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Fast reaction limits via ['-convergence

of the flux rate functional
Mark A. Peletier, D. R. Michiel Renger

Abstract

We study the convergence of a sequence of evolution equations for measures supported on
the nodes of a graph. The evolution equations themselves can be interpreted as the forward
Kolmogorov equations of Markov jump processes, or equivalently as the equations for the con-
centrations in a network of linear reactions.

The jump rates or reaction rates are divided in two classes; ‘slow’ rates are constant, and ‘fast’
rates are scaled as 1/¢, and we prove the convergence in the fast-reaction limit ¢ — 0.

We establish a I'-convergence result for the rate functional in terms of both the concentration at
each node and the flux over each edge (the level-2.5 rate function). The limiting system is again
described by a functional, and characterizes both fast and slow fluxes in the system.

This method of proof has three advantages. First, no condition of detailed balance is required.
Secondly, the formulation in terms of concentration and flux leads to a short and simple proof of
the I'-convergence; the price to pay is a more involved compactness proof. Finally, the method of
proof deals with approximate solutions, for which the functional is not zero but small, without any
changes.

1 Introduction

The aim of this paper is to prove a fast-reaction limit for a sequence of evolution equations on a graph.
We first specify the system.

Let G = (V, R) be a finite directed diconnected graph with weights k€ : R — [0, o0). For each edge
r € R we denote r = (r_,ry), with r_, 7, € V the corresponding source and target nodes. We
consider the classical problem of deriving effective equations for the flow on (1, R) with two different
rates:

pe(t) = —div(k ® p°(t)), p°(0) fixed. (1.1)

with discrete divergence (div A), := >, _ A, — Zu:x A,, product (k° ® p)rer := K.p,_, and
t e [0,T],T > 0. We assume that the space of edges is a disjoint union R = Rjow U Riast SO that

R reR 1
€ — 1r, slow (12)
E/ir. re Rfast-

< o

We are interested in the limiting behaviour as ¢ — 0, where the fast edges equilibrate instanteously
onto a slow manifold. Such limits, also known as ‘Quasi-Steady-State Approximations’, have a long
history in the literature, see for example [Tik52] and [Sti98].
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M.A. Peletier, D.R.M. Renger 2

1.1 I'-convergence of the large-deviations rate

Often, one is not only interested in convergence of the dynamics, but also in convergence of some
variational structure such as a gradient structure, or more generally an ‘action’ functional that is min-
imised by the dynamics (1.7). Of course this convergence is particularly relevant if this action has a
physical meaning. The functional that we study in this paper can be interpreted as an action functional
in the following way.

Consider a microscopic system of n independent particles X£(¢) € V,i = 1,...,n that randomly
jump from state X{(t_) = r_ to a new state X{(t) = r, with Markov intensity <. This is a typi-
cal microscopic model for a (bio)chemical system of unimolecular reactions with multiple time scales.
The concentration of particles in state « is then p(t) := n™' > | Lx<(t)=ay, and the vector of
random concentrations p™*(t) converges to the deterministic solution p®(t) of by Kurtz’ classical
result [Kur70]. For large but finite particle numbers n, there is a small probability that p"(¢) devi-
ates significantly from p°(¢). These small probabilities are best understood through a large deviations
principle [Fen94], |Leo95, /ADE18]:

—n""log Prob (p™* ~ p) "X I5(p(0)) + I(p), where (1.3a)
T i D f $(7e() | Kopr (1)) dt, (1.3
p—fde
(a|b)—alog——a—|—b a,b>0,
s(a|b):= 1 s(a]b) =0, a=0,b>0,
s(a|b) = oo, a<0,b<0,0ra>0,b=0,

(1.3¢)

and Z§ reflects whatever randomness is taken for the initial concentration p"™<(0). We stress that this
formula is typical for Markov jump processes; chosing a different microscopic model for the dynamics
could lead to different functionals.

If the network satisfies detailed balance, then the rate functional (1.3b) can be related to a gradient
flow [Ons31}, IOM53, IMPR14, IMPPR17]. We shall revisit the detailed balance condition in Section
For a similar interpretation in terms of an action without the detailed balance condition, see [BDSG™ 15,
Ren18].

Note that Z* is indeed minimised by solutions p© of (1.1). This implies that we can consider the equation
Z¢ = 0 as a variational formulation of the equation (1.1); this is the point of view known as ‘curves
of maximal slope’ [AGS08] or the ‘energy-dissipation principle’ [Mie16a]. An important advantage of
this choice of formulation is that I'-convergence of Z¢ implies converge of the minimising dynamics
(see [DM93] Cor. 7.24] and [Mie16al]); in other words, one can prove convergence of the solutions by
proving I'-convergence of the functionals. This is also the method that we adopt in this paper.

1.2 ['-convergence of the flux large-deviations rate

One difficulty in proving I'-convergence of the functional Z; + Z¢, however, is that Z€ is implicitly de-
fined by a constrained minimisation problem. The constrained infimum of the sum in is an infimal
convolution (see [MPPR17, Sec. 3.4]). This shows that the evolution of the concentrations in different
nodes are strongly intertwined, which considerably complicates the mathematical analysis. For exam-
ple, the related work [DLZ18] requires an orthogonality assumption to decouple the concentrations.
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Fast reaction limits via I'-convergence of the flux rate functional 3

We can however avoid this difficulty by considering a different functional instead. Observe that the
variable j,(t) in has the interpretation of a flux: it measures how much mass is transported
through edge r at time £. Naturally, one can rephrase (1.1) in terms of this flux as the coupled system

pe(t) = —divj<(t) and j°(t) = K°® p(t), p°(0) fixed. (1.4)

On the level of the microscopic particle system one can also define the random particle flux J™¢,
which yields the large-deviation principle [BMNQ9, [Ren18| [PR19]:

—n ' log Prob ((p™, J™) ~ (p, §)) "~" I§(p(0)) + T(p,j),  where (1.5)

3 j[ s(n(t) | wpr (0) dt, itpe WH(O.TIRY), e L ([0.T] )
rer V10,1

jG(p>j) = andp:_divja

0, otherwise.
(1.6)

Indeed, the functional 7€ is related to by Z¢(p) = inf,—_aiv; J(p, j), which is consistent
with the ‘contraction principle’ in large-deviations theory. Its minimiser follows the same evolu-
tion as the minimiser (1.1), but provides with more information: the flux. From a physics perspective,
this additional information is important to understand non-equilibrium thermodynamics; see for ex-
ample [BDSG™15], [MPPR17] and [Reni8, Sec. 4]. From a mathematical perspective, we will use
the property that the flux functional 7€ is a sum over edges to decompose networks into separate
components.

The goal of this paper is to prove convergence of the functional Z§ + J € to a limit functional, whose
minimiser describes the effective dynamics for (1.4). As a consequence, we obtain I'-convergence of
the functional Z§ + Z¢, convergence of solutions of the flux ODE (1.4), and convergence of solutions

of the ODE ({.1).

In order to track diverging fluxes and vanishing concentrations, we shall introduce a number of rescal-
ings before taking the I'-limit, as we explain in the next section.

1.3 Network decomposition: nodes
We decompose the network into different components according to their scaling behaviour. To explain

the main ideas, consider the example of Figure Recall from (1.2) that we assume that R = Rgow U
Riast, Where the slow edges have rates of order 1, and the fast edges of order 1/6.

3

1 2 <—  slow edge
<+— fastedge

Figure 1: An example of a network with slow and fast edges.

The first step in the decomposition is to categorise the nodes. In the example, node 5 is expected to
have low concentration, since any mass at node 5 will be quickly transported to node 4. We make this
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M.A. Peletier, D.R.M. Renger 4

statement precise by considering the equilibrium concentration. Since we assume the network to be
diconnected, there exists a unique equilibrium concentration 0 < 7€ € RY for the dynamics (19); we
will always assume that 7¢ is normalized, i.e. > _,, 75 = 1. We use the equilibrium concentrations to
subdivide the nodes into two classes, YV = V, U V;, where

Vo = {er:wgﬂﬂx>O}, and V) = {xev:éﬂfc:o»frx>0}, (1.7)
and the tilde is used to stress that the quantity is rescaled. This decomposition implies an assumption
that 7 is either of order 1 or of order €. In fact, one can construct networks with R = Rgjow U Riast
with stationary states 7, of order €2, €3, or higher, but in this paper such networks will be ruled out by
our assumption that there are no ‘leaked’ fluxes (see below). We introduce a further subdivision of the
nodes after categorising the fluxes.

1.4 Network decomposition: fluxes

We expect that j< is comparable to x..p% , which in turn we expect to be comparable to x.7¢ . Hence
the flux or amount of mass being transported through an edge r not only depends on the order of xr,
but also on the amount of available mass in the source node r_, of order 7, . Therefore the scaling
behaviour of the flux falls into one of the following four different categories:

]: r_ €V r_el
7€ Raow || O(1)  “slow” O(e) “leak”
7€ Rt || O(1/e) “fasteycle” | O(1) “damped”

In this paper we rule out “leak” fluxes by assumption, so that R = Rgiow U Ricye U Rdamp, With

Rfcyc = {T S Rfast 1r_ € Vo} and Rdamp = {7’ € Rfast Ir_ € Vl}
3
/ . Vo-node 123

. V1-node

1 2
<—  slow flux
<— fast cycle flux

4 5

<4¢=—  damped flux

4 5 ’

Figure 2: The example from Figure [1] redrawn using the categorisation of nodes and fluxes (left); the
final reduction to a two-node network in the limit ¢ — 0 (right).

Let us now explain these four categories in more detail by considering the example network of Figure([i]
which can now be redrawn as Figure [2]

1 What we shall call the slow fluxes are fluxes through a slow edge that start at a node in V.
Typically, these slow fluxes will be of order (O(1), and they depend on € only indirectly through
dependence on the other fluxes.

2 For the fast edges however, there is a fundamental difference between the fluxes 1 — 2 —
3 — 1 and the flux 5 — 4. The three fluxes 1 — 2 — 3 — 1 constitute a cycle of fast
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Fast reaction limits via I'-convergence of the flux rate functional 5

edges, with fluxes of order O(1/¢). Therefore mass will rotate very fast through this cycle, and
in the limit ¢ — 0, the mass present in the cycle will instanteneously equilibrate over these
three edges. Moreover, any mass inserted into this cycle through the slow flux 4 — 1 will also
instantaneously equilibrate over the nodes in the cycle, and any mass removed from the cycle
through the slow flux 2 — 5 may be withdrawn from any node in the cycle. Practically this
means that in the limit the cycle/diconnected component 1 — 2 — 3 — 1 acts as one node
¢ .= {1, 2, 3}. We shall see in Lemmathat all edges with € Ryt and r_ € V), are indeed
part of a cycle, which justifies the name fast cycle.

3 By contrast, the fast edge 5 — 4 is not part of a fast diconnected component. One does expect
mass in node 5 to be transported very fast into node 4, but since there is no fast inflow, the
mass in node 5 will be strongly depleted after the initial time. After this, the amount of mass that
will be actually transported through edge 5 — 4 is fully subject to the amount of inflow of mass
into node 5 by the slow fluxes 2 — 5 and 4 — 5, and will therefore be of O(1). We shall call
the flux 5 — 4 a damped flux; its corresponding edge is fast, but the flux is damped by the
fact that there is not enough mass available in the source node 5. In the limit, any mass that is
inserted into node 5 from node 2 or 4 will be immediately pushed into node 4.

4 Now imagine a flux 5 — 1, not drawn in the picture. Since there is a damped flux going out of
node 5, almost all mass from node 5 will follow that flux into node 4, whereas very litlle mass
from node 5 would leak away into node 1. We shall call such fluxes leak fluxes. Since they
contribute little to the behaviour of the whole network we rule out this possibility by assumption.
This also rules out the possibility of higher orders of 7, as mentioned above.

An even further subdivision of R qamp Will be discussed in Section but this will not be needed in
the general discussion.

