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Tropical time series, iterated-sums signatures and
quasisymmetric functions

Joscha Diehl, Kurusch Ebrahimi-Fard, Nikolas Tapia

ABSTRACT. Driven by the need for principled extraction of features from time series, we introduce the
iterated-sums signature over any commutative semiring. The case of the tropical semiring is a central,
and our motivating, example, as it leads to features of (real-valued) time series that are not easily
available using existing signature-type objects.
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J. Diehl, K. Ebrahimi-Fard, N. Tapia 2

1. INTRODUCTION

Recent developments [42, 37, 38, 16, 58] have shown that various forms of iterated-sum and iterated-
integral operations can form a useful component in machine learning pipelines for sequential data.
Originating from the study of (discretized) controlled ordinary differential equations (ODEs) [25, 44],
they are particularly apt to model input-output relations that are well-approximated by dynamical sys-
tems [18, 19]. In fact, the iterated-integrals signature IIS(x )1 of a (smooth enough) multidimensional
curve x = (x (1), . . . , x (d )) : [0,T ] → Òd , is the solution to a certain universal controlled ODE
[27, Proposition 7.8]. It is universal in the sense that the solution to any other controlled ODE can
be well-approximated by a linear expression of the iterated-integrals signature. On a more concrete
level, the entries of the “classical” iterated-integrals signature are real numbers, indexed by words
w = w1 · · ·wk in the alphabet A′ = {1, . . . , d }, and given as follows〈

IIS(x )s,u ,w
〉
=

∫
s≤t1≤t2≤···≤tk ≤u

dx
(w1)
t1
· · · dx (wk )tk

(1)

=

∫
s≤t1≤t2≤···≤tk ≤u

¤x (w1)t1
· · · ¤x (wk )tk

d t1 · · · d tk .

Not all input-output relations are well-modeled by controlled ODEs, though. As an extreme example
we mention that a controlled ODE does not care about so-called “tree-like” excursions of the driving
signal [34]. The iterated-integrals signature can therefore, for example, not distinguish the following
two one-dimensional curves, t ∈ [0, 1],

t ↦→ 0 and t ↦→ sin(2πt ).
There are several ways to circumvent this particular problem, by e.g. “lifting” a one-dimensional curve
to a two-dimensional curve [26]. The iterated-sums signature (ISS) introduced in [16] (see also [38,
58]) forgoes this particular problem altogether and brings the added benefit of working directly with
discrete time series (in order to apply the theory of iterated-integrals to discrete-time sequential data,
it has to be interpolated to a, say, piecewise linear curve).

But even the ISS cannot “see” all aspects of a time series. Indeed, the ISS is invariant to time warping
and hence cannot distinguish time series run at different speeds. It turns out that such an invariance is
often desirable. The search for such invariants was in fact the starting point of [16], where it is shown
that the ISS contains all polynomial expressions in the time series entries that are invariant to time
warping.

A non-polynomial, time-warping invariant, functional is the following example (this is well-defined for
any time series z that is eventually constant):

(z1, z2, . . .) ↦→ min
j
z j .(2)

Moreover, it is expected to be poorly approximated by polynomial expressions. This is related to the
fact that this functional is not well-approximated by (discretized) ODEs.

The aim of the work at hand is to introduce a principled feature extraction method for time
series that encompasses functionals as the one in eq. (2).

The entry point for our investigation was the observation that (2) can be considered as a polynomial
expression, if one changes the underlying field of the reals to the tropical (or min-plus) semiring. This,
as well as other semirings have (a subset of) the reals as the underlying set, and only the operations
of “addition” and “multiplication” have a different meaning. As a result, this opens ways to consider
real-valued time series under many different lenses. In particular it allows us to consider (2) as part

1Also just called the signature and denoted with S (X ).
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Tropical time series, iterated-sums signatures and quasisymmetric functions 3

of an iterated-sums signature. Moreover, semirings whose underlying sets are not given by subsets of
the real line enable one to look at time series with values in more general spaces.

After this general motivation, we now present two ways to naturally arrive at the signature we introduce
in this work, where the first one makes the remarks above more concrete.

1 Invariants of a time series. Accommodating the discrete nature of time series, x = (x1, x2, . . . , xN ),
xi ∈ Òd , one may consider the discrete analog of (1), i.e., the so-called iterated-sums signature
ISS over the reals is defined as〈

ISS(x )p,q ,w
〉
=

∑
p<i1<i2<···<ik ≤q

(δxi1)w1 · · · (δxik )wk .(3)

Here w = w1 · · ·wk is a word over a certain alphabet – larger than A′ – which is adapted to
the discrete nature of the summation operation. It was shown in [16] that the map ISS(x ) stores
all polynomial invariants to time warping (and translation).

Alternatively, the ISS can be defined as〈
ISS(z )p,q ,w

〉
=

∑
p<i1<i2<···<ik ≤q

(zi1)w1 · · · (zik )wk ,

and the former definition is obtained by evaluating at increments, zi = δxi = xi − xi−1. The
latter definition yields an object that is invariant to insertion of 0 ∈ Ò into the time series z , and it
is this viewpoint that generalizes to arbitrary semirings. More precisely, in Section 2 we construct
a signature over commutative semirings that is invariant to insertion of zeros of the semiring. The
underlying mathematical object are quasisymmetric expressions over commutative semirings,
which we introduce for, to the best of our knowledge, the first time in Section 3. The way back
from invariants to inserting zeros to time-warping invariants is not as straightforward as in the
case over a field, and we investigate it in Section 4. As we will see, expressions like (2) will be
covered by the theory.

2 Cheap chronological information of a time series.
The importance of convolutional neural networks (CNNs) is hard to overestimate [40] Their

success, in particular in image recognition, is usually attributed to two ingredients
2.1 weight sharing reduces, in comparison to fully connected networks, the amount of pa-

rameters and hence allows for deeper architectures
2.2 convolution and its particular structure (usually combined with max-pooling) leads to de-

sirable properties with respect to image recognition (modelling of receptive fields, approx-
imate translation invariance, etc.)

Although CNNs have been successfully applied in the context of time series data (see [23]
for a recent survey), this does not seem to be based on inherent properties of sequential data.
In particular, the structure of time series is very different from that of images. It is not clear why
the receptive-field structure of CNNs captures intrinsically meaningful information of sequential
data. Moreover, time series possess a characteristic that images do not: a chronology, that is,
the order of the series’ values through time. We explain this using an example.

Example 1.1. We consider a very concrete toy example. Let the input x ∈ {2, 4, 8, 16}4 con-
sist in sequences of length four in the numbers 2, 4, 8, 16. On this input space we consider a
convolutional layer with kernel-size 2, stride 1, followed by a max-pool with kernel-size 4. For
example[

2 4 4 16
]
↦→ max{a1 · 2 + a2 · 4, a1 · 4 + a2 · 4, a1 · 4 + a2 · 16},

where a1, a2 ∈ Ò are the parameters of the convolutional kernel. This network can learn to
answer questions of the following type.
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� Is there a 16 in the sequence somewhere? (Just as a full-blown CNN on image data can
answer the question: Is there a dog somewhere in the picture?)

� Is there a 2 directly followed by a 16 somewhere in the sequence? (indeed, with a1 =
−1, a2 = 1 one gets output 14 if and only if the statement is true)

However, it can not answer the question
� Is there a 2 somewhere and then, sometime after, a 16 in the sequence?

We believe that chronological questions of this type are the relevant questions for time series.
Note that the following architecture allows to answer this question[

x1 x2 x3 x4
]
↦→ max{a1 · xi1 + a2 · xi2 : i1 < i2}.

Indeed, again with a1 = −1, a2 = 1, the output is 14 if and only if the question is answered
positively.

Abstractly we can describe functions that extract such chronological features of sequences
x ∈ ÒN in the following form

x ↦→ pool
(
K (xi1, . . . , xik ) : {i1 < · · · < ik } ⊂ [N ]

)
,

where

K : Òk → Ò, pool : Ò(
N
k ) → Ò.

Now, in this generality, such features are computationally intractable, even for modest values of
N and k , since K has to be evaluated

(N
k

)
times. The iterated-sums signature presented in this

work represents a special case of the functions K and pool that is tractable. The application of
this structure in deep learning pipelines will addressed in subsequent work.

The central object of this work, the iterated-sums signature ISSÓ will be properly defined in (19). To
get there, we need to work through some algebraic background in Section 2 first. We therefore now
give a preview in the setting of the tropical semiring Ó = Òmin+. Let z1, z2, z3, · · · ∈ Ò be an infinite
time series. Define ISSÒmin+ , indexed by wordsw = w1 · · ·wk in the alphabet A = {1, 2, 3, . . .}2 and
1 ≤ s ≤ t < +∞, as〈

ISSÒmin+

s,t (z ),w
〉

:=
⊕

min+

s<j1<···<jk ≤t
z �min+w1
j1

�min+ · · · �min+ z
�min+wk
jk

= min
s<j1<···<jk ≤t

{w1 · z j1 + · · · +wk · z jk }.

