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State-constrained control-affine parabolic problems I: First and
second order necessary optimality conditions

M. Soledad Aronna, J. Frédéric Bonnans, Axel Kroner,

Abstract

In this paper we consider an optimal control problem governed by a semilinear heat equation
with bilinear control-state terms and subject to control and state constraints. The state constraints
are of integral type, the integral being with respect to the space variable. The control is multidimen-
sional. The cost functional is of a tracking type and contains a linear term in the control variables.
We derive second order necessary conditions relying on the concept of alternative costates and
quasi-radial critical directions.

1 Introduction

This is the first part of two papers on necessary and sufficient optimality conditions for an optimal
control problem governed by a semilinear heat equation containing bilinear terms coupling the con-
trol and the state, and subject to constraints on the control and state. The control may have several
components and enters in an affine way in the cost. In this first part we derive necessary optimality
conditions of first and second order, in the second part [2] sufficient optimality conditions are shown.

In the context of second order conditions for problems governed by control-affine ordinary differen-
tial equations we can mention several works, starting with the early papers [18] by Goh and [19] by
Kelley, later [15] by Dmitruk, and recently [1]. In this context, the case dealing with both control and
state constraints was treated in e.g. Maurer [25], McDanell and Powers [28], Maurer, Kim and Vossen
[27], Schattler [30], and Aronna et al. [3]. Fore a more detailed description of the contributions in this
framework, we refer to [3].

In the infinite dimensional case, the issue of second order conditions for problems governed by elliptic
equations and assuming state constraints was treated by several authors, see e.g. Casas, Trdltzsch
and Unger [12], Bonnans [6], Casas, Mateos and Troltzsch [11] and Casas and Tréltzsch [13].

Parabolic optimal control problems with state constraints were discussed in several articles. For a
semilinear equation in the presence of pure-state constraints, Raymond and Tréltzsch [29], and Krumbiegel
and Rehberg [20] obtained second order sufficient conditions. Casas, de Los Reyes, and Tréltzsch [10]
and de Los Reyes, Merino, Rehberg and Tréltzsch [14] proved sufficient second order conditions for
semilinear equations, both in the elliptic and parabolic cases. The articles mentioned in this paragraph

did not consider bilinear terms as we do in the current work.

Further details regarding the existing results on second order analysis of control-affine state-constrained
problems are given in the second part [2] of this research.

The contribution of this paper are first and second order necessary optimality conditions for an optimal
control problem for a semilinear parabolic equation with cubic nonlinearity, several controls coupled
with the state variable through bilinear terms, pointwise control constraints and state constraints that

DOI 10.20347/WIAS.PREPRINT.2762 Berlin 2020



M.S. Aronna, J.F. Bonnans, A. Kroner 2

are integral in space. To incorporate the state constraints we use the concept of alternative costates
(see Bonnans and Jaisson [8]) and the concept of quasi-radial directions (see Bonnans and Shapiro
[9] and Aronna, Bonnans and Goh [3]).

The paper is organized as follows. In Section [2| the problem is stated and main assumptions are
formulated. In Section [3] first order analysis is done. Section [4]is devoted to second order necessary
conditions. Finally, in the appendix, we give an example satisfying the hypotheses of our main results.

Notation

Let 2 be an open and bounded subset of R™, n < 3, with C™° boundary 0€2. Given p € [1, <]
and k € N, let W"?()) be the Sobolev space of functions in LP({2) with derivatives (here and after,
derivatives w.r.t. € {2 or w.r.t. time are taken in the sense of distributions) in L?(2) up to order k.
Let D(€2) be the set of C'*° functions with compact support in (2. By W(f’p(Q) we denote the closure
of D(Q2) with respect to the W***-topology. Given a horizon T' > 0, we write Q := Q x (0,7). |||,
denotes the norm in LP(0,T"), LP(2) and LP((Q), indistinctively. When a function depends on both
space and time, but the norm is computed only with respect to one of these variables, we specify both
the space and domain. For example, if y € LP(Q) and we fix t € (0,T"), we write ||y(-, )| zr(c)-
For the p-norm in R™, for m € N, we use | - \p, for the Euclidean norm we omit the index. We set
H5(Q) := WF2(Q) and HE(Q) := W}?(Q), with dual denoted by H*(Q). By W2'*(Q) we
mean the Sobolev space of LP(())-functions whose second derivative in space and first derivative
in time belong to LP(Q). For p > n + 1, we denote by Y}, the set of elements of W2!2(Q) with
zero trace on X, and by Y)) its trace at time zero. We write H*'(Q) for W*12(Q) and, setting
¥ =00 x (0,T), we define the state space as

Y :={y € H*(Q); y=0ae.onX}. (1.1)
The latter is continuously embedded in
W(0,T) :={y € L*(0,T; Hy(Q)); y € L*(0, T; H(Q))}. (1.2)

Note that if y is a function over (), we use 7 to denote its time derivative in the sense of distribu-
tions. As usual we denote the spatial gradient and the Laplacian by V and A. By dist(t, ) :=
inf{|[t —t|| ; t € I} for I C R, we denote the distance of ¢ to the set I.

2 Statement of the problem and main assumptions

In this section we introduce the optimal control problem we deal with and we show well-posedness of
the state equation and existence of solutions of the optimal control problem.

2.1 Setting

Consider the state equation

m

y(ZL‘,t) - Ay(:)ﬁ, t) + ’yy?’(l’,t) = f((E,t) + y(l’,t) Zuz(t)bz(x) in Qa

P (2.1)

y=0onX, y(-,0)=1yoinQ,
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Optimal control of a semilinear heat equation 3

and
yo € Hy(Q), [el*Q), beL>Q)m, (2.2)

v >0, up = 1is aconstant, and u := (u1,...,uy,) € L?(0,T)™. Lemma 2.3/ below shows that
for each control u € L?(0,T)™, there is a unique associated solution y € Y of (2.7), called the
associated state. Let y[u| denote this solution. We consider control constraints of the form u € U,g,
where

Usq is a nonempty, closed convex subset of L*(0, T)™. (2.3)

In some statements, we will consider a specific form of U,q (see (3.26) below). In addition, we have
finitely many linear running state constraints of the form

gi(y(-, 1) = / cj()y(z, t)de +d; <0, fort€[0,7], j=1,...,q, (2.4)
Q

where ¢; € H*(Q) N Hy(Q) for j = 1,...,¢, and d € R? The H} () regularity of ¢ is used in
Lemma to derive regularity results for the adjoint state and the HQ(Q) regularity in Proposition
for results on the Lagrange multiplier associated with the state constraint.

We call any (u,y[u]) € L*(0,T)™ X Y a trajectory, and if it additionally satisfies the control and
state constraints, we say it is an admissible trajectory. The cost function is

J(uy) =1 /Q (y(2, 1) — yale))dadt

m T (2.5)
+3 / (y(x, T) — yar(x))*dx + Z ozl-/ w;(t)dt,
@ i=1 0
where
Ya € L2<Q), Yar € Hé(Q), (2.6)
and a € R™. We consider the optimal control problem
Min J(u,y[u]); subject to (2.4). (P)

UEULq

For problem (P) we consider the two types of solution given next.

Definition 2.1. Let i € U,q. We say that (u, y[u]) is an L*-local solution (resp., L>-local solution)
if there exists ¢ > 0 such that (u, y|u|) is a minimum among the admissible trajectories (u,y) that
satisfy ||u — ul|y < € (resp., ||u — ]| < €).

2.2 Well-posedness of the state equation

Here we study the state equation and analyze, by means of the Implicit Function Theorem, the control-
to-state mapping, i.e. the mapping that associates to each control, the corresponding solution of the
state equation. We start by the following easily checked technical result.