1.5 Network decomposition: connected components

After categorising the fluxes, we now further subdivide the nodes of V into Vy = Viteye U Vosiow
consisting of nodes that are part of a fast cycle and the remainder:

Voteye 1= {x € Vo : Ir € Rieye, r— = 7}, and Vostow := Yo\ Vieye-

The notation reflects the expectation that the concentration in the nodes in Vyycy. will instantenously
equilibrate over the diconnected components of the graph (Vy, Rfcyc). We collect these components
in the set

Ci={ccVy: Vo,yec, I, © Rieye, 71 = 2,75 = rF1 2K =y}
To each ¢ € € corresponds the equilibrium mass
e ::Zﬂ';, cecC. (1.8)

TEC

We will see in Lemma [3.1]that a component ¢ € € can be considered a union of cycles in the graph
(V()fcyc7 Rfcyc). Consequently, if there exists a fast-cycle path from z to y then there also exists a
fast-cycle path from y to x. This remark also implies that each fast component ¢ is a subset of Vicyec.

Observe that, as illustrated in Figure we do not combine the nodes in V; and V), into single nodes;
instead we preserve the nodes, and we keep track of the fast cycle as well as the damped fluxes.
This is motivated by our Theorem which yields sufficient compactness in the V;-concentrations,
damped fluxes and fast cycle fluxes.
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M.A. Peletier, D.R.M. Renger 6

1.6 Rescaled flux and initial functionals

In Sections[1.3|and[1.4]we categorised the nodes and fluxes by their typical scaling behaviour. We shall
prove that the scaling behaviour of these categories is not only typical for the effective dynamics but
actually for any dynamics with finite large-deviation cost. In order to do so we rescale all concentrations
and fluxes according to their respective scalings.

We expect concentrations pS, to follow 75, and therefore to be of order order 1 on V), and of order € on
V. This motivates the rescaling the concentrations by working with the densities «¢, defined by

wherez € Vorz € ]}0 U Vi, using (T-8). Although Voteye = | €, we study s () for z € Vogiow U
Voteye U €, assuming that u¢ and u, x € ¢ are related by

meug(t) = > wius (), (1.9)

TEC

which we consider as a special continuity equation, additional to p° = — div j°. The distinction be-
tween ug, and u; allows for two different notions of compactness: a weaker compactness for ug, with
T € Voeye, and a stronger compactness for ug for any ¢ € €,

As explained in Section the fluxes are expected to scale as j<(t) = O(kinms ). The slow and
damped fluxes are of order 1 and therefore need not be rescaled. For fast cycle fluxes, of order 1/e,
we introduce the rescaled flux j;, defined by

-€ € ¢ I 1 € € 1 .
]r(t> =: ’%rpr_(t) + \_ﬁjr = ZKTTFT_(t)ur_(t) + \_ﬁjw re ,Rffcyo

¢ pS of order 1/4/€ is the right choice for sequences along which
15 + J€ is bounded, since this scaling is natural in the context of the compactness and I'-limit results
that we prove below.

It turns out that this deviation from x¢

To shorten the expressions we shall write

uv()slow = (lj/fC)iUeVOslow7 uv()fcyc = (ul‘)l‘EVOnyc7 u€ = (UC)CE€7 U/Vl = (u$)$€vl)

szlow = (jT>TERslow ? deamp = (j"')"'ERdamp ? ijcyc = (jT')TeRfcyc 7

and finally by a slight abuse of notation (u, j) 1= (Uyyeys UWereyer Ue> UYL TRuion > JRaamp s JRicye)-

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020



Fast reaction limits via I'-convergence of the flux rate functional 7

With these rescalings and notation we now rewrite the large-deviations rate functional (1.6) as:

‘76 (u7 ]) = j€ (UV0510W7 uVOfcyc’ UQ, uvl ? szlow ) deamp ? ijcyc>

=J° (7T u, szlowijdampv 'k Q@ mu + € I/QJRnyC))
S f 0) | kot ur () dt
TeRslow
- Jqlow (uV0510w qufLyc)
+ Z f Lk, u, (1)) di
rERddmp
::jdamp (uvl ’deamp )
1 .
- f s(Lrmtup (0) + <2 0) | T ()t (110
Tethyc
= :‘7f6cyc (uVOfcyc ’ijcyc )
where J¢ = oo if one of the conditions of (1.6) and (T.9) is violated. Recall that 7, ~ ,_ for

r € Ryow and m,. ~ em,_ for r € Ryamp, SO that the two functionals 7, and jdamp are very
similar.

In order to control the initial condition we include the initial large-deviation rate function Z in the
analysis. As mentioned in Section this function depends on the choice of the initial probability.
As is common, we choose the random dynamics to start independently at the invariant measure.
Since linear reactions correspond to independent copies of the process, the particles modelled by the
invariant measure are also independent, and hence Z§(p(0)) = ..., s(p=(0) | 7) by Sanov’s
Theorem [DZ87,, Th. 6.2.10]. We again rescale this functional to work with densities instead:

:Z-S (U(O)) = ig (uVoslow (O>7 UVpteye (0)7 uQ‘(O>7UV1 (0>) = Ioe (71'6 ®U(O))
= 0 s(mua(0) [ 7) + ) s(mua(0) | 7)) + ) s(miua(0) [ 7). (1.11)

xevOslow rev(]fcyc zeV)

The minimiser of fo is the vector of densities all equal to one.

1.7 Main results: compactness and ['-convergence
We now focus on the I'-limit of the rescaled functional ig + J¢, in the space

O = C([0, T} R) x L*([0, T];R™=<) x C([0, T]; RY) x M([0,T};R™)
X L%([O,TLRRﬂoW) X M([O,T],RRd‘mp) % L%)([O’T];Rnﬁ:yc)’

where C' is the space of continuous functions, M denotes spaces of bounded measures, and L?
denote Orlicz spaces corresponding to the nice Young function (see Section [2.2):

%(a):= inf s(p|1)+s(q|1).

p—q=a

We always make the implicit assumption that u¢ and wy,,., are connected by (1.9).
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M.A. Peletier, D.R.M. Renger 8

We make O into a topological space by equipping each space C' with the uniform topology, each L*
and L% with their weak-* topologies and each measure space M with the narrow topology (defined
by duality with continuous functions).

Of course I'-convergence properties strongly depend on the chosen topology. In fact, it is known that
different topologies may lead to different I'-limits [DM93, Ch. 6], [Mie16b, Sec. 2.6]. The choice of this
particular topological space O is motivated by our first main result:

Theorem 1.1 (Equicoercivity). Let (uf, j¢).~o < © such that
Zs(u(0)) + T(u, j) < C forsome C > 0.

Then there exists a ©-convergent subsequence.

This equicoercivity identifies a topology that is generated by the sequence of functionals itself, and

therefore natural for the I'-convergence. Note that the topologies for wy, and u¢ are much stronger

than the other ones. This will be needed to interchange limits lim. o lim; o w5, (¢) and limg o lime o u5, (%)
in order to converge in the continuity equation later on. By contrast, such strong compactness is not

to be expected for us, , nor is it needed, since the s, (0) will not play a role in the limit due to instan-

taneous equilibration.

Our second main result is the I'-convergence:

Theorem 1.2. In the topological space ©:

€ € € 70 70 . 70 70 70
I + slow + \7fcyc + jdamp =: I + \7 I + j I + jlow + \7fcyc + jdamp?

e—0

where, setting u,_ := u, foranyr_ € ¢,
70 (u(0)) := Z s(maug (0) | mp) + Z s(meuc(0) | o),
.Z’EVOslow ceC
"7S10W (uv()slow7 uv()fcyc ’ szlow) = Z J‘ S (JT (t) | K;Tﬂ-rfurf(t)) dt7
T€Rslow [0,7]

T 1001, ) 1= Y f sy | ki) (de),

TERdamp [O’T]

- _ r(t)?
\7f(C)yC (uVOfcyc ) ]Rfcyc) =3 2 Z f dt7

Ty (t)
TERnyC

and we set 7° = oo if the limit continuity equations (3.11) are violated.

The explicit form of the limit continuity equations will be derived in Lemma [3.12] after the re-
quired notions are introduced and the required results about the network and continuity equations
are proven. In our third main result, explained in the next section, we show that both the densities
uy, and the damped fluxes deamp may become measure-valued in time; therefore we use a slight
generalisation of the function s to measure-valued trajectories, i.e.:

Koy T _ Aty

(1.12)

‘ R f s(#(t) | 1> Ry Uy (dt), if Jp < u,_,
f S(]r | /<:T7Tr_ur_) (dt) := [0,T]
[0,T1]

0, otherwise.
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Fast reaction limits via I'-convergence of the flux rate functional 9

Comparing Theorem[1.2with Figure [T} we see that the limit functional contains additional information
about the V; nodes that contract to a single node in the limit, and about all slow, fast cycle and damped
fluxes. Due to this additional information, the proof of the I'-convergence is relatively straightforward,
e.g. without the need of unfolding techniques. This illustrates our ‘philosophical’ message that the
mathematics becomes easier if one takes fluxes into account, which was also observed in [PR19]
where the large-deviation principle was proven.

1.8 Main result: the development of spikes

The equicoercivity of uj, and jg,,,, will be derived by uniform L"-bounds in Lemmas and
From these bounds one can only extract compactness as measures, in the narrow sense, so that s,
and J§,m,, May develop measure-valued singularities or spikes in time.

For the densities uy, , such spikes can not be ruled out, regardless of the network structure. This is
easy to see from the fact that these densities become fully uncoupled in the limit continuity equa-
tion (3.11d). From (1.12) one sees that one may choose large u,. for r € V), provided j, < u,._.

For the fluxes jgamp, the occurrence of spikes is related to the presence of damped cycles, i.e. cycles
of damped reactions. The example of Figures [1| and [2| has no such damped cycles, but Figure
illustrates the concept.

Figure 3: An example of a network with a cycle of damped fluxes. On the left the network with the
distinction between fast and slow edges; on the right the redrawn network with the node and flux
classification as in Figure 2|

To study this we further subdivide R qamp into damped cycles and the rest, Rgamp = Rdcye Y Rdnocye
where

- 0 . kK k _ k-1 K _ 0 L
Rdcyc = {T € Rdamp . 3(7’ )k:l - ,Rfdampy rp=r_,Try = 7,7}; Rdnocyc T Rdamp\Rdcyc-

The relation between damped cycles and spikes in the damped fluxes is summarised in our third main
result:

Theorem 1.3.

(i) For any sequence (UE,]'E)QO — O such thatfg (ue(o)) +‘7~'6<ue,je) < C forsome C > 0 and
(u,5) 2> (u, j), we have jir,,.... € L¥([0, T]; RRanere),

(i) If Racye # & then there exists a sequence (u®, j¢)e=o < © with ig (uf(O)) + J(us, j) < C

for some C' > 0 and (u¢, j°) o, (u, j) such that

IRaege € MU0, T]; RFioe)\ L1 ([0, T]; RRaee).

As a consequence of Theorem|1.2)and Theorem|[1.3{ii), if Rqcyc # (& then thereis a (u, j) € © with
Jra. € MI[0, T); RRaex )\ LT[0, T'; RRoxe) or which 24 (u(0)) + 7 (u, ) < .

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020
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1.9 Related literature

As mentioned in the introduction, this work is related to classical quasi-steady state approximation
theory; see e.g. [HS96, Sec. 4.2] or [Kuel15, Sec. 3.1]. We mention two recent works [DLZ18| [MS19]
that study fast-reaction limits in connection with another underlying structure, namely a gradient struc-
ture. A gradient structure consists of an energy %Ig(c) and a non-negative convex dissipation poten-
tial We (&) such that the evolution equation can be rewritten as ¢, (¢(t)) = —DiT5(c(t)).
Both studies work on the level of concentrations rather than fluxes, under the assumption that the e-
dependent evolution equation satisfies detailed balance, and under the assumption that damped
fluxes do not occur. The detailed balance condition is needed for the e-dependent equation to have
a gradient structure, and the absence of damped fluxes guarantees that the gradient structure is not
destroyed in the limit.