For example 〈
ISSÒmin+

s,t (z ), 1
〉
= min
s<j≤t

z j〈
ISSÒmin+

s,t (z ), 74
〉
= min
s<j1<j2≤t

{7 · z j1 + 4 · z j2}〈
ISSÒmin+

s,t (z ), 714
〉
= min
s<j1<j2<j3≤t

{7 · z j1 + z j2 + 4 · z j3}.(4)

We remark two, maybe, non-obvious properties of this object. Firstly, in order to calculate ISSÒmin+ over
large intervals, it suffices to calculate it over small intervals:

2Caution: in the main text we write (in the one-dimensional case) the alphabet as {[1], [12], [13], . . . } �
{1, 2, 3, . . . }, since this notation extends nicely to higher dimensions.
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Example 1.2. For 0 ≤ s < t < u ,〈
ISSÒmin+

s,u (z ), 74
〉
=

⊕
min+

s<j1<j2≤u
z
�min+ [17]
j1

�min+ z
�min+ [14]
j2

= min
s<j1<j2≤u

{7z j1 + 4z j2}

= min
{

min
s<j1<j2≤t

{7z j1 + 4z j2},

min
t<j1<j2≤u

{7z j1 + 4zi2}, min
s<i≤t
{7zi } + min

t<j≤u
{4z j }

}
=

〈
ISSÒmin+

s,t (z ), 74
〉
⊕min+

〈
ISSÒmin+

t ,u (z ), 74
〉

⊕min+

(〈
ISSÒmin+

s,t (z ), 7
〉
�min+

〈
ISSÒmin+

t ,u (z ), 4
〉)
.

This is also the reason why expressions that seem to have polynomial complexity (after all, the third
order iterated sum (4) takes the maximum of O ( |t − s |3)-terms), are in fact calculable in linear time.

Secondly, we note that the product (in the semiring) of any iterated sums (which are iterated minima
here) can be written as the sum (in the semiring) of (different) iterated sums:

Example 1.3. In the min-plus semiring Ó = Òmin+ we have〈
ISSÒmin+

s,t (z ), 1
〉
�Ó

〈
ISSÒmin+

s,t (z ), 74
〉

= min
s<i≤t
{zi } + min

s<j<k≤t
{7z j + 4zk }

= min
s<i≤t ;s<j<k≤t

{zi + 7z j + 4zk }

= max
{

min
s<i<j<k≤t

{zi + 7z j + 4zk }, min
s<i=j<k≤t

{zi + 7z j + 4zk }, min
s<j<i<k≤t

{zi + 7z j + 4zk },

min
s<j<k=i≤t

{zi + 7z j + 4zk }, min
s<j<k<i≤t

{zi + 7z j + 4zk }
}

=
〈

ISSÒmin+

s,t (z ), 174
〉
⊕Ó

〈
ISSÒmin+

s,t (z ), 84
〉
⊕Ó

〈
ISSÒmin+

s,t (z ), 714
〉

⊕Ó

〈
ISSÒmin+

s,t (z ), 75
〉
⊕Ó

〈
ISSÒmin+

s,t (z ), 741
〉
.

Both of these facts might come as no surprise to people familiar with iterated integrals or iterated sums
over fields. Indeed, the first property is a version of Chen’s identity. It just says that the computation of
iterated integrals and iterated sums can be split into calculations on subintervals. This property is usu-
ally encoded algebraically by the non-cocommutative deconcatenation coproduct on the unital tensor
algebra over an alphabet. The general form of Chen’s identity in our setting is stated in Lemma 2.8.

Integration by parts implies that linear combinations of iterated integrals are closed under multiplica-
tion. This finds its abstract algebraic formulation in terms of the commutative shuffle product on the
unital tensor algebra over an alphabet [13, 53]. Analogously, its discrete counterpart, i.e., summa-
tion by parts, permits to define an algebra on iterated sums, leading to the notion of commutative
quasi-shuffle algebra [28]. The general form of the quasi-shuffle identity in our setting is found in
Lemma 2.11.

Maybe more interestingly, new phenomena appear when working over general semirings. As we will
see in Section 4, over an idempotent semiring, non-strict iterated sums satisfy a shuffle identity and
in this sense behave like iterated integrals. These non-strict iterated sums also give a nice way to get
certain time-warping invariants of a real-valued time series, covering expression (2).

DOI 10.20347/WIAS.PREPRINT.2760 Berlin 2020
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The paper is organized as follows. In Section 2 we define the iterated-sums signature over a commuta-
tive semiring. In Section 3 we take a closer look at quasisymmetric functions, which are underlying the
iterated-sums signature and are of independent interest. In Section 4 we return to the question of time
warping invariants in the context of iterated-sums signature over a commutative semiring. We finish
with conclusions and an outlook in Section 5. In Appendix A we present a categorical view on semir-
ings, semimodules and semialgebras. Such a categorical view is useful in highlighting the similarities
to the theory of rings, modules and algebras.

Related work

We finish this introduction by mentioning related literature. We already indicated how iterated sums
and integrals have, in the last decade, been successfully applied as a feature extraction method in
machine learning. The relation of iterated sums to the Hopf algebra of quasisymmetric functions [47]
was established in [16].

Symmetric functions form an important subspace, and the generalization of this subspace to the set-
ting of semirings has been investigated in [11, 36, 35].

Semirings play an important role in computer science. They appear, for example, in the closely related
fields of language processing [32], the theory of algorithms [14], the theory of weighted automata
[57, 5], shortest-paths problems in weighted directed graphs [24, 49], and iteration theories [7].

The tropical semiring in particular has been intensely studied, for example in algebraic geometry [45],
in statistics [51], in economics [6], and in biology [52, Section 2]. Its linear algebra is well-understood
[10, 1].

Acknowledgements: The first author thanks Bernd Sturmfels (MPI Leipzig) for introducing him to
the tropical semiring. The second author was supported by the Research Council of Norway through
project 302831 “Computational Dynamics and Stochastics on Manifolds” (CODYSMA). The third au-
thor was supported the BMS MATH+ Excellence Cluster EF1, project nº 5 "On robustness of Deep
Neural Networks".

2. ITERATED-SUMS SIGNATURES OVER A SEMIRING

We start by introducing basic concepts from semiring theory. Relevant references are [41, 59, 45]. The
definitions and constructions recalled here are “hands on”, for a categorical view see the Appendix.

Recall the definition of a monoid, which consist of a non-empty set M together with an associa-
tive product and a neutral element 1M for this product. For example, starting from an alphabet A =
{a1, . . . , an }, the set of (finite) words over A, w = ai1 · · · aik , forms under concatenation the free
non-commutative monoid, denoted by A∗. The empty word, e, is the neutral element. The length of a
word w = ai1 · · · aik ∈ A∗ is denoted |w | = k . A monoid morphism is a map between monoids
which is compatible with the products and take the neutral element to the neutral element. Note that
for an alphabet A and any monoid (M , �, 1M ), every map φ : A → M can be uniquely extended to
a monoid morphism φ̂ : A∗ → M by defining φ̂ (e) = 1M and for any word w = ai1 · · · aik ∈ A∗,
φ̂ (ai1 · · · aik ) := φ (ai1) � · · · � φ (aik ). In other words, A∗ is the free monoid over A.

The notion of semiring combines two monoids in a compatible, i.e. distributive, way. However, contrary
to rings, the invertibility under addition is not part of the data.

Definition 2.1. The tuple (Ó, ⊕Ó, �Ó, 0Ó, 1Ó) is a semiring if

� (Ó, ⊕Ó, 0Ó) is a commutative monoid with unit 0Ó

� (Ó, �Ó, 1Ó) is a monoid with unit 1Ó

� 0Ó �Ó s = s �Ó 0Ó = 0Ó for all s ∈ Ó

DOI 10.20347/WIAS.PREPRINT.2760 Berlin 2020
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� multiplication distributes over addition, i.e.

a �Ó (b ⊕Ó c) = (a �Ó b) ⊕Ó (a �Ó c), (a ⊕Ó b) �Ó c = (a �Ó c) ⊕Ó (b �Ó c).(5)

Note that the parentheses on the right-hand sides of the identities in (5) can be omitted assuming the
common precedence of multiplication over addition. More importantly, a semiring Ó is called idem-
potent, if for all elements a ∈ Ó we have that a ⊕Ó a = a . In what follows, we will assume that the
semiring under consideration is commutative, i.e., that (Ó, �Ó, 1Ó) is a commutative monoid.