Lemma 2.2. Fori = 0,...,m, the mapping defined on L?(0,T) x L>(Q) x L>(0,T; L*(2)),
given by (u;, b;, y) — u;bsy, has image in L*(Q), is of class C*°, and satisfies

uibsyll2 < [Jwill2]|bi] oo 1yl oo (0,722 (02)) - (2.7)
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A uniqueness and existence result, and a priori estimates for the state follows.

Lemma 2.3. The state equation has a unique solution y = yu,yo, f] in Y. The mapping
(u, 90, ) = ylu, yo, f] is C° from L2(0, T)™ x H} () x L?(Q) toY, and nondecreasing w.r.t.
Yo and f. In addition, there exist functions C;, 1 = 1 to 2, not decreasing w.r.t. each component, such
that

Y|l oo,z + 11 VYlla < Crlllyollz, |f |2 [Jwll2][6]ls ), (2.8)
lylly < Colllyoll maceys 1 f1l2; l[ull2]lblloo)-

Moreover, the state y also belongs to C(|0,T]; Hy(2)), since Y is continuously embedded in that
space [24, Theorem 3.1, p.23].

In the proof that follows, we use several times the (continuous) Sobolev inclusion

Hi(Q) C L°(Q), whenn < 3. (2.10)

Proof. (i) Observe first that by the standard Sobolev inclusions and Lemma L any y € Y is such
that y* and y >_;" , u;b; belong to L*(Q). So, y — Ay € L*(Q) and, therefore, the notion of solution
of the state equation in Y is clear. We could as well define a solution in 1¥/(0, T') but since by (2.10),
forn < 3, W(0,T) C L*(0,T; L%(2)), and the compatibility condition (equality between the trace
of the initial condition on 02 and the Dirichlet condition on X) holds, it follows then that any solution
in W (0,T) is a solutionin Y,

(i) We establish the a priori estimates (2.8)-(2.9). Multiplying the state equation by y and integrating
over (2, we get

L / Vy(a,0)]Pde + 4 / y(a, t)'da
Q Q

2
dt Q (2.11)

<3 [ Ftpde+ G+ Ot | o0

In particular, 7)(t) := [, y(x,t)*dx satisfies

1) < / Fa 02 + (14 2Ju(®)]1[b]lo)n(0) @2.12)

By Gronwall’'s Lemma:
1lloe < (Ilyoll3 + [1£115) 2 elelel= (2.13)

and then (2.8) easily follows.
Now multiplying the state equation by 1 we get, for all ¢ > 0,

v d
/Q (s, t)2dx+§&/ Vy(z, t)]Qd:c+4d Y, t)ide

(2.14)
1
<2 [y s Ju@Pio | o+ £ [ ity
€ Ja € Q 2 Jq
Choosing € = 1 we get, after cancellation,
/ y(z,t)*dr + —/ Vy(z,t)|? do + 2 1 d y(a:,t)4dx
Q@ 24t (2.15)

<2 / Fa 02+ 2u()]2[b]]% / y(z, t)d.
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For 7 € [0,T), integrating from 0 to 7, and using (2.10), we obtain that

[yl zr10.7:22(0)) + IVYll Lo 0.1220)) < Co2lllyoll )y | f1l2, [[wll2]blo0)- (2.16)

We easily deduce since we can estimate || Ay||.2(g) and, therefore, also ||y|| £2(0,7;m2(q)) With
the previous relations.

(iii) We construct a sequence y;, of Galerkin approximations for which estimates analogous to
hold. Some subsequence weakly converges in W (0,7") to some y and is such that the sequence
y3, bounded in L*(Q), weakly converges in this space. By the Aubin-Lions lemma [4], the injection
of W(0,T) into LQ(Q) is compact. So (extracting again a subsequence if necessary), y,‘z converges
a.e. to y°. By Lions [22, Lem. 1.3, p. 12], the weak limit of v} is y*, and y is therefore solution of the
state equation.

(iv) The C* regularity of y[u, 3o, f] is a consequence of the Implicit Function Theorem. In fact, let &
denote the trace at time 0 of elements of Y, which with the trace norm is a Banach space containing
HJ(€2). Then the mapping F' : L?(0,T) x Y x Y x L?(Q) — L*(Q) x Y defined by

F(u,y, 90, f) = (y — Ay 4y’ —y > wib,y(0) — yo), (2.17)
=1

is of class C'*°. That the linearized mapping D, F' is bijective follows from results already shown in
this proof.

(v) Uniqueness follows from the monotonicity w.r.t. (yo, f) that we prove as follows. Consider the
difference z := y» — y; of two solutions y; and y» of (2.1), with data (yo1, f1) < (Yo2, f2), resp. By
the Mean Value Theorem, z is solution of

z—Az—i—zZuibi—k?)w]Qz: i 2(0) =1 (2.18)
i=1

where § € [y1,y2] a.e., Jo := Yoz — Yo1 < 0 and f = fo — fi < 0. Testing the equation with
z4 := max(z,0) we getthat v(t) := [, 27 satisfies

Ly — Ju(®)]|[blleor(t) < Lo /Z+Zub </fz+<0 (2.19)

and applying Gronwall’s inequality we obtain that z, = 0. O

In the analysis that follows, we fix a trajectory (@, ¥ = y[u]).

For this trajectory (, %), let us consider the linear continuous operator A from L%(0,T; H%(2)) to
L?*(Q) such that, for each z € Y and (z, ) € Q,

(Az)(x,t) == —Az(z,t) + 3yy(x, 1) Xm: z(x, ). (2.20)

1=0

Lemma 2.4. Forany f € L*(Q), the equation

s+Az=Ff, inQ,
/ @ ) (2.21)
z=0o0n%, z(z,0)=0inQ,
has a unique solution z € Y that verifies
Losm o
2]l oo o,y < €27 oo llmllediee | £ o oy, (2.22)
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Proof. We follow the same method used in Lemma Multiplying (2-27) by z(z, t) and integrating
over space we obtain that for a.a. t € (0,7)

d 2 2 7
337 126 Dla) + 1920 D12 + 39150 )20, DllZa(q)

i m (2.23)
_ / (1) (f(x, D+ S (8 - bi(w)z(a, t)) .
& i=0
The r.h.s. of can be bounded above by
1FC 00 + (% + !ﬂi\llbiHoo> 12(, )72 (@)- (2.24)
=0
Then we deduce the estimate with Gronwall’s Lemma. O

2.3 Existence of solution of the optimal control problem

In order to study the existence of local solutions, we need to establish the sequential weak continuity of
the control-to-state mapping. We use '—' to denote the weak convergence of a sequence, the space
being indicated in each case. We need the following result (see [23, p. 14]):

{ Forany p € [1,10), the following injection is compact: (2.25)

Y < LP(0,T; L)), whenn < 3.
Lemma 2.5. The mapping u — y[u] is sequentially weakly continuous from L?(0,T)" into Y .

Proof. Taking u, — @in L*(0,T)™, we shall prove that y, — ¢ in Y, where y, := y|u,], ¥ := y[u].
We know that it is enough to check that any subsequence of vy, weakly converges to 7 in Y. To do
this, we prove that we can pass to the limit in each term of the state equation.

(a) We know by Lemmathat ye is bounded in Y, so extracting a subsequence if necessary, we
may assume that it weakly converges in Y to some 4. By .25), v, — ¢ in L5(Q) and, therefore,
maybe for a subsequence, it converges almost everywhere in ().

