfy the following set
of equations in the weak sense of (3.1):

πx 9ux “
ÿ

rPRslow:
r`“x

κrπr´ur´ `
ÿ

rPRdamp:
r`“x

κrπ̃r´ur´ ´
ÿ

rPRslow:
r´“x

κrπxux for x P V0slow, (6.2a)

πc 9uc “
ÿ

rPRslow:
r`Pc

κrπr´ur´ `
ÿ

rPRdamp:
r`Pc

κrπ̃r´ur´ ´
ÿ

rPRslow:
r´Pc

κrπr´ur´ (6.2b)

ux “ uc for any x P c P C, (6.2c)

0 “
ÿ

rPRslow:
r`“x

κrπr´ur´ `
ÿ

rPRdamp:
r`“x

κrπ̃r´ur´ ´
ÿ

rPRdamp:
r´“x

κrπ̃xux for x P V1. (6.2d)

We first prove existence and uniqueness for these equations.

Lemma 6.3. Fix an initial condition up0q P RV that is well-prepared, which means that

1 Whenever x, y are in the same connected component c P C, we have ux “ uy; we denote the
common value by uc;

2 up0q satisfies the condition (6.2d).

Then the system of equations (6.2) has a unique solution u P C8pr0,8q;RVq with initial value up0q.

Proof. Since 9ux “ 9uc whenever x P c P C, equation (6.2b) can be rewritten as

πc 9ux “
ÿ

rPRslow:
r`Pc

κrπr´ur´ `
ÿ

rPRdamp:
r`Pc

κrπ̃r´ur´ ´
ÿ

rPRslow:
r´Pc

κrπr´ur´ for all x P c P C, (6.3)
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The right-hand side does not depend on the choice of x within the same c P C; therefore, under
the assumption that uxp0q “ ucp0q for all x P c P C, the system (6.2) is equivalent to the set of
equations (6.2a)–(6.2d)–(6.3).

This implies that the system (6.2) can be written as a differential-algebraic equation:

9uV0 “ AV0ÑV0uV0 ` AV1ÑV0uV1 , (6.4a)

0 “ AV0ÑV1uV0 ` AV1ÑV1uV1 , (6.4b)

where for x P V1,

pAV1ÑV1uV1qx :“
ÿ

rPRdamp
r`“x

κr
π̃r´

π̃x
ur´ ´ ux

ÿ

rPRdamp
r´“x

κr.

By the next lemma the matrix AV1ÑV1 is invertible, and therefore (6.4) can be cast in the form of a
linear ordinary differential equation for uV0 . This equation has unique solutions withC8 regularity, and
by transforming back we find that uV1 has the same regularity as uV0 .

Lemma 6.4. Under the conditions of the previous lemma, the matrix AV1ÑV1 is invertible.

Proof. We first note that the matrix AV1ÑV1 can be written as

AV1ÑV1 “ diagpπ̃q´1
`

Aint
´ diagpEq

˘

diagpπ̃q,

with for x, y P V1,
Aint
xy “ κyÑx ´ δxy

ÿ

y1PV1

κxÑy1 , Ex “
ÿ

y1PV0

κxÑy1 .

Since diagpπ̃q is invertible, it is sufficient to show that Aint ´ diagpEq is invertible.

To do this we construct a new graph Ĝ :“ pV1 Y tou,Rint YRoq, consisting of the nodes of V1 and
a single ‘graveyard’ node o; the graveyard collects all elements of V0 into one new node. The graph Ĝ
has edges

Rint :“
!

pxÑ yq P V1 ˆ V1ztz Ñ zu : Dr P Rdamp such that r´ “ x and r` “ y
)

Ro :“
!

pxÑ oq : x P V1, Dr P Rdamp such that r´ “ x and r` P V0

)

.

Note that there are no fluxes out of o.

We define a new Markov jump process Zptq on this graph G̃, by specifying jump rates κ̂xÑy for each
edge pxÑ yq in Ĝ:

κ̂xÑy :“

#

ř

rPRdamp:r´“x,r`“y
κr, for pxÑ yq P Rint,

ř

r1PRdamp:r1´“x,r
1
`PV0

κr1 , for pxÑ yq P Ro.