Semirings form an essential part of the modern theory of automata and languages. We refer the reader
to the introductory references [41, 12].

Example 2.2. Any commutative ring, in particular the field of reals (Ò,+, ·, 0, 1), forms a commuta-
tive semiring.

The paradigms of honest semirings whose underlying sets are subsets of the reals are

1 Òmin+: min-plus semiring (Ò ∪ {+∞},min,+,+∞, 0)
2 Òmax+: max-plus semiring (Ò ∪ {−∞},max,+,−∞, 0),

which are also known as tropical, respectively arctic, semirings. Here, maximum respectively minimum
are considered as binary operations replacing the usual additive structure onÒ, and addition becomes
multiplication. This results in particular arithmetic rules, e.g., 3 ⊕Òmax+

3 = 3, 4 ⊕max+ 3 = 4, and
3 �max+ 3 = 6, −1 �max+ −1 = −2.

3 bottleneck semiring (Ò ∪ {±∞},max,min,−∞,+∞)
4 possibilistic semiring3 ( [0, 1],max, ·, 0, 1)
5 Î: non-negative integers (Î,+, ·, 0, 1)
6 Òmax−min: bottleneck semiring (Ò ∪ {±∞},max,min,−∞,+∞)
7 Òmax: completed max-plus semiring (Ò ∪ {±∞},max,+,−∞, 0)
8 expectation semiring (or gradient semiring) [22], (Ò≥0 ×V , ⊕, �, (0, 0), (1, 0)) withV an arbi-

trary vector space and

(a,v ) ⊕ (a′,v ′) := (a + a′,v + v ′)
(a,v ) � (a′,v ′) := (a · a′, a′v + av ′).

There are also examples of semirings whose underlying sets are not given by (subsets of) the real
line.

9 semiring of (bounded) polytopes [52, Proposition 2.23].
10 k -best proof semiring [32, 30]
11 k -tropical semiring [49]
12 semiring of formal languages [17]
13 semiring of binary relations [17]
14 semiring of subsets of a set M [50, Beispiel 2.10.a)] (2M ,∪,∩,∅,M )
15 Â: Boolean semiring ({false, true}, or, and, false, true).

Regarding the last two examples, in fact any distributive lattice (with minimal and maximal element)
naturally yields a commutative semiring, [31, Proposition 2.25].

16 semirings constructed from t-norms [39, Example 6].

3Also known as Viterbi or Bayesian semiring [56].
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We note that summation by parts holds in a semiring. Indeed, multiplying two finite sums over semiring
elements ai , b j ∈ Ó yields(⊕

Ó

0<i≤N
ai

)
�Ó

©«
⊕

Ó

0<j≤N
b j

ª®¬ =
⊕

Ó

0<i ,j≤N
ai �Ó b j

=
⊕

Ó

0<i<j≤N

(
ai �Ó b j

)
⊕Ó

⊕
Ó

0<j<i≤N

(
ai �Ó b j

)
⊕Ó

⊕
Ó

0<i≤N
(ai �Ó bi ).

(6)

Using commutativity and denoting 2Ó := 1Ó ⊕Ó 1Ó,
4 we obtain for ai = bi that(⊕

Ó

0<i≤N
ai

)
�Ó

©«
⊕

Ó

0<j≤N
aj

ª®¬ = 2Ó

⊕
Ó

0<i<j≤N

(
ai �Ó aj

)
⊕Ó

⊕
Ó

0<i≤N
(ai �Ó ai ).

Regarding iterated sums of depth k ⊕
Ó

0<j1<···<jk ≤N
aj1 �Ó · · · �Ó ajk ,(7)

we see that (6) allows to express the product of two iterated sums of depths k1 and k2 in terms of a
linear combination of iterated sums of depths max(k1, k2) ≤ k ≤ k1 + k2. The algebraic formulation
of this leads to the quasi-shuffle identity (see below).

We remark on a peculiarity in the semiring setting. The lack of inverses with respect to addition turns
summation by parts for non-strict iterated sums less appealing, since products of such sums do not
close under semiring multiplication. Indeed, returning to (6) we observe that already at this level the
product can not be expressed exclusively in terms of non-strict iterated sums (as the doubly counted
diagonal term can not be subtracted in the semiring)(⊕

Ó

0<i≤N
ai

)
�Ó

©«
⊕

Ó

0<j≤N
b j

ª®¬ =
⊕

Ó

0<i ,j≤N
ai �Ó b j

=
⊕

Ó

0<i≤j≤N

(
ai �Ó b j

)
⊕Ó

⊕
Ó

0<j<i≤N

(
ai �Ó b j

)
=

⊕
Ó

0<i<j≤N

(
ai �Ó b j

)
⊕Ó

⊕
Ó

0<j≤i≤N

(
ai �Ó b j

)
.

(8)

However, if we consider (8) in an idempotent semiring, one observes an interesting phenomenon. The
fact that a ⊕Ó a = a for all elements a in such a semiring, implies the somewhat surprising identity(⊕

Ó

0<i≤N
ai

)
�Ó

©«
⊕

Ó

0<j≤N
b j

ª®¬ =
⊕

Ó

0<i≤j≤N

(
ai �Ó b j

)
⊕Ó

⊕
Ó

0<j≤i≤N

(
ai �Ó b j

)
,(9)

where we used that ⊕
Ó

0<i≤N
(ai �Ó bi ) ⊕Ó

⊕
Ó

0<i≤N
(ai �Ó bi ) =

⊕
Ó

0<i≤N
(ai �Ó bi ),

4We note that in the case of an idempotent semiring we have that 2Ó = 1Ó ⊕Ó 1Ó = 1Ó.
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Tropical time series, iterated-sums signatures and quasisymmetric functions 9

which allows to equate (9) and (6). Let us look at the following example

©«
⊕

Ó

s<i1≤i2≤N
z �Ó7
i1
�Ó z

�Ó3
i2

ª®¬ �s ©«
⊕

Ó

s<i1≤N
z �Ó5
i1

ª®¬
=

©«
⊕

Ó

s<i1≤i2≤i3≤N
z �Ó7
i1
�Ó z

�Ó3
i2
�Ó z

�Ó5
i3

ª®¬ ⊕Ó

©«
⊕

Ó

s<i1≤i3≤i2≤N
z �Ó7
i1
�Ó z

�Ó3
i2
�Ó z

�Ó5
i3

ª®¬
⊕Ó

©«
⊕

Ó

s<i3<i1≤i2≤N
z �Ó7
i1
�Ó z

�Ó3
i2
�Ó z

�Ó5
i3

ª®¬
=

©«
⊕

Ó

s<i1≤i2≤i3≤N
z �Ó7
i1
�Ó z

�Ó3
i2
�Ó z

�Ó5
i3

ª®¬ ⊕Ó

©«
⊕

Ó

s<i1≤i3≤≤i2≤N
z �Ó7
i1
�Ó z

�Ó3
i2
�Ó z

�Ó5
i3

ª®¬
⊕Ó

©«
⊕

Ó

s<i3≤i1≤i2≤t
z �Ó7
i1
�Ó z

�Ó3
i2
�Ó z

�Ó5
i3

ª®¬.

(10)

Hence, we observe that in the idempotent case, products of non-strict iterated sums satisfy the shuffle
relation. We return to this in Section 4.

Definition 2.3. A semimodule over a commutative semiring (Ó, ⊕Ó, �Ó, 0Ó, 1Ó) consists in a commu-
tative monoid (M ,+M , 0M ) and a scalar multiplication Ó × M → M , (s,m) ↦→ sm, satisfying for
all s, s ′ ∈ Ó and m,m′ ∈ M

1Óm = m 0Óm = 0M

(s �Ó s
′)m = s (s ′m) (s ⊕Ó s

′)m = sm +M s ′m

s (m +M m′) = sm +M sm′.

Note that if the underlying semiring Ó is idempotent, then the semimodule M is idempotent as well.

Let (N ,+N , 0N ) be another semimodule over Ó. A map φ : M → N is a semimodule morphism if
for all s, s ′ ∈ Ó and m,m′ ∈ M

φ (sm +M s ′m′) = sφ (m) +N s ′φ (m′).

Example 2.4. An incarnation of the free Ó-semimodule Æ on a set D , is given by functions f : D →
Ó with finite support, i.e., f (d ) = 0Ó for all but finitely many elements d ∈ D . The action of Ó as well
as the addition are defined pointwise.

Definition 2.5. An associative semialgebra over a commutative semiring Ó consists of a semiring
(Á, ⊕Á, �Á, 0Á, 1Á) such that (Á, ⊕Á, 0Á) is a semimodule over Ó and such that the semimodule struc-
ture is compatible with �Á in the following way

s (a �Á a
′) = (sa) �Á a

′ = a �Á (sa′).

