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State-constrained control-affine parabolic problems I: First and
second order necessary optimality conditions

M. Soledad Aronna, J. Frédéric Bonnans, Axel Kröner,

Abstract

In this paper we consider an optimal control problem governed by a semilinear heat equation
with bilinear control-state terms and subject to control and state constraints. The state constraints
are of integral type, the integral being with respect to the space variable. The control is multidimen-
sional. The cost functional is of a tracking type and contains a linear term in the control variables.
We derive second order necessary conditions relying on the concept of alternative costates and
quasi-radial critical directions.

1 Introduction

This is the first part of two papers on necessary and sufficient optimality conditions for an optimal
control problem governed by a semilinear heat equation containing bilinear terms coupling the con-
trol and the state, and subject to constraints on the control and state. The control may have several
components and enters in an affine way in the cost. In this first part we derive necessary optimality
conditions of first and second order, in the second part [2] sufficient optimality conditions are shown.

In the context of second order conditions for problems governed by control-affine ordinary differen-
tial equations we can mention several works, starting with the early papers [18] by Goh and [19] by
Kelley, later [15] by Dmitruk, and recently [1]. In this context, the case dealing with both control and
state constraints was treated in e.g. Maurer [25], McDanell and Powers [28], Maurer, Kim and Vossen
[27], Schättler [30], and Aronna et al. [3]. Fore a more detailed description of the contributions in this
framework, we refer to [3].

In the infinite dimensional case, the issue of second order conditions for problems governed by elliptic
equations and assuming state constraints was treated by several authors, see e.g. Casas, Tröltzsch
and Unger [12], Bonnans [6], Casas, Mateos and Tröltzsch [11] and Casas and Tröltzsch [13].

Parabolic optimal control problems with state constraints were discussed in several articles. For a
semilinear equation in the presence of pure-state constraints, Raymond and Tröltzsch [29], and Krumbiegel
and Rehberg [20] obtained second order sufficient conditions. Casas, de Los Reyes, and Tröltzsch [10]
and de Los Reyes, Merino, Rehberg and Tröltzsch [14] proved sufficient second order conditions for
semilinear equations, both in the elliptic and parabolic cases. The articles mentioned in this paragraph
did not consider bilinear terms as we do in the current work.

Further details regarding the existing results on second order analysis of control-affine state-constrained
problems are given in the second part [2] of this research.

The contribution of this paper are first and second order necessary optimality conditions for an optimal
control problem for a semilinear parabolic equation with cubic nonlinearity, several controls coupled
with the state variable through bilinear terms, pointwise control constraints and state constraints that
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M.S. Aronna, J.F. Bonnans, A. Kröner 2

are integral in space. To incorporate the state constraints we use the concept of alternative costates
(see Bonnans and Jaisson [8]) and the concept of quasi-radial directions (see Bonnans and Shapiro
[9] and Aronna, Bonnans and Goh [3]).

The paper is organized as follows. In Section 2 the problem is stated and main assumptions are
formulated. In Section 3 first order analysis is done. Section 4 is devoted to second order necessary
conditions. Finally, in the appendix, we give an example satisfying the hypotheses of our main results.

Notation

Let Ω be an open and bounded subset of Rn, n ≤ 3, with C∞ boundary ∂Ω. Given p ∈ [1,∞]
and k ∈ N, let W k,p(Ω) be the Sobolev space of functions in Lp(Ω) with derivatives (here and after,
derivatives w.r.t. x ∈ Ω or w.r.t. time are taken in the sense of distributions) in Lp(Ω) up to order k.
Let D(Ω) be the set of C∞ functions with compact support in Ω. By W k,p

0 (Ω) we denote the closure
of D(Ω) with respect to the W k,p-topology. Given a horizon T > 0, we write Q := Ω× (0, T ). ‖·‖p
denotes the norm in Lp(0, T ), Lp(Ω) and Lp(Q), indistinctively. When a function depends on both
space and time, but the norm is computed only with respect to one of these variables, we specify both
the space and domain. For example, if y ∈ Lp(Q) and we fix t ∈ (0, T ), we write ‖y(·, t)‖Lp(Ω).
For the p-norm in Rm, for m ∈ N, we use | · |p, for the Euclidean norm we omit the index. We set
Hk(Ω) := W k,2(Ω) and Hk

0 (Ω) := W k,2
0 (Ω), with dual denoted by H−k(Ω). By W 2,1,p(Q) we

mean the Sobolev space of Lp(Q)-functions whose second derivative in space and first derivative
in time belong to Lp(Q). For p > n + 1, we denote by Yp the set of elements of W 2,1,p(Q) with
zero trace on Σ, and by Y 0

p its trace at time zero. We write H2,1(Q) for W 2,1,2(Q) and, setting
Σ := ∂Ω× (0, T ), we define the state space as

Y := {y ∈ H2,1(Q); y = 0 a.e. on Σ}. (1.1)

The latter is continuously embedded in

W (0, T ) := {y ∈ L2(0, T ;H1
0 (Ω)); ẏ ∈ L2(0, T ;H−1(Ω))}. (1.2)

Note that if y is a function over Q, we use ẏ to denote its time derivative in the sense of distribu-
tions. As usual we denote the spatial gradient and the Laplacian by ∇ and ∆. By dist(t, I) :=
inf{‖t− t̄‖ ; t̄ ∈ I} for I ⊂ R, we denote the distance of t to the set I .

2 Statement of the problem and main assumptions

In this section we introduce the optimal control problem we deal with and we show well-posedness of
the state equation and existence of solutions of the optimal control problem.

2.1 Setting

Consider the state equation ẏ(x, t)−∆y(x, t) + γy3(x, t) = f(x, t) + y(x, t)
m∑
i=0

ui(t)bi(x) in Q,

y = 0 on Σ, y(·, 0) = y0 in Ω,

(2.1)
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Optimal control of a semilinear heat equation 3

and
y0 ∈ H1

0 (Ω), f ∈ L2(Q), b ∈ L∞(Ω)m+1, (2.2)

γ ≥ 0, u0 ≡ 1 is a constant, and u := (u1, . . . , um) ∈ L2(0, T )m. Lemma 2.3 below shows that
for each control u ∈ L2(0, T )

m
, there is a unique associated solution y ∈ Y of (2.1), called the

associated state. Let y[u] denote this solution. We consider control constraints of the form u ∈ Uad,
where

Uad is a nonempty, closed convex subset of L2(0, T )m. (2.3)

In some statements, we will consider a specific form of Uad (see (3.26) below). In addition, we have
finitely many linear running state constraints of the form

gj(y(·, t)) :=

∫
Ω

cj(x)y(x, t)dx+ dj ≤ 0, for t ∈ [0, T ], j = 1, . . . , q, (2.4)

where cj ∈ H2(Ω) ∩ H1
0 (Ω) for j = 1, . . . , q, and d ∈ Rq. The H1

0 (Ω) regularity of c is used in
Lemma 3.2 to derive regularity results for the adjoint state and the H2(Ω) regularity in Proposition
3.11 for results on the Lagrange multiplier associated with the state constraint.

We call any (u, y[u]) ∈ L2(0, T )m × Y a trajectory, and if it additionally satisfies the control and
state constraints, we say it is an admissible trajectory. The cost function is

J(u, y) :=1
2

∫
Q

(y(x, t)− yd(x))2dxdt

+ 1
2

∫
Ω

(y(x, T )− ydT (x))2dx+
m∑
i=1

αi

∫ T

0

ui(t)dt,

(2.5)

where
yd ∈ L2(Q), ydT ∈ H1

0 (Ω), (2.6)

and α ∈ Rm. We consider the optimal control problem

Min
u∈Uad

J(u, y[u]); subject to (2.4). (P)

For problem (P) we consider the two types of solution given next.

Definition 2.1. Let ū ∈ Uad. We say that (ū, y[ū]) is an L2-local solution (resp., L∞-local solution)
if there exists ε > 0 such that (ū, y[ū]) is a minimum among the admissible trajectories (u, y) that
satisfy ‖u− ū‖2 < ε (resp., ‖u− ū‖∞ < ε).

2.2 Well-posedness of the state equation

Here we study the state equation and analyze, by means of the Implicit Function Theorem, the control-
to-state mapping, i.e. the mapping that associates to each control, the corresponding solution of the
state equation. We start by the following easily checked technical result.

Lemma 2.2. For i = 0, . . . ,m, the mapping defined on L2(0, T ) × L∞(Ω) × L∞(0, T ;L2(Ω)),
given by (ui, bi, y) 7→ uibiy, has image in L2(Q), is of class C∞, and satisfies

‖uibiy‖2 ≤ ‖ui‖2‖bi‖∞‖y‖L∞(0,T ;L2(Ω)). (2.7)
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M.S. Aronna, J.F. Bonnans, A. Kröner 4

A uniqueness and existence result, and a priori estimates for the state follows.

