Existence of solutions of a finite element flux-corrected-transport scheme

Volker John1, Petr Knobloch2

submitted: September 21, 2020

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin, Germany
and
Freie Universität Berlin
Department of Mathematics and Computer Science
Arnimallee 6
14195 Berlin, Germany
E-Mail: john@wias-berlin.de

2 Department of Numerical Mathematics
Faculty of Mathematics and Physics
Charles University
Sokolovská 83
18675 Praha 8
Czech Republic
E-Mail: knobloch@karlin.mff.cuni.cz

\textbf{2010 Mathematics Subject Classification.} 65M60.

\textit{Key words and phrases.} evolutionary convection-diffusion-reaction equations, transport equations, finite element method, nonlinear flux-corrected-transport scheme, existence of a solution, Brouwer’s fixed-point theorem.

The work of P. Knobloch has been supported through the grant No. 19-04243S of the Czech Science Foundation.
Existence of solutions of a finite element flux-corrected-transport scheme

Volker John, Petr Knobloch

Abstract

The existence of a solution is proved for a nonlinear finite element flux-corrected-transport (FEM-FCT) scheme with arbitrary time steps for evolutionary convection-diffusion-reaction equations and transport equations.

1 Introduction

This note considers the transient convection–diffusion–reaction equation

\[u_t - \varepsilon \Delta u + b \cdot \nabla u + cu = f \quad \text{in } (0, T] \times \Omega, \tag{1} \]
\[u = u_b \quad \text{on } [0, T] \times \Gamma_D, \tag{2} \]
\[\varepsilon \frac{\partial u}{\partial n} = g \quad \text{on } [0, T] \times \Gamma_N, \tag{3} \]
\[u(0, \cdot) = u_0 \quad \text{in } \Omega, \tag{4} \]

where \(\Omega \subset \mathbb{R}^d, d = 2, 3, \) is a bounded polygonal or polyhedral domain with a Lipschitz-continuous boundary \(\partial \Omega \) that is composed of disjoint subsets \(\Gamma_D \) and \(\Gamma_N, \) \(n \) is the outer unit normal vector to \(\partial \Omega, \) \([0, T]\) is a time interval, \(\varepsilon > 0 \) is a constant diffusivity, \(b : [0, T] \to W^{1,\infty}(\Omega)^d \) is a convection field, \(c : [0, T] \to L^\infty(\Omega) \) is a reaction coefficient, \(f : [0, T] \to L^2(\Omega) \) is an outer source of the unknown quantity \(u, u_b : [0, T] \to H^{1/2}(\Gamma_D) \) and \(g : [0, T] \to L^2(\Gamma_N) \) are the boundary conditions, and \(u_0 \in H^1_0(\Omega) \) is the initial condition. Without loss of generality, it can be assumed that

\[c - \frac{1}{2} \text{div } b \geq 0 \quad \text{in } [0, T] \times \Omega, \tag{5} \]

which can be always achieved by a transform of variables \(u \mapsto u \exp(-\kappa t) \) with \(\kappa > 0 \) sufficiently large. In addition, it is assumed that

\[\Gamma_D \supset \partial \Omega^- := \{ x \in \partial \Omega; \ b(x) \cdot n(x) < 0 \}. \tag{6} \]

The analysis of this paper also covers the case \(\varepsilon = 0. \) Since it is a first order partial differential equation, a boundary condition is prescribed only on \(\partial \Omega^- \). We shall again consider a
Dirichlet boundary condition so that the initial–boundary value problem consists of (1), (2), (4) with \(\varepsilon = 0 \) and \(\Gamma_D = \partial \Omega^\varepsilon \). An important particular case for \(\varepsilon = 0 \) is the transport equation, i.e., also \(c \) vanishes identically.