Remark 2.6. Motivated by summation by parts (6) and the particular property of iterated non-strict
sums (9), one can introduce the notion of a Rota–Baxter Ó-semialgebra. Let Á be a Ó-semialgebra.
A Rota–Baxter map of weight λ ∈ Ó is a Ó-linear map R : Á→ Á satisfying for any x , y ∈ Á
(11) R (x ) �Á R (y ) = R

(
R (x ) �Á y ⊕Á x �Á R (y )

)
⊕Á λR (x �Á y ).

Note that if the semiring Ó is idempotent, and therefore also the semialgebra Á, then the map R̃ :=
λ idÁ ⊕ÁR also satisfies the particular relation (11). In fact, we have the more surprising (weight zero)
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identity5 (compare also (10))

(12) R̃ (x ) �Á R̃ (y ) = R̃
(
R̃ (x ) �Á y ⊕Á x �Á R̃ (y )

)
.

We now consider formal series over the (possibly infinite) alphabetA with coefficients in a commutative
semiring Ó

(13) F :=
∑
w∈A∗

cww , cw ∈ Ó.

The set of all such series is denoted by Ó〈〈A〉〉. For a series F ∈ Ó〈〈A〉〉, the support, supp(F ),
consists of all words inw ∈ A∗ with coefficient cw different from 0Ó. We denote with Ó〈A〉 the subset
of series with finite support. We may view a series (13) as a map F : A∗ → Ó, with

〈F ,w 〉Ó := F (w ) := cw .

By linear extension such F become maps on Ó〈A〉 with image in Ó, and we denote this pairing with
〈., .〉Ó still.

We can equip Ó〈〈A〉〉 with a linear and multiplicative structure by defining

〈sF ,w 〉Ó := s 〈F ,w 〉Ó, s ∈ Ó
〈F1 + F2,w 〉Ó := 〈F1,w 〉Ó ⊕Ó 〈F2,w 〉Ó(14)

〈F1F2,w 〉Ó :=
⊕

Ó

vu=w

〈F1,v 〉Ó �Ó 〈F2,u〉Ó.(15)

For instance, let F = s1a1a2 + s2a1 and G = t1a3 + t2a2a3 be elements in Ó〈A〉 then

FG = ((s1 �Ó t1) ⊕Ó (s2 �Ó t2))a1a2a3 + (s1 �Ó t2)a1a2a2a3 + (s2 �Ó t1)a1a3.

This turns Ó〈〈A〉〉, as well as Ó〈A〉, into Ó-semialgebras. The constant series are given by defining for
any element s ∈ Ó the series Fs := se, which include in particular the constant series 1 and 0.6

As is the case over rings, Ó〈A〉 is the free associative Ó-semialgebra over the alphabet A. This
manifests in the following universal property: for any Ó-semialgebra Õ and map φ : A → Õ there
exists a Ó-semialgebra morphism uniquely defined by extending φ to φ̂ : A∗ → Õ multiplicatively as
well as Ó-linearly.

We shall now equip the Ó-semimodule Ó〈A〉 with another product. This product is a natural extension
of the well-known shuffle (or Hurwitz) product commonly defined in automata theory [41]. For this we
assume that the alphabet A carries a commutative semigroup product denoted by the binary bracket
operation [−−] : A × A → A. Observe that commutativity and associativity permit to express
iterations [ai1 [· · · [ain−1 ain ]] · · · ] = [ai1 · · · ain ]. The commutative quasi-shuffle product on Ó〈A〉
is defined first on words and then extended bilinearly. For words ua and vb , where ai , aj ∈ A,
u,v ∈ A∗, we define uai ∗ e = uai = e ∗ uai and inductively

uai ∗ v aj := (u ∗ v aj )ai + (uai ∗ v )aj + (u ∗ v ) [ai aj ] .(16)

5Indeed, we see that by expanding the right-hand side of (12) we obtain

R̃
(
R̃ (x ) �Á y ⊕Á x �Á R̃ (y )

)
= R̃

(
(λ ⊕Ó λ)x �Á y ⊕Á R (x ) �Á y ⊕Á x �Á R (y )

)
= (λ �Ó λ)x �Á y ⊕Á λR (x ) �Á y ⊕Á λx �Á R (y ) ⊕Á R

(
λx �Á y ⊕Á R (x ) �Á y ⊕Á x �Á R (y )

)
= λ �Ó λ (x �Á y ) ⊕Á λx �Á R (y ) ⊕Á λR (x ) �Á y ⊕Á R (x ) �Á R (y ) = R̃ (x ) �Á R̃ (y ).

6Recall that e ∈ A∗ is the empty word.

DOI 10.20347/WIAS.PREPRINT.2760 Berlin 2020



Tropical time series, iterated-sums signatures and quasisymmetric functions 11

For instance, ai ∗ aj = ai aj + aj ai + [ai aj ]. It is easy to observe that for a trivial bracket product on
A, the quasi-shuffle product (16) reduces to the usual shuffle product on A. The latter will be denoted
with� and satisfies the recursion [54]

uai � v aj = (u � v aj )ai + (uai � v )aj .(17)

It is known that an explicit expression can be defined for the shuffle product in terms of so-called
shuffle permutations (bijections). In the case of the quasi-shuffle product, an analogous non-recursive
formula can be given in terms of certain surjections [21, 20]. We refer the reader to Appendix B for
details.

For the remainder of the paper, we specialise to a specific alphabet A. Let A′ = {1, 2, . . . , d }
and let A be the – extended – alphabet containing all formal brackets in elements of A, i.e. all formal
monomials in those letters,

A = {[1], [2], . . . , [d], [12], [12], . . . , [d2], [13], . . .}.(18)

Here, for consistency of notation, we write [1] = 1, . . . , [d] = d.

We consider the space of Ód -valued time series of infinite length that are eventually equal to 0d
Ó

,

Ód ,Î≥1
0Ó

:= {z : Î≥1 → Ód : \N ≥ 1 such that zn = 0d
Ó
, [n > N }.

It contains sequences z = (z1, z2, . . . , zN , 0dÓ , 0dÓ , . . .) of elements zi = (z (1)i , . . . , z
(d )
i
) ∈ Ód .

Example 2.7. Let x = (x0, x1, x2, . . .), xi ∈ Òd , be a time series that is eventually constant, then z
with entries

z
(i )
n := − log |x (i )n − x

(i )
n−1 |, n = 1, 2, 3, . . .

is in Ód ,Î≥1
0Ó

, for Ó the tropical semiring Òmin+ = (Ò ∪ {+∞},min,+,+∞, 0).

We now define for z ∈ Ód ,Î≥1
0Ó

the Ó-iterated-sums signature ISSÓs,t (z ) ∈ Ó〈〈A〉〉 as〈
ISSÓs,t (z ),w

〉
Ó

:=
⊕

Ó

s<j1<···<jk <t+1
z �Ów1
j1
�Ó · · · �Ó z

�Ówk
jk
, 0 ≤ s ≤ t ≤ +∞.(19)

Here w = w1 · · ·wk ∈ A∗, wi ∈ A. We also write ISSÓ(z ) := ISSÓ0,∞(z ). Here the notation means
that forwi = [ai1 · · · aim ] ∈ A

z
�Ó [ai1 ···aim ]
j

:= z
(ai1 )
j
�Ó · · · �Ó z

(aim )
j
.

As an example, we compute〈
ISSÓs,t (z ), [1] [23]

〉
Ó
=

⊕
Ó

s<j1<j2<t+1

z
�Ó [1]
j1

�Ó z
�Ó [23]
j2

=
⊕

Ó

s<j1<j2<t+1

z
(1)
j1
�Ó z

(2)
j2
�Ó z

(3)
j2
.

Our first results concern the verification that ISSÓ is a proper iterated-sums signature. By this we mean
that it carries the two main properties mentioned in the introduction, i.e., it satisfies Chen’s identity and
it is compatible with the quasi-shuffle product (16). To some extend this may be expected as both reflect
basic properties of the iteration of summation operation combined with the chronological order in the
time domain preserved through words. Indeed, the algebraic structure of ISSÓ is nicely compatible
with concatenation of time series.