Let v € [2,5] be integer. Set o := 6/v. By the mean value theorem, y¥ — §* = vy (ye — 9),
with g¢(z,t) € [ye(z,t),§(z,t)] a.e. Obviously 7, is measurable and bounded in L°(Q). By Hélder’s
inequality, withp = v/(v — 1) and ¢ = 6/0 = v (note that 1 /p + 1/q = 1), we get

v ~vllo ~o(v—1 N\ o ~o(v—1 N\ o
Ll =970 = o7 e —p)edadt < g7 lpll(ye —9) g
o(v—1

8 : - (2.26)
= [lgells™ " llye — 9l

Therefore, y; — ¢ in L7(Q)). Taking v = 3 we get the desired result.

(b) We claim that u,y,b weakly converges in L?((Q) to ugb. It is enough to get the result when m = 1.
Fix ¢ in L>=(Q). By Lemma ugyy is bounded in L?(Q) and has therefore (up to a subsequence)
a weak limit w in that space. Since y, — 7 in L°(Q), [, ue(ye — §)bp — 0. On the other hand
fQ webp — fQ ugby since jbp € L*(Q). Therefore fQ wpyebp — fQ ugby. Since L>=(Q) is a
dense subset of L?((Q). The claim follows.

By steps (a)-(b), we can pass to the limit in the weak formulation, and obtain (due to the uniqueness
of solution) that ij = ¢. The conclusion follows. O
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Optimal control of a semilinear heat equation 7

Theorem 2.6. (i) The function u — J(u,y[u]), from L*(0,T)™ to R, is weakly sequentially I.s.c.
(ii) The set of solutions of the optimal control problem (P) is weakly sequentially closed in L*(0, T)™.
(iii) If (P) has a bounded minimizing sequence, the set of solutions of (P) is non empty. This is the
case in particular if (P) is admissible and U,y is a nonempty, bounded subset of L*(0, T)™.

Proof. (i) Combine Lemma and the fact that the cost function J is continuous and convex on
L*(0, T)™ x Y, hence it is also weakly lower semicontinuous over this product space.

(i) Let (ug) C L?(0,T)™ be a sequence of solutions weakly converging to & € L*(0,7)™, with
associated states vy. By Lemma (y¢) weakly converge in Y to the state 3 associated with % and,
by point (i), J(@,y) < liminf, J(uy, y,). This lower limit being nothing but the value of problem (P),
the conclusion follows.

(iii) By the previous arguments, a weak limit of a minimizing sequence is a solution of (P). This weak
limit exists iff the sequence is bounded. This concludes the proof. O

3 First order analysis

In this section we state first order necessary optimality conditions. More precisely, we introduce the
adjoint equation, and define and prove existence of associated Lagrange multipliers.

Throughout the section, (@, ) is a trajectory of problem (P). We recall the hypotheses (2.2), (2.6) on
the data, and the definition of the operator A given in (2.20).

3.1 Linearized state equation and costate equation

The linearized state equation at (u, ) is given by

Z4 Az = Zvibig in Q;
i=1

z=0onY, z(-,0)=00n¢Q,

(3.1)

Forv € L?(0,T)", equation (3.7) above possesses a unique solution z[v] (as follows from
Lemma , and the mapping v + z[v] is linear and continuous from L2(0, 7)™ to Y. Particularly,
the following estimate holds.

Proposition 3.1. One has

12l oo 0,m522(02)) < MlZHbi”ooHUiHl; (3.2)

i=1
T m = X _
where My := ez t2iZo lill1[Ibill 9]l o 0,7:22(92)) -
Proof. Immediate consequence of Lemma[2.4] O

It is well-known that the dual of C'([0, 7)) is the set of (finite) Radon measures, and that the action of a
finite Radon measure coincides with the Stieltjes integral associated with a bounded variation function
p € BV(0,T). We may assume w.l.g. that 1(7") = 0, and we let di denote the Radon measure
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associated to /. Note that if di belongs to the set M, (0,7") of nonnegative finite Radon measures
then we may take p nondecreasing. Set

BV (0,T)o+ := {p € BV(0,T) nondecreasing, right-continuous; p(7') =0}.  (3.3)
The generalized Lagrangian of problem (P) is, choosing the multiplier of the state equation to be
(p,po) € L*(Q) x H™(2) and taking 5 € Ry, u € BV(0,T)§ .,
'C[ﬂapapm ILL](U, y) = B‘](uv y) - <p07 y(a O) - yD>H&(Q)

# [ p(de w0+ 1)+ > w(O@)y(e.) = oo 1) doc

23 / 05 (- 1)y (1)

The costate equation is the condition of stationarity of the Lagrangian £ with respect to the state that
is, forany z € Y:

(3.4)

q T
/ p(z + Az)dxdt + (po, 2(+, 0)) g1 (o) = Z/ / cjzdadpy(t)
Q = Jo Ja

+ 5 /Q(Q — yg)zdzdt + /Q(gj(x, T) — yar(x))z(x, T)dx. (3.5)

To each (p,1) € L?(Q) x HZ (), let us associate z = z[p, 1| € Y, the unique solution of
24+ Az=¢; z(-,0)=1. (3.6)

Since this mapping is onto, the costate equation can be rewritten, for z = z[p, 1] and arbitrary
(¢ ¢) € L2(Q) x H;(Q), as

qa T
/pgodxdt + <p0,'¢]>Ha(Q) = Z/ /Cjdedﬂj(t)a
Q j=1 0 Q

8 /Q (7 — ya)=dedt + B /Q (72, T) — yar(2))2(z, T)dz. (37)

The r.h.s. of (3.7) can be seen as a linear continuous form on the pairs (i, ¢) of the space L*(Q) x
HJ (). By the Riesz Representation Theorem, there exists a unique (p,po) € L*(Q) x H1(Q)
satisfying (3.7), that means, there is a unique solution of the costate equation.

Next consider the alternative costates

q q
Pt ::p+chuj; Do = p0+chuj(O). (3.8)
j=1 j=1

Lemma 3.2. Let (p, po, pt) € L*(Q) x H™H(Q) x BV(0,T); . satisty (8.7), let (p, p;) be given
by 3:8). Then p' € Y, it satisfies p* (0) = pj, and it is the unique solution of

—p' + Ap' = B —va) + > wiAc;, p'(T)=BE(T) — yar). (3.9)

j=1
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Moreover, p(x,0) and p(z, T are well-defined as elements of H} () in view of (3.8), and we have
p(,0) = po, p(,T) =BG T) = Yar)- (3.10)

Proof. Let z € Y. Note that, for 1 < j < g, the function ¢ — [, ¢;(x)z(z,t)dz, belongs to
lel(O, T) and is, therefore, of bounded variation. Using the integration by parts formula for the
product of scalar functions with bounded variation, one of them being continuous (see e.g. [8, Lemma
3.6]), and taking into account the fact that 11;(7") = 0, we get that, for i) = z(-,0),

Z/c],u]zdxdt+2uj (FRUFERS Z/ /c]zdxd,uj (3.11)

By the definition (3.8) of the alternative costate, the latter equation can be rewritten as

/(p — p)zdzdt + (p} — po, ¥ H1(Q) Z/ /c]zdxd,u] (3.12)
Q

Now adding (3.7) and (3.12), as well as the identity

q
/(p1 —p)Az = / > Az (3.13)
Q Q j=1

we obtain, since ¢ = z + Az, that (implicitly identifying, as usual, L*(£2) with its dual)
/ pedadt + (pg, V) Hi(Q)
Q

Iﬁ/cg(zi—yd)zdxdﬂrﬁ/ﬂ(@(&ﬂ—ydT(:c)) 2(x,T) d:c+/ Zc]ujAz (3.14)

Since A is symmetric, using (2.6), we see that p' is solution in Y of (3.9); the solution of the latter
being clearly unique. Multiplying (3.9) by z € Y and integrating over (), with an integration by parts

of the term with p'z, we recover (using (3-8)) equation (3:14) implying that p*(z, 0) = pi(x) for a.a.
x in 2. Conversely, it is easy to prove that any solution of (3.14) is solution of (3.9).