Disser, Liero, and Zinsl [DLZ18] study general, possibly non-linear reaction networks with mass-
action kinetics. Under the detailed balance assumption such equations have a gradient structure with
quadratic dissipation potential, as discovered in [Maa11l, [IMie13]. The authors show the convergence
of that gradient structure by the notion of E-convergence as defined in [Mie16b]. In order to do so they
assume linearly independent stoichiometric coefficients, which can be seen as a decoupling or or-
thogonality between the slow and the fast reactions. In this paper we do not need such an assumption
because the flux setting automatically decouples the reactions.

Mielke and Stephan [MS19] study the linear setting, similarly to the current paper. Contrary to Disser
et al., they use the gradient structure that is related to the large-deviation principle in the sense
of [MPR14], again under the detailed balance assumption. They prove the convergence of that gra-
dient structure, using the stronger notion of tilted EDP-convergence; see [Mie13, LMPR17, MMP2Q].
This result implies convergence of the large-deviation rate functions Z¢, under the more restrictive
assumptions mentioned above, but also for a wide range of tilted energies simultaneously. In a paper
that is soon to appear, Mielke, Peletier, and Stephan generalise this to the case of nonlinear systems,
modelled on the class of chemical reactions with mass-action kinetics that satisfy the detailed balance
condition.

1.10 Overview

Section [2] contains preliminaries that are needed throughout the paper. In Section [3, we study prop-
erties of the network, the continuity equations, and their limits, and we derive equicoercivity in ©.
In Section [4] we prove our main I"-convergence result, Theorem In Section [5] we prove the re-
lation between spikes and damped cycles, Theorem Finally, in Section [6] we derive implications
for I'-convergence of the density large deviations, and for convergence of solutions to the effective
dynamics.

2 Preliminaries

We first provide a list of basic facts that will be used throughout the paper. After this we introduce the
Orlicz space L. Next we recall a FIR inequality that bounds the free energy and Fisher information
by the rate functional which will be needed to derive compactness of densities later on. Finally, we
state a number of convex dual formulations of a number of relevant functionals.
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2.1 Basic properties

We will use the following properties of the functions s(:|-) and €. For any a,b > 0 and p € R, we
have:

s(a | b) :=a10g%—a+b

0
1 ba —a\"™
:(1—@)b+aloga+2n(n_l)ba( T ) > (1—a)b+aloga Va >0,
(2.1)

2

s(a]b) < % —2a+0b (using logzx <z —1), (2.2)

@(a):= if s(p|1)+s(q]1)

=s(la+/1+a?/4]1) +s(—3a+/1+a%/4]1)

= L asinh_l(d/Q) da = 2( cosh*(a/2) + 1),

¢*(p) := Suﬂg pa — € (a) (2.3)
= 2(cosh(p) — 1), (2.4)

s(a]b) = b(s(a/b | 1) + s(1 | 1)) b%(T”),

p concave P
C(p) = (5J sinh™(6¢/2)dq > (52J sinh™'(¢/2)dq = 5*€(p) Vée[0,1], (2.6)
0 0

(convex)

€ (6p) < 0€(p) Vo e [0,1]. (2.7)

2.2 Orlicz space

The functions %', ¢ defined above form a convex dual pair of N-functions (“nice Young functions” [RR91],
Sec. 1.3]). The primal function & satisfies the Ay property: €' (2p) < 4% (p) (but €* does not). We
shall use the corresponding Orlicz space (see [RR91] Th. 3.3.13)):

LY([0,T];R?) := {j :[0,T] - RR, Ja > Osuchthat 3, 5 §1€ (37-(1)) dt < oo},

il = sup J[ 0 €0l dt = inf S0+ o o (05 0) ).

ceL®™ (0 TR
Srer Sjo.r @ (- (0)]) dt

The final characterization above implies that
alljlpe <1+ ZJ ajT dt for alla > 0. (2.9)

We also introduce the space (see [RR91] Prop. 3.4.3])

M?([0,T];RR) := {C :[0,T] — R?, Va > Othere holds Y, S[O’T]%*(ig(t)) dt < oo}
L6*

= span{step functions ¢ € L*([0, T7; RR)} < L0, T]; R®).
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Then (M“*([0,T};R®))" ~ L¥([0,T]; R*) [RR91, Thms 4.1.6 & 4.1.7], and, since ¢ satisfies
the Ao-property, also (L% ([0, T]; R®))* ~ (L**([0, T]; R*) [RR91, Cor. 4.1.9]. In particular, the
first of these isomorphisms defines the weak-* topology on L* ([0, T; RR).

2.3 An FIR inequality

There are various related notions of Fisher information for discrete systems in the literature [BT06,
Maai7,[FS18]. The notion that we use is:

FI¢(u) := %ZR f[ e <\/ur_(t) —yJur ) )2 dt, (2.10)

€

—p,., (t) appears as the backward jump rate for the time-reversed pro-
T'+

where KSTE U+ (1) = K
cess.
Recall the definitions of fo from (1.11) and je from (1.10). Using arguments from Macroscopic Fluc-

tuation Theory, one can show the following inequality, that is sometimes known as the FIR inequality
in the literature [HPST19, [KJZ18| [RZ20]:

Uy

Lemma 2.1 (FIR inequality). Let (uf;, uSs,, k... JRaump s JRieye) € © b€ such that T5(us(0)) +
J(ume, j¢) < oo. Then
sup 1Z5(us(t)) + FIS(u) < 1Z5(u(0)) + T (un, §°). (2.11)

2
o<t<T

The proof is a simple rewriting of the results of [HPST19], [KJZ18, Cor. 4] and [RZ20], and we omit
it. From the boundedness of Z§(u(0)) + J¢(u‘re, j) assumed above, the inequality implies
boundedness of both Z(u(T')) and FI¢(uf7e); this will be important in deducing compactness for
the densities us,, .

2.4 Dual formulations

We recall convex dual formulations for the entropic and quadratic functionals and the Fisher informa-
tion.

Lemma 2.2 ([PR19, Prop. 3.5],[AGS08, Lemma 9.4.4]). Ifu € L'([0,T]),

§o.07 5G(#) | u(®))dt, je LY([0,T]),j < u,
0, otherwise,

sup | K@ﬂw—MMé@—whu={
[0,T1]

¢eC([o,17)
and ifu e M([0,T7),

Sorp s Lw)(dh), j € M([0,T]).j < u,
0, otherwise.

sup | K@num—maxé@—n]={
[0,1]

¢ec([o,1])

Lemma 2.3 ([AGS08, Lemma 9.4.4]). Ifu e L'([0,T]),

Lo i dt, ifje L2, ([0,T]),] « u,

sup Lﬂ@ww%ﬁmmmﬂﬁ:{ﬂmwm

¢eC([0,T]) o0, otherwise.
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Proposition 2.4. Foru e L'([0,T];RY),

FI(u) = sup 2 I{iﬂ';J ke e [pr_(t)u,_(t) + pr(t)u,, (t)] dt.
peC([0,TI;R2R):  Lcp [0,77]
pr_ <1, Pry <1,
(pr_—1)(pr, —1)>1

Proof. Note that upon writing fi(a, b) for the argument in the integral in (2.70),
fi(a,b) := (va— vb)’

we can characterize the function fi by

fi(a,b) = supap + bg — fi*(p,q) = sup ap + bg
D,q p<l,g<1,(p—1)(¢g—1)>1
where
fi*(p, q) := SUp ap + bq —fi(a,0) = x{p < 1,¢<1,(p—1)(g—1) > 1}. (2.12)
a,b=>

We use this to write for u € L' ([0, T]; RY),

FIE(U’) = Sup Z K;’Ie”_ﬂ-:_ f (pT‘_u’f‘_ + pT‘+uT+ ) dt
peM([0.TIR?R): e [0,7]
pr_ <1, Pry <1,
(pr_ *D(pr_*_ *1)>1

After checking that a cut-off from below and a convolution leave the conditions invariant, the result
follows by a standard approximation argument. O

Remark 2.5. The definition of the Fisher information can easily be extended to measures if we use
the dual formulation. In fact, the supremum remains finite when the measure is finite:

sup  Swr | o Ot + g0 (1)
peC([0,T;R?R): . cr [0,7]
Dr_ <17p7"+ <1,

(pr_—1)(pr, —1)>1

— s Yeae f [(1 = g (8)ur () + (1 — gra(8)r ()]
qeC([0,T);R?R): e [0,T7]
qr_ >07QT‘+ >07
qr_qr, >1

< Z liiiﬂ'ii(”ur,HTV + ||Ur+||TV)'
reR

This shows that a uniform bounded Fisher information does not rule out the development of singulari-
ties in the densities, as explained in Section (1.8 O
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3 Network properties and compactness

In this section we study the network decomposition introduced in Sections and in par-
ticular the implications for the continuity equation. We derive estimates for sublevel sets of the rate
functional and deduce compactness of these sublevel sets in the topological space O as defined in
Section[1.7] We then use that topology to derive the limiting continuity equations. In addition, we show
that any sequence of bounded cost will equilibrate over the fast cycle components, and then prove
a stronger equilibration result that will be needed in the construction of the recovery sequence in
Section

3.1 Network properties and the continuity equations

Recall that we assumed that any node z is either in V, (when 775 = O(1)) orin V; (when 75 = O(¢)),
and that leak edges, through which the non-equilibrium steady state flux is of order €, do not occur.
Moreover, we further decomposed Vj into Voseye and Vosiow, Where Vogeyc is defined as all nodes
x € V, such there is at least least one fast reaction that leaves x.

The name Vy. (‘fast cycle’) reflects the fact that all nodes in this set belong to a cycle of fast fluxes,
as the following simple lemma shows:

Lemma 3.1. The subgraph (V(]fcyc, Rfcyc) consists purely of cycles. More explicitly, let zl e VOnyc.
Then there exists a cycle (1*) | © Rieye, 78 = ¥ 11 = 21 = r&_ Similarly any r € Rieye is

part of such a fast cycle.

Proof. Letr! € Ryeye with rL = !, which exists by assumption z° € Vygeye, and let 22 := 7. The
equilibrium equation in 2 reads:

€ € _ €, € € , €
T2 Z R, = Z R,T,. = R,

reRir_=x? reRirq =z

The right-hand side is of order 1/¢, and so for the left-hand side 7:» must be order 1 (or higher,

which is ruled out by assumption), and the sum contains at least one 72 := r € Ry. It follows
that 22 € Voteye and r? e Rcyc. We then repeat the same argument, which only terminates when
2K+ = 2! The second claim is true by the same argument. O

We can then enumerate all possible edges from and to Vsiow, Voteye, and V.
Lemma 3.2.

(i) If x € Vosiow, then all incoming edges r € R,r, = x are either in Rgiow 0r in Raamp, and all
outgoing edgesr € R,r, = x are in Ryjow-

(i) If € Voseye, then the incoming edges could be of any type, and all outgoing edgesrT € R,r_ =
x are either in Riow Or in Ricye.