Lemma 2.3. The state equation (2.1) has a unique solution y = y[u, y0, f ] in Y . The mapping
(u, y0, f) 7→ y[u, y0, f ] is C∞ from L2(0, T )m ×H1

0 (Ω) × L2(Q) to Y , and nondecreasing w.r.t.
y0 and f . In addition, there exist functions Ci, i = 1 to 2, not decreasing w.r.t. each component, such
that

‖y‖L∞(0,T ;L2(Ω)) + ‖∇y‖2 ≤ C1(‖y0‖2, ‖f‖2, ‖u‖2‖b‖∞), (2.8)

‖y‖Y ≤ C2(‖y0‖H1
0 (Ω), ‖f‖2, ‖u‖2‖b‖∞). (2.9)

Moreover, the state y also belongs to C([0, T ];H1
0 (Ω)), since Y is continuously embedded in that

space [24, Theorem 3.1, p.23].

In the proof that follows, we use several times the (continuous) Sobolev inclusion

H1
0 (Ω) ⊂ L6(Ω), when n ≤ 3. (2.10)

Proof. (i) Observe first that by the standard Sobolev inclusions and Lemma 2.2, any y ∈ Y is such
that y3 and y

∑m
i=0 uibi belong to L2(Q). So, ẏ−∆y ∈ L2(Q) and, therefore, the notion of solution

of the state equation in Y is clear. We could as well define a solution in W (0, T ) but since by (2.10),
for n ≤ 3, W (0, T ) ⊂ L2(0, T ;L6(Ω)), and the compatibility condition (equality between the trace
of the initial condition on ∂Ω and the Dirichlet condition on Σ) holds, it follows then that any solution
in W (0, T ) is a solution in Y .
(ii) We establish the a priori estimates (2.8)-(2.9). Multiplying the state equation by y and integrating
over Ω, we get

1
2

d

dt

∫
Ω

y(x, t)2dx+

∫
Ω

|∇y(x, t)|2dx+ γ

∫
Ω

y(x, t)4dx

≤ 1
2

∫
Ω

f(x, t)2dx+ (1
2

+ |u(t)|1‖b‖∞)

∫
Ω

y(x, t)2dx.
(2.11)

In particular, η(t) :=
∫

Ω
y(x, t)2dx satisfies

η̇(t) ≤
∫

Ω

f(x, t)2dx+ (1 + 2|u(t)|1‖b‖∞)η(t). (2.12)

By Gronwall’s Lemma:
‖η‖∞ ≤

(
‖y0‖2

2 + ‖f‖2
2

)
eT+2‖u‖1‖b‖∞ (2.13)

and then (2.8) easily follows.

Now multiplying the state equation by ẏ we get, for all ε > 0,∫
Ω

ẏ(x, t)2dx+ 1
2

d

dt

∫
Ω

|∇y(x, t)|2dx+
γ

4

d

dt

∫
Ω

y(x, t)4dx

≤ 1

ε

∫
Ω

f(x, t)2dx+
1

ε
|u(t)|2‖b‖2

∞

∫
Ω

y(x, t)2dx+
ε

2

∫
Ω

ẏ(x, t)2dx.
(2.14)

Choosing ε = 1 we get, after cancellation,∫
Ω

ẏ(x, t)2dx+
d

dt

∫
Ω

|∇y(x, t)|2dx+
γ

2

d

dt

∫
Ω

y(x, t)4dx

≤ 2

∫
Ω

f(x, t)2dx+ 2|u(t)|2‖b‖2
∞

∫
Ω

y(x, t)2dx.
(2.15)
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Optimal control of a semilinear heat equation 5

For τ ∈ [0, T ), integrating from 0 to τ , and using (2.10), we obtain that

‖y‖H1(0,T ;L2(Ω)) + ‖∇y‖L∞(0,T ;L2(Ω)) ≤ C2(‖y0‖H1
0 (Ω), ‖f‖2, ‖u‖2‖b‖∞). (2.16)

We easily deduce (2.9) since we can estimate ‖∆y‖L2(Q) and, therefore, also ‖y‖L2(0,T ;H2(Ω)) with
the previous relations.
(iii) We construct a sequence yk of Galerkin approximations for which estimates analogous to (2.8)
hold. Some subsequence weakly converges in W (0, T ) to some y and is such that the sequence
y3
k, bounded in L2(Q), weakly converges in this space. By the Aubin-Lions lemma [4], the injection

of W (0, T ) into L2(Q) is compact. So (extracting again a subsequence if necessary), y3
k converges

a.e. to y3. By Lions [22, Lem. 1.3, p. 12], the weak limit of y3
k is y3, and y is therefore solution of the

state equation.
(iv) The C∞ regularity of y[u, y0, f ] is a consequence of the Implicit Function Theorem. In fact, let Y 0

denote the trace at time 0 of elements of Y , which with the trace norm is a Banach space containing
H1

0 (Ω). Then the mapping F : L2(0, T )× Y × Y 0 × L2(Q)→ L2(Q)× Y 0 defined by

F (u, y, y0, f) :=
(
ẏ −∆y + γy3 − y

m∑
i=1

uibi, y(0)− y0

)
, (2.17)

is of class C∞. That the linearized mapping DyF is bijective follows from results already shown in
this proof.
(v) Uniqueness follows from the monotonicity w.r.t. (y0, f), that we prove as follows. Consider the
difference z := y2 − y1 of two solutions y1 and y2 of (2.1), with data (y01, f1) ≤ (y02, f2), resp. By
the Mean Value Theorem, z is solution of

ż −∆z + z
m∑
i=1

uibi + 3γŷ2z = f̃ ; z(0) = ỹ0 (2.18)

where ŷ ∈ [y1, y2] a.e., ỹ0 := y02 − y01 ≤ 0 and f̃ := f2 − f1 ≤ 0. Testing the equation with
z+ := max(z, 0) we get that ν(t) :=

∫
Ω
z2

+ satisfies

1
2
ν̇ − |u(t)|‖b‖∞ν(t) ≤ 1

2
ν̇ +

∫
Ω

z2
+

m∑
i=1

uibi ≤
∫

Ω

f̃ z+ ≤ 0 (2.19)

and applying Gronwall’s inequality we obtain that z+ = 0.

In the analysis that follows, we fix a trajectory (ū, ȳ = y[ū]).

For this trajectory (ū, ȳ), let us consider the linear continuous operator A from L2(0, T ;H2(Ω)) to
L2(Q) such that, for each z ∈ Y and (x, t) ∈ Q,

(Az)(x, t) := −∆z(x, t) + 3γȳ(x, t)2z(x, t)−
m∑
i=0

ūi(t)bi(x)z(x, t). (2.20)

Lemma 2.4. For any f̄ ∈ L2(Q), the equation{
ż + Az = f̄ , in Q,

z = 0 on Σ, z(x, 0) = 0 in Ω,
(2.21)

has a unique solution z ∈ Y that verifies

‖z‖L∞(0,T ;L2(Ω)) ≤ e
1
2
T+

∑m
i=0 ‖ūi‖1‖bi‖∞‖f̄‖L2(0,T ;L2(Ω)). (2.22)
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Proof. We follow the same method used in Lemma 2.3. Multiplying (2.21) by z(x, t) and integrating
over space we obtain that for a.a. t ∈ (0, T )

1
2

d

dt
‖z(·, t)‖2

L2(Ω) + ‖∇z(·, t)‖2
L2(Ω) + 3γ‖ȳ(·, t)z(·, t)‖2

L2(Ω)

=

∫
Ω

z(x, t)

(
f̄(x, t) +

m∑
i=0

ūi(t) · bi(x)z(x, t)

)
dx.

(2.23)

The r.h.s. of (2.23) can be bounded above by

‖f̄(·, t)‖2
L2(Ω) +

(
1
2

+
m∑
i=0

|ūi|‖bi‖∞

)
‖z(·, t)‖2

L2(Ω). (2.24)

Then we deduce the estimate (2.22) with Gronwall’s Lemma.

2.3 Existence of solution of the optimal control problem

In order to study the existence of local solutions, we need to establish the sequential weak continuity of
the control-to-state mapping. We use ’⇀’ to denote the weak convergence of a sequence, the space
being indicated in each case. We need the following result (see [23, p. 14]):{

For any p ∈ [1, 10), the following injection is compact:
Y ↪→ Lp(0, T ;L10(Ω)), when n ≤ 3.

(2.25)

Lemma 2.5. The mapping u 7→ y[u] is sequentially weakly continuous from L2(0, T )
m

into Y .

Proof. Taking u` ⇀ ū in L2(0, T )
m

, we shall prove that y` ⇀ ȳ in Y , where y` := y[u`], ȳ := y[ū].
We know that it is enough to check that any subsequence of y` weakly converges to ȳ in Y . To do
this, we prove that we can pass to the limit in each term of the state equation.

(a) We know by Lemma 2.3 that y` is bounded in Y , so extracting a subsequence if necessary, we
may assume that it weakly converges in Y to some ŷ. By (2.25), y` → ŷ in L6(Q) and, therefore,
maybe for a subsequence, it converges almost everywhere in Q.