The considered classes of problems obey, under certain conditions on their data, maximum principles. Often, these conditions are satisfied in applications. For a numerical method to be physically consistent and to be accepted by practitioners, it is of importance that it satisfies a discrete maximum principle (DMP). There are only very few finite element methods that possess this property and are not excessively diffusive, among them FEM-FCT (flux-corrected-transport) schemes, e.g., proposed in [1, 2, 3]. In particular, a nonlinear FEM-FCT scheme has been proven to compute very accurate solutions, see [4]. However, concerning the solvability of the nonlinear problem, there is only one very recent result in [5]. It shows the existence and local uniqueness of a solution for sufficiently small time steps. The analysis in [5] is based on the implicit function theorem for Lipschitz functions and utilizes tools from non-smooth optimization. In the present note, a new result will be shown: the existence of a solution for arbitrary time steps. The proof is based on a consequence of Brouwer’s fixed-point theorem.

2 FEM-FCT schemes

For the discretization of (1)–(4), the time interval is decomposed by

\[0 = t_0 < t_1 < \cdots < t_K = T \]

with \(\Delta t_k = t_k - t_{k-1} \). We consider conforming finite element spaces, where it is assumed that the basis functions \(\varphi_1, \ldots, \varphi_N \) are nonnegative, as it is the case for standard piecewise linear or multilinear basis functions or for bases constructed using Bernstein polynomials. Let the basis functions be numbered such that \(\varphi_1, \ldots, \varphi_M, M \leq N \), are associated with degrees of freedom that are not on the Dirichlet boundary so that they vanish on \(\Gamma_D \).

Using a one-step \(\theta \)-scheme and the usual approach for deriving a Galerkin finite element discretization leads for the time instant \(t_k \) to a discrete problem of the form

\[
\begin{align*}
\mathbb{M} & \frac{U^k - U^{k-1}}{\Delta t_k} + \theta A^k U^k + (1 - \theta) A^{k-1} U^{k-1} = \theta F^k + (1 - \theta) F^{k-1}, \\
u^k_i &= u^k_i(t_k), \quad i = M + 1, \ldots, N,
\end{align*}
\]

(7) and (8)

with \(U^0 = U_0 \) and \(\theta \in [0, 1] \). In (7), \(U^k = (u^k_1, \ldots, u^k_N)^T \) denotes the vector of unknowns at \(t_k \), \(U_0 \) and \(u^0_i(t_k) \) are the coefficients of finite element representations of the initial condition and the boundary condition at \(t^k \), respectively. Further, \(\mathbb{M} = (m_{ij})_{i=1, \ldots, M}^{j=1, \ldots, N} \) is the mass matrix, \(A^k = (a^k_{ij}(t_k))_{i=1, \ldots, M}^{j=1, \ldots, N} \) the stiffness matrix, and \(F^k = (f^k_1(t_k), \ldots, f^k_M(t_k))^T \) the right-hand side vector defined by

\[
m_{ij} = (\varphi_j, \varphi_i)_\Omega, \quad a^k_{ij}(t) = a(t)(\varphi_j, \varphi_i), \quad f^k_i(t) = (f(t), \varphi_i)_\Omega + (g(t), \varphi_i)_{\Gamma_N}.
\]
Here, \((\cdot, \cdot)_{\Omega}\) denotes the inner product in \(L^2(\Omega)\) or \(L^2(\Omega)^d\), \((\cdot, \cdot)_{\Gamma_N}\) is the inner product in \(L^2(\Gamma_N)\), and
\[
a(t)(u, v) = \varepsilon (\nabla u, \nabla v)_{\Omega} + (b(t) \cdot \nabla u, v)_{\Omega} + (c(t) u, v)_{\Omega}.
\]