(i) If x € V1, then all incoming fluxes r € R,r, = x are either in Rjow 0r Ryamp, and all outgoing
fluxesT € R,r_ = x are in Raamp-
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Proof. For x € Vosiow OF Voteye, the statement follows immediately from the definitions of Riow, Rdamp
and Ryeyc. For 7 € V; any slow outgoing edge will be of leak type that we ruled out by assumption
and any fast outgoing edge is damped. Since all outgoing edges are of order 1, an incoming fast cy-
cle edge of order 1/e would imply that ¢ is of order 1/¢, which is ruled out by the conservation of
mass. O

We can now write down the rescaled continuity equations. Although for ¢ > 0 all densities u and fluxes
j and j have W' and L' regularity respectively, provided the rate functional is finite, some of
this regularity is lost in the regime € — 0. Therefore it will be useful to write the continuity equations
in a different form. In the following we will say that

€€ __ € .
TU, = Z]r in the weak sense,
T

whenever
—f o(t) meus (d) = ) f o(t)je(dt)  forall ¢ e Ca([0,T]), 3.1)
[0,7] - J[0,T]

where we identify u,(dt) = u,(t) dt and j.(dt) = j.(t) dt wherever possible. If for a fixed € > 0 we
have Z§ + J ¢ < o0, then by (1.6) we know that all densities are absolutely continuous and all fluxes
have L!-densities. We will then say that

€€ __ € ; H
Tyl = er in the mild sense,
r

wheneverforall 0 < to <t; <71,

mous (t) — wus(f) = Y jslt, ], (3.2)

using the notation

§ipdc() dt, e L1([0,T7),

il {Swyﬂdw, Jr € M. 1))

Corollary 3.3. After rescaling, the continuity equations (1.4) and (1.9) are, for fixed e > 0, in the weak
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sense,
€, € __ €, €
TU; = 2 Ty Uy forc e €,
TEC
(3.3a)
€, € € € -€
L S D I e D & for z € Vostow
T€Rslow: TGRdamp: r€Rslow:
r4=x ry=x r_=x
(3.30)
€, € € € €
DN DN S DN
TERSIOW: T‘ERdamp: T‘GRSlOW:
ry=x ry=x r_=x
+ Lo m€ous + Lj¢) — L, me us 4+ Lj¢ forx €V,
EHT7TT7UT7 \/g]r € r7rr7 r_ ﬁjr 9 0nyC7
"'ERnyC : TGRnyC :
r4+=x rT—-=x
(3.3¢)
€, € € € €
TEUS = Z i<+ Z e Z je, forz e V.
TERslow: r€Rdamp* r€Rdamp*
r4= ry=x r_=x
(3.3d)

I in addition Z&(uc(0)) + J ¢ uc, §¢) < oo, then these equations also hold in the mild sense of (3.2).
0 J

3.2 Boundedness of densities and fluxes

The aim of this section is to prove uniform bounds that are needed to derive the equicoercivity Theo-
rem [Tl later on.

Lemma 3.4 (Boundedness of densities). Let (u¢, j)c~o = © such that Z§ (u(0)) + T (u¢, j) < C
for some C' > 0. Then

1 (U, Ue) andus, are uniformly bounded in C([0, T']; RYosow¢) and L*([0, T']; RVorere ) ;
2 (U, Wogee Uy ) 15 uniformly bounded in L ([0, T'J; RYostowVoteve V)

3 e|us|cqory — O forallz € Vy ase — 0.

Proof. From (2.1) and mass conservation we derive a uniform bound on the total mass for each
tel0,T]:

2 meul (t) = Z 7 us (0) < Z5(u(0)) + (e — 1)27T§ <C+e—1. (3.4)
eV eV x

This implies the C'-bounds on uj, , ug, and the L bound on Uiy

From the FIR inequality (2.11) we deduce that
C > %IS (/uj6 (0)> + je (u;() ’ U;I ? j%slow ’ ‘j%damp ? j%fcyc)

> FI(u) = 5 Y. wemt. J[ . (\/u;_(t) . \/u1€+(t) )2 dt. (3.5)
reR d
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Hence by (1.7), for € sufficiently small and any r € R.:

4C
T € Ralow;

2
us (t) — 4 /us t) dt < 547?0, 7 € Raamp,
| CCACENET 40 .

4c
—=—€, T € Rigye-

KRpTr_

Since V is finite, V) cannot be empty, since otherwise the total mass in the system would vanish. Take

an arbitrary 2° € Vy; by @-4) we have ||ulo|| =0,y < 2(C + e — 1)/m,0 for sufficiently small e

Now take an arbitrary y € V. By irreducibility of the graph (), R) there exists a sequence of edges
01 ,,,12

20 T gt 5 . — 2™ = y. For the first edge we find, using the inequality & < 2(y/a—+/b)? 420,

/ 1
f W (8) dE < 2 f (Vo) —fus () de+2 f wo(t)dt < 2 qp€re=l
[0,7] [0,7] K170 Trg0

[0,7]

Repeating this procedure for all edges yields that w;, is uniformly bounded in LY0,T).

Finally we prove the vanishing of euy, . We also deduce from (2.11) thatforall 0 < ¢ < 7,

C > %ig(uﬁ(t)) > % Z s(eus (6)7s | emrs) = % Z ey s(ug(t)[1) = Z emg n(ug(t)),
erl erl wEVl
1 —
with 7(7) := {S[TlogT o Ifgi ;
<7<l

Since the 7, are bounded away from zero, we find that
€ € —1 C
) <= —  o<um<n(>).
€

where 1! is the right-continuous generalized inverse of 7). Since 1) is superlinear at infinity, en ! (Cle) —
0as € — 0, and we find that | u3, | c(jo,r7) — 0 as e — 0.

O

Lemma 3.5 (Boundedness of slow fluxes). Let (u¢, j)~o = © such that Zg (u(0)) + J(u*, j) <
C for some C' > 0. Then the slow fluxes j_  are uniformly bounded in L ([0, T]; RRsw) it
follows that there is a non-decreasing function w : [0, 00) — [0, c0) with lim, o w(c) = 0 such that
forall0 <ty <ty < T, (using the notation from (3.2))

sup Y jel[to,ta]) < w(ty — to). (3.6)

€>
TER@IOW

Proof. Again by (1.6) we know that jz _and pj, both have L'-densities. Writing Z := (C' + e —

]') ZT‘GRSlOW K,

¢S S [sGe®) | me s m)) — 7 (E)+ 7t (), | db
TE€ERslow [OvT] ~ ~~ ~ ~ ~~ ~
non-increasing in & uf (t)kr =0
4
23 | i 12) - 2)a
TGRSIOW
2.5) ) _
>z ) T) dt — Z|Raow|T
TERSIOW [
:
> Hj - Z”L‘g ([0,T];RRslow) — (|RSIOW|T + 1)'
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The proof of estimate (3.6) follows from the definition (2.8) of the Orlicz norm and the superlinearity of
% . Define the function

~

w : [0,00) — [0, 00), w(o) = mf{ |Ratow| €*(5) < l},

B5>0 g

where (' is the bound on Jreo in L7([0,T7; R’=ev) The function w is non-decreasing by construc-
tion, and lim, ;o w(o) = 0 because €™* is finite on all of R.

Fix 0 < tg < t; < T and take 3 > 0 such that (t; — t)|Rsiow| €*(3) < 1. Set

. 1 t) it € Rows
¢(h) ::{ toan)(t) 7€ Ry
0 otherwise,

and use this function ( in (2.8) to estimate,

. i di < L1 &
Z ]r[t(]?tl = ﬁ ]r t dt < E HJRSIOWHL%([O,T];RRSIOW) < E
TERSIOW 7"eflzslow
The estimate (3.6) follows from taking the infimum over (. O

Although the form of the rate functional is almost the same for the slow and damped fluxes, the damped
fluxes lack an C'([0, T'])-bound on the corresponding densities. Therefore we obtain a weaker bound
on the damped fluxes:

N

Lemma 3.6 (Boundedness of damped fluxes). Let (uf, j¢)~o < © such thatfg( € O))+ J9)
C' for some C' > 0. Then the damped fluxes jg  are uniformly bounded in LY([0,T]; Rdamp) In
addition, for all o > 0,

limsup sup 2 Jrlto, t1] < w(o), (3.7)
e—0 [t1—to|<o TERdamp:
7"+€V0

where w is the modulus of continuity of Lemma

Proof. Again by (1.10) we can assume that u;, and j;zdamp have L!-densities, at least for ¢ > 0. This
allows us to write

¢ N | s | e (1) de
r€Rdamp [0.7]
O | (et ) .

TERdamp [O’T]

and so [|j&,. 21077 Rgump) < C + (€ — 1)Hu§)1||L1([o,T];R‘jl) SUD =01 €R gump ¢ FrTe—» WhiCh is

uniformly bounded by Lemmaand the assumption %7‘[‘;7 — T,_.

Next we prove the estimate (3.7) by summing the mild formulation of the continuity equations (3.3d)
overall x € Vy, forarbitrary 0 < tg < t; <1

D1 gltet] = Y5 Gltet] = YL Gl t] = D) wh(ug(t) — us (ko).

r€Rdamp* r€Rdamp* T€Rslow: eV
r_eV; ryeVy T4V
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Since the first two sums have common terms corresponding to r_, 7, € V;, we can remove them to
find

Doodltte] = > Fltte] = ) gl tel = ) (s (t) — ub(to)).

r€Rdamp* r€Rdamp* TERslow: eV
r_eVi r_eVo r1eV:
T4+ Vo T4+ eV

The second sum is a sum over the empty set, and applying the estimate (3.6) we find

>l te] <w(ty—to) + ) wlutleqo-

r€Rdamp* eV
T_€V1
'I’+€V0
The estimate (3.7) then follows from partof Lemmatogetherwith %wﬁi — T,_. O

Lemma 3.7 (Boundedness of fast fluxes). Let (u, j)~o = © such that Zg (u(0)) +J(u<, j) < C
for some C' > 0. Then the fast cycle fluxes jg, are uniformly bounded in L?([0, T]; RRrexe),

Proof. Similar to the proof of Lemmawe write Z 1= (C+e—1) 3, fir sOthat o7y ug ()/Z <
1 for each r € Ry due to the total mass estimate (3.4). Again using the existence of L'-densities:

1.
cs Y f s(%fﬁ;rwﬁfuf,f(t) + I ‘ imgu;(t)) dt
reRpeye 91071 ‘
S I5(t)
= Z ( %/437«7'[';7 Uf,i(t) 4 (1\[7 dt
'I’ERnyC J [OvT] ;l‘i}rﬂ'r7 urf(t)
&5 Kpmy s (T Fe
2 5 [ O (_awr Y,
T‘ERnyc [O,T] Z Ry Uy
l\ € t
=Y [ 2 %(%) dt
TERfcyc v [O’T]
2.9)
= H ||L<€ [0,T];RRfeye) ™ Z.
O
Lemma 3.8 (Equicontinuity of us, andug.). Let (u5,, j)e0 < © such that Zg (u(0) +J€(us, ) <
C for some C' > 0. Then there exists a continuous non-decreasing function @ : [0,0) — [0, w)
with lim, o @W(o) = 0 such that forall0 < ty <t < T,
limsup Y Jus(t) —ul(to)| + Y [us(tr) = us(to)| < @(t — to). (3.8)

=0 ‘e 2Voslow
Proof. Fix(0 <ty < t; < T. Take x € V0w and note that by (3.3b) and (3.6)

o (us(h) —us(te) = = D, Gilti te] = —w(ty — to),

r€Rglow:
r_=x

where we again used the mild formulation of the continuity equations. To estimate the difference from
the other side we write

mo(ust) —uslte) < 3 Gttt D) iltet] < wit—s)+ Y jilte.t],

TGRSIOW: TERdamp: TERdamp:
T+=T T+=T T+=T
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and by (3.7) one part of (3.8) follows.

The same line of reasoning leads to a corresponding statement about |u¢(t1) — ut(to)| for any ¢ € €,
after one sums the continuity equations (3.3c) over all x € ¢ to find

Dims(us(t) —uS(to)) = D, Gilto, ]+ > dlteti]— D> it ta]-

TEC T€ERslow: 7€Rdamp: T€Rslow:
T+EC r+EC rT_€C

We omit the details. O

3.3 Compactness of densities and fluxes

In this brief section we derive the compactness of level sets, and hence the equicoercivity of Theo-

rem[T1l

Corollary 3.9. Let (u¢, j)~o < © such that Z§(u(0)) + J*(u¢, j) < C for some C' > 0. Then
one can choose a sequence ¢, — 0 and a limit point (u, j) € © such that

U;T(L)slow - uVOslow in O([()? T]’ Rvos}ow)? (Sga)

U ye = Wpgeye i LP([0, T]; RY0Mexe), (3.9b)
ugm — ug  inC([0, T];R%), (3.9¢)

usp % uy, in M([0,T);RM), (3.9d)

cuy, — 0 inC([0, T|;R™), (3.9€)

IR = Rae N LP([0, T]; RRsew), (3.9f)
j%damp e deamp in M([ s T] RRdamp)7 (399)
j,}eénfcyc i\ ijcyc In L(ﬁ([ ? T] RRnyC) . (39h)

It follows that wy,, . and u¢ are continuous.