Let ν ∈ [2, 5] be integer. Set σ := 6/ν. By the mean value theorem, yν` − ŷν = νỹν−1
` (y` − ŷ),

with ỹ`(x, t) ∈ [y`(x, t), ŷ(x, t)] a.e. Obviously ỹ` is measurable and bounded in L6(Q). By Hölder’s
inequality, with p = ν/(ν − 1) and q = 6/σ = ν (note that 1/p+ 1/q = 1), we get

1
νσ
‖yν` − ŷν‖σσ =

∫
Q
ỹ
σ(ν−1)
` (y` − ŷ)σdxdt ≤ ‖ỹσ(ν−1)

` ‖p‖(y` − ŷ)σ‖q
= ‖ỹ`‖σ(ν−1)

6 ‖y` − ŷ‖σ6 .
(2.26)

Therefore, yν` → ŷν in Lσ(Q). Taking ν = 3 we get the desired result.

(b) We claim that u`y`b weakly converges in L2(Q) to ūŷb. It is enough to get the result whenm = 1.
Fix ϕ in L∞(Q). By Lemma 2.2, u`y` is bounded in L2(Q) and has therefore (up to a subsequence)
a weak limit w in that space. Since y` → ŷ in L6(Q),

∫
Q
u`(y` − ŷ)bϕ → 0. On the other hand∫

Q
u`ŷbϕ →

∫
Q
ūŷbϕ since ŷbϕ ∈ L2(Q). Therefore

∫
Q
u`y`bϕ →

∫
Q
ūŷbϕ. Since L∞(Q) is a

dense subset of L2(Q). The claim follows.

By steps (a)-(b), we can pass to the limit in the weak formulation, and obtain (due to the uniqueness
of solution) that ŷ = ȳ. The conclusion follows.
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Optimal control of a semilinear heat equation 7

Theorem 2.6. (i) The function u 7→ J(u, y[u]), from L2(0, T )m to R, is weakly sequentially l.s.c.
(ii) The set of solutions of the optimal control problem (P) is weakly sequentially closed in L2(0, T )m.
(iii) If (P) has a bounded minimizing sequence, the set of solutions of (P) is non empty. This is the
case in particular if (P) is admissible and Uad is a nonempty, bounded subset of L2(0, T )m.

Proof. (i) Combine Lemma 2.5 and the fact that the cost function J is continuous and convex on
L2(0, T )

m × Y , hence it is also weakly lower semicontinuous over this product space.
(ii) Let (u`) ⊂ L2(0, T )m be a sequence of solutions weakly converging to ū ∈ L2(0, T )m, with
associated states y`. By Lemma 2.5, (y`) weakly converge in Y to the state ȳ associated with ū and,
by point (i), J(ū, ȳ) ≤ lim inf` J(u`, y`). This lower limit being nothing but the value of problem (P),
the conclusion follows.
(iii) By the previous arguments, a weak limit of a minimizing sequence is a solution of (P). This weak
limit exists iff the sequence is bounded. This concludes the proof.

3 First order analysis

In this section we state first order necessary optimality conditions. More precisely, we introduce the
adjoint equation, and define and prove existence of associated Lagrange multipliers.

Throughout the section, (ū, ȳ) is a trajectory of problem (P). We recall the hypotheses (2.2), (2.6) on
the data, and the definition of the operator A given in (2.20).

3.1 Linearized state equation and costate equation

The linearized state equation at (ū, ȳ) is given by ż + Az =
m∑
i=1

vibiȳ in Q;

z = 0 on Σ, z(·, 0) = 0 on Ω,

(3.1)

For v ∈ L2(0, T )
m

, equation (3.1) above possesses a unique solution z[v] ∈ Y (as follows from
Lemma 2.4), and the mapping v 7→ z[v] is linear and continuous from L2(0, T )

m
to Y. Particularly,

the following estimate holds.

Proposition 3.1. One has

‖z‖L∞(0,T ;L2(Ω)) ≤M1

m∑
i=1

‖bi‖∞‖vi‖1, (3.2)

where M1 := e
T
2

+
∑m
i=0 ‖ūi‖1‖bi‖∞‖ȳ‖L∞(0,T ;L2(Ω)).

Proof. Immediate consequence of Lemma 2.4.

It is well-known that the dual ofC([0, T ]) is the set of (finite) Radon measures, and that the action of a
finite Radon measure coincides with the Stieltjes integral associated with a bounded variation function
µ ∈ BV (0, T ). We may assume w.l.g. that µ(T ) = 0, and we let dµ denote the Radon measure
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associated to µ. Note that if dµ belongs to the setM+(0, T ) of nonnegative finite Radon measures
then we may take µ nondecreasing. Set

BV (0, T )0,+ := {µ ∈ BV (0, T ) nondecreasing, right-continuous; µ(T ) = 0} . (3.3)

The generalized Lagrangian of problem (P ) is, choosing the multiplier of the state equation to be
(p, p0) ∈ L2(Q)×H−1(Ω) and taking β ∈ R+, µ ∈ BV (0, T )q0,+,

L[β, p, p0, µ](u, y) := βJ(u, y)− 〈p0, y(·, 0)− y0〉H1
0 (Ω)

+

∫
Q

p
(

∆y(x, t)− γy3(x, t) + f(x, t) +
m∑
i=0

ui(t)bi(x)y(x, t)− ẏ(x, t)
)

dxdt

+

q∑
j=1

∫ T

0

gj(y(·, t))dµj(t).

(3.4)

The costate equation is the condition of stationarity of the Lagrangian L with respect to the state that
is, for any z ∈ Y :∫

Q

p(ż + Az)dxdt+ 〈p0, z(·, 0)〉H1
0 (Ω) =

q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t)

+ β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx. (3.5)

To each (ϕ, ψ) ∈ L2(Q)×H1
0 (Ω), let us associate z = z[ϕ, ψ] ∈ Y , the unique solution of

ż + Az = ϕ; z(·, 0) = ψ. (3.6)

Since this mapping is onto, the costate equation (3.5) can be rewritten, for z = z[ϕ, ψ] and arbitrary
(ϕ, ψ) ∈ L2(Q)×H1

0 (Ω), as∫
Q

pϕdxdt+ 〈p0, ψ〉H1
0 (Ω) =

q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t),

+ β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx. (3.7)

The r.h.s. of (3.7) can be seen as a linear continuous form on the pairs (ϕ, ψ) of the space L2(Q)×
H1

0 (Ω). By the Riesz Representation Theorem, there exists a unique (p, p0) ∈ L2(Q) × H−1(Ω)
satisfying (3.7), that means, there is a unique solution of the costate equation.

Next consider the alternative costates

p1 := p+

q∑
j=1

cjµj; p1
0 := p0 +

q∑
j=1

cjµj(0). (3.8)

Lemma 3.2. Let (p, p0, µ) ∈ L2(Q) × H−1(Ω) × BV (0, T )q0,+ satisfy (3.7), let (p1, p1
0) be given

by (3.8). Then p1 ∈ Y , it satisfies p1(0) = p1
0, and it is the unique solution of

−ṗ1 + Ap1 = β(ȳ − yd) +

q∑
j=1

µjAcj, p1(·, T ) = β(ȳ(·, T )− ydT ). (3.9)
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Moreover, p(x, 0) and p(x, T ) are well-defined as elements of H1
0 (Ω) in view of (3.8), and we have

p(·, 0) = p0, p(·, T ) = β(ȳ(·, T )− ydT ). (3.10)

Proof. Let z ∈ Y . Note that, for 1 ≤ j ≤ q, the function t 7→
∫

Ω
cj(x)z(x, t)dx, belongs to

W 1,1(0, T ) and is, therefore, of bounded variation. Using the integration by parts formula for the
product of scalar functions with bounded variation, one of them being continuous (see e.g. [8, Lemma
3.6]), and taking into account the fact that µj(T ) = 0, we get that, for ψ = z(·, 0),

q∑
j=1

∫
Q

cjµj żdxdt+

q∑
j=1

µj(0)〈cj, ψ〉L2(Ω) = −
q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t). (3.11)

By the definition (3.8) of the alternative costate, the latter equation can be rewritten as∫
Q

(p1 − p)żdxdt+ 〈p1
0 − p0, ψ〉H1

0 (Ω) = −
q∑
j=1

∫ T

0

∫
Ω

cjzdxdµj(t). (3.12)

Now adding (3.7) and (3.12), as well as the identity∫
Q

(p1 − p)Az =

∫
Q

q∑
j=1

cjµjAz (3.13)

we obtain, since ϕ = ż + Az, that (implicitly identifying, as usual, L2(Ω) with its dual)∫
Q

p1ϕdxdt+ 〈p1
0, ψ〉H1

0 (Ω)

= β

∫
Q

(ȳ − yd)zdxdt+ β

∫
Ω

(ȳ(x, T )− ydT (x))z(x, T )dx+

∫
Q

q∑
j=1

cjµjAz. (3.14)

Since A is symmetric, using (2.6), we see that p1 is solution in Y of (3.9); the solution of the latter
being clearly unique. Multiplying (3.9) by z ∈ Y and integrating over Q, with an integration by parts
of the term with ṗ1z, we recover (using (3.8)) equation (3.14) implying that p1(x, 0) = p1

0(x) for a.a.
x in Ω. Conversely, it is easy to prove that any solution of (3.14) is solution of (3.9).