It is well known that, if convection dominates diffusion, a stabilization has to be introduced, e.g., see [6]. One possibility is to apply a FCT approach, e.g., see [1, 2, 3]. To this end, one extends the matrices \(A^k\) to \((a_{ij}^k)_{i,j=1,...,N}\) by setting \(a_{ij}^k = a(t_k)(\varphi_j, \varphi_i)\), \(i, j = 1, \ldots, N\). Then, one introduces artificial diffusion matrices \(D^k = (d_{ij}^k)_{i,j=1,...,N}\) possessing the entries \(d_{ij}^k = -\max\{a_{ij}^k, 0, a_{ji}^k\}\) for all \(i \neq j\) and \(d_{ii}^k = -\sum_{j \neq i} d_{ij}^k\). In addition, one defines the lumped mass matrix \(M_L = (m_{ij}^L)_{i,j=1,...,N}\) with the entries \(m_{ij}^L = 0\) for all \(i \neq j\) and \(m_{ii}^L = \sum_{j=1}^N m_{ij}\). Denoting \(L^k := A^k + D^k\), (7) can be written in the form
\[
M_L \frac{U^{k} - U^{k-1}}{\Delta t_k} + \theta L^k U^k + (1 - \theta) L^{k-1} U^{k-1} = \theta F^k + (1 - \theta) F^{k-1} + R^k(U^k, U^{k-1})
\]
with
\[
R^k(U^k, U^{k-1}) = - (M - M_L) \frac{U^{k} - U^{k-1}}{\Delta t_k} + \theta D^k U^k + (1 - \theta) D^{k-1} U^{k-1}.
\]

Note that \(L^k\) has non-positive off-diagonal entries. The matrix \(D^k\) has zero row sums and hence \((D^k U)_i = \sum_{j=1}^N d_{ij}^k (u_j - u_i), i = 1, \ldots, M\), for any \(U = (u_1, \ldots, u_N)^T\). Since also the matrix \(M - M_L\) has zero row sums, one deduces that
\[
(R^k(U^k, U^{k-1}))_i = \sum_{j=1}^N r_{ij}^k, \quad i = 1, \ldots, M,
\]
with so-called algebraic fluxes
\[
r_{ij}^k = - \frac{1}{\Delta t_k} m_{ij} (u_j^k - u_i^k) + \frac{1}{\Delta t_k} m_{ij} (u_j^{k-1} - u_i^{k-1}) + \theta d_{ij}^k (u_j^k - u_i^k) + (1 - \theta) d_{ij}^{k-1} (u_j^{k-1} - u_i^{k-1}).
\]

Now the idea of flux correction is to limit those fluxes \(r_{ij}^k\) that would cause spurious oscillations. To this end, \((R^k(U^k, U^{k-1}))_i\) is replaced by
\[
(\tilde{R}^k(U^k, U^{k-1}))_i = \sum_{j=1}^N \alpha_{ij}^k r_{ij}^k, \quad \alpha_{ij}^k \in [0, 1], \quad \alpha_{ij}^k = \alpha_{ji}^k, \quad i, j = 1, \ldots, N, \quad (9)
\]
where the limiters \(\alpha_{ij}^k\) depend on the solution. Then, the discrete solution at the time instant
\(t_k \) satisfies the following system of (nonlinear) algebraic equations

\[
\sum_{j=1}^{N} m_{ij} (u_j^k - u_j^{k-1}) + \Delta t_k \theta \sum_{j=1}^{N} a_{ij}^k u_j^k + \Delta t_k (1 - \theta) \sum_{j=1}^{N} a_{ij}^{k-1} u_j^{k-1} \\
- \sum_{j=1}^{N} (1 - \alpha_{ij}^k) m_{ij} (u_j^k - u_k^k) + \sum_{j=1}^{N} (1 - \alpha_{ij}^k) m_{ij} (u_j^{k-1} - u_k^{k-1}) \\
+ \Delta t_k \theta \sum_{j=1}^{N} (1 - \alpha_{ij}^k) a_{ij}^k (u_j^k - u_i^k) + \Delta t_k (1 - \theta) \sum_{j=1}^{N} (1 - \alpha_{ij}^k) a_{ij}^{k-1} (u_j^{k-1} - u_i^{k-1}) \\
= \Delta t_k \theta f_i^k + \Delta t_k (1 - \theta) f_i^{k-1}, \quad i = 1, \ldots, M , \\
u_i^k = u_b^k(t_k), \quad i = M + 1, \ldots, N ,
\]

where \(f_i^k = f_i(t_k) \).