Proof. The boundedness given by Lemmas and immediately implies the weak-* and

narrow compactness of (3.9b), (3.9d), (3.9¢€), (3.91), (3.9g), and (3.9h); we extract a subsequence that
converges in this sense.

The additional uniform convergences of and follow from an alternative version of the
classical Arzela-Ascoli theorem, which we state and prove in the appendix. This version applies to
sequences that are uniformly bounded and asymptotically uniformly equicontinuous. The uniform
boundedness of ui};slo and ug" follow by Lemma ., and the asymptotic uniform equicontinuity is
the statement of Lemma[3.8] The uniform convergences (3.9a) and (3.9¢) then follow by Theorem [A
(up to extraction of a subsequence). O

From now on we shall consider sequences that converge in the sense of (3.9).

3.4 Equilibration on fast cycle components

In this section we prove that all mass on fast cycles will instaneously spread over each node in the fast
cycle component.
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Lemma 3.10. Let (uf, j<)e=o = © such that 5 (uc(0)) + J(us, j¢) < C converge to (u, j) in ©
in the sense of (3.9). Then u,(t) = u.(t) on each component ¢ € € and div jr,. . = 0.

Proof. Forany z € ¢ € € and t € [0, T, the mild formulation of the continuity equation is:

() = moug(0) = D gilol+ > g0l = ) jslo.]
T€Rglow: TERdamp5 T€Rslow:
ry=z r_=x

r+=x
+ > Leemt g [0,4] + 3560, 1]

\/E
T’ERnyC:
r+=T
— D, teerug [0,4] + 5[0, 1], (3.10)
TER&YC:

All terms in the first line are uniformly bounded in L' (0, T'), and the same holds for the u¢ and j in the
second and third lines. First multiplying the equation by ¢, and then letting ¢ — 0 thus yields:

Z KTy Uy (1) = 2 Ky Ty ().

r€Rfeyc: T€Rfeyc:
=T rT_—=T

Without the w,._(t) factors, this is exactly the equation for the steady state 7 for a network consisting
only of the fast edges. Since the component ¢ containing x is diconnected, this equation has a unique
solution up to a multiplicative constant, i.e. u,.(t) = a.(t) on ¢, for some a. € L*([0,T]). To identify

a., use (3.3a) together with the convergences and (3.9¢) to find for the limit

Tl < ToUg = 2 Ty, — 2 Tply = T,
TEC TEC

so that indeed u, = a, = u,.

The same argument, multiplying (3:10) by +/€ and letting € — 0, shows that

Rl = ) k. O

r€Rteyc: T€Rfeyc:
ry=2x r_==x

Remark 3.11. Alternatively, the fact that « is constant on ¢ can also be seen from the FIR inequal-

ity (3.5) together with the lower semicontinuity that follows from Proposition The FIR inequality
can however not be used to make a similar statement about divergence-free fast fluxes. O

3.5 The limiting continuity equations

We again place ourselves in the setting of Section and derive the continuity equations satisfied in
the limit.

Lemma 3.12. Let (uS, j)e=o  © be such that T§ (ue(0)) + Je(uf,5¢) < C, and assume that
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(uf, j€) converges to (u, j) in the sense of (3.9). Then the limit satisfies the continuity equations

Tolle = Y Jot Do o= X Jn for € Vosiow (3.11a)
TeRslow: TERdamp: TERslow:
ry=x ry=x r_=x
Tl = Z Jr + Z Jr — Z Jrs force €, (8.11b)
TeRsloW: T’ERdampl TERSIOW:
riEc T+EC r_ec
U, =u. and Z Jr= Z Jrs forveceC, (38.11¢)
r€Rfeyc: r€Rfeyc:
T+=T T_=T
0= Z Ir + Z Jr — Z Jrs forx € V. (3.11d)
r€Rslow: 7€Rdamp: r€Rdamp*
ry=x ry=x r_=x

These equations hold in the sense of distributions on [0, T'| as in (31).

Proof. Equation (3.11a) follows directly from equation (3.3b) by the convergence properties of Corol-
lary [3.9] For fixed ¢ € € we sum equation (3.3c) over all z € ¢ to find

IR S T S A S

TEC r€Rslow: T€Rdamp: T€ERslow:

r4+€EC T4 EC r_€c

Note that the final two sums in (3.3c) cancel by Lemma The left-hand side equals 7iu¢ and
converges in distributional sense by (3.9¢); the remaining terms also converge by (3.9f) and (3.9g).
The limit equation is (3.11b).

Equation (3.11c) is the content of Lemma|3.10| Finally, to prove (3.11d) we write (3.3d) for x € V; as

~er€ € E : ‘€ E : ‘€
EMpUy = Z Jr+ Jr = Jr
TGRSIOW: T‘ERdampZ T‘ERdampZ
T4=T T+=x r_=zx

The left-hand side converges to zero in distributional sense by (3.9€), and the right-hand side again
converges by (3.9f) and (3.9¢). O

As an immediate consequence, the I'-limit ig + J° from Theorem ﬂcan only be finite if these limit
continuity equations (3.11) hold.

Note that although the densities uy, do appear in the limit rate functional j(?amp, they become de-
coupled from the other variables in the sense that they have vanished completely from the continuity
equations. Furthermore, if one does not take fluxes into account, the mass flowing into a V; node
will be instantaneously distributed over the next nodes, which would lead to a contracted network as
drawn on the right of Figure [2| At the level of fluxes this is contraction is reflected in (3.11d).

Remark 3.13. Note that L*([0,T]) 3 u, = u, € C([0,T]), so that in general u,(0) # u(0);
the mass that is initially present will be spread out over the component ¢ at every positive time £ > 0,
but not at £ = 0. The same principle can be seen seen in the strengthened equilibration in the next
section, which only holds in the time interval (¢, T'] for any to > 0. O

Remark 3.14. If there are no damped cycles, as in Section then Lemmas3.6)and show that
Uy, € WEE([0, T']; RY0s1ow) and similarly ug € W4([0, T']; R). O
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3.6 Strengthened equilibration on fast cycle components

In the previous sections we derived that for a sequence with uniformly bounded cost ig + J°, con-
centrations S, in a fast cycle x € ¢ € € converge weakly-* in L ([0, 7']), whereas the weighted sum
u¢ converges uniformly in C'([0, 7']). We now show that the convergence of v, can be strengthened
to uniform convergence as well, as long as one does not include time 0 in the interval. This result will
be needed later on for the construction of the recovery sequence, see Section |4.2

Recall from Section that sequences with bounded cost have uniformly bounded fluxes in L.
Together with the continuity equations, this will be the only requirement of the following result.

Lemma 3.15. Let (u%, j¢)c~0 in © such that each (u¢, j¢) satisfy the continuity equations (3.3), and
assume that all fluxes ji | . jR,..  JRe,. @€ L*-valued and uniformly bounded in L* (0, T'; R®stow ),

LY0, T; RRaame) and L1 (0, T'; R®tere), and that ug — ug in C'([0,T]; R®). Then for allty > 0,
us, — U strongly in L™ ([to, T]) foreachx € ¢ € €.

If in addltion,

—(divj(1), == D, F®+ D, i — Y i),

r€Rslow: T€Rdamp: r€Rslow:
r4=x ry=x r_=x
and
e (divi®), = e Y ) - > )
Ve T e " Ve "
r€Rtcyc: T€Rfeyc:
T4 = r-=I

are both uniformly bounded in L (0, T'; RY0teve ) and uS (0) = uS(0) for each x € ¢ € €, then

us, — U, strongly in L™ ([0, T']) foreachx € ¢ € €.

Proof. We prove the result for one fast cycle ¢ € €. To exploit the stochastic structure we temporarily
write p¢ (t) := mSuS(t), and

(ATp (1), == X mepf(B) = p5(t) D) rr,

r€Rfeyc: T€Rfeyc:
rTL=T T_=T

so that A is simply the generator matrix of the Markov chain that consists of the irreducible fast cycle
¢, which does not depend on €. Recall from (3.3c) that for each x € ¢:

(1) = —(div (1), + :(ATp (1), — Z (divj (1)),

The vector p(t) € R* can be orthogonally decomposed into p<°(¢) € Null(AT) and p&+ € Col(A).
For the column space part we estimate:

d 1 € € > € € S €
T3P O = p (@) () = o () ()

€ : ~€ 1 € € 1 € : ~E
= —=p (1) - div (1) + 2pm () - AT () — - div (1)
o 1 N,
< Jdiv g (Oh + Zldiv i ()l + =5l 3
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using |p[; < 1 and Lemma [B.1]with largest negative eigenvalue A < 0 of A. By Gronwall:
Ly e Ly f, A€ f, o€ €
Lo 0 < (S O + §ldiv (o)l ds + & Rdiv (o) ds)e @z

Since the L!-norms of the fluxes are uniformly bounded, p* — 0 strongly in L ([to, T']; R*).

We now focus on the other part p>° € Null(AT). Since the fast cycle c¢ is irreducible, Null(AT) =
span{ (7, )zec}, S0 we may write pS°(t) = m,a(t) for some a‘(t) € R. Summing over the cycle
gives

meat(t) = )0 (8) = D (p5(t) = pt (1) = mEug(t) = Y 5t (0).

Trec TEC TEC

By assumption the first term on the right-hand side converges uniformly to m.u., and we just proved
above that the second term vanishes uniformly on [¢, T']. This implies that a® — wu, uniformly, and so
TS = p& = mea® + pt — myu, uniformly on [to, 7.

Now assume that — ( divj€(t))$ and — (div J°(t)) /+/€ are uniformly bounded and us,(0) = u¢(0).
In that case p*(0) = 0, and so (3.12) becomes:

5’/) L()E < (Hlej || + H% divj \|Lw>t62>\t/ < _<Hd1Vj | + Hﬁdlv‘] HLoo>2—§e,

showing that p“L — 0 uniformly in [0, T']. The uniform convergence of pgo = mea“ follows by the
same argument as above. 0O

4 T'-convergence

This section is devoted to the proof of the main I'-convergence Theorem which consists of the
lower bound, Proposition and the existence of a recovery sequence in Proposition |4.5

41 [I'-Lower bounds

The I'-lower bound is summarised in the following.

Proposition 4.1 (I'-lower bound). For any sequence (u‘, j¢) — (u,j) in ©,

lim inf Z§ (u(0)) + J(us, j¢) =

e—0

0 (u(0) + T (u, 5)-

€
slow?

Proof. We treat each functional ig, jjamp and jff:yc separately, and without loss of generality

we may always assume that ig + J¢ < C for some C' = 0 and hence the continuity equations (3.3)
hold; otherwise the lower bound is trivial. This is carried out in the next Lemmas and O

For the initial condition, recall the definitions of ig and fo from (1.11) and Section and observe that
the first one depends on wuy,, . (0) whereas the second depends on u¢(0), which may be different,

see Remark|3.13| Hence the I'-convergence of Z to Z, does not hold in RVostow 5 RVoteye 5 RE x RV1,
but only in the path-space convergence of (3.9).