Since p1 and cjµj belong to L∞(0, T ;H1
0 (Ω)), by (3.8) also p has this regularity. Use (3.8) again,

the final condition on p1 and the fact that µ(T ) = 0 to get the second relation of (3.10). Furthermore,
we have

p0 = p1(·, 0)−
q∑
j=1

cjµj(0) = p(·, 0). (3.15)

Corollary 3.3. If µ ∈ H1(0, T )q, then p ∈ Y and

−ṗ+ Ap = β(ȳ − yd) +

q∑
j=1

cjµ̇j. (3.16)

Proof. This follows immediately from (3.8) and (3.9).
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3.2 First order optimality conditions

Let (ū, ȳ) be an admissible trajectory of problem (P ). We say that µ ∈ BV (0, T )q0,+ is complemen-
tary to the state constraint for ȳ if∫ T

0

gj(ȳ(·, t))dµj(t)=
∫ T

0

(∫
Ω

cj(x)ȳ(x, t)dx+ dj

)
dµj(t) = 0, j = 1, . . . , q. (3.17)

Let (β, µ) ∈ R+ × BV (0, T )q0,+. We say that p ∈ L∞(0, T ;H1
0 (Ω)) is the costate associated with

(ū, ȳ, β, µ), or shortly to (β, µ), if it is the unique solution of (3.5) with p0 = p(·, 0).

Definition 3.4. We say that the triple (β, p, µ) ∈ R+ × L∞(0, T ;H1
0 (Ω)) × BV (0, T )q0,+ is a

generalized Lagrange multiplier if it satisfies the following first-order optimality conditions: µ is com-
plementary to the state constraint, p is the costate associated with (β, µ), the non-triviality condition

(β, dµ) 6= 0, (3.18)

holds and, for i = 1 to m, defining the switching function by

Ψp
i (t) := βαi +

∫
Ω

bi(x)ȳ(x, t)p(x, t)dx, for i = 1, . . . ,m, (3.19)

one has Ψp ∈ L∞(0, T )m and

m∑
i=1

∫ T

0

Ψp
i (t)(ui(t)− ūi(t))dt ≥ 0, for every u ∈ Uad. (3.20)

We let Λ(ū, ȳ) denote the set of generalized Lagrange multipliers (β, p, µ) associated with (ū, ȳ). If
β = 0 we say that the corresponding multiplier is singular. Finally, we write Λ1(ū, ȳ) for the set of
pairs (p, µ) with (1, p, µ) ∈ Λ(ū, ȳ). When the nominal solution is fixed and there is no place for
confusion, we just write Λ and Λ1.

Note that, in view of (3.10), p0 = p(·, 0) and hence we do not need to consider p0 as a component of
the multiplier.

3.2.1 The reduced abstract problem

SetF (u) := J(u, y[u]), andG : L2(0, T )
m → C([0, T ])q,G(u) := g(y[u]). The reduced problem

is
Min
u∈Uad

F (u); G(u) ∈ K, (RP)

where K := C([0, T ])q− is the closed convex cone of continuous functions over [0, T ], with values
in Rq

−. Its interior is the set of functions in C([0, T ])q with negative values. We say that the reduced
problem (RP) is qualified at ū if:{

there exists u ∈ Uad such that v := u− ū satisfies
G(ū) +DG(ū)v ∈ int(K).

(3.21)

Given a Banach space X, a closed convex subset S ⊆ X and a point s̄ ∈ S, the normal cone to S
at s̄ is defined as

NS(s̄) := {x∗ ∈ X∗; 〈x∗, s− s̄〉 ≤ 0, for all s ∈ S}. (3.22)

We get the following first order conditions for our problem (P ):
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Lemma 3.5. (i) If (ū, y[ū]) is an L2-local solution of (P ), then the associated set Λ of multipliers is
nonempty.
(ii) If in addition the qualification condition (3.21) holds at ū, then there is no singular multiplier, and
Λ1 is bounded in L∞(0, T ;H1

0 (Ω))×BV (0, T )q0,+.

Proof. (i) Let us consider the generalized Lagrangian associated with the reduced problem (RP):

L[β, µ](u) := βF (u) +

q∑
j=1

∫ T

0

Gj(u)(t)dµj(t). (3.23)

Let ū be a local solution of (RP). By, e.g., [9, Proposition 3.18], since K has nonempty interior, there
exists a generalized Lagrange multiplier associated with problem (RP), that is, (β, dµ) ∈ R+ ×
NK(G(ū)) for µ ∈ BV (0, T )q0,+ such that

(β, dµ) 6= 0 and −DuL[β, µ](ū) ∈ NUad(ū). (3.24)

Due to the costate equation (3.7), the latter condition is equivalent to (3.20).
(ii) That Λ1 is nonempty and weakly-* compact follows from [9, Proposition 3.16].

Observe that the qualification condition for (RP) given in (3.21) holds if and only if the following quali-
fication condition for the original problem (P) is satisfied:{

there exists ε > 0 and u ∈ Uad such that v := u− ū satisfies
gj(ȳ(·, t)) + g′j(ȳ(·, t))z[v](·, t) < −ε, for all t ∈ [0, T ], and j = 1, . . . , q.

(3.25)

In view of Lemma 3.5, if (3.25) is satisfied, then Λ1 is nonempty and weakly-* compact.

In the sequel of this section, we consider (ū, ȳ, β, p, µ),with ȳ the state associated with the admissible
control ū and (β, p, µ) ∈ Λ.

3.3 Arcs and junction points

We assume in the remainder of the article that the admissible set of controls has the form

Uad = {u ∈ L2(0, T )m; ǔi ≤ ui(t) ≤ ûi, i = 1, . . . ,m}, (3.26)

for some constants ǔi < ûi, for i = 1, . . . ,m. Consider the contact sets associated to the control
bounds defined, up to null measure sets, by

Ǐi := {t ∈ [0, T ]; ūi(t) = ǔi}, Îi := {t ∈ [0, T ]; ūi(t) = ûi}, Ii := Ǐi ∪ Îi. (3.27)

For j = 1, . . . , q, the contact set associated with the jth state constraint is

ICj := {t ∈ [0, T ]; gj(ȳ(·, t)) = 0}. (3.28)

Given 0 ≤ a < b ≤ T , we say that (a, b) is a maximal state constrained arc for the jth state
constraints, if ICj contains (a, b) but it contains no open interval strictly containing (a, b). We define in
the same way a maximal (lower or upper) control bound constraints arc (having in mind that the latter
are defined up to a null measure set).
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We will assume the following finite arc property:{
the contact sets for the state and bound constraints are,
up to a finite set, the union of finitely many maximal arcs.

(3.29)

In the sequel we identify ū (defined up to a null measure set) with a function whose ith component is
constant over each interval of time that is included, up to a zero-measure set, in either Ǐi or Îi. For
almost all t ∈ [0, T ], the set of active constraints at time t is denoted by (B̌(t), B̂(t), C(t)) where

B̌(t) := {1 ≤ i ≤ m; ūi(t) = ǔi},
B̂(t) := {1 ≤ i ≤ m; ūi(t) = ûi},
C(t) := {1 ≤ j ≤ q; gj(ȳ(·, t)) = 0}.

(3.30)

These sets are well-defined over open subsets of (0, T ) where the set of active constraints is constant,
and by (3.29), there exist time points called junction points

0 =: τ0 < · · · < τr := T, (3.31)

such that the intervals (τk, τk+1) are maximal arcs with constant active constraints, for k = 0, . . . , r−
1. We may sometimes call them shortly maximal arcs.

Definition 3.6. For k = 0, . . . , r − 1, let B̌k, B̂k, Ck denote the set of indexes of active lower and
upper bound constraints, and state constraints, on the maximal arc (τk, τk+1), and setBk := B̌k∪B̂k.

As a consequence of above definitions and hypothesis (3.26) on the admissible set of controls, we get
the following characterization of the first order condition.

Corollary 3.7. The first order optimality condition (3.20) is equivalent to

{t ∈ [0, T ]; Ψp
i (t) > 0} ⊆ Ǐi, {t ∈ [0, T ]; Ψp

i (t) < 0} ⊆ Îi, (3.32)

for every (β, p, µ) ∈ Λ.

3.4 About the jumps of the multiplier at junction points

Given a function v : [0, T ] → X , where X is a Banach space, we denote (if they exist) its left and
right limits at τ ∈ [0, T ] by v(τ±), with the convention v(0−) := v(0), v(T+) := v(T ); then the
jump of v at time τ is defined as [v(τ)] := v(τ+)− v(τ−).

We denote the time derivative of the state constraints by

ḡ
(1)
j [t] :=

d

dt
gj(ȳ(·, t)) =

∫
Ω

cj(x) ˙̄y(x, t)dx, j = 1, . . . , q. (3.33)

Note that ḡ(1)
j [t] is an element of L1(0, T ), for each j = 1, . . . , q.