3 Solvability of the nonlinear FEM-FCT scheme

For proving the solvability of the nonlinear problem, we shall use a consequence of Brouwer’s fixed-point theorem, see [7, p. 164, Lemma 1.4].

Lemma 1 Let \(X \) be a finite-dimensional Hilbert space with inner product \((\cdot, \cdot)_X\) and norm \(\| \cdot \|_X \). Let \(\Pi : X \to X \) be a continuous mapping and \(B > 0 \) a real number such that \((\Pi x, x)_X > 0\) for any \(x \in X \) with \(\| x \|_X = B \). Then there exists \(x \in X \) such that \(\| x \|_X < B \) and \(\Pi x = 0 \).

Theorem 2 For any \(i, j \in \{1, \ldots, N\} \), let \(\alpha_{ij}^k : \mathbb{R}^N \to [0, 1] \) be such that \(\alpha_{ij}^k r_{ij}^k \) is a continuous function of \(u_1^k, \ldots, u_N^k \). Let (5) and (6) be satisfied and let the functions \(\alpha_{ij}^k \) satisfy (9). Then there exists a solution of the nonlinear problem (10) – (11).

Proof. For a vector \(U = (u_1, \ldots, u_N)^T \), we set \(\tilde{U} = (u_1, \ldots, u_M)^T \). On the other hand, for a vector \(\hat{U} = (u_1, \ldots, u_M)^T \), we set \(U = (u_1, \ldots, u_M, u_{M+1}^k(t_k), \ldots, u_N^k(t_k))^T \).

With this notation, we define an operator \(\Pi : \mathbb{R}^M \to \mathbb{R}^M \) by

\[
(\Pi \tilde{U})_i = \sum_{j=1}^{M} m_{ij} u_j + \Delta t_k \theta \sum_{j=1}^{M} a_{ij}^k u_j \\
+ \sum_{j=1}^{N} (1 - \alpha_{ij}^k(U)) [\Delta t_k \theta d_{ij}^k - m_{ij}] (u_j - u_i) + g_i(U), \quad i = 1, \ldots, M ,
\]
where for \(i = 1, \ldots, M \)
\[
g_i(U) = \sum_{j=M+1}^{N} m_{ij} u_j^b(t_k) + \Delta t_k \theta \sum_{j=M+1}^{N} a_{ij}^k u_j^b(t_k) - \sum_{j=1}^{N} m_{ij} u_j^{k-1} + \Delta t_k (1 - \theta) \sum_{j=1}^{N} a_{ij}^{k-1} u_j^{k-1} + \sum_{j=1}^{N} (1 - \alpha_{ij}^k(U)) m_{ij} (u_j^{k-1} - u_j^{k-1}) + \Delta t_k (1 - \theta) \sum_{j=1}^{N} (1 - \alpha_{ij}^k(U)) a_{ij}^{k-1} (u_j^{k-1} - u_j^{k-1}) - \Delta t_k \theta f_i^k - \Delta t_k (1 - \theta) f_i^{k-1}.
\]

Then, \(U^k \in \mathbb{R}^N \) solves the algebraic problem \([10]–[11]\) if and only if \(\Pi \tilde{U}^k = 0 \) and \(u_i^k = u_i^b(t_k) \) for \(i = M+1, \ldots, N \). Thus, it suffices to show that the operator \(\Pi \) satisfies the assumptions of Lemma 1.