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020



Fast reaction limits via I'-convergence of the flux rate functional 25

Lemma 4.2 (I'-lower bound for the initial condition). Let (u€,j)eso < © such that I§ (u(0)) +
JE(us, 7€) < C converge to (u, j) € © in the sense of (3.9). Then:
liminf Z§ (u(0)) = Z3 (u(0)).

e—0

Proof. By uniform convergence, u3, .~ (0) — uy,,,, (0) so that

Z s(msus(0) | mf) — 2 s(matiz(0) | ),

T€Vpslow T€Vpslow

and clearly
2 s(msus(0) [ wS) = 0.
eV
Lemmashows that every = € Vpycy. is part of exactly one component ¢ € €. From (1.8), Jensen’s
inequality and the continuity equation (3.3a)),
€

D) (o) | 7) = Y Y s000) 1)

T

2€Voteyc ceC TEC ¢
> > mes(Noe us (003 |11)
ceC
= Zs(ﬁfuﬁ(O) | 7)) — ZS(WCUC(O) | ),
e ceC
again by uniform convergence of ug. O

Lemma 4.3 (I'-lower bound for the slow and damped fluxes). Let (1<, j)c~o © © such that T (u(0))+
J€(us, j¢) < C converge to (u, j) € O in the sense of (3.9). Then:

s 7e € € -€ 70 -
lllgilglf "7SIOW (UVOSIDW ? uvofcyc ? szlow) 2 \7SIOW (uVOslow ? uVOfcyc ? JRslow ) ?

and

S Te € € 70 .
III;ILIOHf jdamp (le ) deamp) = jdamp (U’Vl » IR damp ) :

Proof. Recall the uniform L'-bounds on the slow and damped fluxes from Lemmas [3.5) and The
statement for slow fluxes follows directly from rewriting

Taw i ) = D [ [0 e ) 0y

T€Rs1ow

— T —|—7TL] dt, (4.1)

7T7"_
T
together with the joint lower semicontinuity from Lemma (2.2} and 7¢ — 7 > 0. The argument for the
damped fluxes is the same after generalising to possible measure-valued trajectories in time. O

Lemma 4.4 (I'-lower bound for the fast cycle fluxes). Let (uS, j)~o < © such that Z§(u(0)) +
J€(us, j¢) < C converge to (u, j) € © in the sense of (3.9). Then:

S Te € ~e 70 =
llm lnf ‘7nyC (uVOnyc ? ‘]Rfcyc) 2 ‘7nyC (uVOfcyc ? ijcyc ) :

e—0

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020



M.A. Peletier, D.R.M. Renger 26

A similar statement is proven in [BP16, Th. 2].

Proof. To simplify notation we prove the statement for one arbitrary 1 € R.y.. We first note that

7 u — mus  inL'Y([0,T]) and sup 7€ us || < oo,
€>

and that for any test function ¢ € C'([0,T']),
LOC
%eﬁc _1_ LC _0, %C?

€ Ve o,

It then follows that the following integral converges:

f Kpme us (t) (%eﬁw) -1 \/Lgf(t)) dt — %J Fop Ty (£)C ()2 dt.
[0,T] [0,T]

Using the dual formulations of Lemmas 2.2 and

lim inf s(l/ﬂmiui(t) + ije(t) lfiﬂi“i@))
[O’T] € r r \/E T € T T

e—0

> sup lim inff [Q(t)jf(t) — mqufiuf,i(t)(%e‘/EC(t) -1 %Q(t))] dt
cec(qory < Jpor

~ sup J[ 16030~ from e c?] a

¢eC([0,77)
1 j?" (t)2 oo~ 2
5 ————dt, ifj.elL 0,71),
= ? J[O,T] /irﬂ-r,u'r‘f(t) 1 1/krmr_ur <[ ])
00, otherwise.

4.2 ['-recovery sequence

For each of the four functionals separately, convergence is easily shown using a constant sequence
(u, 7€) = (u,j). However, such a constant sequence is not a valid recovery sequence as it vio-
lates the continuity equations (3.3). The construction of the recovery sequence is summarised in the
following proposition.

Proposition 4.5 (I'-recovery sequence). For any (u, j) in © there exists a sequence (u¢, j¢). < ©
such that (uf, j¢) — (u, ) in © and

lim 75 (u*(0)) + T, j) = Zg (u(0)) + T°(u, j)-

Proof. In Lemmawe first show that (u, j) can be approximated by a regularised (u°, j°) such
that the limit functional converges, i.e. such that Z° (u®(0)) + J°(u?, %) — Z°(u(0)) + J°(u, j) as
60— 0.1In Lemmawe construct a recovery sequence (u¢, j¢) corresponding to such regularised
(u°, 7°), and then use a diagonal argument to construct a recovery sequence for arbitrary (u, 7), see
for example [DLR13, Prop. 6.2]. O
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Remark 4.6. So far, we only assumed > _,, 75 = 1, whereas the total mass ), _,, m5ug(t) is only
bounded above by (3.4). All arguments in this paper can be extended to the case where the total mass
is fixed. In that case the construction of the recovery sequence becomes slightly more involved, since
adding mass to certain nodes must be balanced by subtracting mass from other nodes. O

Lemma 4.7 (Approximation of the limit functional). Let (u, j) € © such thatfo( (0)) + + JO (u,j) <
0, so (u, j) satisfies the limit continuity equations (B-11). Then there exists a sequence (u°, j° )5>0 €
© such that for each § > 0,

1 (Ué,jé) (= OI?O([O’ jﬁ:l7 RVOSIDW X RVOfcyc X R¢ X va X RRSIOW X RRdamp X RRfcyc)’
2 (u?, j°) satisfies the limit continuity equations (3-11),
3 infieo7y ud(t) > 0 for all & € Vosiow U Voteye U € U VI,

4 jf > ervl 57?$||u‘;||m for all 7 € Rjow U Rdamps

andasd — 0,

5 (u,5°) = (u,j) in©,

6 I3 (u(0)) + J°(u’, j°) — I§(u(0)) + T (u, j).
Proof. We construct the approximation in three steps.

Step 1: convolution. Note that for each x € V), the concentration ¢ — wu,(t) is continuous; for
x € Vosiow this follows from the definition of ©, and for € Vpgcy. this follows from the continuity of
t — ue(t) in © and the continuity equation (3.77c). We first extend uy,, beyond [0, 7'| by constants,
and uy, and j by zero. Observe that with this extension the pair (u, j) satisfies the continuity equa-
tion (3.171) in the sense of distributions on the whole time interval R (which is a stronger statement
than the usual interpretation (3:1)). We then approximate (u, j) by convoluting with the heat kernel:
(u, %) := (u=6° j x0°), where 0O(t) := (4m6)~2e~1"/(49) Since (u, j) satisfies the linear con-
tinuity equations (3.71) in the sense of distributions on IR, they are also satisfied for the convolution
(u’, 5°).

It is easily checked that (ué,j5)|[O7T] — (u,j)}[oﬂ in ©. The initial conditions u(0) converge for

= € Voslow U € and so by continuity Z9(u%(0)) — Z9(u(0)). The bound lim infs_ J7°(u?, j9) =
jo(u, j) is for free because of lower semicontinuity (see Section. The bound in the other direction
is obtained by exploiting the joint convexity of (u, j) — jo(u,j) and applying Jensen’s inequality to
the probability measure % see [Reni8, Lem. 3.12].

Step 2: add constants to the densities. For the next step we further approximate the sequence
(u‘s, j5), but to reduce clutter we now assume that the procedure above is already applied so that we
are given a smooth and bounded (u, j). We make all densities positive by adding a constant § > 0,
i.e.

ul(t) ;= up(t) +6  for0O<t<T,zeV.

x
It follows automatically that u5 = u, + 0. We leave the fluxes j invariant, and the resulting pair
(u®, j°) again satisfies the limiting continuity equations ( - The following lemma shows that the
limit functional ZJ + 7° converges along the sequence (1, 5°).
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Lemma 4.8. Leta,be Mx,([0,T]) satisfy
J s(alb) (dt) < oo.
[0,7]
Then setting b°(dt) := b(dt) + ddt we have

lim s(a|b®) (dt) = J s(ald) (dt).

=0 Jro,17 [0,7]

Proof of Lemmal4.8 We write
d
s(ap®)(dt) = a(dt) log d—;(t) — a(dt) + b(dt).

After integration over [0, 77 the final term °([0, T']) converges to b([0,T]) as & — 0; in the first
term the argument of the logarithm is decreasing in 9, and therefore the first term converges by the
Monotone Convergence Theorem. O

Step 3: add constant fluxes. Again to reduce clutter we may assume that we are given an (u, j)
satisfying properties and [3] of the Lemma. By irreducibility of the network there exists a cycle
(r*)E | © Rieye, 78 = 7" rl = 2! = & such that each damped flux 1 € R gamp is contained
in the cycle at least once. Note that some fluxes r may occur multiple times, namely n(r) := #{k =

L,....,K:r* = r} times in the cycle. For each k = 1,. .., K we define the new approximation:

G = Jre 4 0(r*) ey, 0Ty ltty L=, 7" € Raamp U Retow,
Jok 1= Joe + Aen(rF) Zyevl Oftylltyll=, ™ € Ricye.

Substituting these modified fluxes into the limit continuity equations shows that the concentra-
tions are left unchanged, since some extra mass is being pushed around in cycles. Since the fluxes are
only changed by adding a constant, it is easily checked that (u, j°) — (u,7) in ©, and by Lemma
we find J7°(u, j°) — J°(u, j) as § — 0. O

We now construct a recovery sequence (u<, j¢) for a (u, j) € © that is regularised by Lemma[4.7}
The difficulty is to construct the sequence such that the continuity equations hold in the }; and Vofcyc
nodes. The problem with the V; nodes is that the continuity equations (3.3d) and (3.11d) are differ-
ent, but uj, needs to converge to uy,. This will be done by transporting exactly the right amount of
mass from certain Vj-nodes to the V;-nodes. To satisfy the continuity equations in the Vs nodes,
we define ui/ofcyc through the continuity equations, and use the strengthened convergence result of
Section [3.6]to pass to the limit.

Lemma 4.9 (Recovery sequence for regularised paths). Let (u, j) € O satisfy properties @, @ and
[4 of Lemmal4.7 Then there exists a sequence (u®, j¢) € © such that:

1 (uf, j°) satisfies the e-dependent continuity equations (3.3);

€ € € € € € ~E : : ~
2 (UVQSlow ) URnyC ) U€, uvl Y ]Rslow Y ]Rdamp Y ijcyc) - (UVOSIOW ) uRfcyc7 UQj, le Y ]Rslow ? deamp Y ]Rfcyc)
uniformly on [0, T'|;

3 I§(uc(0)) — Z9(u(0)) and T<(us, 5¢) — T°(u, 7).
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Proof. For ease of notation we pick only one node Z € Vgow, Whose density is bounded from below
by assumption. We will approximate all fluxes such that a little mass is transported from node z to
all V;-nodes, as follows. Since the network is irreducible, there exists, for each y € V4, a connecting

. R K k kily 1 R :
chain Q(,y) := (r*¥). Y, < R, r}¥ = v rl¥ = § and v = y. For these connecting

chains we may assume without loss of generality that no » € R occurs multiple times in a chain
Q(z,y). Define for all r € R:

j; =7+ ZyevlzreQ(:fs,y) W?juy; 7 € Relow U 7zdampa
€ .__ 1 €,
Jr = Jr + 7@ Zye]ﬁ:re@(i,y) 7ryuy’ re RnyC'

Note that by the assumed propertiesandof Lemmatogether with 7§, — 0, all approximated

fluxes j<, J, are non-negative for € small enough. Clearly all fluxes j¢ converge uniformly to j, since
7y, /+/€ — 0. For the initial conditions, set

us(0) = %UI(O), for all 7 € Vosiow
ug(0) = us(0) := u,(0) = u(0), forallz € c € €, (4.2)
us(0) := u,(0), forall x € Vi,

and define the paths u° by the continuity equations (3.3).

More precisely, by construction for € Vigiow:

mous(t) 2w 0)+ Y g0+ Y gl - Y o]

T€Rslow: TERdamp5 T€Rslow:
rL=x ri=x r_=zx
€
= Totta(t) = Ligmgy >, oty (t)
yeV1

which is bounded away from zero (for e small enough) by the assumed properties[f]and[3|of Lemmal4.7|
together with 7y, — 0. Clearly ug, — w, uniformly.