Lemma 2.8 (Chen’s identity). For p < r < q ,w ∈ Ó〈A〉 and z ∈ Ód ,Î≥1
0Ó

(20)
〈
ISSÓp,q (z ),w

〉
Ó
=

⊕
Ó

uv=w

〈
ISSÓp,r (z ),u

〉
Ó
�Ó

〈
ISSÓr ,q (z ),v

〉
Ó
,
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or, equivalently, using the non-commutative concatenation product on Ó〈〈A〉〉,
ISSÓp,r (z )ISSÓr ,q (z ) = ISSÓp,q (z ).(21)

Remark 2.9. Note that this, in general, only allows, for p < r < q , to calculate ISSÓp,q (z ) from

ISSÓp,r (z ) and ISSÓr ,q (z ) but not to calculate ISSÓr ,q (z ) from ISSÓp,q (z ) and ISSÓp,r (z ). This is due to
the fact that semiring addition, ⊕Ó, is not invertible.

Example 2.10. In the min-plus semiring (here d = 1 corresponding to the single letter alphabet
A′ = {1}) we obtain for example〈

ISSÒmin+

p,q (z ), [17] [14]
〉
=

⊕
min+

p<j1<j2<q+1

z
�min+ [17]
j1

�min+ z
�min+ [14]
j2

= min
p<i1<i2≤q

{7zi1 + 4zi2}

= min
{

min
p<i1<i2≤r

{7zi1 + 4zi2},

min
r<i1<i2≤q

{7zi1 + 4zi2}, min
p<i≤r

{7zi } + min
r<i≤q

{4zi }
}

=
〈

ISSÒmin+

p,r (z ), [17] [14]
〉
⊕min+

〈
ISSÒmin+

r ,q (z ), [17] [14]
〉

⊕min+

(〈
ISSÒmin+

p,r (z ), [17]
〉
�min+

〈
ISSÒmin+

r ,q (z ), [14]
〉)
.

Proof. We now show (20) by a direct calculation〈
ISSÓp,q (z ),w

〉
=

⊕
Ó

p<j1<j2<···<jk ≤q
z �Ów1
j1
�Ó · · · �Ó z

�Ówk
jk

=
⊕

Ó

p<r<j1<j2<···<jk ≤q
z �Ów1
j1
�Ó · · · �Ó z

�Ówk
jk

⊕Ó

⊕
Ó

p<j1≤r<j2<···<jk ≤q
z �Ów1
j1
�Ó · · · �Ó z

�Ówk
jk

⊕Ó . . .

⊕Ó

⊕
Ó

p<j1<j2<···<jk−1≤r<jk ≤q
z �Ów1
j1
�Ó · · · �Ó z

�Ówk
jk

⊕Ó

⊕
Ó

p<j1<j2<···<jk−1<jk ≤r<q
z �Ów1
j1
�Ó · · · �Ó z

�Ówk
jk

=
∑
uv=w

〈
ISSÓp,r (z ),u

〉
�Ó

〈
ISSÓr ,q (z ),v

〉
.

�

From summation by parts (6) extended to iterated Ó-sums we deduce the multiplicativity of ISSÓ(z )
over the quasi-shuffle product (16) on Ó〈A〉.

Lemma 2.11 (Multiplicativity). Forw ,u ∈ Ó〈A〉 and z ∈ Ód ,Î≥1
0Ó〈

ISSÓs,t (z ),w ∗ u
〉
=

〈
ISSÓs,t (z ),w

〉
�Ó

〈
ISSÓs,t (z ),u

〉
.

Example 2.12. In the min-plus semiring Ó = Òmin+ (again, here we consider the single letter case
d = 1) we have〈

ISSÓ(z ), [11]
〉
�Ó

〈
ISSÓ(z ), [17] [14]

〉
DOI 10.20347/WIAS.PREPRINT.2760 Berlin 2020
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= max
i
{zi } + max

j<k
{7z j + 4zk }

= max
i ;j<k
{zi + 7z j + 4zk }

= max
{

max
i<j<k
{zi + 7z j + 4zk }, max

i=j<k
{zi + 7z j + 4zk }, max

j<i<k
{zi + 7z j + 4zk },

max
j<k=i
{zi + 7z j + 4zk }, max

j<k<i
{zi + 7z j + 4zk }

}
=

〈
ISSÓ(z ), [11] [17] [14]

〉
⊕Ó

〈
ISSÓ(z ), [18] [14]

〉
⊕Ó

〈
ISSÓ(z ), [17] [11] [14]

〉
⊕Ó

〈
ISSÓ(z ), [17] [15]

〉
⊕Ó

〈
ISSÓ(z ), [17] [14] [11]

〉
.

Proof. We perform induction on the sum of length q = |w | + |v | of the words. It is trivially true for
q = 0. Let it be true up to arbitrary q − 1 and assume |w | + |v | = q . For fi , gi ∈ Ó, i = s + 1, . . . , t ,
define

fi :=
〈
ISSÓs,i (z ),v1 · · ·vk−1

〉
�Ó z

vk
i

gi :=
〈
ISSÓs,i (z ),w1 · · ·w`−1

〉
�Ó z

w`
i
.

Then, summation by parts (6) implies〈
ISSÓs,t (z ),v

〉
�Ó

〈
ISSÓs,t (z ),w

〉
=

( ⊕
Ó

s<i<t+1

fi

)
�Ó

©«
⊕

Ó

s<j<t+1

gi
ª®¬

=
©«

⊕
Ó

s<i<j<t+1

fi �Ó gj
ª®¬ ⊕Ó

©«
⊕

Ó

s<j<i<t+1

fi �Ó gj
ª®¬ ⊕Ó

( ⊕
Ó

s<i<t+1

fi �Ó gi

)
.(22)

Now, the first term in the last equality is equal to⊕
Ó

s<i<j<t+1

〈
ISSÓs,i (z ),v1 · · ·vk−1

〉
�Ó z

vk
i
�Ó

〈
ISSÓs,j (z ),w1 · · ·w`−1

〉
�Ó z

w`
j

=
⊕

Ó

s<j<t+1

〈
ISSÓs,j (z ),v1 · · ·vk

〉
�Ó

〈
ISSÓs,j (z ),w1 · · ·w`−1

〉
�Ó z

w`
j

=
⊕

Ó

s<j<t+1

〈
ISSÓs,j (z ),v ∗ (w1 · · ·w`−1)

〉
�Ó z

w`
j

=
〈
ISSÓs,t (z ), (v ∗ (w1 · · ·w`−1))w`

〉
,

where we used the induction hypothesis, since |v | + |w1 · · ·w`−1 | = q − 1. Analogously, we argue
for the second term. The last term is equal to⊕

Ó

s<i<t+1

〈
ISSÓs,i (z ),v1 · · ·vk−1

〉
�Ó z

vk
i
�Ó

〈
ISSÓs,i (z ),w1 · · ·w`−1

〉
�Ó z

w`
i

=
⊕

Ó

s<i<t+1

〈
ISSÓs,i (z ), (v1 · · ·vk−1) ∗ (w1 · · ·w`−1)

〉
�Ó z

vk
i
�Ó z

w`
i

=
⊕

Ó

s<i<t+1

〈
ISSÓs,i (z ), (v1 · · ·vk−1) ∗ (w1 · · ·w`−1)

〉
�Ó z

[vk w` ]
i

=
〈
ISSÓs,t (z ), (v1 · · ·vk−1) ∗ (w1 · · ·w`−1) [vk w` ]

〉
.
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Combining those terms, we get〈
ISSÓs,t (z ),v

〉
�Ó

〈
ISSÓs,t (z ),w

〉
=

〈
ISSÓs,t (z ), (v ? (w1 · · ·w`−1))w` + ((v1 · · ·vk−1) ?w )vk

+ (v1 · · ·vk−1vk−1) ∗ (w1 · · ·w`−1) [vkw` ]
〉

=
〈
ISSÓs,t (z ),v ∗w

〉
.

�

3. QUASISYMMETRIC EXPRESSIONS OVER A SEMIRING

The aim of this section is to study the coefficients, i.e., iterated sums, used in the definition of the ISSÓ,
(19), as formal power series expressions. Analogous to the classical case, this results in the definition
of the notion of quasisymmetric expressions defined over a semiring. These are formal series with
coefficients in Ó which have a particular symmetry property defined below. When considered over a
commutative ring, their siblings form the well studied Hopf algebra of quasisymmetric functions with
the monomial quasisymmetric functions as one of many bases [43, 47, 29]. As we shall see, working
over a semiring leads to rather minor changes compared to the classical theory of quasisymmetric
functions. This stems from the fact that most properties only rely on the index set (i.e., the totally
ordered set of integers). However, it turns out that the monomial basis is the only reasonable one,
Remark 3.7.

In the following we denote by

Ó[[X1,X2,X3, . . .]]
the commutative Ó-semialgebra of formal power series expressions in commuting ordered indeter-
minates X := {X1,X2,X3, . . .} with coefficients in Ó. We write monomials in these variables in the
usual form

X α1
s1 · · ·X

αn
sn , n ≥ 0, α1, . . . , αn ≥ 1,

but note that this is – of course – just a formal expression, so that we might as well have written
X �Óα1s1 �Ó · · · �s X �Óαnsn . The degree of such a monomial is |X α1

s1 · · · · · X
αn
sn | := α1 + · · · + αk .