The generator for this jump process is the matrix L given by

Lxy :“

$

’

&

’

%

κ̂xÑy if pxÑ yq P Rint YRo (which implies x ­“ y)

´
ř

y1PV1Ytou
κ̂xÑy1 if x “ y P V1

0 otherwise.
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By construction the transpose LT of this generator has the following structure in terms of the splitting
V1 Y tou:

LT “

˜

Aint ´ diagpEq 0

ET 0

¸

,

Since the original graph G is diconnected, there exists for each x P V1 a path x “ x0 Ñ x1 Ñ ¨ ¨ ¨ Ñ

xk in G leading to some xk P V0; without loss of generality we assume that x0, x1, . . . , xk´1 P V1.
Since fluxes out of nodes in V1 are damped, the fluxes px0 Ñ x1q, . . . , pxk´1 Ñ xkq are all in
Rdamp. Since these fluxes also exist as fluxesRint in the graph Ĝ, the path x0 Ñ x1 Ñ ¨ ¨ ¨ Ñ xk´1

also is a path in Ĝ. By construction,Ro contains a reaction r “ pxk´1 Ñ oq with positive rate κ̂r.

It follows that if the process Zptq starts at any x P V1, then at each positive time t ą 0 there is a
positive probability that Zptq “ o. Since the graveyard o has no outgoing fluxes, the only invariant
measure for the process Zptq is 1o :“ p0, 0, . . . , 0, 1q, and so the kernel of LT coincides with the
span of 1o. Consequently the matrix Aint ´ diagpEq is invertible because the row ET is a linear
combination of the other rows of LT .

We finally derive convergence to the full effective equations.

Corollary 6.5. For each ε ą 0 let puεV0
, uεV1

, jεRslow
, jεRdamp

, ̃εRfcyc
q in Θ solve the system of equa-

tions:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

jεrptq “ κrπ
ε
r´
uεr ṕtq, r P Rslow,

jεrptq “
1
ε
κrπ

ε
r´
uεr ṕtq, r P Rdamp,

̃εrptq “ 0, r P Rfcyc,

πε 9uεptq “ ´ div jεptq, in the weak sense of (3.3),

uεp0q “ uε,0,

where uε,0 is given. Assume that uε,0V0slow
, uε,0C converge to some u0,0

V0slow
, u0,0

C ą 0, that u0,0 is well-
prepared in the sense of Lemma 6.3. In addition, assume that for each x P V1, log uε,0x remains
bounded. Then puεV0

, uεV1
, jεRslow

, jεRdamp
, ̃εRfcyc

q converges in Θ to puV0 , uV1 , jRslow
, jRdamp

, ̃Rfcyc
q,

which is the unique solution to
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

jrptq “ κrπr´ur ṕtq, r P Rslow,

jrptq “ κrπ̃r´ur ṕtq, r P Rdamp,

̃rptq “ 0, r P Rfcyc,

π 9uptq “ ´ div jptq, in the weak sense of (3.11),

up0q “ u0,0.

(6.5)

Proof. Set:

qIε0
`

up0q
˘

:“
ÿ

xPV
s
`

πεxuxp0q | π
ε
xu

ε,0
x

˘

and F ε
`

up0q
˘

:“
ÿ

xPV
πεx

´

´uxp0q log uε,0x ´ 1` uε,0x

¯

.

Then for each ε ą 0, the solution puεV0
, uεV1

, jεRslow
, jεRdamp

, ̃εRfcyc
q minimises the modified functional

qIε0 ` J̃ ε “ Ĩε0 ` F ε ` J̃ ε : Θ Ñ r0,8s at value zero. In particular this means that:

sup
εą0
Ĩε0puεp0qq ` J̃ ε

puε, jεq “ sup
εą0

´F ε
`

uεp0q
˘

“ sup
εą0

ÿ

xPV
πεx
`

uε,0x log uε,0x ` 1´ uε,0x
˘

ă 8.

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020



M.A. Peletier, D.R.M. Renger 38

By Corollary 3.9, the sequence puε, jεq has a subsequence that converges in the sense of (3.9) to a
limit pu, jq. By the assumptions on uε,0, the functional F ε converges along the sequence puε, jεq to
the limit F 0, where

F 0
pvp0qq :“

ÿ

xPV0slow

πx

´

´vxp0q log u0,0
x ´ 1` u0,0

x q

¯

`
ÿ

cPC

πc

´

´vcp0q log u0,0
c ´ 1` u0,0

c

¯

.