Since p' and ¢;1; belong to L>=(0,T; H}(2)), by (3:8) also p has this regularity. Use (3.8) again,

the final condition on p* and the fact that 1(7") = 0 to get the second relation of (3.10). Furthermore,

we have
q

po=p"(,0) = > ¢;;(0) = p(-,0). (3.15)
j=1
O

Corollary 3.3. Ifn € H'(0,T)?, thenp € Y and

q
—p+ Ap =By —va) + D _ ¢l (3.16)
j=1
Proof. This follows immediately from and (3.9). O
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3.2 First order optimality conditions

Let (@, §) be an admissible trajectory of problem (P). We say that « € BV (0,7 , is complemen-
tary to the state constraint for v if

/OT 9 (-, 1)) dp; (t)= /OT </Q ¢;(2)j(x, t)dz + czj) dp;() =0, j=1,...,¢. (3817

Let (B, ) € Ry x BV(0,T)§ ,. We say that p € L>(0,T'; Hy(£2)) is the costate associated with
(u,y, B, 1), or shortly to (3, i), if it is the unique solution of (3.5) with py = p(+, 0).

Definition 3.4. We say that the triple (5, p, 1) € Ry x L>(0,T; Hy(Q)) x BV(0,T)§, is a
generalized Lagrange multiplier if it satisfies the following first-order optimality conditions: u is com-
plementary to the state constraint, p is the costate associated with (3, 1), the non-triviality condition

(8,dp) # 0, (3.18)
holds and, fori = 1 to m, defining the switching function by
U2(t) := Bay + / bi(x)y(z, t)p(z,t)dx, fori=1,...,m, (3.19)
Q

one has WP € L>(0,T)™ and
m T
> / TP (4) (u;(t) — w;(t))dt > 0, forevery u € Ung. (3.20)
=1 0

We let A(w, 1) denote the set of generalized Lagrange multipliers (3, p, i) associated with (., ). If
B = 0 we say that the corresponding multiplier is singular. Finally, we write A1(u,y) for the set of
pairs (p, i) with (1,p, u) € A(u,y). When the nominal solution is fixed and there is no place for
confusion, we just write A and A, .

Note that, in view of (3.70), po = p(-, 0) and hence we do not need to consider py as a component of
the multiplier.

3.2.1 The reduced abstract problem

Set F'(u) := J(u,y[u]),and G : L?(0, 7)™ — C([0,T))9, G(u) := g(y[u]). The reduced problem
Min F(u); G(u) € K, (RP)

UEULq

where K := C([0,T])Z is the closed convex cone of continuous functions over [0, 7'], with values
in RY . Its interior is the set of functions in C'([0, T'])? with negative values. We say that the reduced
problem is qualified at  if:

{ there exists u € U,q such that v := u — 4 satisfies 3.21)

G(u) + DG(u)v € int(K).

Given a Banach space X, a closed convex subset S C X and a point 5 € S, the normal cone to S
at s is defined as

Ng(5) :=={z" € X*; (2",s—5) <0, forallse S} (3.22)

We get the following first order conditions for our problem (P):
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Lemma 3.5. (i) If (i, y[u]) is an L*-local solution of (P), then the associated set A of multipliers is
nonempty.

(ii) /f in addition the qualification condition holds at u, then there is no singular multiplier, and
Ay is bounded in L>=(0,T; Hy(Q2)) x BV (0,T)§ ,.

Proof. (i) Let us consider the generalized Lagrangian associated with the reduced problem (RP):
q T
LB W) = BF () + Y [ Gu)e)d (o) (8.29)
j=1"0

Let @ be a local solution of (RP). By, e.g., [9, Proposition 3.18], since /' has nonempty interior, there
exists a generalized Lagrange multiplier associated with problem (RP), that is, (5,dp) € Ry x
Ng(G(u)) for € BV(0,T)§ , such that

(8,du) #0 and  — D, LB, p|(a) € Ny, (w). (3.24)

Due to the costate equation (3.7), the latter condition is equivalent to (3.20).
(i) That A is nonempty and weakly-* compact follows from [9], Proposition 3.16]. O

Observe that the qualification condition for (RP) given in (3.21) holds if and only if the following quali-
fication condition for the original problem (P) is satisfied:

{ there exists € > 0 and u € U,q such that v := u — u satisfies (3.25)

9;(w(- 1) + g5 (-, 1)z[v](-,t) < —¢, forallt € [0,T],and j = 1,...,q.

In view of Lemma 3.5] if (3.25) is satisfied, then A; is nonempty and weakly-* compact.

In the sequel of this section, we consider (@, 3, 3, p, j1), with § the state associated with the admissible
control u and (3, p, ) € A.

3.3 Arcs and junction points
We assume in the remainder of the article that the admissible set of controls has the form
Upg = {u € L*(0,T)™; ; < uy(t) <y, i =1,...,m}, (3.26)

for some constants u; < u;, fori = 1,...,m. Consider the contact sets associated to the control
bounds defined, up to null measure sets, by

Li={t€0,T); w(t) = w}, L:={te0,T); w(t)=da}, L:=1ILUI. (3.27)
Forj =1,...,q, the contact set associated with the jth state constraint is
If = {t €[0,T1; g;(y(-,t)) = 0}. (3.28)

Given 0 < a < b < T, we say that (a,b) is a maximal state constrained arc for the jth state
constraints, if ch contains (a, b) but it contains no open interval strictly containing (a, b). We define in
the same way a maximal (lower or upper) control bound constraints arc (having in mind that the latter
are defined up to a null measure set).
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We will assume the following finite arc property:

{ the contact sets for the state and bound constraints are, (3.29)

up to a finite set, the union of finitely many maximal arcs.

In the sequel we identify @ (defined up to a null measure set) with a function whose 7th component is
constant over each interval of time that is included, up to a zero-measure set, |rJ either ] or I For
almost all t € [0, T'), the set of active constraints at time t is denoted by (B(t), B(t), C(t)) where

Bt):={1<i<m;u
B(t):={1<i<m; @

; (3.30)
Ct)={1<j<gq gj(w(,1) =0}

These sets are well-defined over open subsets of (0, 7") where the set of active constraints is constant,
and by (3.29), there exist time points called junction points

O==mp< - <71 :=1T, (8.31)

such that the intervals (7, 71) are maximal arcs with constant active constraints, fork = 0, ..., r—
1. We may sometimes call them shortly maximal arcs.

Definition 3.6. Fork = 0,...,r — 1, let Bk, Ek, C'. denote the set of indexes of active lower apd
upper bound constraints, and state constraints, on the maximal arc (Ty, Ty+1), and set By, := B;UBj.

As a consequence of above definitions and hypothesis (3.26) on the admissible set of controls, we get
the following characterization of the first order condition.

Corollary 3.7. The first order optimality condition (3.20) is equivalent to
{t€[0,T]; W(t) >0} C i,  {te[0,7]; WI(t) <0} C I, (3.32)

for every (5, p, 1) € A.

3.4 About the jumps of the multiplier at junction points
Given a function v : [0,7] — X, where X is a Banach space, we denote (if they exist) its left and

right limits at 7 € [0, 7] by v(7=£), with the convention v(0—) := v(0), v(T+) := v(T); then the
jump of v at time 7 is defined as [v(7)] := v(7+) — v(7—).