For z € V), the densities will be constant in ¢, since:
mous () = moua(0) + Y g0+ D G0t = Y de0,8] = whua(t).
r€Rslow: TGRdamp: TERdamp5

ry=x ry=x r_=x

For z € ¢ € €, the density uS,(¢) is defined as the solution of the coupled equations:

S S T S D Y

TERSIOW TeRdamp TeRslow:
Ty=T r4=T rT_=x
1 € € 1 ~e 1 € € 1 ~e
+ Z <EI£T7TT_UT_ + 7@77“> — Z <ZHT7Tr_ur_ + \_ﬁ]r) (4.3)
T€Rfeye: r€Rfeyc:
r=x r_=x

with initial condition (4.2). Summing over x € ¢ yields:

Tl 33=aZﬂ'U Z Jr+ Z Jr — Z Jr

TEC T€Rslow: 7€Rdamp: T€Rglow:
T4+EC r+EC r_€C
1 ~e 1 € € 1 ~e
+ Z ( T \—Ejr> — Z (;"%WLUL + \—EJT>
T€Rfeyc: T€Rfeyc:
T4+EC r_€ec
— TeUe.
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Together with the initial condition (4.2) this shows that u; — wu, uniformly. Since all fluxes are uni-
formly bounded (and actually divj¢ = 0) and u5(0) = uf(0) for z € ¢ € € we can apply
Lemma(3.15|to (4.3) to derive that u, — u, uniformly on [0, 7’| for all x € ¢. Thus indeed all variables

€ € € € JE '€ e : : Py ;
(uVOSlow ) uRfcyc ) uQ:’ uvl ? ‘]Rslow ? deamp ? ]Rfcyc) - (uv()slow ? uRfcyc’ u€7 uvl ? szlow ? deamp ? ijcyc) uni-
formly, which was to be shown.

To show convergence of Z¢(u<(0)),

fg(uE(O)) = Z W;s(:—:ux(()) 1) +ZZﬂ§s(uc(O) 1) + Z 755 (uy(0) | 1)

€ Voslow ce¢ zec eV
— > mes(ua(0) | 1) + > ws(u(0) [ 1) = Z9 (u(0)).
€ Voslow ceC

To show convergence of je(ue, J°), we use the fact that all fluxes and densities are uniformly bounded,
that is for € sufficiently small and all ¢ € [0, T'],

0 <];(t) < ||‘].7"HL°O < o0, 7 € Raow U Rdampa
0 <Js(t) < 2[Grll = < o0, r € Ricye,
0< % inf w,(t) <u(t) < 2||ugl p=, 2 € Vostiow Y Votfeye U € U V.
te[0,T']

The convergence of the integrals for r € Rgow and r € Rgamp then follows by dominated conver-
gence:

f s(je(t) | meme_ug (1)) dt — f s(jr(t) | krme_u,_ (1)) dt, 7 € Rslow,
[0,T] [0,T]

J (]T( ) | 2kt us (t )) dt —>J s(jr(t) | /{Tﬁhuh(t)) dt, 7 € Raamp-
[0,77] [0,77]

Similarly for 7 € Ry, by dominated convergence,

f s(%/ﬁmﬁ_ufn_(t) + L5 Lot ul ( J Lt J J;r(—t)Z "
[0.7] Ve 0.17) For TE_U t) 0.7 Fore_tty_(£)
The inequality in the other direction follows from Lemma[4.4] O

5 Spikes and damped cycles

As explained in Section , the uniform L'-bounds on the damped fluxes j%damp and small concen-
trations uj, can not prevent limits from becoming measure-valued in time, that is, both may develop
atomic or Cantor parts. The question when these spikes in damped fluxes may occur is answered in
our Theorem [1.3} this section is devoted to the proof of both statements in that theorem. The first part
of Theorem [1.3| rules out spikes for damped fluxes that are not chained in a cycle. The second part
shows that splkes may occur in damped flux cycles.

Recall the subdivision Raamp = Rdcye U Rdnocye from Section

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020



Fast reaction limits via I'-convergence of the flux rate functional 31

5.1 No spikes in damped fluxes outside cycles

Proof of Theorem[7.3(i). For this argument we again work with the fluxes in integrated form j¢[0, ].
Since j¢[0,0] = 0,

j%slow [0’ ] - szlow [07 ] in Ll([07 T:Ia RRSlOW) and
j%damp [07 ] i deamp [07 ] in Ll([07 7’!]7 RRdamp)‘ (51)

Take an arbitrary ° € Ranocyc cOming out of node . =: x € V1. By Lemma(3.2] all fluxes flowing
out of node x are damped, and all fluxes flowing into node x are either slow or damped. The mild
formulation of the continuity equation in z now reads:

D0 a0l = Y dal0] = Y Gal0t] = —wiug(t) + mhus(0).

1 . 1 . 1 .
T ERdamp- T eRslow~ T eRdamp~
1

rl =g ry=x ry=z
By the uniform L'-bounds on ¢ and the vanishing ¢ u< (0), the right-hand side above converges to
zeroin L'(0,T), and so by (5.1):

Z jrl [O7t] - Z jrl [O,t] - Z jrl [O,t] = 0.

1 . 1 . 1 .
T €Rdamp: r e;R'slow~ r €Rdamp:

1_ = 1_
r_=x ry=T ryi=T

Therefore, by the uniqueness of derivatives of functions of bounded variation (for arbitrary sets dt),

0<jo(d) < D jald)= D ga)ydt+ > ja(d).

1 . . .
reRqamp: T ERglow: reRqamp:
1,0 (_ = 1_,.0
rl =rY (=x) rL=r ri=rl

Applying the same inequality for each damped flux r1 = %, we get:

0<jo(d)< Y ju@di+ ) [ S oe@di+ Y jrz(dt)].

1 . 1 . 2 . 2 .
r ERSI(()W' T ERdal’l’lp‘ TERslow: T ERdaInp-
ry=r’ r1+ =r0 ri=r_ ri =rl

We now apply this procedure recursively until the right-hand side contains slow fluxes only. This is
possible because by assumption any damped flux that already appeared during this procedure can
not reappear in the inequality. Exploiting that eventually the right-hand side is a sum over slow fluxes
that are in L(g(O, T), by the Radon-Nikodym Lemma the left-hand j,0 also has a L%-density. O

5.2 Finite-cost spikes in damped flux cycles
We now prove that fluxes in R 4.y may actually develop singularities.

Proof of Theorem([1.3(ii). If Racye # & then there exists a diconnected damped component 0 —
Vi such that Yo,y € 0 3(r*)E | © Raeye, 7t = z,7% = r#1 K = y (cf. Section . By
irreducibility and mass conservation there exists at least one rin e Rstow Y Rdnocye With rif € 0and
at least one r°%t ¢ Ranocye With r°U € 9. We first assume 1) that all edges in 0 are chained in a
cycle,i.e. 0 := (") K|, Raeye N {r— € 0} = (rF)E | with r¥ = 2% rk = 271 K = 21 2) that
rit = z! and 7" = 2!, and 3) that 2° := r™™ and X! := ro" both lie in 1, see Figure

DOI 10.20347/WIAS.PREPRINT.2766 Berlin 2020



M.A. Peletier, D.R.M. Renger 32

Figure 4: A diconnected component 0 of damped fluxes, chained in a cycle.

Initially we concentrate all mass in z°, i.e. u,(0) := 1/7¢, and u$,(0) = 0 for all other nodes = € V.
The rate functional of the initial condition is indeed uniformly bounded:

L5 (u(0) = s(1] mo )+ X
——

—
O(1) <1
Define:
0, 0<t<3T— 34
AL t— 3T+ 26, iT—1\/e<t<iT,
T\") - =
I+ ie—t, T <t<iT+ 1
0, %T+% e<t<T.

For the dynamics, we will first transport a little bit of mass from x° into each node of the cycle D, then
develop a spike at t = T'/2, and then release all mass from the cycle through r°"*,

Jyin () = KL (za jepar2) (1),
I (t) := arLipjo yepm) () + $AT(E) + 0kl 212422 (1),
Jrow () = KL (rjo /24 e/ (£),

where aj, ;= K — kand by, := k — [ + K1,-;;. We set all other fluxes j;, j; in the network to 0. By
. . harrow | . —
construction, j, —— ZéT/g, which is singular as was to be shown.

We now show that the functional je is uniformly bounded. To calculate the densities, note that the
%AGT terms in j, are divergence free. The mild formulation of the continuity equation thus
yieldsforallk =1,..., K andt € [0,T],

0, 0<t<T/2— /€2,
Toolgo(t) =1 = —K(t — 3T + 1\/e), T/2—\/e/2<t<T)2,
—5 KV, t=1T)2,
Tortign (1) = Lgpm1yjrn[0, €] + Jea [0, 8] = 550 [0, 8] = Lppmppfyon [0, 1] = AZ(2),
0, 0<t<T/2— /2,
W;K+1U;K+1(t) = K(t—%T-ﬁ-%\ﬁ), T/2—ﬁ/2<t<T/2,
TK e, t=T/2.
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The dynamic part of the rate functional is:

T (w1, i s TRyt IReeye) = f[ . $(Jn(t) | Kpmmiousol(t)) dt
Oa

v~

k=1 .
(1)
- J (Joue (£) | Liyomemsius, (2)) dt
[0,1]
(11)

+ Z J O ‘ Ryp_ a:()u;:o (t)) dt

i £reRgowr— =20 T p

(Iv)

+ Z J S(O | Kjr_ﬂ';KH’u;KH(t)) dt .

rOUt £reRglow i r— =z K +1 \[O’T] ,

V)
By a long but simple calculation, these integrals can be calculated explicitly:

(I) = ki (T —Ve(3 + 1KT)) + 31/e(K lo

N N
(1) = f s(ap + 1t | Leamtit) dt + f s(be + 1t | Lramsit) dt

0 0

)+ s(1—5KVe| 1) + gr,mKe,
1 ear + 34/€ 2 feay, + 1
= §eai log (T;\[> + (31/ear + 3) log (%) Vear + sk — &

b + 5
+%ebilog (%) + (31/€bi + 3) log (Zwblﬁ—l) — 1eb + shx — 3,
k T‘

Ve/2 Ve/2 2K
(III) = f 5(0 ’ %K,Toutt) dt +J S(K ‘ %/‘iroutt) dt = %K\/Elog < \/7> + Klrout

0 0 Rpout
(IV) = k. J oo (£) dt and (V) = k. J T et (£) dt.
pr S R
< <

It thus follows that ig + J*¢ is uniformly bounded as claimed.

Recall the three assumptions we made in the beginning of the proof. The second assumption is just
notational. The first assumption, that all edges in 0 are chained in a cycle, can easily be relaxed by
fixing additional concentrations and damped fluxes to 0, which keeps the rate functional finite. The
third assumption would be violated if there were a chain of damped fluxes between a V;-node z° and
z! or between a V,-node x! and 2 *1; in that case we can again set these fluxes equal to j iy Jyout
respectively, without having the rate functional blowing up, which relaxes the last assumption. O
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6 Implications for large deviations and the effective dynamics

We now prove two consequences: the I'-convergence of the density large deviations, and the conver-
gence of e-level solutions to the solution of the effective dynamics.