Lemma 3.8. Let ū have left and right limits at τ ∈ (0, T ). Then

[Ψp
i (τ)][ūi(τ)] = [ḡ

(1)
j [τ ]][µj(τ)] = 0, i = 1, . . . ,m, j = 1, . . . , q. (3.34)
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Proof. Since p = p1 −
∑q

j=1 cjµj , p
1 ∈ Y ⊂ C([0, T ];H1

0 (Ω)), µ ∈ BV (0, T )q0,+, and any
function with bounded variation has left and right limits, we have that p(·, τ) has left and right limits in
H1

0 (Ω) and satisfies

[p(·, τ)] = −
q∑
j=1

cj[µj(τ)], for all τ ∈ [0, T ]. (3.35)

Consequently Ψp has left and right limits over [0, T ], and

[Ψp
i (τ)] = −

q∑
j=1

[µj(τ)]

∫
Ω

bi(x)cj(x)ȳ(x, τ)dx, for all τ ∈ [0, T ]. (3.36)

Next, if ū has left and right limits at some τ ∈ (0, T ), then, using the state equation and (3.33), we
get

[ḡ
(1)
j [τ ]] =

m∑
i=1

[ūi(τ)]

∫
Ω

bi(x)cj(x)ȳ(x, τ)dx. (3.37)

Thus, by (3.36) and (3.37), we have

m∑
i=1

[Ψp
i (τ)][ūi(τ)] +

q∑
j=1

[ḡ
(1)
j [τ ]][µj(τ)] = 0. (3.38)

By the first order conditions (3.32) we have [Ψp
i (τ)][ūi(τ)] ≤ 0, for i = 1 to m. Also [µj(τ)] ≥ 0,

and if [µj(τ)] 6= 0, the corresponding state constraint has a maximum at time τ . Then [ḡ
(1)
j [τ ]] ≤ 0.

So, all terms in the sums in (3.38) are nonpositive and therefore are equal to zero. The conclusion
follows.

3.5 Regularity of the switching function and multiplier over maximal arcs

In the discussion that follows we fix k in {0, . . . , r − 1}, and consider a maximal arc (τk, τk+1),
where the junction points are given in (3.31). Recall Definition 3.6 for B̌k, B̂k, Bk ⊂ {1, . . . ,m} and
Ck ⊂ {1, . . . , q}. Set B̄k := {1, . . . ,m} \Bk and

Mij(t) :=

∫
Ω

bi(x)cj(x)ȳ(x, t)dx, 1 ≤ i ≤ m, 1 ≤ j ≤ q. (3.39)

Let M̄k(t) (of size |B̄k| × |Ck|) denote the submatrix of M(t) having rows with index in B̄k and
columns with index in Ck. In the sequel we make the following assumption.

Hypothesis 3.9. We assume that |Ck| ≤ |B̄k|, for k = 0, . . . , r− 1, and that the following (uniform)
local controllability condition holds:{

there exists α > 0, such that |M̄k(t)λ| ≥ α|λ|,
for all λ ∈ R|Ck|, a.e. on (τk, τk+1), for k = 0, . . . , r − 1.

(3.40)

Remark 3.10. This hypothesis was already used in a different setting (i.e. higher-order state con-
straints in the finite dimensional case) in e.g. [7, 26]. Note that condition (3.40) implies, in particular,
that the matrix M̄k(t) has rank |Ck| over (τk, τk+1).
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The expression of the derivative of the jth state constraint, for 1 ≤ j ≤ q, is

ḡ
(1)
j [t] =

∫
Ω

cj(x)
(
f(x, t) + ∆ȳ(x, t)− γȳ(x, t)3

)
dx+

m∑
i=1

Mij(t)ūi(t), (3.41)

or, in vector form, for the active state constraints (denoting by ḡ(1)
Ck

[t] the vector of components ḡ(1)
j [t]

for j ∈ Ck), we get
ḡ

(1)
Ck

[t] = Gk(t) + M̄k(t)
>ūB̄k(t) = 0, (3.42)

where ūB̄k is the restriction of ū to the components in B̄k, and Gk(t) takes into account the contribu-
tions of the integral in (3.41) and of the components of ū in Bk, that is, for j ∈ Ck:

Gk,j(t) :=

∫
Ω

cj
(
f(x, t) + ∆ȳ(x, t)− γȳ(x, t)3

)
dx+

∑
i∈Bk

Mij(t)ūi(t). (3.43)

By the controllability condition (3.40), M̄k(t)
> is onto from R|B̄k| to R|Ck|. In view of the state equa-

tion, by an integration by parts argument, M(t) has a bounded derivative and is therefore Lipschitz
continuous. So there exists a linear change of control variables of the form u(t) = Nk(t)û(t), for
some invertible Lipschitz continuous matrix Nk(t) of size m×m, such that, calling N̄k(t) the upper
|B̄k| × |B̄k|−diagonal block of Nk(t), it holds that M̄k(t)

>N̄k(t) has its first |Ck| columns being
equal to the identity matrix, the other columns having null components. That is, for all û ∈ R|B̄k|:

(M̄k(t)
>N̄k(t)û)j = ûj, for j = 1, . . . , |Ck|. (3.44)

Over a maximal arc (τk, τk+1), we have that ḡ(1)
j [t] = 0 for j ∈ Ck is equivalent to

ûj = −Gk,j(t), for j = 1, . . . , |Ck|. (3.45)

The following result on the regularity of the state constraint multiplier holds. Recall the definition of the
switching function Ψp given in (3.19).

Proposition 3.11. There exists a ∈ L1(0, T )m such that

(i)
dΨp(t) = a(t)dt−M(t)dµ(t), on [0, T ]. (3.46)

(ii) We have that µ̇Ck is locally integrable over (τk, τk+1), hence µCk is locally absolutely continu-
ous, and the following expression holds

0 = Ψ̇p

B̄k
(t) = aB̄k(t)dt− M̄k(t)µ̇Ck(t), on (τk, τk+1). (3.47)

Proof. By (3.8) and (3.19), one has, for i ∈ {1, . . . ,m}:

Ψp
i (t) = αi +

∫
Ω

bi(x)ȳ(x, t)p1(x, t)dx−
q∑
j=1

Mij(t)µj(t), i = 1, . . . ,m. (3.48)

Let a : (0, T )→ Rm be given by

ai(t) :=
d

dt

∫
Ω

bi(x)ȳ(x, t)p1(x, t)dx−
q∑
j=1

Ṁij(t)µj(t), for i = 1, . . . ,m. (3.49)
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Note that Ṁij(t) =
∫

Ω
bi(x)cj(x) ˙̄y(x, t)dx is integrable

(
this follows integrating by parts the contri-

bution of ∆ȳ and since Y ⊂ C([0, T ];H1
0 (Ω))

)
, and that

d

dt

(
ȳp1
)

= p1 ∆ȳ − ȳ∆p1 + fp1 + 2γȳ3p1 − βȳ(ȳ − yd)−
q∑
j=1

µj ȳAcj. (3.50)

Integrating by parts the terms in (3.50) containing Laplacians, we get, for the integral term in (3.49),∫
Ω

bi(x)
d

dt

(
ȳp1
)

dx =

∫
Ω

bi

(
fp1 + 2γȳ3p1 − βȳ(ȳ − yd)−

q∑
j=1

µj ȳAcj

)
dx

−
∫

Ω

∇bi(p1∇ȳ − ȳ∇p1)dx.

(3.51)

It follows that a ∈ L1(0, T )m and (3.46) holds. Consequently Ψp has bounded variation.

Over (τk, τk+1), we have dµj(t) = 0 whenever j 6∈ Ck, and so

0 = dΨp

B̄k
(t) = aB̄k(t)dt− M̄k(t)dµCk(t). (3.52)

Since M̄k(t) is continuous and injective, and a is integrable, this implies the existence of µ̇j(t) ∈
L1(0, T ), for j ∈ Ck. This yields (3.47).

And so, µCk(t) is locally absolutely continuous.

Corollary 3.12. Let the finite maximal arc property (3.29) and the uniform controllability condition
(3.40) hold.

(i) If f, yd ∈ L∞(0, T ;L2(Ω)), then a ∈ L∞(0, T )m.

(ii) If additionally f, yd ∈ C([0, T ];L2(Ω)), then µ is C1 over each maximal arc (τk, τk+1).

Proof. Indeed, a careful inspection of the previous proof shows that a is a sum of essentially bounded
terms, so (i) follows. If the additional regularity hypotheses of item (ii) hold, then a is continuous. The
regularity of µ follows from (3.52) and the local controllability assumption (3.40). This concludes the
proof.

4 Second order necessary conditions

In this section we derive second order necessary optimality conditions, based on the concept of radi-
ality of critical directions.

Let us consider an admissible trajectory (ū, ȳ).

4.1 Assumptions and additional regularity

For the remainder of the article we make the following set of assumptions.

Hypothesis 4.1. The following conditions hold:
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1. the control set has the form (3.26),

2. the finite maximal arc property (3.29),

3. the qualification hypothesis (3.25),

4. the local (uniform) controllability condition (3.40) over each maximal arc (τk, τk+1),

5. the discontinuity of the derivative of the state constraints at corresponding junction points, i.e.,

for some c > 0: gj(ȳ(·, t)) ≤ −c dist(t, ICj ), for all t ∈ [0, T ], j = 1, . . . , q, (4.1)

6. the uniform distance to control bounds whenever they are not active, i.e. there exists δ > 0
such that,

dist
(
ūi(t), {ǔi, ûi}

)
≥ δ, for a.a. t /∈ Ii, for all i = 1, . . . ,m, (4.2)

7. the following regularity for the data (we do not try to take the weakest hypotheses) for some
r > n+ 1:

y0, ydT ∈ W 1,r
0 (Ω) ∩W 2,r(Ω), yd, f ∈ L∞(Q), b ∈ L∞(Ω)m+1, (4.3)

8. the control ū has left and right limits at the junction points τk ∈ (0, T ), (this will allow to apply
Lemma 3.8).