Let \((\cdot, \cdot)\) denote the Euclidean inner product in \(\mathbb{R}^M \) and \(\| \cdot \| \) the corresponding norm. Then, for any \(\tilde{U} \in \mathbb{R}^M \), one has
\[
(\Pi \tilde{U}, \tilde{U}) = \sum_{i,j=1}^{M} u_i m_{ij} u_j + \Delta t_k \theta \sum_{i,j=1}^{M} u_i a_{ij}^k u_j + \sum_{i,j=1}^{N} (1 - \alpha_{ij}^k(U)) [\Delta t_k \theta d_{ij}^k - m_{ij}] u_i (u_j - u_i)
- \sum_{i=M+1}^{N} \sum_{j=1}^{N} (1 - \alpha_{ij}^k(U)) [\Delta t_k \theta d_{ij}^k - m_{ij}] u_i^b(t_k) (u_j - u_i) + \sum_{i=1}^{M} u_i g_i(U),
\]
where we extended the matrix \(M \) to a symmetric \(N \times N \) matrix. In view of the symmetry of \(M, D^k \), and the limiters, one has
\[
\sum_{i,j=1}^{N} (1 - \alpha_{ij}^k(U)) [\Delta t_k \theta d_{ij}^k - m_{ij}] u_i (u_j - u_i) = -\frac{1}{2} \sum_{i,j=1}^{N} (1 - \alpha_{ij}^k(U)) [\Delta t_k \theta d_{ij}^k - m_{ij}] (u_j - u_i)^2 \geq 0,
\]
where we used that \(m_{ij} \geq 0, d_{ij}^k \leq 0 \) for \(i \neq j \), and \(\alpha_{ij}^k \in [0, 1] \). The last property also implies that the values \(g_i(U) \) are bounded independently of \(U \). Consequently,
\[
(\Pi \tilde{U}, \tilde{U}) \geq \sum_{i,j=1}^{M} u_i m_{ij} u_j + \Delta t_k \theta \sum_{i,j=1}^{M} u_i a_{ij}^k u_j - C_1 \|\tilde{U}\| - C_2
\]
with some \(C_1, C_2 > 0 \). Obviously, the matrix \((m_{ij})_{i,j=1,\ldots,M}\) is positive definite. Moreover, in view of (5) and (6), one has \(a(t_k)(v, v) \geq \varepsilon \|v\|_{1,\Omega}^2 \) for any \(v \in H^1(\Omega) \) with \(v = 0 \) on \(\Gamma_D \), so that the matrix \((a_{ij}^k)_{i,j=1,\ldots,M}\) is positive semi-definite. This gives \((\Pi \tilde{U}, \tilde{U}) \geq C_3 \|\tilde{U}\|^2 - C_4 \) with some \(C_3, C_4 > 0 \), which implies that \((\Pi \tilde{U}, \tilde{U}) > 0\) if \(\|\tilde{U}\| \geq \sqrt{2} C_4/C_3 \). Since \(\Pi \) is continuous, the statement of the theorem follows from Lemma 1. □
Remark 3 If the problem (10)–(11) is defined using data that do not satisfy some of the assumptions (5) and (6), then the term \(\Delta t_k \theta \sum_{i,j=1}^{M} u_i a_{ij}^k u_j\) in (11) may be negative and has to be estimated from below by \(-C_5 \Delta t_k \|U\|^2\). This allows to prove the solvability only for a sufficiently small time step \(\Delta t_k\).

4 Example of limiters \(\alpha_{ij}^k\) satisfying the assumptions of Theorem 2

Let \(\mathcal{T}_h\) be a simplicial triangulation of \(\Omega\) possessing the usual compatibility properties and let the considered finite element space consist of continuous piecewise linear functions with respect to \(\mathcal{T}_h\). Then, the basis functions \(\varphi_1, \ldots, \varphi_N\) are assigned to vertices \(x_1, \ldots, x_N\) of \(\mathcal{T}_h\) and satisfy \(\varphi_i(x_j) = \delta_{ij}, i, j = 1, \ldots, N\).