Similar to the power series semialgebra in noncommuting variables of the previous section, elements
P ∈ Ó[[X1,X2,X3, . . .]] can be considered as formal power series

P =
∑
m

cmm,

where cm ∈ Ó and the sum is over formal commutative monomials in the indeterminates X1,X2, . . . .
The linear structure follows as for the case of noncommutative variables and the multiplicative structure
is induced from the product of formal monomials (Cauchy product). We shall write P (m) := cm . By
small abuse of notation, we let Ó[[X1,X2,X3, . . .]] contain only power series of bounded degree,
i.e., for P ∈ Ó[[X1,X2,X3, . . .]] there is N ≥ 0 such that for all monomials m with |m | ≥ N ,
P (m) = 0Ó. The subset with power series of finite support is denoted Ó[X1,X2, . . . ] and forms the
space of formal polynomial expressions.

Definition 3.1. An element P ∈ Ó[[X1,X2,X3, . . .]] is a quasisymmetric expression if for all
α1, . . . , αn , 0 < s1 < · · · < sn and 0 < t1 < · · · < tn the coefficients of

X α1
s1 · · · · · X

αn
sn and X α1

t1
· · · · · X αn

tn
,

coincide.
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Define the monomial quasisymmetric expression indexed by α = (α1, . . . , αk ) ∈ Îk≥1, k ≥ 0 as

Mα :=
∑

1≤t1<···<tk <+∞
X α1
t1
· · · · · X αk

tk
.

Lemma 3.2. The space of all quasisymmetric expressions is a sub-semialgebra of Ó[[X1,X2, . . .]].
We denote it by QSym

Ó
.

Proof. Immediate. �

Remark 3.3. 1 We can naturally evaluate a formal monomial at values in a commutative semiring,
e.g. for z1, z2 ∈ Ó,

X 3
1X

5
2 |X1=z1,X2=z2 = z

�Ó3
1 �Ó z

�Ó5
2 .

The iterated-sums in the definition of the ISSÓ, (19), then amount, in the one-dimensional case,
to evaluation of the monomial quasisymmetric functions expression,〈

ISSÓs,t (z ), [1α1] · · · [1αk ]
〉
Ó
= Mα |X1=z1,X2=z2,....

2 There is a straightforward extension to “multidimensional” quasisymmetric functions, compare
[16, Remark 3.5]. We omit the details for brevity.

Example 3.4. The simplest, non-trivial quasisymmetric expression is

P (m) :=

{
1Ó if m = Xi for some i

0Ó else
,

or, written as formal sum,

P =
∑

0<i<+∞
Xi =

∑
0<i<+∞

1ÓXi .

Another example is given by ∑
0<i1<i2<+∞

Xi1X
2
i2
.

There are different concepts of linear independence in semimodules. The reader is referred to [2] for
an overview. The strongest one seems to be

Definition 3.5. LetM be an Ó-semimodule. A family of elements vi ∈ M , i ∈ I , is linearly indepen-
dent (in the Gondran–Minoux sense) if there do not exist non-empty finite sets J ,K ⊂ I , J ∩K = ∅,
and αj , βk ∈ Ó, j ∈ J , k ∈ K , all non-zero, with∑

j ∈J
αjvj =

∑
k ∈K

βkvk .

We then have, as expected, that the monomial quasisymmetric functions are a basis for QSym
Ó
.

Proposition 3.6. The family Mα is linearly independent and is spanning QSym
Ó
.

Proof. Linear independence
For α , β the support of Mα and Mβ are disjoint. This gives linear independence.

Spanning property
Let Q ∈ QSym

Ó
. If Q is the zero power series, we are done. Otherwise, take a monomial m =
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X α1
t1
· · · · ·X αk

tk
in Q with non-zero coefficient c ∈ Ó (i.e., considering Q as a function on monomials,

Q (m) = c). Then

Q = Q ′ + cMα

with Q ′ ∈ QSym
Ó
. Since Q has finite degree we can repeat this finitely many times to see that Q is a

linear combination of monomial quasisymmetric functions. �

Remark 3.7. The space of quasisymmetric functions over a commutative ring has several relevant
linear bases, for example the fundamental basis, [47, (2.13)].

Over a general commutative semiring the monomial basis is the only basis. Indeed, let us work over
the tropical semiring and let Gi , i ∈ I , be another basis. Let Mα be some monomial basis element.
Then we can write

Mα =
n∑
j=1

cjGi j ,

with cj ∈ Ómin+ \ {0min+}. Let m be any monomial not appearing in Mα . Then

0min+ =
n⊕

min+

j=1

cj �min+ Gi j (m),

i.e.

+∞ = min
j
{cjGi j (m)}.

Since the cj are not equal to+∞,m does not appear in any of theGi j . Hence n = 1 and c1Gi1 = Mα .
Hence the basis (Gi )i contains, up to multiplicative factors, the monomial basis. Since this subset
already forms a basis, the basis (Gi )i is equal, up to multiplicative factors, to the monomial basis.

3.1. Invariance to inserting zeros. We will now show that QSym
Ó

can be characterized by invariance
to “inserting zeros”. For n ≥ 1 define the commutative Ó-semialgebra morphism

zeron : Ó[[X1,X2, . . .]] → Ó[[X1,X2, . . .]],
induced from the following map on X1,X2, . . .

zeron (Xi ) =


Xi i < n

0Ó i = n

Xi−1 i > n

.

If we consider elements of P ∈ Ó[[X1,X2, . . .]] as Ó-valued functions on monomials, this gives, with
m = X �Óα1t1

�Ó · · · �Ó X
�Óαn
tn

, that zeroi (P ) (m) is equal to
P (m) i > tn

0Ó i ∈ {t1, . . . , tn }
P

(
X α1
t1
· · · · · X αk−1

tk−1
X αk
tk−1X

αk+1
tk+1−1 . . .X

αn
tn−1

)
tk−1 < i < tk , k ∈ {2, . . . , n}

P
(
X α1
t1−1 . . .X

αn
tn−1

)
i < t1.

Example 3.8.

zero9(X2X 7
6X

5
8 ) = X2X

7
6X

5
8

zero8(X2X 7
6X

5
8 ) = 0Ó

zero3(X2X 7
6X

5
8 ) = X2X

7
5X

5
7

zero1(X2X 7
6X

5
8 ) = X1X

7
5X

5
7 .
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Theorem 3.9. A power series expression P ∈ Ó[[X1,X2, . . .]] is in QSym
Ó

if and only if

zeronP = P [n ≥ 1.

Proof. ⇒: Immediate.

⇐: We begin with an example. If P is invariant in the prescribed sense, then for any monomial m

P (m) =
(
(zero1)2zero4P

)
(m).

We apply this to m = X 7
3X5 to get

P (X 7
3X5) =

(
(zero1)2zero4P

)
(X 7

3X5) = P (X
7
1X2).

Since the time points 3, 5 were arbitrary, the coefficients of the monomials X 7
t1
Xt2 , 1 ≤ t1 < t2 <

+∞, must coincide.

The general proof follows analogously: let n ≥ 1, α1, . . . , αn , 0 < t1 < · · · < tn be given. We then
have

P
(
X α1
t1
. . .X αn

tn

)
=

(
(zero1)t1−1(zerot1+1)t2−t1−1 · · · (zerotn−1+1)tn−tn−1−1P

) (
X α1
t1
. . .X αn

tn

)
= P

(
X α1
1 . . .X

αn
n

)
.

Since n , α1, . . . , αn and t1, . . . , tn were arbitrary this shows that P is quasisymmetric. �

From Theorem 3.9 we get the following consequence.

Corollary 3.10. ISSÓ(z )0,∞ is invariant to inserting 0Ó into z .

4. TIME WARPING INVARIANTS IN AN IDEMPOTENT SEMIRING

Example 2.7 together with Corollary 3.10 shows one way to obtain time warping invariants of a real
valued time series. This does not cover the invariant (2) though.

Since Ò ⊂ Ò ∪ {+∞}, and since the tropical semiring is idempotent we can also calculate ISSÓ(x )
on a real-valued time series that is eventually constant. Recall that ISSÓ(x ) = ISSÓ0,∞(x ). Since〈

ISSÓ(x ), [1]
〉
= min

i
xi ,

this includes the invariant (2). But, as is quickly seen, most coefficients are not invariant to time warp-
ing. To wit, 〈

ISSÓ(x ), [1] [1]
〉
= min
i1<i2
{xi1 + xi2},(23)

gives, for,

x = (1,−3, 2, 2, . . . )
x ′ = (1,−3,−3, 2, 2, . . . ),

the values −2 and −6 respectively.