In view of point 3 above, we consider from now on β = 1 and thus we omit the component β of the
multipliers.

Theorem 4.2. The following assertions hold.

(i) For any u ∈ L∞(0, T )m, the associated state y[u] belongs toC(Q̄). If u remains in a bounded
subset of L∞(0, T )m then the corresponding states form a bounded set in C(Q̄). In addition,
if the sequence (u`) of admissible controls converges to ū a.e. on (0, T ), then the associated
sequence of states (y` := y[u`]) converges uniformly to ȳ in Q̄.

(ii) For every (p, µ) ∈ Λ1, one has that µ ∈ W 1,∞(0, T )q and p is essentially bounded in Q.

Proof. (i) Let r ∈ [2,∞). That y ∈ W 2,1,r(Q) follows from Theorem A.3 in the Appendix. Taking
r > n + 1, it follows from the Sobolev Embedding Theorem (see e.g. [17, Theorem 5, p. 269]) that
y is continuous (and even Hölder-continuous) on the closure of Q, with uniform bound over the set of
admissible controls. If the sequence (u`) of admissible controls converges a.e. to ū, by the Dominated
Convergence Theorem, u` → ū in Lq(0, T ) for all q ∈ [1,∞). So, by similar arguments it can be
proved that the associated sequence of states converges uniformly to ȳ.
(ii) By Hypothesis 4.1, ydT is the trace at time T of an element of W 2,1,r(Q) vanishing on Σ and this
obviously holds also for y(T ) in view of Theorem A.3 in the Appendix. It follows then from corollary
A.2 that p1 ∈ W 2,1,r(Q). The continuity of µ at junction points follows from (4.1) in Hypothesis 4.1
and Lemma 3.8. The boundedness on each arc of the derivative of µ follows from (3.47) for µ̇, since
by Corollary 3.12, a ∈ L∞(0, T )m and by (3.40), M̄(t) is ‘uniformly injective’ over each arc. The
conclusion follows.
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4.2 Second variation

For (p, µ) ∈ Λ1, set
κ(x, t) := 1− 6γȳ(x, t)p(x, t), (4.4)

and consider the quadratic form

Q[p](z, v) :=

∫
Q

(
κz2 + 2p

m∑
i=1

vibiz

)
dxdt+

∫
Ω

z(x, T )2dx. (4.5)

Let (u, y) be a trajectory, and set

(δy, v) := (y − ȳ, u− ū). (4.6)

Recall the definition of the operatorA given in (2.20). Subtracting the state equation at (ū, ȳ) from the
one at (u, y), we get that

d

dt
δy + Aδy =

m∑
i=1

vibiy − 3γȳ(δy)2 − γ(δy)3 in Q,

δy = 0 on Σ, δy(·, 0) = 0 in Ω.

(4.7)

Combining with the linearized state equation (3.1), we deduce that η given by

η := δy − z, (4.8)

satisfies the equation {
η̇ −∆η = rη + r̃ in Q,

η = 0 on Σ, η(·, 0) = 0 in Ω
(4.9)

where r and r̃ are defined as

r := −3γȳ2 +
m∑
i=0

ūibi, r̃ :=
m∑
i=1

vibiδy − 3γȳ(δy)2 − γ(δy)3. (4.10)

Proposition 4.3. Let (p, µ) ∈ Λ1, and let (u, y) be a trajectory. Then

L[p, µ](u, y, p)− L[p, µ](ū, ȳ, p)

=

∫ T

0

Ψp(t) · v(t)dt+ 1
2
Q[p](δy, v)− γ

∫
Q

p(δy)3dxdt. (4.11)

Here, we omit the dependence of the Lagrangian on (β, p0) being equal to (1, p(·, 0)).

Proof. Use ∆L to denote the l.h.s. of (4.11). We have

∆L = J(u, y)− J(ū, ȳ) +

∫
Q

p

(
− d

dt
δy + ∆δy − γ(y3 − ȳ3)

)
dxdt

+

∫
Q

p

(
m∑
i=1

vibiy +
m∑
i=0

ūibiδy

)
dxdt+

q∑
j=1

∫ T

0

∫
Ω

cjδy dxdµj(t)

=

∫
Q

δy
(

1
2
δy + ȳ − yd

)
dxdt+

∫
Ω

δy(x, T )
(

1
2
δy(x, T ) + ȳ(x, T )− ydT (x)

)
dx

+
m∑
i=1

αi

∫ T

0

vidt+

∫
Q

p

(
− d

dt
δy + ∆δy − γ(δy3 + 3ȳδy2 + 3ȳ2δy)

)
dxdt

+

∫
Q

p

(
m∑
i=1

vibiy +
m∑
i=0

ūibiδy

)
+

q∑
j=1

∫ T

0

∫
Ω

cjδy dxdµj(t).

(4.12)
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By (3.5) we obtain∫
Q

p
d

dt
δy dxdt =−

∫
Q

pA δy dxdt+

q∑
j=1

∫ T

0

∫
Ω

cjδy dxdµj(t)

+

∫
Q

δy (ȳ − yd) dxdt+

∫
Ω

δy(x, T ) (ȳ(x, T )− ydT (x)) dx.

(4.13)

Thus, from (4.12) and (4.13) we get

∆L = 1
2

∫
Q

δy2dxdt+ 1
2

∫
Ω

δy(·, T )2dx+
m∑
i=1

αi

∫ T

0

vidt

+

∫
Q

p

(
−γ[δy3 + 3ȳδy2] +

m∑
i=1

vibiy

)
dxdt, (4.14)

which leads to (4.11) in view of the definition of Ψp
i given in (3.19). This concludes the proof.

4.3 Critical directions

Recall the definitions of Ǐi, Îi and ICj given in (3.27) and (3.28), and remember that we use z[v] to
denote the solution of the linearized state equation (3.1) associated to v.

Let us define the cone of critical directions at ū in L2, or in short critical cone, by

C :=



(z[v], v) ∈ Y × L2(0, T )m;

vi(t)Ψ
p
i (t) = 0 a.e. on [0, T ], for all (p, µ) ∈ Λ1

vi(t) ≥ 0 a.e. on Ǐi, vi(t) ≤ 0 a.e. on Îi, for i = 1, . . . ,m,∫
Ω

cj(x)z[v](x, t)dx ≤ 0 on ICj , for j = 1, . . . , q


. (4.15)

The strict critical cone is defined below, and it is obtained by imposing that the linearization of active
constraints is zero,

Cs :=


(z[v], v) ∈ Y × L2(0, T )m; vi(t) = 0 a.e. on Ii, for i = 1, . . . ,m,∫

Ω

cj(x)z[v](x, t)dx = 0 on ICj , for j = 1, . . . , q

 . (4.16)

Hence, clearly Cs ⊆ C, and Cs is a closed subspace of Y ×L2(0, T )
m
. Now, note that in the interior

of each ICj one has, for every (z[v], v) ∈ Cs,

0 =
d

dt

(
g′j(ȳ(·, t))z[v](·, t)

)
=

d

dt

∫
Ω

cj(x)z[v](x, t)dx

=

∫
Ω

cj(x)ż[v](x, t)dx =

∫
Ω

cj(x)
(
−(Az[v])(x, t) + (v(t) · b(x))ȳ(x, t)

)
dx,

(4.17)

which can be rewritten as

m∑
i=1

vi(t)Mij(t) =

∫
Ω

cj(x)(Az[v])(x, t)dx, (4.18)
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in view of the definition ofMij given in (3.39). Therefore, over any arc (a, b) we have g′j(ȳ(·, t))z[v](·, t) =
0 for t ∈ (a, b) if and only if g′j(ȳ(·, a))z[v](·, a) = 0 and (4.18) holds over (a, b). We define the
entry (resp. exit) point of a time interval (t′, t′′) as t′ (resp. t′′). This induces the consideration of the
following sets

Ce :=

{
(z[v], v) ∈ Y × L2(0, T )m;

g′j(ȳ(·, τk))z[v](τk) = 0, if j ∈ Ck, for k = 0, . . . , r − 1

}
, (4.19)

Cn :=


(z[v], v) ∈ Y × L2(0, T )m; vi(t) = 0 a.e. on Ii, for i = 1, . . . ,m,
m∑
i=1

vi(t)Mij(t) =

∫
Ω

cj(x)(Az[v])(x, t)dx a.e. on ICj , for j = 1, . . . , q

 . (4.20)

With these definitions, we can write the strict critical cone as

Cs = Ce ∩ Cn, (4.21)

and prove the following result.

Lemma 4.4. Cs ∩
(
Y × L∞(0, T )m

)
is dense in Cs, with respect to the Y × L2(0, T )m-topology.

Proof. In view of Dmitruk’s density lemma (see [16, Lemma 1]), it is enough to prove that Cn ∩
(
Y ×

L∞(0, T )m
)

is a dense subset of Cn.