We denote the time derivative of the state constraints by
Wy 4 . ‘
g = Lo@(.0) = | ¢@ile,de, j=1,...q (339)
Q

Note that gj(-l)[t] is an element of L' (0, T), foreachj = 1,...,q.

Lemma 3.8. Let u have left and right limits at 7 € (0,T"). Then

WO ()] = [0 (D) =0, i=1,....m, j=1,....q. (3.34)
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Proof. Since p = p' — > 1_, ¢y, pt € Y C C([0,T); Hy(Q)), p € BV(0,T)§ ., and any
function with bounded variation has left and right limits, we have that p(-, 7) has left and right limits in

H} () and satisfies
q

P 7)== ¢ilu(r)], forallT € [0,7]. (3.35)

j=1
Consequently W? has left and right limits over [0, 7], and

q

(WP (7)] = — Z[,uj(T)] /Qbi(x)cj(:v)y(xﬁ)dx, forall 7 € [0, T]. (3.36)

J=1

Next, if u has left and right limits at some 7 € (0, 7"), then, using the state equation and (3-33), we
get

9" [r] = ZWT” /Q bi(z)c;(2)y(x, 7)dz. (3.37)
Thus, by and (3.37), we have
Z[\Pﬁ’ (T)][w(7)] + Z[gﬁ-”[ﬂ] [115(T)] = 0. (3.38)

By the first order conditions we have [U?(7)][a;(7)] < 0, fori = 1 to m. Also [u;(T)] > 0,

and if [u;(7)] # 0, the corresponding state constraint has a maximum at time 7. Then [gj(-l)[T]] < 0.

So, all terms in the sums in (3.38) are nonpositive and therefore are equal to zero. The conclusion
follows. m

3.5 Regularity of the switching function and multiplier over maximal arcs

In the discussion that follows we fix & in {0,...,r — 1}, and consider a maximal arc (7, Tx+1),
where the junction points are given in (3.31). Recall Definition for By, By, B, € {1,...,m} and
Cp C{1,...,q}.Set By :={1,...,m} \ By and

M;j(t) = / bi(z)cj(x)y(z,t)de, 1<i<m, 1<j<q (3.39)
Q
Let M, (t) (of size | Bi| x |Ck|) denote the submatrix of M (¢) having rows with index in By, and
columns with index in C. In the sequel we make the following assumption.
Hypothesis 3.9. We assume that |Cy,| < |By|, fork = 0, ...,7 — 1, and that the following (uniform)

local controllability condition holds:

there exists o > 0, such that | My, (t)\| > a| )|,
(3.40)

forall A € R a.e. on (T, Thy1), fork =0,...,r— 1.

Remark 3.10. This hypothesis was already used in a different setting (i.e. higher-order state con-
straints in the finite dimensional case) in e.g. [7,126]. Note that condition (3.40) implies, in particular,
that the matrix My (t) has rank |Cy;| over (T, Tk11)-
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The expression of the derivative of the jth state constraint, for 1 < 5§ < g, is

—(1 _ _ _
5,"1t] = / ¢i(@) (@ t) + A, t) =g (a 1)) do + Y- My(D)at), (341
Q i=1
or, in vector form, for the active state constraints (denoting by ggj [t] the vector of components g](l) [t]
for 7 € Cy), we get
—(1 v _
Ge, 1) = Gu(t) + Mi(t) g, (1) = 0, (3.42)

where u g, is the restriction of u to the components in Bk, and Gk(t) takes into account the contribu-
tions of the integral in (3.41) and of the components of u in By, that is, for j € Cl:

Grit) = /Q (@) + By(e.t) =9, tP)de + Y Mymft). (@49

By the controllability condition (3:40), M;,(t)" is onto from RIZ! to RIC*|. In view of the state equa-
tion, by an integration by parts argument, M/ (¢) has a bounded derivative and is therefore Lipschitz
continuous. So there exists a linear change of control variables of the form wu(t) = Ny (t)u(t), for
some invertible Lipschitz continuous matrix Ny (t) of size m x m, such that, calling N (t) the upper
| B| x | By,|—diagonal block of Ny (t), it holds that M;,(t) " Ni.(t) has its first |Cx| columns being
equal to the identity matrix, the other columns having null components. That is, for all & € RIPx!:
(My(t) "Ny (t)a); = 1, forj=1,...,|Cpkl. (3.44)

Over a maximal arc (7, Tx+1), we have that g](-l)[t] = (0 for j € C}, is equivalent to

;= —G;(t), forj=1,...,]|Ckl. (3.45)
The following result on the regularity of the state constraint multiplier holds. Recall the definition of the
switching function WP given in (3.19).
Proposition 3.11. There exists a € L'(0,T)™ such that
(i)
dUP(t) = a(t)dt — M(t)du(t), on|0,T]. (3.46)

(i) We have that [ic, is locally integrable over (Ty, Ti.+1), hence jic, is locally absolutely continu-
ous, and the following expression holds

0= (t) = ap, (£)dt — My(t)jic, (t),  on (i, Ths1)- (3.47)

Proof. By (3:8) and (3.19), one has, fori € {1,...,m}:

UP(t) = oy + / bi(2)y(z, t)p' (z,t)dx — Z M;j(t)p;(t), i=1,...,m. (3.48)

Q =

Leta: (0,7) — R™ be given by

q
= /Q bi(2)p(, Op! (2, t)de — S My (Ops(t), fori=1,...,m.  (349)

j=1
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Note that MZJ fQ (x,t)d is integrable (this follows integrating by parts the contri-
bution of A% and since Y C C([ : ], H;(£2))), and that

d L »

3 (") =" Ay — g Ap" + fp' + 295" — By — va) Z pigAc. (3.50)

Integrating by parts the terms in (3.50) containing Laplacians, we get, for the integral term in (3.49),

d q
/ bz(ﬁ)a (ﬂpl) dz = / b; (fpl +2v5°p" — BY(Y — ya) — ZM;‘?JAC]‘) d
o 0 (3.51)

j=1
- / Vb (p'Vy — yVph)da.
Q
It follows that @ € L'(0,T)™ and holds. Consequently W” has bounded variation.
Over (7y, Ti+1), we have dy;(t) = 0 whenever j & Cj, and so

0=dW% (t) = ap,(t)dt — My(t)dpuc, (t). (3.52)

Since Mj,(t) is continuous and injective, and a is integrable, this implies the existence of /i;(t) €
LY0,T), for j € Cy. This yields (3.47).

And so, /i, (t) is locally absolutely continuous. O

Corollary 3.12. Let the finite maximal arc property (3.29) and the uniform controllability condition

hold.

() If f,yg € L>=(0,T; L*(Q)), thena € L>(0,T)™

(ii) If additionally f,y4 € C([0,T]; L*(Q)), then uu is C' over each maximal arc (T, Ty 1)
Proof. Indeed, a careful inspection of the previous proof shows that a is a sum of essentially bounded
terms, so (i) follows. If the additional regularity hypotheses of item (ii) hold, then a is continuous. The

regularity of y follows from (3.52) and the local controllability assumption (3.40). This concludes the
proof. O

4 Second order necessary conditions

In this section we derive second order necessary optimality conditions, based on the concept of radi-
ality of critical directions.

Let us consider an admissible trajectory (1, ¥).

4.1 Assumptions and additional regularity

For the remainder of the article we make the following set of assumptions.