It turns out that if we change the strict inequality over point in time in (23) into a weak, or non-strict
inequality, namely

min
i1≤i2
{xi1 + xi2},
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then we do get a time warping invariant. In this section we would like to spell out how this works in
general.

Assume that Ó is an idempotent semiring. Let z be a time series with values in Ó, that is eventually
constant. Define for 1 ≤ s < t ≤ +∞,〈

ISSÓ,idem
s,t (z ),w

〉
:=

⊕
Ó

s<j1≤j2≤···≤jk <t+1
z �Ów1
j1
�Ó · · · �Ó z

�Ówk
jk
,(24)

where the possibly infinite sum is well-defined, since Ó is idempotent and z is eventually constant. As
before, we write ISSÓ,idem(z ) = ISSÓ,idem

0,+∞ (z ).
The following lemma is immediate.

Lemma 4.1. ISSÓ,idem
s,t (z ) is invariant to time warping. That is, define for n ≥ 1 the time series τn (z )

as

τn (z )j :=

{
z j j ≤ n
z j−1 j > n .

Then, for all n ≥ 1:

ISSÓ,idem
s,t (τn (z )) = ISSÓ,idem

s,t (z ).

Lemma 4.2. ISSÓ,idem
s,t (z ) is a shuffle character, i.e.〈
ISSÓ,idem

s,t (z ),v
〉
�Ó

〈
ISSÓ,idem

s,t (z ),w
〉
=

〈
ISSÓ,idem

s,t (z ),v �w
〉
.

Example 4.3. Using, for example, the computation in (10), we see that〈
ISSÓ,idem

s,t (z ), [17] [13]
〉
�Ó

〈
ISSÓ,idem

s,t (z ), [15]
〉

=
〈
ISSÓ,idem

s,t (z ), [17] [13] [15] + [17] [15] [13] + [15] [17] [13]
〉
,

where we used idempotency of ⊕Ó.

Proof. The proof follows analogously to the one of Lemma 2.11. Owing to idempotency, for fi , gi ∈ Ó,
i = s + 1, . . . , t , (6) becomes(⊕

Ó

s<i≤t
fi

)
�Ó

©«
⊕

Ó

s<j≤t
gj

ª®¬ = ©«
⊕

Ó

s<i≤j≤t
fi �Ó gj

ª®¬ ⊕Ó

©«
⊕

Ó

s<j≤i≤t
fi �Ó gj

ª®¬.
This leads to the last term in (22) not being present and hence to a shuffle product instead of a
quasi-shuffle product. �

We note that, in the tropical semiring, ISSÒmin+,idem is very degenerate, in the sense that, in the one-
dimensional case,〈

ISSÒmin+,idem(z ), [1a1] · · · [1an ]
〉
=

〈
ISSÒmin+,idem(z ), [1a1+···+an ]

〉
.

To get a more interesting object we can allow powers in Ú \ {0} (instead of just Î≥1), e.g.〈
ISSÒmin+,idem(z ), [1−3] [15]

〉
:=

⊕
Òmin+

0<j1≤j2

z
�Òmin+−3
j1

�Òmin+
z
�Òmin+5
j2

= min
0<j1≤j2

{−3z j1 + 5z j2}.

DOI 10.20347/WIAS.PREPRINT.2760 Berlin 2020



Tropical time series, iterated-sums signatures and quasisymmetric functions 19

Without proof we state.

Proposition 4.4. Let Òmin+ be the tropical semiring. Define forw ∈ A∗, where A = Ú \ {0},〈
ISSÒmin+,((idem)) (z ),w

〉
:=

⊕
Òmin+

s<j1≤j2≤···≤jk ≤t

z
�Òmin+w1
j1

�Òmin+
· · · �Òmin+

z
�Òmin+wk
jk

,

Then:

1 ISSÒmin+,((idem)) is a shuffle character.
2 ISSÒmin+,((idem)) satifies Chen’s identity.
3 ISSÒmin+,((idem)) is time warping invariant.

Remark 4.5. The iterated-sums signature over a field of characteristic 0 is, via the Hoffman exponen-
tial, in bijection to a certain iterated-integrals signature, [16, Theorem 5.3]. The iterated-sums signature
satisfies a quasi-shuffle identity, whereas the iterated-integrals signature is a shuffle character. In fact,
there is a whole family of signature-like maps, indexed by θ ∈ (−1, 1) obtained by composing the it-
erated sums signature with some linear transformation Aθ→1 which generalize Hoffman’s exponential
(it being the case θ = 0), see [15, Remark 2.3].

When working over an idempotent semiring, however, only the cases θ = −1 and θ = 0 are well
defined, and both maps coincide.

5. CONCLUSION

In (19) we introduced the iterated-sums signature, ISSÓ(z ), over a commutative semiring Ó. It stores
all iterated sums (taken in the semiring) of a multidimensional time series z = (z1, z2 . . .) with entries
zi ∈ Ód . As in the case over commutative rings, this object satisfies Chen’s identity (Lemma 2.8) which
here as well allows for an efficient computation. It also satisfies the quasi-shuffle identity (Lemma 2.11)
that is, it behaves like a group-like element. Unlike for the usual ISS there is no proper Hopf algebra
structure available here and it is in general not possible to take the logarithm of the signature.

In the one-dimensional case over commutative rings, the entries of the iterated-sums signature cor-
respond to the evaluation of certain formal power series, namely quasisymmetric functions. Here,
this is also true (Section 3), though it is more appropriate to speak of quasisymmetric expressions,
since polynomial expressions over a semiring are not in one-to-one correspondence with polynomial
functions.

In order to explicitly cover the expression (2) from the Introduction, we looked at the special case of
idempotent semirings in Section 4.

Open questions

� The iterated-sums signature over the reals has a close connection to discrete control theory
[33]. In the setting of the max-plus semiring:

Is there a relation to discrete control theory in that semiring [12]?

� The ISS over a commutative ring contains, owing to the quasi-shuffle identity, many redundant
entries. Working with the log-signature removes these redundancies. Over a general commuta-
tive semiring we cannot take the logarithm of the signature, so an open question is

How to extract the “minimal” information contained in the signature?

� As seen in Remark 2.9, owing to the lack of additive inverses, Chen’s identity only works in “one
direction”.

Is there a way (with maybe larger object) of obtaining a general Chen’s identity?
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� Multidimensional time series are explicitly covered by the present work. Just as over the reals,
this amounts to projecting the time series to coordinates before calculating the iterated-sums.

In the semiring setting a more interesting approach seems possible. Indeed, one can turn
a multidimensional real-valued time series into a one-dimensional semiring-valued time series.
One example is via the map

Òd → bounded convex polytopes

x ↦→ {x }.

The resulting time series can then be considered in the semiring of polytopes, point 9. in Exam-
ple 2.2. One can hope for tractable calculation, using the relation to the algebra of polynomials,
[52, Theorem 2.25].

� Chen’s identity, Lemma 2.8, applied to time points 0, t , t + 1 reads as〈
ISSÓ0,t+1(z ),w

〉
Ó

=
〈
ISSÓ0,t (z ),w

〉
Ó

⊕Ó

(〈
ISSÓ0,t (z ),w1 . . .wn−1

〉
Ó

�Ó

〈
ISSÓt ,t+1(z ),wn

〉
Ó

)
=

〈
ISSÓ0,t (z ),w

〉
Ó

⊕Ó

(〈
ISSÓ0,t (z ),w1 . . .wn−1

〉
Ó

�Ó z
�Ówn
t

)
,

where we use the notation of (19). This allows an iterative calculation of this value, with total
cost of order O (n · t ). This can be seen as a special case of dynamic programming.

Is there a deeper connection to the dynamic programming literature?

� The iterated-integrals signature has been investigated from the perspective of algebraic geom-
etry in [3].

Is there interesting tropical algebraic geometry, that can be done on the objects introduced in
this work?
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APPENDIX A. CATEGORIAL VIEW ON SEMIRINGS

The aim of this section is to give a brief overview of the categorical setting for semirings, semimodules
etc. Good references on category theory are [46, 55]. (See also [9] (in German)). For the particularities
of monoidal categories, we refer to [48], [8, Section 4.1].