Let us then take (z, v) ∈ Cn. Recall the definition of the junction times τk given after equation (3.39).
Fix k ∈ {0, . . . , r − 1}. Note that we can take a partition of [0, T ], say 0 = t0 ≤ · · · ≤ t` ≤
· · · ≤ tN = T , such that (t`, t`+1) is contained in some (τk, τk+1), and on (t`, t`+1) a fixed set of
the rows of M(t) is linearly independent with rank equal to the one of M(t). Now consider the matrix
M̄k given after (3.39). Using the same notation as in (3.42), let us write vB̄k to refer to the restriction
of v to the components in B̄k. For each t ∈ (t`, t`+1), we can write

vB̄k(t) = vB̄k,0(t) + vB̄k,1(t), (4.22)

where vB̄k,0(t) ∈ Ker M̄k(t)
> and vB̄k,1(t) ∈ Im M̄k(t) for almost all t, hence vB̄k,1(t) = M̄k(t)λk(t)

for some λk(t) ∈ R|Ck|. Let ECk(t) be the |Ck|-dimensional vector with components

ECk,j(t) :=

∫
Ω

cj(x)(Az)(x, t)dx, j ∈ Ck. (4.23)

Then (4.18) can be rewritten as

ECk(t) = M̄k(t)
>vB̄k(t) = M̄k(t)

>vB̄k,1(t) = M̄k(t)
>M̄k(t)λk(t), (4.24)

and, therefore, λk(t) =
(
M̄k(t)

>M̄k(t)
)−1

ECk(t), so that

vB̄k,1(t) = M̄k(t)λk(t) = M̄k(t)
(
M̄k(t)

>M̄k(t)
)−1

ECk(t). (4.25)

By an integration by parts (in space) argument, it follows that ECk(t) is a continuous function, and
so is M̄k(t). Therefore, vB̄k,1 is continuous on each maximal arc. We may also view the application
z 7→ vB̄k,1 as a linear and continuous mapping say

L1 : Y →
r−1∏
k=0

Lip(τk, τk+1)|Ck| (4.26)
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where Ck is the set of active state constraints on (τk, τk+1) and, for t′ < t′′, Lip(t′, t′′) is the Banach
space of continuous real functions with domain (t′, t′′), endowed with the norm

‖f‖Lip(t′,t′′) := sup
t∈(t′,t′′)

|f(t)|+ sup
t,τ∈(t′,t′′)

|f(t)− f(τ)|
|t− τ |

, (4.27)

with the convention “0/0 = 0”.

For any ε > 0, there exists vε
B̄k,0

in L∞(0, T )|Bk| such that ‖vε
B̄k,0
− vB̄k,0‖2 < ε, it has zero com-

ponents for indexes corresponding to active control bound constraints, and vε
B̄k,0

(t) ∈ Ker M̄k(t)
>

for a.a. t. In fact, to construct this vε
B̄k,0

it suffices to project an approximation of vB̄k,0 obtained by a

truncation argument on the kernel Ker M̄k(t)
>. In what follows we shall abuse notation and use the

same symbol to denote a vector and its canonical immersion in Rm. Let zε be the unique solution in
Y of the linearized equation

żε + Azε =
m∑
i=1

(L1(zε) + vεB̄,0 + vB)ibi ȳ, (4.28)

with the usual initial and boundary conditions, and where vB is the restriction of v to the set B. Set
vε
B̄,1

:= L1(zε), v
ε
B̄k

:= vε
B̄k,1

+ vε
B̄k,0

, and define vε to have the restriction to B̄k equal to vε
B̄k

and
the restriction toBk equal to v. Then vε is in Cn∩ (Y ×L∞(0, T )m) and ‖vε−v‖2 = O(ε). Hence,

Cn ∩
(
Y × L∞(0, T )m

)
is a dense subset of Cn. The conclusion follows.

4.3.1 Radiality of critical directions

According to Aronna et al. [3, Definition 6], a critical direction (z, v) is quasi radial if there exists τ0 > 0
such that, for τ ∈ [0, τ0], the following conditions are satisfied:

max
t∈[0,T ]

{
gj(ȳ(·, t)) + τg′j(ȳ(·, t))z(t)

}
= o(τ 2), for j = 1, . . . , q, (4.29)

ǔi ≤ ūi(t) + τvi(t) ≤ ûi, a.e. on [0, T ], for i = 1, . . . ,m. (4.30)

Lemma 4.5. Every direction in Cs ∩
(
Y × L∞(0, T )m

)
is quasi radial.

Proof. Let (z, v) ∈ Cs ∩
(
Y × L∞(0, T )m

)
. Then (4.30) follows from (4.2). Let us next prove

(4.29). The function h(t) := g′j(ȳ(t))z(t) has the derivative ḣ(t) =
∫

Ω
cj(x)ż(x, t)dx, so that

|ḣ(t)| ≤ ‖cj‖L2(Ω)‖ż(·, t)‖L2(Ω) and hence, ḣ ∈ L2(0, T ). Let 0 ≤ t′ < t′′ ≤ T . By the Cauchy-
Schwarz inequality, for any ε > 0:

|h(t′′)− h(t′)| ≤
∫ t′′

t′
|ḣ(t)|dt ≤

√
t′′ − t′‖ḣ‖L2(t′,t′′). (4.31)

Let (a, b) be a maximal constrained arc with say a > 0. Take t′ < a, and t′′ = a. When t′ ↑ a, by
the Dominated Convergence Theorem, ‖ḣ‖L2(t′,t′′) → 0. Given ε > 0, we deduce with (4.1) that for
τ > 0 and t′ < a close enough to a:

gj(ȳ(·, t)) + τg′j(ȳ(·, t))z(t) ≤ −c(a− t) + τε
√
a− t, for all t ∈ (t′, a). (4.32)
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The maximum of the r.h.s. of (4.32) over t ∈ [a− ε, a] is attained when

c
√
a− t = 1

2
τε, a− t =

τ 2ε2

4c2
. (4.33)

So the r.h.s. of (4.32) is less or equal than τ 2ε2/(4c). Since we can take ε arbitrarily small, it is of
order o(τ 2). For t > b close to b, we have a similar result. For t far from the boundary, (4.29) is a
consequence of hypothesis (4.1). The conclusion follows.

Combining the previous result with Lemma 4.4, we deduce that:

Corollary 4.6. The set of quasi radial critical directions of Cs is dense in Cs.

4.4 Second order necessary condition

We obtain the following result applying Corollary 4.6 above and the second order condition in an
abstract setting proved in [3, Theorem 8].

Theorem 4.7 (Second order necessary condition). Let the admissible trajectory (ū, ȳ) be anL∞-local
solution of (P ). Then

max
(p,µ)∈Λ1

Q[p](z, v) ≥ 0, for all (z, v) ∈ Cs. (4.34)

Proof. Let (z, v) ∈ Cs. By Corollary 4.6, there exists a sequence (z`, v`) of quasi radial directions
converging to (z, v) in Y ×L2(0, T )m. Doing as in [3, Theorem 8], we get the existence of a multiplier
(p`, µ`) ∈ Λ1 (with Λ1 defined in Section 3.2.1), such that

Q[p`](z`, v`) ≥ 0. (4.35)

By Lemma 3.5, Λ1 is bounded so that dµ` is also bounded. Extracting if necessary a subsequence, we
may assume that dµ` weakly-∗ converges to some dµwith µ ∈ BV (0, T )q0,+, and sinceL∞(0, T,H1

0 (Ω))
is included in L2(Q), p` weakly converges in L2(Q) to some p ∈ L2(Q), such that (p, µ) ∈ Λ1.
Since (z`, v`) → (z[v], v) in Y × L2(0, T )m, by lemma 2.2,

∑
i v

`
i biz

` strongly converges to∑
i vibiz, and so we easily deduce thatQ[p`](z`, v`)→ Q[p](z[v], v). The conclusion follows.

A Strong solutions of the heat equation

We consider the heat equation with Dirichlet boundary condition:

ẏ −∆y = f in Q, y(x, 0) = y0(x); y = h on Σ. (A.1)

We have the following result, see Lieberman [21, Thm 7.32, p. 182]:

Theorem A.1. Let r ≥ 2, w ∈ W 2,1,r(Q) and f ∈ Lr(Q). Setting y0 := w(·, 0) and h := τΣw
(trace of w over Σ), equation (A.1) has a unique solution y ∈ W 2,1,r(Q). In addition there exists
C > 0 such that

‖y‖W 2,1,r(Q) ≤ C
(
‖f‖Lr(Q) + ‖w‖W 2,1,r(Q)

)
. (A.2)
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Corollary A.2. Given r ≥ 2, y0 ∈ W 1,r
0 (Ω) ∩W 2,r(Ω) and f ∈ Lr(Q), equation (A.1) has, for

h = 0, a unique solution y ∈ W 2,1,r(Q) that satisfies

‖y‖W 2,1,r(Q) ≤ C
(
‖f‖Lr(Q) + ‖y0‖W 2,r(Ω)

)
. (A.3)

Proof. Apply Theorem A.1 with w(x, t) := y0(x). It is clear that w ∈ W 2,1,r(Q) and that w has
trace y0 at time 0 and zero trace over Σ. The conclusion follows.