Hypothesis 4.1. The following conditions hold:
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1. the control set has the form (3.26),

2. the finite maximal arc property (3.29),

3. the qualification hypothesis (3.25),

4. the local (uniform) controllability condition over each maximal arc (Ty, Tr11),

5. the discontinuity of the derivative of the state constraints at corresponding junction points, i.e.,

for some ¢ > 0:¢;(y(-, 1)) < —cdist(t,ljc), foralit € [0,T],j=1,...,q, (4.1)

6. the uniform distance to control bounds whenever they are not active, i.e. there exists 6 > 0
such that,

dist (@ (t), {w;, @;}) >0, foraat¢l, foralli=1,...,m, (4.2)

7. the following regularity for the data (we do not try to take the weakest hypotheses) for some
r>n-+1:

Yo, Yar € Wy (Q N W"(Q), ya, f € L2(Q), be L=(Q)™, (4.3)

8. the control i has left and right limits at the junction points T, € (0,T"), (this will allow to apply
Lemmal3.8).

In view of point 3 above, we consider from now on 5 = 1 and thus we omit the component [ of the
multipliers.

Theorem 4.2. The following assertions hold.

(i) Foranyu € L>(0,T)™, the associated state y[u] belongs to C'(Q). Ifu remains in a bounded
subset of L>(0,T)™ then the corresponding states form a bounded set in C(Q). In addition,
if the sequence (u,) of admissible controls converges to u a.e. on (0,T), then the associated
sequence of states (1, := y[u,]) converges uniformly to ij in Q.

(i) Forevery (p, 1) € A1, one has that n € W1>°(0, T)? and p is essentially bounded in Q.

Proof. (i) Let r € [2,00). Thaty € W>L7(Q) follows from Theorem |A.3|in the Appendix. Taking
r > n + 1, it follows from the Sobolev Embedding Theorem (see e.g. [17, Theorem 5, p. 269]) that
y is continuous (and even Holder-continuous) on the closure of (), with uniform bound over the set of
admissible controls. If the sequence (u,) of admissible controls converges a.e. to @, by the Dominated
Convergence Theorem, u, — u in L(0,T") for all ¢ € [1,00). So, by similar arguments it can be
proved that the associated sequence of states converges uniformly to 4.

(if) By Hypothesis , yar is the trace at time 7" of an element of WQJ""(Q) vanishing on 3 and this
obviously holds also for y(7") in view of Theorem in the Appendix. It foIIows then from corollary
A2 that p' € W217(Q). The continuity of 11 at 1unct|on points follows from (@.7) in Hypothesis
and Lemma 3.8 The boundedness on each arc of the derivative of . follows from (3.47) for 1, since
by Corollary a € L*>(0,T)™ and by (3.40), M (t) is ‘uniformly injective’ over each arc. The
conclusion follows. O]
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4.2 Second variation

For (p, ) € Ay, set

k(x,t) =1 —6vy(z, t)p(z,1), (4.4)
and consider the quadratic form
Qlpl(z,v) == / </@22 + Qvaibl-z> dazdt + / z(x, T)*dz. (4.5)
Q i=1 Q
Let (u, y) be a trajectory, and set
(5:% U) = (y - g? u— ﬂ) (46)

Recall the definition of the operator A given in (2.20). Subtracting the state equation at (@, i) from the
one at (u, y), we get that

d ‘
—0y + Ady = Z vibiy — 375(0y)* — (dy)* in Q,

dt p (4.7)
dy=0 onX, dy(-,0)=0 inf.
Combining with the linearized state equation (3.1), we deduce that 7 given by
=0y — 2, (4.8)
satisfies the equation
1—An=rn+7 inQ,
n—An=r Q | 4.9)
n=0 onX, n(,0)=0 inQ
where 1 and 7 are defined as
ro= -3y’ + Z u;b;, Z b0y — 3y (dy)? — v(6y)>. (4.10)

=1
Proposition 4.3. Let (p, ;1) € Ay, and let (u, y) be a trajectory. Then

Llp, ) (u, y,p) — LIp, p)(a, g, p)
= /OT P (t) - v(t)dt + 5 Q[p|(0y,v) — 'y/Qp(éy)?’dxdt. (4.11)
Here, we omit the dependence of the Lagrangian on (3, po) being equal to (1, p(-,0)).
Proof. Use AL to denote the Lh.s. of (4.17). We have

d
AL = J(uy) — J(a,y) + / P <—E5y + Ady — (Y’ — 173)) dxdt
Q

m m q T
+ / P (Z vibiy + Z Eibi5y> dxdt + Z/ / c;joy drdpu;(t)
Q i=1 i=0 j=170 JQ
:/ oy (%5y +y— yd) dxdt + / 0y(z, T) <%5y(x, T)+y(x,T) — ydT(x)>dx (4.12)
Q Q

+ Z a; / vdt + / D (——5y + Ady — v(6y® + 3yoy* + 3y25y)> dadt
— 0 0 dt

m m q T
Q@ i=1 i=0 j=170 JQ
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By (3.5) we obtain

d 4 T
/ — oy dxdt = / pAdy dadt + g / / c;O0y dxdp;(t)
dt Q j=1"0 Q

+/Q5y(y—yd)dxdt—l—/5y(x T) (§(z,T) — yar(z)) dz.

(4.13)

Thus, from (#12) and (#.13) we get
m T
AL = %/ Sy*dadt + %/ Sy(-, T)*dx + ZO@/ v;dt
Q Q i=1 0
+ / P (—7[53/3 + 396y%] + Zw@y) dzdt, (4.14)
Q

=1

which leads to @.17) in view of the definition of U given in (3-19). This concludes the proof. O

4.3 Critical directions

Recall the definitions of I;, I; and IJC given in (3.27) and (3.28), and remember that we use z[v] to
denote the solution of the linearized state equation (3.1) associated to v.

Let us define the cone of critical directions at % in L?, or in short critical cone, by

(z[v],v) € Y x L*(0,T)™; )
v;(t)PP(t) =0 a.e.on [0, 77, forall (p, ) € Ay

C:=q v(t)>0ae.onl;, v;(t)<0aeonl;, fori=1,...,m, - (4.15)
/ xt)dx<00n[c, forj=1,...,q

The strict critical cone is defined below, and it is obtained by imposing that the linearization of active
constraints is zero,

(z[v],v) €Y x L*(0,T)™; v;(t) =0 ae.onl;, fori =1,...,m,

Cy =
/cj(x)z[v](x,t)dx =0 on I]C, forj=1,...,q
Q

(4.16)

Hence, clearly Cs; C C, and C is a closed subspace of Y x L%(0,7)™. Now, note that in the interior
of each I one has, for every (z[v],v) € C,

0= @@ N:00) = 5 [ o@elil(enda .
_ /Q ;(2)[0](z, £)dz — /Q o5 () (—(A=lu)) (. 0) + (0(1) - b)) 1))
which can be rewritten as
Zvi(t)M,»j(t) :/ch(x)(Az[v])(x,t)dx, (4.18)
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in view of the definition of 1/;; given in (3.39). Therefore, over any arc (a, b) we have g’ (y(-, t))z[v](-, 1) =
0 fort € (a,b) if and only if g’((:, a))z[v](-,a) = 0 and holds over (a,b). We define the
entry (resp. exit) point of a time interval (', ¢") as t’ (resp. t”). This induces the consideration of the
following sets

([0l v) € Y x L2(0,T)™

C, = ;o . , (4.19)
gj(y(-,Tk))z[v](Tk) =0,ifjeCy, fork=0,...,7r—1

(z[v],v) €Y x L*(0,T)™; v;(t) =0 a.e.onI;, fori =1,... m,

C, = " , 4.20
Z vi(t)M;;(t) = /ch(x)(Az[v])(a:, t)dx a.e. on ch, forj=1,...,q 4.20)
i=1

With these definitions, we can write the strict critical cone as
Cs=ConNCy, (4.21)

and prove the following result.

Lemma 4.4. C; N (Y x L>(0, T)m> is dense in C, with respect to the Y x L*(0, T')™-topology.