Recall that a monoidal category is a category C with a bifunctor ⊗ : C×C→ C, and an object 1 ∈ C
called the unit such that there exist natural isomorphisms

((−) ⊗ (−)) ⊗ (−) � (−) ⊗ ((−) ⊗ (−)), 1 ⊗ (−) � (−), (−) ⊗ 1 � (−)
and satisfy some consistency relations. Essentially, this means that there is a notion of “tensor prod-
uct” internal to the category. A monoidal category is symmetric if furthermore it is endowed with a
“braiding” or “twisting” natural isomorphism τX ,Y : X ⊗Y →Y ⊗ X such that τY ,X ◦ τX ,Y = idX ⊗Y .
Examples of symmetric monoidal categories include Vectk for any field k and ModR for any commu-
tative ring R . In both cases ⊗ corresponds to the internal tensor product.

In any monoidal category, the notion of monoid makes sense. A monoid on a monoidal category C is
an objectM in C together with two arrows µ : M ⊗M → M and u : 1→ M satisfying an associativity
and unitality condition ([46, Section VII.3]) Additionally, in a symmetric monoidal category, one can also
impose a commutativity constraint and obtain commutative monoids. As an example, monoids in Vectk
correspond to algebras over vector spaces. Dually, a comonoid in C is a monoid in Cop.7 As monoids on
the category of vector spaces correspond to algebras, comonoids in Vectk correspond to coalgebras.
The category of monoids in C is denoted by Mon(C).8 Likewise, the category of commutative monoids
in C is denoted by CMon(C).
Proposition A.1 ([46, Theorem VII.3.2]). Let C be a monoidal category with countable coproducts
and assume that for each A ∈ C the functors − ⊗ A,A ⊗ − preserve countable coproducts. Then
the forgetful functor U : Mon(C) → C has a left adjoint F : C → Mon(C). On an object X in C, the
underlying object of F (X ) is

U (F (X )) =
∞∐
n=0

X ⊗n

in C, with the monoidal structure given by the tensor product.

Example A.2. In the category Vectk ,

F (X ) = T (X ) =
⊕
n≥0

X ⊗n ,

is the tensor algebra over X .

Suppose that C is a symmetric monoidal category and let R be a commutative monoid object in C.
A left R -module is an object M in C with an arrow µM : R ⊗ M → M defining an action of R on
M . One can also define right R -modules in the obvious way, but since R is commutative both notions
coincide and we just call them R -modules. The category of R -modules is denoted by ModR .9

A nice example of symmetric monoidal category is Ab, the category of abelian groups. The tensor
product on Ab is obtained form the cartesian (or direct) product of abelian groups by modding out the
relations (a1, b) + (a2, b) − (a1 + a2, b) and (a, b1) + (a, b2) − (a, b1 + b2). We denote it by ⊗
as usual. The unit for this tensor product is the group of integers with addition. Monoid objects over
this category correspond to rings, that is, Mon(Ab) = Ring. Given an object R in CMon(Ab), that is,
a commutative ring, the notion of R -module corresponds to the usual notion of module over a ring.

7One may also consider bimonoids and Hopf monoids.
8The arrows are given by arrows in C that respect the monoid structure, [48, Definition 1.2.9].
9With obvious definition of morphisms, compare [48, Definition 1.2.11].
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For any given monoid object R in a symmetric monoidal category (C, ⊗, 1), the category of modules
ModR is also a symmetric monoidal category when endowed with the tensor productM ⊗R N defined
as the coequalizer of the two maps M ⊗ R ⊗ N ⇒ M ⊗ N given by the action of R on M and
N . The unit for this tensor product is R seen as a module over itself. Hence, the complete data is
(ModR , ⊗R , R ).
Now, we consider the category of monoids Mon(ModR ). We call objects in this category algebras
over R . Likewise, comonoids in ModR are called coalgebras.

Theorem A.3 ([48, Proposition 1.2.14]). Let C be a symmetric monoidal category. If C is either com-
plete or cocomplete, then so are CMon(C) and ModR for any commutative monoid R in C.

A.1. The category of semirings. We apply the above construction to the category CMon := CMon(Set)
of commutative monoids. This is a symmetric monoidal category, with product given by the tensor
product of commutative monoids ([4, Appendix B]).

Proposition A.4. 1. The category CMon is complete and cocomplete.

2. For R an object in CMon(CMon), the category ModR is complete and cocomplete.

Proof. 1. A commutative monoid is nothing else than a commutative monoid object in the symmetric
monoidal category (Set,×, {∗}) which is known to be complete and cocomplete ([55, Theorem 3.2.6,
Proposition 3.5.1]). Therefore, CMon is also complete and cocomplete by Theorem A.3.

2. This follows from point 1. and Theorem A.3. �

Proposition A.5. 1. In CMon, for each A ∈ CMon the functors − ⊗ A and A ⊗ − preserve countable
coproducts.

2. For R an object in CMon(CMon), the tensor product in ModR preserves countable coproducts.

Proof. 1. By [4, Appendix B], CMon is closed. In particular, this means that − ⊗ A is left adjoint to
Hom(A,−). Therefore, − ⊗ A preserves colimits [55, Theorem 4.5.3], and in particular coporducts.
By symmetry of the tensor product, the same is true for A ⊗ −.

2. By proposition A.4, CMon is complete. Therefore, by [8, Theorem 4.1.10], for any commutative
monoid R in CMon, ModR is a cocomplete symmetric monoidal category with unit R and tensor
product ⊗R . �

The category of commutative monoids CMon(CMon) corresponds to commutative semirings, i.e.,
commutative rings without negative elements.10 For a fixed commutative semiring R , objects in the
category ModR are known as semimodules. The notions of semialgebra, semi-coalgebra and Hopf
semialgebra follow (as monoid, comonoid and Hopf monoid in ModR ).

Theorem A.6. Let R be a commutative semiring.

1. There exists a left adjoint F : Set → ModR to the forgetful functor. F (D ) is the free R -module
over D .

2. There exists a left adjoint F ′ : ModR → Mon(ModR ) to the forgetful functor. F ′(X ) is the free
semialgebra over X .

Proof. Using Proposition A.4 and Proposition A.5 we can apply Proposition A.1. �

10Also called rigs, rings without negative elements.
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F (D ) corresponds to the free Ó-semimodule over a set D indicated in Section 2. It is free in the fol-
lowing sense. For every map φ from D into an Ó-semimoduleM there exists a unique Ó-semimodule
morphism Φ : Æ→ M such that the following diagram commutes.

D Æ

M
φ

Φ

APPENDIX B. QUASI-SHUFFLE VIA SURJECTIONS

We remark that one can express the inductively defined quasi-shuffle product (16) explicitly via certain
surjections [21, 20]. Let k , k1, k2 be positive integers such that max(k1, k2) ≤ k ≤ k1 + k2. We
introduce the notion of (k1, k2)-quasi-shuffle of type k . These are surjections

f : {1, . . . , k1 + k2} � {1, . . . , k },
such that f (1) < · · · < f (k1) and f (k1 + 1) < · · · < f (k1 + k2). Note that for k = k1 + k2 one
recovers the usual (k1, k2)-shuffle bijections. The set of (k1, k2)-quasi-shuffles of type k is denoted
by qSh(k1, k2; k). The latter permit to express the quasi-shuffle product (16) of two words in closed
form (

aj1 · · · ajk1
)
∗

(
ajk1+1 · · · ajk1+k2

)
=

∑
max(k1,k2)≤k≤k1+k2

∑
f ∈qSh(k1,k2;k)

afi1 · · · a
f
ik
,(25)

with afi l :=
∏
m∈f −1 ({l })am . Note that for f ∈ qSh(k1, k2; k) the set f −1({l }) contains either one or

two elements. In the case of a trivial bracket operation on A, the right-hand side of (25) reduces to the
well-known formula expressing shuffle products of words in terms of shuffle permutations. Concretely,
returning to Lemma 2.11, we see that (25) implies for two words over the alphabet (18) and z ∈ Ód ,Î≥1

0Ó〈
ISSÓs,t (z ),

(
aj1 · · · ajk1

)
∗

(
ajk1+1 · · · ajk1+k2

)〉
=

∑
max(k1,k2)≤k≤k1+k2

∑
f ∈qSh(k1,k2;k)

〈
ISSÓs,t (z ), afi1 · · · a

f
ik

〉
=

∑
max(k1,k2)≤k≤k1+k2

∑
f ∈qSh(k1,k2;k)

⊕
Ó

s<j1<j2<···<jk ≤t
z
�Óafi1
j1
�Ó · · · �Ó z

�Óafik
jk

where afi l := [∏m∈f −1 ({l })am].

DOI 10.20347/WIAS.PREPRINT.2760 Berlin 2020


	1. Introduction
	2. Iterated-sums signatures over a semiring
	3. Quasisymmetric expressions over a semiring
	3.1. Invariance to inserting zeros

	4. Time warping invariants in an idempotent semiring
	5. Conclusion
	References
	Appendix A. Categorial view on semirings
	A.1. The category of semirings

	Appendix B. Quasi-shuffle via surjections