By the standard Sobolev embeddings, we have the continuous inclusion

W 2,1,r(Q) ⊂ W 1,r(Q) ⊂ L∞(Q), if r > n+ 1. (A.4)

This allows to prove the following.

Theorem A.3. Assume that u ∈ L∞(0, T ), y0 ∈ W 1,r
0 (Ω) ∩W 2,r(Ω) and f ∈ Lr(Q), with

r > n + 1. Then the state equation (2.1) has a unique solution y[u, y0, f ] in W 2,1,r(Q), and the
mapping y[u, y0, f ] is of class C∞ from L∞(0, T )×W 1,r

0 (Ω) ∩W 2,r(Ω)×Lr(Ω) into W 2,1,r(Q).

Proof. We have that g := −∆y0 belongs to Lr(Ω). Let y±0 be the unique solution of −∆y±0 = g±

in Ω, where g+ := max(g, 0) and g− := −min(g, 0), with homogeneous Dirichlet condition on
the boundary. Set f+ := max(f, 0) and f− := −min(f, 0). Denote by y+ (resp., y−) the solution
of the state equation (2.1) when (y0, f) is (y+

0 , f
+) (resp. (y−0 , f

−)). By the monotonicity results in
Lemma 2.3, we have that −y− ≤ y ≤ y+. Now let y++, y−− denote the solutions of the state
equation (2.1) when (y0, f) is (y+

0 , f
+), (y−0 , f

−), respectively and, in addition, γ = 0. We claim
that −y−− ≤ −y− ≤ y ≤ y+ ≤ y++. Indeed, for z ∈ Y , set Huz := ż −∆z − z

∑
i uibi. Then

Huy
+ = f+ − γ(y+)3 ≤ f+ = Huy

++. (A.5)

Since y+ and y++ have the same initial conditions, it follows that y+ ≤ y++. In an analogous way, it
can be proved that −y−− ≤ −y−.
Since y±0 ∈ W 1,r

0 (Ω) ∩W 2,r(Ω) and f± ∈ Lr(Q), by Corollary A.2, y++ and y−− belong to
W 2,1,r(Q) and, therefore, since r > n + 1, they are also elements of L∞(Q). So, y ∈ L∞(Q).
Consequently, Huy = f − γy3 ∈ Lr(Ω) and, by Theorem A.1 again, y ∈ W 2,1,r(Q).

We recall that, for r > n+ 1, Yr denotes the set of elements of W 2,1,r(Q) with zero trace on Σ, and
Y 0
r denotes the trace of Yr at time zero. Endowed with the “trace norm", Y 0

r is a Banach space that
contains W 1,r

0 (Ω) ∩W 2,r(Ω) in view of the proof of the above Corollary A.2 (by Lions [23, p. 20],
Y 0
r is a subset of W 2−2/r,r(Ω)). That (u, y0, f) 7→ y[u, y0, f ] is of class C∞ is a consequence of

the Implicit Function Theorem applied to the mapping F from Yr × L∞(0, T ) × Y 0
r × Lr(Q) into

Lr(Q)× Y 0
r , defined by

F (y, u, y0, f) := (Huy + γy3, y(0)− y0). (A.6)

The key step is to prove that the partial derivative DyF is bijective; this can be done easily, taking
advantage of the fact that W 2,1,r(Q) ⊂ L∞(Q) when r > n+ 1.

B An example

Since we made a number of hypotheses about the optimal trajectory, especially at junction points, it
is useful to give an example where these hypotheses are satisfied. For that purpose we discuss a
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particular case in which the original optimal control problem can be reduced to the optimal control of
a scalar ODE.

Let Ω = (0, 1), and denote by c1(x) :=
√

2 sinπx the first (normalized) eigenvector of the Laplace
operator.

We assume that γ = 0, the control is scalar (m = 1), b0 ≡ 0 and b1 ≡ 1 in Ω, and that f ≡ 0 in Q.
Then the state equation with initial condition c1 reads

ẏ(x, t)−∆y(x, t) = u(t)y(x, t); (x, t) ∈ (0, 1)× (0, T ), y(x, 0) = c1(x), x ∈ Ω. (B.1)

It is easily seen that the state satisfies y(x, t) = y1(t)c1(x), where y1 is solution of

ẏ1(t) + π2y1(t) = u(t)y1(t); t ∈ (0, T ), y1(0) = y10 = 1. (B.2)

We set T = 3 and consider the state constraint (3.17) with q = 1 and d1 := −2, and the cost
function (2.5) with α1 = 0. The state constraint reduces to

y1(t) ≤ 2, t ∈ [0, 3]. (B.3)

As target functions take ydT := c1 and yd(x, t) := ŷd(t)c1(x) with

ŷd(t) :=


1.5et for t ∈ (0, log 2),

3 for t ∈ (log 2, 1),

4− t for t ∈ (1, 3).

(B.4)

We assume that the lower and upper bounds for the control are ǔ := −1 and û := π2 + 1. We will
check that the optimal control is

ū(t) :=


û for t ∈ (0, log 2),

π2 for t ∈ (log 2, 2),

π2 − 1/ŷd for t ∈ (2, 3).

(B.5)

Thus, for the optimal state we have

ȳ1(t) :=


et for t ∈ (0, log 2),

2 for t ∈ (log 2, 2),

4− t for t ∈ (2, 3).

(B.6)

The above control is feasible. The trajectory (ū, ȳ) is optimal since for any t ∈ (0, T ), the state ȳ1(t)
has the best possible value (in order to approach ŷd and minimize the cost function) that respects the
state constraint.

Let us check Hypothesis 4.1 for this example. Conditions 1 and 2 are obviously satisfied. For the
constraint qualification in Condition 3 consider the linearized state equation with unique z1[v]:

ż1 = (ū− π2)z1 + vȳ1; z1(0) = 0, (B.7)

with v(t) := ǔ − ū(t) < 0. One easily checks that z1[v](t) < 0 for all t > 0. Hence, we can find
ε > 0 such that

g1(ȳ(·, t)) + g′1(ȳ(·, t))z1[v](·, t) = ȳ1(t)− 2 + z1(t) < −ε, for all t ∈ (0, T ). (B.8)
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Figure 1: Optimal control and state for the example

Conditions 4 holds, since

M(t) = M̄1(t) =

∫
Ω

c1(x)ȳ(x, t)dx = ȳ1(t) > 0 for t ∈ (0, T ). (B.9)

For Condition 5 we have

dist(t, IC1 ) =


log 2− t for t ∈ (0, log 2),

0 for t ∈ (log 2, 2),

t− 2 for t ∈ (2, 3),

(B.10)

and hence,
g1(ȳ(·, t)) = ȳ1(t)− 2 ≤ − dist(t, IC1 ). (B.11)

Conditions 6 and 8 hold by the choice of the control in (B.5). Condition 7 holds by definition.

We solve this problem numerically using BOCOP [5] and get the optimal control and state given in
Figure 1.

We now discuss the second order optimality condition for this example. The costate equation is

−ṗ+ Ap = c1(ȳ1 − ŷd) + c1µ̇1, p(·, T ) = ȳ(T )− ydT = 0 (B.12)

withA as defined in (2.20). Since ȳ and yd are colinear to c1, it follows that p(x, t) = p1(t)c1(x), and

−ṗ1 + π2p1 = ūp1 + ȳ1 − ŷd + µ̇1; p1(3) = 0. (B.13)

Over (2, 3), µ̇1 = 0 (sate constraint not active) and ȳ1 = ŷd, therefore p1 and p identically vanish.
Over (log 2, 2), ū is out of bounds and therefore

0 =

∫
Ω

p(x, t)ȳ(x, t) = p1(t)ȳ1(t)

∫
Ω

c1(x)2 = 2p1(t). (B.14)
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It follows that p1 and p also vanish on (log 2, 2) and that

µ̇1 = −(ȳ1 − ŷd) > 0, a.a. t ∈ (log 2, 2). (B.15)

Over (0, log 2), the control attains its upper bound, then

−ṗ1 = p1 − 1
2
et (B.16)

with final condition p1(log 2) = 0, so that

p1(t) =
et

4
− e−t. (B.17)

As expected, p1 is negative.

Next, the linearized state equation at (ū, ȳ) reads

ż −∆z = ūz + vȳ; z(·, 0) = 0. (B.18)

Since ȳ = ȳ1(t)c1(x), we deduce that z = z1(t)c1(x), with z1 solution of

ż1 + π2z = ūz1 + vȳ1; z1(0) = 0. (B.19)

Therefore if (v, z) satisfy the linearized state equation

Q[p](z, v) =

∫
Q

(z2 + pvz)dxdt+

∫
Ω

z(x, T )2dx =

∫ 3

0

(z1(t)2 + p1(t)v(t)z1(t))dt+ z1(3)2.

(B.20)
If in addition v is a critical direction, since v = 0 and z1 = 0 a.e. on (0, 2), and p1(t) = 0 on (2, 3),
we get

Q[p](z, v) =

∫ 3

2

z1(t)2dt+ z1(3)2. (B.21)

Thus, Q is non-negative for any critical directions (z[v], v), in accordance with the second-order
necessary condition of Theorem 4.7.
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