We shall present a limiting strategy described in [2] which is motivated by [8] and utilizes an explicit solution \(\hat{U}^k\) of the low order scheme

\[
M_L \hat{U}^k = (M_L - (1 - \theta) \Delta t_k L^{k-1}) U^{k-1} + (1 - \theta) \Delta t_k F^{k-1}.
\]

To assure that \(\hat{U}^k\) satisfies the DMP, if the continuous solution satisfies a weak maximum principle, the time step has to obey a CFL-like condition. Then, for \(i = 1, \ldots, N\), one defines the local quantities

\[
P_i^+ := \sum_{j \in S(i)} (r_{ij}^k)^+, \quad P_i^- := \sum_{j \in S(i)} (r_{ij}^k)^-;
\]

\[
Q_i^+ := \max_{j \in S(i) \cup \{i\}} \hat{u}_j - \hat{u}_i^k, \quad Q_i^- := \min_{j \in S(i) \cup \{i\}} \hat{u}_j - \hat{u}_i^k;
\]

\[
R_i^+ := \begin{cases}
1, & \text{if } P_i^+ > 0, \\
\min \left(1, \frac{m_i}{\Delta t_k P_i^+} Q_i^+ \right), & \text{if } P_i^+ = 0,
\end{cases} \quad R_i^- := \begin{cases}
\min \left(1, \frac{m_i}{\Delta t_k P_i^-} Q_i^- \right), & \text{if } P_i^- < 0, \\
1, & \text{if } P_i^- = 0,
\end{cases}
\]

where \((r_{ij}^k)^+ = \max \{r_{ij}^k, 0\}\) and \((r_{ij}^k)^- = \min \{r_{ij}^k, 0\}\) are the positive and negative parts of \(r_{ij}^k\), respectively, and \(S(i) = \{j \in \{1, \ldots, N\} \setminus \{i\}; \exists T \in \mathcal{T}_h : x_i, x_j \in T\}\). Finally, the correction factors \(\alpha_{ij}^k\) are defined by

\[
\alpha_{ij}^k := \begin{cases}
\min(R_i^+, R_j^-) & \text{for } r_{ij}^k \geq 0, \\
\min(R_i^-, R_j^+) & \text{for } r_{ij}^k < 0.
\end{cases}
\]

This choice of \(\alpha_{ij}^k\) guarantees that the scheme (10)–(11) satisfies the DMP.

These limiters \(\alpha_{ij}^k\) are clearly symmetric (if \(r_{ij}^k \neq 0\)) with values in \([0, 1]\) and the following lemma shows that they also satisfy the continuity assumption from Theorem 2.

Lemma 4 For any \(i, j \in \{1, \ldots, N\}\), the function \(\alpha_{ij}^k\) defined in (12) is such that \(\alpha_{ij}^k r_{ij}^k\) is a continuous function of \(u_1^k, \ldots, u_N^k\).
Proof. For $U \in \mathbb{R}^N$, denote $\Phi(U) = (\alpha^k_{ij} r^k_{ij})(U)$, i.e., we dropped the index k in U^k. Consider any $\overline{U} \in \mathbb{R}^N$. If $r^k_{ij}(\overline{U}) \neq 0$, then the denominators in the formulas defining α^k_{ij} do not vanish in a neighborhood of \overline{U} and hence α^k_{ij} is continuous at \overline{U}. Consequently, also $\alpha^k_{ij} r^k_{ij}$ is continuous at \overline{U}. If $r^k_{ij}(U) = 0$, then

$$
| (\alpha^k_{ij} r^k_{ij})(U) - (\alpha^k_{ij} r^k_{ij})(\overline{U}) | = |(\alpha^k_{ij} r^k_{ij})(U)| \leq |r^k_{ij}(U)| = |r^k_{ij}(U) - r^k_{ij}(\overline{U})| \leq C \| U - \overline{U} \|
$$

and hence again $\alpha^k_{ij} r^k_{ij}$ is continuous at \overline{U}. □

Acknowledgment

The work of P. Knobloch has been supported through the grant No. 19-04243S of the Czech Science Foundation.

References