Proof. In view of Dmitruk’s density lemma (see [16, Lemma 1]), it is enough to prove that C'; N (Y X
L>(0, T)m> is a dense subset of C,.

Let us then take (z,v) € C,,. Recall the definition of the junction times 7, given after equation (3.39).
Fix & € {0,...,7 — 1}. Note that we can take a partition of [0,7],say 0 = tg < -+ < t, <
-+« <ty = T, such that (ts,ts.1) is contained in some (7x, Tx+1), and on (s, ty11) a fixed set of
the rows of M () is linearly independent with rank equal to the one of M (¢). Now consider the matrix
M;, given after (3.39). Using the same notation as in ([3.42), let us write v, to refer to the restriction
of v to the components in By,. For each t € (t;,t,.1), we can write

vg, (t) = v, o(t) +vp,1(t), (4.22)

where vz, o(t) € Ker My (t)" andvp, 1 (¢) € Im My(t) for almostall ¢, hence v, 1 () = My (t) Ak (t)
for some A\ (t) € RICt!. Let E, (t) be the |Cy|-dimensional vector with components

Eei(t)i= [ ea)(Az)(e s, € G (4.29
Q
Then can be rewritten as

Ec, (t) = My(t) 'vg, (t) = My(t) "vg, 1 (t) = My(t)" My(t)Ae(t), (4.24)

and, therefore, A, (t) = (Mk(t)TMk(t))_lECk(t), so that
V1 (t) = Mi(t)N(t) = M(t) (M) T Mi(t)) ™ Ec, (b). (4.25)

By an integration by parts (in space) argument, it follows that E¢, (t) is a continuous function, and
so is Mj(t). Therefore, v, ; is continuous on each maximal arc. We may also view the application
z — vp, 1 as alinear and continuous mapping say
r—1
Li: Y — HLip(Tk,Tk+1)|Ck| (4.26)
k=0
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where CY, is the set of active state constraints on (7, 7x11) and, for t' < ¢”, Lip(t', t”) is the Banach
space of continuous real functions with domain (¢', ¢""), endowed with the norm

ft) — (7

i o= s 150+ swp HOZIOL 427
te(t' ') tre(t t) it — 7|

with the convention “0/0 = 0.

Forany € > 0, there exists v in L>(0, T)1Bxl such that 105, 0 = VB,0ll2 < & it has zero com-

ponents for indexes correspondlng to active control bound constraints, and vg, o(t) € Ker M ()T
for a.a. t. In fact, to construct this ka o it suffices to project an approximation of vg, o Obtained by a

truncation argument on the kernel Ker M;,(¢) . In what follows we shall abuse notation and use the
same symbol to denote a vector and its canonical immersion in R™. Let z. be the unique solution in
Y of the linearized equation

m

25 + AZa = Z(Ll(zg) + 0%70 + UB)ibi g, (428)

i=1

with the usual initial and boundary conditions, and where v is the restriction of v to the set B. Set

B L= Li(z), v B = v%k Lt v%k o> and define v, to have the restriction to By equal to v%k and
the restriction to By, equal tov. Then v, isin C, N (Y x L>(0,7)™) and ||v: —v|]2 = O(e). Hence,
C,N <Y x L>(0, T)m> is a dense subset of C,. The conclusion follows. O

4.3.1 Radiality of critical directions

According to Aronna et al. [3, Definition 6], a critical direction (z, v) is quasi radial if there exists 75 > 0
such that, for 7 € [0, 79}, the following conditions are satisfied:

mas {0,(5(1)) + 7 (5(. )2} = or), forj=1.....q. (4.29)
w; < wi(t) +71vi(t) < 4, ae.on|0,T], fori=1,...,m. (4.30)

Lemma 4.5. Every direction in Cy N (Y x L>=(0, T)m> is quasi radial.

Proof. Let (z,v) € Cs N (Y x L>(0, T)m> Then (4.30) follows from . Let us next prove

(#29). The function h(t) := g;(y(t))z(t) has the derivative h(t = [, ¢i(x)z(z, t)dz, so that
()] < llejllzz@ N2, )|l z2() and hence, h € L2(0,T). Let 0 S t <t < T. By the Cauchy-
Schwarz inequality, for any € > 0:

t//
(") — h(t)| < / ()]t < Tl oo 4.31)
t/

Let (a, b) be a maximal constrained arc with say a > 0. Take t' < a, and t" = a. When t’ 1 a, by
the Dominated Convergence Theorem, ||h||2(y 4y — 0. Given € > 0, we deduce with (&1) that for
7 > 0and ' < a close enough to a:

g;(U(- 1) + 795(5(-,1)2(t) < —cla —t) + Tev/a —t, forallt € (t,a). (4.32)
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The maximum of the r.h.s. of (4.32) over t € [a — ¢, a] is attained when

7'282
cWa—t=31e, a—t= . (4.33)

4c2?

So the r.h.s. of (@.32) is less or equal than 72¢2 /(4c). Since we can take ¢ arbitrarily small, it is of
order o(7?). For t > b close to b, we have a similar result. For ¢ far from the boundary, (#29) is a
consequence of hypothesis (4.1). The conclusion follows. O

Combining the previous result with Lemma[4.4] we deduce that:

Corollary 4.6. The set of quasi radial critical directions of C is dense in Cs.

4.4 Second order necessary condition

We obtain the following result applying Corollary above and the second order condition in an
abstract setting proved in [3, Theorem 8].

Theorem 4.7 (Second order necessary condition). Let the admissible trajectory (1, §) be an L>°-local
solution of (P). Then

max Q[p](z,v) > 0, for all (z,v) € Cs. (4.34)
(p:n)EM

Proof. Let (z,v) € Cs. By Corollary there exists a sequence (zf, vﬁ) of quasi radial directions
converging to (z,v) in Y x L?(0, T')™. Doing as in [3, Theorem 8], we get the existence of a multiplier
(pt, u¥) € Ay (with A; defined in Section (3.2.1), such that

Qp')(=",v*) > 0. (4.35)

By Lemma A1 is bounded so that d/f is also bounded. Extracting if necessary a subsequence, we
may assume that d.* weakly-* converges to some dy with € BV (0, T)§ ., and since L>(0, T, Hy (£2))
is included in L?(Q), p* weakly converges in L?*(Q) to some p € L%*(Q), such that (p, 1) € A;.
Since (2%,v%) — (z[v],v) in Y x L2(0,T)™, by lemma >, vib;2* strongly converges to
> vibiz, and so we easily deduce that Q[p*](z¢, v*) — Q[p|(z[v], v). The conclusion follows. [

A Strong solutions of the heat equation

We consider the heat equation with Dirichlet boundary condition:
y—Ay=fin@Q, y(z,0)=y(z); y=honX. (A.1)
We have the following result, see Lieberman [21, Thm 7.32, p. 182]:

Theorem A1. Letr > 2, w € WM (Q) and f € L"(Q). Setting yo := w(-,0) and h := Tsw
(trace of w over X.), equation has a unique solution y € W17 (Q). In addition there exists
C' > 0 such that

lyllw2rr@) < C (I fllr@ + lwlw2rr@) - (A-2)
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Corollary A.2. Givenr > 2,4y € W, () NW?"(Q) and f € L"(Q), equation has, for
h = 0, a unique solution yy € W7 (Q) that satisfies

lyllwarrq) < C (I1£]

@) + lvollw2r@) - (A.3)

Proof. Apply Theorem [A.1| with w(x,t) := yo(z). It is clear that w € W>17(Q) and that w has
trace o at time 0 and zero trace over .. The conclusion follows. O

By the standard Sobolev embeddings, we have the continuous inclusion
W2 (Q) c Wh(Q) € L™(Q), ifr >n+1. (A.4)
This allows to prove the following.