With the Γ-lower bound of Proposition 4.1 it follows that

0 “ lim inf
εÑ0

Ĩε0
`

uεp0q
˘

` F ε
`

uεp0q
˘

` J̃ ε
puε, jεq

ě Ĩ0
0

`

up0q
˘

` F 0
`

up0q
˘

` J̃ 0
pu, jq “ qI0

0 pup0qq ` J̃ 0
pu, jq.

Here
qI0

0

`

vp0q
˘

:“
ÿ

xPV0slow

s
`

πxuxp0q | πxu
0,0
x

˘

`
ÿ

cPC

s
`

πcucp0q | πcu
0,0
c

˘

.

It follows that the limit pu, jq is a solution of the problem qI0
0 ` J̃ 0 “ 0, which coincides with (6.5).

A The Arzelà-Ascoli theorem for asymptotic uniformly equicon-
tinuous sequences

The classical Arzelà-Ascoli theorem asserts that a set of continuous functions on a compact set is
precompact in the supremum norm if and only if it is uniformly bounded and uniformly equicontinuous.
For countable sets such as sequences the uniform equicontinuity is equivalent to asymptotic uniform
equicontinuity, and this observation leads to the alternative version below. This is mentioned in various
places in the literature (e.g. [PP94, Rem. 2.3 (ii)] or [Dav94, Ex. 5.27]) but since we could not find a
clear statement we state and prove it here.

Theorem A.1. Let pfnqně1 be a sequence of continuous real-valued functions on r0, T s that satisfies

1 supně1 }fn}8 ă 8;

2 There exists ω : r0,8q Ñ r0,8q, non-decreasing, with limσÓ0 ωpσq “ 0, such that,

lim sup
nÑ8

sup
|t´s|ăσ

|fnptq ´ fnpsq| ď ωpσq.

Then there exists a subsequence fnk that converges uniformly on r0, T s.

Proof. We prove the result by showing that the sequence pfnqn also is uniformly equicontinuous in
the usual sense. Fix ε ą 0. Choose N ě 1 and σ0 ą 0 such that

@n ě N @ |t´ s| ă σ0 : |fnptq ´ fnpsq| ă ε.

Next, choose σ1 ą 0 such that

@ 1 ď n ă N @ |t´ s| ă σ1 : |fnptq ´ fnpsq| ă ε.

Then for all n ě 1 and |t ´ s| ă σ0 ^ σ1 we have |fnptq ´ fnpsq| ă ε. This proves that pfnqn is
uniformly equicontinuous, and therefore the result follows from the classical Arzelà-Ascoli theorem.
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B Definiteness of Markov generators

For completeness we include the following basic result.

Lemma B.1. Let 0 ‰ A P Rdˆd be a Markov generator matrix. Then

vTAv ď 0 for all v P Rd,

and there exists a λ ă 0 such that

vTAv ď λ|v|22 for all v P ColpAq.

Proof. Since vTAv “ 1
2
vTpA`ATqv we may assume without loss of generality thatA is symmetric,

and hence diagonalisable by orthogonal matrices. If the Markov chain is irreducible, then by the Perron-
Frobenius theorem the largest eigenvalue is 0, with multiplicitym “ 1. If the chain is reducible, then by
symmetry the Markov chain consists of m ą 1 disconnected irreducible components, each of which
has largest eigenvalue 0, soA has largest eigenvalue 0 with multiplicitym. This proves the first claim.

We order the eigenvalues in a descending fashion, and write A “ PΛPT where

Λ “

»

—

—

—

–

0
. . .

0
λm`1

. . .
λd

fi

ffi

ffi

ffi

fl

“

„

0 0
0 Λneg



and P “ r v1 ... vm vm`1 ... vd s “
“

P 0P neg
‰

,

and P is orthonormal, and Λneg has only negative diagonal entries. Since P 0 contains only eigenvec-
tors with zero eigenvalues, ColpAq “ ColpP negq and one can parametrise ColpAq Q v “ P negw
for any w P Rd´m. By orthonormality, we can write

P negTAP neg
“ Λneg.

Choosing λ “ λm`1, the largest non-zero eigenvalue, yields the second claim.
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