6.1 I'-convergence of the density large deviatons

As a consequence of our main F-cgnvergence result, we obtain the I'-convergence for the density
large-deviation rate functional Z§ + Z¢ given by

Te -
T (Uypstow UVggeye» Ues Uy, ) =

' ‘ ) - ~
“ f J <uv0810w’ Uteye s Y&y UV1 5 JRy1ow 1 JTRdamp s ijcyc)'
‘szlow el,€ ([O,T] ;RRSIOW )’

j R

IR gamp EM ([0, TR damp),
J R
JRnyceL%([O,T];R feye)

Corollary 6.1. InC ([0, T']; RYosiow ) x L*([0, T']; RYteve ) x C([0, T]; R®) x M([0, T]; RM) (equipped
with the uniform, uniform, uniform, and narrow topologies),

e+ 1 L 10 + 10,

where

~0 L . 0 . . ~
:Z: (uVO ? uvl ) T lnf j (uVO ’ uvl ’ szlow ? deamp ? ijcyc ) :
TR g1ow €L ([0, TR Rslow),

. Ry:
TR gamp EM([O, TR damp ),
~ < R

TR geye €L ([0,T);R ™ feve)

slow

Proof. The proof is more-or-less classic but we include it here for completeness. For brevity we write
U = (UV0510W7 uVOfcyc’ u€7 uvl) and j = (szlow Y deamp Y ijcyc)'

. narrow
To prove the I'-lower bound, take an arbitrary convergent sequence u@o — Uy, Uy, — Uy, and

choose a corresponding sequence ;¢ that satisfies for each ¢ > 0 the inequality
Te(us, 56) < inf T(us, j) + €.
J
Without loss of generality we assume that sup,., Z (u<(0)) + J¢(u¢, j¢) < oo. Hence by Corol-

Iarythere exists a subsequence (u¢, j) (without changing notation) that converges in the sense
of (3-9) to a limit (w, j). From the I'-lower bound Lemmas 4.2} [4.3and [4.4] we find that:

lim iglfjg(ue(())) > 70 (u(0)),  and
limiglfinf T, j) = limionf Tws, ) —e= Tu, j) = inf T°(u, §).
€— J e— J
This proves the lower bound

lim inf Z§(u(0)) 4+ Z¢(u) = Z2(u(0)) + Z°(u).

e—0

For the recovery property, take an arbitrary u with fg(u(O)) +fo(u) < o0, and for an arbitrary 0 > 0,
a flux j° such that

T (u, %) < inf T(u, ) + 6 = I°(u) + 0.
J
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Propositionprovides a recovery sequence (u, j) for (u, j°) and the sequences (Z5). and (J¢).,
hence:

lim sup Z5(u(0)) < Z9(u(0)),  and

e—0

lim sup Z¢(u€) < limsup J<(uf, 5¢) < J°(u, j°) < I°(u) + 6.

e—0 e—0

Since 6 > 0 is arbitrary, the recovery property follows. O

Remark 6.2. By the same argument one may also contract further to obtain I'-convergence of the
functional

uy, = inf I (Uyystow(0), tyyg, (0), ue(0), uy, (0))
Uyy 7‘77aslow ’JRdamp 7‘]7?‘fcyc

. . . ~
+ \.7 (uVQSIOW7 Uvofcyw Ug, Uy, ]'Rslow7 deamp ) ijcyC ) . (61 )

O

6.2 Convergence to the effective equations

For any pair (u, j) at which the limiting functional [7° vanishes, the densities satisfy the following set
of equations in the weak sense of (3.1):

Typlly = Z Ky Ty Uy + Z Ky Ty Wy — Z Ky T Uy for x € Vosiow, (6.2a)
T€Rslow: T€Rdamp: T€Rslow:
T+=T ri=x r_=x
Tl = Z Ky T Uy + Z Kp Ty Uy — Z Koy Ty Uy (6.2b)
TGRSIOW: T‘ERdampZ TERSIOW:
r4EC T4 EC r_€c
Uy = U foranyxr ece €, (6.2¢c)
0= Z KT Uy + Z KpTp Uy — Z Kp Ty Uy forx e V. (6.2d)
T€Rslow: T€Rdamp: 7€Rdamp:
T+=T ri=x r_=x

We first prove existence and uniqueness for these equations.

Lemma 6.3. Fix an initial condition u(0) € RY that is well-prepared, which means that

1 Whenever x,y are in the same connected component ¢ € &, we have u, = u,; we denote the
common value by u,;

2 u(0) satisfies the condition (6.2d).

Then the system of equations (6.2) has a unique solutionu € C™ ([0, o0); RY) with initial value u(0).

Proof. Since t,, = 1. whenever z € ¢ € €, equation can be rewritten as

Ty = Z Ky Tp Uy + Z KpTp Uy — Z KTy U foralzece €, (6.3)
TERSIOW: TERdamp: TERSIOW:
riec r4EC T_€C
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The right-hand side does not depend on the choice of = within the same ¢ € €; therefore, under
the assumption that u,(0) = u.(0) for all z € ¢ € €, the system (6.2) is equivalent to the set of

equations (6.2a)—(6.2d)—(6.3).
This implies that the system (6.2) can be written as a differential-algebraic equation:

Uy, = Ayyveliy, + Ay Sy uy, (6.4a)
0 = AVO—>V1UV0 + AV1—>V1UV17 (64b)

where for z € V),

Tp_
(Ap, oy uy, )z 1= Z Fop = Uy_ — Uy Z K.

T
TERdamp TERdamp
ri=I r_=zx

By the next lemma the matrix Ay, _,y, is invertible, and therefore (6.4) can be cast in the form of a
linear ordinary differential equation for uy,,. This equation has unique solutions with C' regularity, and
by transforming back we find that u,,, has the same regularity as u,, . O

Lemma 6.4. Under the conditions of the previous lemma, the matrix Ay, _,y, is invertible.

Proof. We first note that the matrix Ay, .y, can be written as
Ay, Ly, = diag(7) ! (A™ — diag(E)) diag(7),
with for z, y € Vy,
A;n; = Kyog — Oy Z Ky E, = Z Ky -

y'eVy y'€Vo

Since diag(7) is invertible, it is sufficient to show that A™ — diag(E) is invertible.

To do this we construct a new graph G := (V; U {0}, Rins U R.), consisting of the nodes of V; and
a single ‘graveyard’ node o; the graveyard collects all elements of V), into one new node. The graph G
has edges

Rint 1= {(ac —y)e Vi x VI\{z — z} : Ir € Rqamp suchthatr_ = zandr, = y}
Ro := {(x — 0):x €V, 3r € Ryamp suchthatr_ = zandr, € VO}.

Note that there are no fluxes out of o.

We define a new Markov jump process Z (t) on this graph Q~ by specifying jump rates &, for each
edge (z — y)inG:

A . ZreRdampn;:x,mr:y Kr, for (13 - y) € Rintv
Ry 1=

Zr’eRdamp:r’_:m,r;evo K, for (QJ - y) € RO-

The generator for this jump process is the matrix L given by

Ry if (z — y) € Rint U Ro (which implies z # y)
Ly =< — Zy’evlu{o} Rymy iz =ye))
0 otherwise.
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By construction the transpose L7 of this generator has the following structure in terms of the splitting

V; U {o}:
e A — diag(E) | 0
B ET o)

Since the original graph G is diconnected, there exists foreach z € V, apathx = 29 —> 21 — -+ —
2 in G leading to some x, € V,; without loss of generality we assume that xg, z1, ..., 251 € V1.
Since fluxes out of nodes in V; are damped, the fluxes (29 — z1),...,(zx—1 — x}) are all in
Rdamp- Since these fluxes also exist as fluxes Ry in the graph Q thepathxg »> 21 — -+ — 211
also is a path in (j By construction, R, contains a reaction = (z,_; — 0) with positive rate &,..

It follows that if the process Z(t) starts at any = € V), then at each positive time ¢ > 0 there is a
positive probability that Z(¢) = o. Since the graveyard o has no outgoing fluxes, the only invariant

measure for the process Z(t) is 1, := (0,0,...,0,1), and so the kernel of L coincides with the
span of 1,. Consequently the matrix A™ — diag(E) is invertible because the row E” is a linear
combination of the other rows of L7 O

We finally derive convergence to the full effective equations.

Corollary 6.5. For each e > 0 let (us,, us,, j%__ j%damp,j%fcyc) in © solve the system of equa-
tions:

w(t) = ke up (E), 7 € Retow,
Je(t) = —ﬁm us (1), 7€ Raamps
LIEt) = 7 € Ricye,
Teu(t ) = —div j°(t), inthe weak sense of (3.3),
ut(0) = u?,

\

o 0 0,0 0,0 ;
where u“’ s given. Assume that Uy, o u€ converge to some uy; . ug > 0, that u™ is well-

prepared in the sense of Lemma|6.3. In addition, assume that for each x € Vi, logu®® remains
bounded Then (U’%}O ) uﬁ/l ) j%slow J j%damp Y j%fcyc) Converges In @ to (uVO Y uvl Y szlow ? deamp ? ijCyc ) ’
which is the unique solution to

t
A ~7’ t) = ) e 7?’nyC7 (65)
mu(t) = —divj(t), inthe weak sense of (3.17),
L u(0) = u”?
Proof. Set:
fg (u(0)) := 2 s(meus (0) | wius”) and  F<(u(0)) := Z (i (—ux(O) loguS® — 1+ u;’()).
eV eV

Then for each € > 0, the solution (u@o, uﬁ,l,j%slow,j%damp,j%fcyc) minimises the modified functional
I6+ J =15+ F°+ J°: © — [0, 0] at value zero. In particular this means that:

sup Zg(u(0)) + J(us, j) = sup —F(u(0)) = sup Z ug®logu® + 1 —ug’) < oo

e>0 e>0 e>0 zeV
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By Corollary the sequence (u¢, j¢) has a subsequence that converges in the sense of (3.9) to a
limit (u, j). By the assumptions on u“°, the functional £ converges along the sequence (u¢, j¢) to
the limit £°, where

FO(v(0)) := Z Ty <—vx(0) logu2® — 1 + u2’0)> + Zﬂ'c(—’UC(O) logul® — 1 + u?’0>.

2E€V0slow ce€
With the I'-lower bound of Proposition [4.1]it follows that
0 = lim inf Z5 (u(0)) + F*(u(0)) + J“(u", j)
> 19 (u(0) + F°(u(0)) + T°(u, ) = T (w(0)) + T°(u, 5).

Here

i’g (v(0)) := Z s(mpus (0) | mpud®) + ES(WCUC(O) | Teul?).

€Voslow ceC

It follows that the limit (u, §) is a solution of the problem Z¢ + 79 = 0, which coincides with (§5). O

A The Arzela-Ascoli theorem for asymptotic uniformly equicon-
tinuous sequences

The classical Arzela-Ascoli theorem asserts that a set of continuous functions on a compact set is

precompact in the supremum norm if and only if it is uniformly bounded and uniformly equicontinuous.

For countable sets such as sequences the uniform equicontinuity is equivalent to asymptotic uniform

equicontinuity, and this observation leads to the alternative version below. This is mentioned in various

places in the literature (e.g. [PP94, Rem. 2.3 (ii)] or [Dav94, Ex. 5.27]) but since we could not find a
clear statement we state and prove it here.

Theorem A.1. Let (f,,)n>1 be a sequence of continuous real-valued functions on [0, T'| that satisfies

1 sup,,>; | frlloo < 05

2 There exists w : [0,0) — [0, c0), non-decreasing, with lim, o w(c) = 0, such that,

limsup sup [fu(t) = fuls)] < w(o).

n—w  |t—s|<o
Then there exists a subsequence f,,, that converges uniformly on [0, T].

Proof. We prove the result by showing that the sequence ( f,),, also is uniformly equicontinuous in
the usual sense. Fix € > (0. Choose N > 1 and g > 0 such that

Vn=N V|t—s|<op: |fu(t) — fu(s)]| <e.
Next, choose o1 > 0 such that
Vi<n<N V|t—s|<op: |fn(t) — fu(s)] <e.

Thenforalln > 1and |t — s| < g A 01 we have | f,,(t) — fu(s)| < €. This proves that ( f,,), is
uniformly equicontinuous, and therefore the result follows from the classical Arzela-Ascoli theorem. O
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B Definiteness of Markov generators

For completeness we include the following basic result.

Lemma B.1. Let0 # A € R be a Markov generator matrix. Then

v Av <0 for allv € RY,
and there exists a A < (0 such that

v Av < \|vl3 for allv € Col(A).

Proof. Since vT Av = 1vT(A+ AT)v we may assume without loss of generality that A is symmetric,
and hence diagonalisable by orthogonal matrices. If the Markov chain is irreducible, then by the Perron-
Frobenius theorem the largest eigenvalue is 0, with multiplicity m = 1. If the chain is reducible, then by
symmetry the Markov chain consists of m > 1 disconnected irreducible components, each of which
has largest eigenvalue 0, so A has largest eigenvalue 0 with multiplicity 2. This proves the first claim.

We order the eigenvalues in a descending fashion, and write A = PAPT where

) 0 0
A= 0 Am+1 = lo Aneg:| and P = [U1 o U Ut 1 - q)d] _ [POPneg] :

.)\d

and P is orthonormal, and A"®® has only negative diagonal entries. Since P contains only eigenvec-
tors with zero eigenvalues, Col(A) = Col(P"¢) and one can parametrise Col(A) 3 v = P"8w
for any w € R?~™. By orthonormality, we can write

PnegTAPneg = Abeg

Choosing A = A, 1, the largest non-zero eigenvalue, yields the second claim. O
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