Theorem A.3. Assume thatu € L®(0,T), yo € Wy (QNW?"(Q) and f € L'(Q), with
r > n + 1. Then the state equation has a unique solution y[u, vo, f] in W1 (Q), and the
mapping y[u, yo, f] is of class C*° from L>=(0,T) x Wy (Q) N W?2"(Q) x L"(Q) into W17(Q).

Proof. We have that g := —Ay, belongs to L"(Q2). Let 4=~ be the unique solution of —Ays = g+
in 2, where g™ := max(g,0) and g~ := —min(g, 0), with homogeneous Dirichlet condition on
the boundary. Set f* := max(f,0) and f~ := —min(f,0). Denote by y™ (resp., y ) the solution

of the state equation when (yo, f) is (yg, /) (resp. (yo , f~))- By the monotonicity results in
Lemma we have that —y~ < y < y™. Now let y™*, y~~ denote the solutions of the state
equation when (vo, ) is (vg, f1), (¥, f7), respectively and, in addition, v = 0. We claim
that —y~~ < —y~ <y <yt <y"T.Indeed, forz € Y,set H,z := 2 — Az — z >, u;b;. Then

Hyt =t ="’ < fr=Hy™. (A.5)

Since y™ and y T have the same initial conditions, it follows that y™ < y™ . In an analogous way, it
can be proved that —y~— < —y™.

Since y= € W, () NW?>"(Q) and f* € L'(Q), by Corollary y*™t and y~~ belong to
W2LT(Q) and, therefore, since 7 > n + 1, they are also elements of L>(Q). So, y € L*>(Q).
Consequently, H,y = f —yy® € L"(§2) and, by Theorem[A.1]again, y € W17(Q).

We recall that, for » > n + 1, Y, denotes the set of elements of W% (Q) with zero trace on 3, and
Y,? denotes the trace of Y, at time zero. Endowed with the “trace norm", Y° is a Banach space that
contains W&T(Q) N W2 () in view of the proof of the above Corollary (by Lions [23, p. 20],
Y is a subset of W2=2/"7(Q0)). That (u, o, f) + y[u, o, f] is of class C™ is a consequence of
the Implicit Function Theorem applied to the mapping F' from Y, x L>=(0,T) x Y,? x L™(Q) into
L"(Q) x Y, defined by

F(y,u, 9o, f) := (Huy + 7%, 9(0) — y0). (A.6)
The key step is to prove that the partial derivative D, I’ is bijective; this can be done easily, taking
advantage of the fact that W' (Q) C L*>°(Q) whenr > n + 1. O

B An example

Since we made a number of hypotheses about the optimal trajectory, especially at junction points, it
is useful to give an example where these hypotheses are satisfied. For that purpose we discuss a
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particular case in which the original optimal control problem can be reduced to the optimal control of
a scalar ODE.

Let Q = (0,1), and denote by ¢, (z) := v/2sin 7 the first (normalized) eigenvector of the Laplace
operator.

We assume that v = 0, the control is scalar (m = 1), by = 0and b; = 1in (), andthat f = 0in Q.
Then the state equation with initial condition c; reads

y(x,t) — Ay(z,t) = u(t)y(z,t);  (z,t) € (0,1) x (0,7), y(x,0)=ci(x), x€Q. (BA)

It is easily seen that the state satisfies y(x,t) = y1(t)c1(x), where y; is solution of

D (t) + 7Py (t) = ) (t); te(0,7), %(0)=1yp=1. (B.2)
We set ' = 3 and consider the state constraint with ¢ = 1 and d; := —2, and the cost

function (2.5) with ar; = 0. The state constraint reduces to
yi(t) <2, telo,3). (B.:3)
As target functions take y,r := ¢1 and yq(z,t) := yq(t)c1(x) with
1.5et  fort € (0,log2),

ga(t) =< 3 fort € (log2,1), (B.4)
4—t fort e (1,3).

We assume that the lower and upper bounds for the control are % := —1 and @ := w2 + 1. We will
check that the optimal control is

U fort € (0,log?2),
u(t) =< m fort € (log2,2), (B.5)
72—1/:&51 fOI’tE(Z,B).

Thus, for the optimal state we have

el fort € (0,log 2),
g(t) =< 2 fort € (log2,2), (B.6)
4—t fort e (2,3).

The above control is feasible. The trajectory (1, ) is optimal since for any t € (0,T), the state 7 (¢)
has the best possible value (in order to approach 7, and minimize the cost function) that respects the
state constraint.

Let us check Hypothesis for this example. Conditions 1 and 2 are obviously satisfied. For the
constraint qualification in Condition 3 consider the linearized state equation with unique z1 [v]:

4= (u—n)z +oh; 2(0) =0, (B.7)

with v(t) := @ — u(t) < 0. One easily checks that z;[v](t) < O for all t > 0. Hence, we can find
e > 0 such that

g 0) + g (G-, 1) z1[v] (-, 1) = 41 (t) — 2+ 2z1(t) < —e, forallt € (0,7). (B.8)
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Figure 1: Optimal control and state for the example

Conditions 4 holds, since
M(t) = My(t) = / c1(x)y(x, t)de = g1(t) >0 fort € (0,7T). (B.9)
0

For Condition 5 we have
log2 —t fort € (0,log2),
dist(t, I¢) =< 0 fort € (log2,2), (B.10)
t—2 fort € (2,3),

and hence,
n(@(-1) = (t) —2 < —dist(t, I7). (B.11)

Conditions 6 and 8 hold by the choice of the control in (B.5). Condition 7 holds by definition.

We solve this problem numerically using BOCOP [5] and get the optimal control and state given in

Figure[d]

We now discuss the second order optimality condition for this example. The costate equation is
—p+Ap = i1 —a) + crfn, p(T) = H(T) = yar = 0 (B.12)

with A as defined in (2.20). Since 3 and y, are colinear to ¢4, it follows that p(z, t) = p1(t)ci(z), and

—p1 4 7y = Upy + Y1 — Ga+ fu; pi(3) = 0. (B.13)
0 (sate constraint not active) and 7, = 1,4, therefore p; and p identically vanish.
is

Over (2,3), [
, out of bounds and therefore

Over (log2,2), u

0— / P, (. 1) = pr (D (0) / er(@)? = 21 (). (B.14
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It follows that p; and p also vanish on (log 2, 2) and that
1 =—(y1 —9a) >0, aate (log2,?2). (B.15)

Over (0, log 2), the control attains its upper bound, then

—p1 =p1 — 3¢ (B.16)
with final condition p; (log 2) = 0, so that
et
pi(t) = 1 et (B.17)

As expected, p; is negative.

Next, the linearized state equation at (u, §) reads
Z—Az=uz+vy; z(-,0)=0. (B.18)
Since ¥ = y1(t)c1 (), we deduce that z = z;(t)cy (), with z; solution of
S+ =azn +og; 21(0) = 0. (B.19)
Therefore if (v, z) satisfy the linearized state equation

z(x, T)?dz = /o (z1(1)% + pr()v(t) 21 (2))dt + 21(3)*.

(B.20)
If in addition v is a critical direction, since v = 0 and z; = 0 a.e. on (0,2), and p;(t) = 0 on (2, 3),
we get

Qlpl(zv) = [

(2% + pvz)dzdt + /
Q

Q

Qlpl(z,v) = /23 21 (1)2dt + 2 (3)%. (B.21)

Thus, Q is non-negative for any critical directions (z[v],v), in accordance with the second-order
necessary condition of Theorem 4.7
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