
OPTIMAL BOUNDARY CONTROL PROBLEMS

FOR SHAPE MEMORY ALLOYS UNDER

STATE CONSTRAINTS FOR STRESS

AND TEMPERATURE

Nikolaus Bubner1, Jan Soko lowski2, and J�urgen Sprekels1

Abstract

We consider two optimal control problems for �rst order martensitic phase tran-

sitions in a deformation{driven experiment on shape memory alloys including state

constraints for the total stress and the temperature. We control by the elongation of

a thin rod and by the outside temperature. The control problems are stated, and the

necessary conditions of optimality are derived.

1 Introduction

In this paper, we consider optimal control problems for a deformation{driven experiment

on shape memory alloys (SMA) with state constraints for the total stress and the temper-

ature. SMA exhibit a non{monotone temperature{dependent hysteretic behaviour in their

load{deformation cycles leading to interesting industrial applications. In a series of papers

(cf. [6],[7],[8], for example), Falk introduced a one{dimensional model that is based on the

Landau{Ginzburg theory of phase transitions and uses the linearized shear strain " = ux,
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where u denotes the displacement, as order parameter. The corresponding (Helmholtz{) free

energy F = F (u; �), where � denotes the absolute temperature, is given by

F ("; �) = F0(�) + �F1(") + F2("); (1.1)

where

F0(�) = �ce� log
��

~�

�
+ ce� + C; (1.2)

and
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1
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4
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6
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6
; (1.3)

with positive constant heat capacity ce, a critical temperature �1, and positive material

constants ~�;C; �; �, and 
, which have to be determined for each specimen. For thermody-

namical reasons, i.e. in order to comply with the second principle, the constitutive equations

yield for the total stress:

� =
@F

@"
("; �) = �
 (� � �1) "� � "

3 + � "
5
: (1.4)

In a deformation{driven experiment, a thin rod of a SMA is �xed on one side and pushed

and pulled on the other side in the course of time by an elongation m. In such experiments,

the order parameter is taken to be " = ux, u denoting the displacement in the direction of

the rod. For a detailed description of the physical background, we refer the reader to [2],[3].

Summarizing, we have the following system (
 := (0; l), Q := 
� (0; T )):

� utt � (
 (� � �1)ux � � u
3
x

+ �u
5
x
)x + � uxxxx = 0; in Q; (1.5a)

ce �t � � �xx � 
 � ux uxt = g(x; t); in Q; (1.5b)

u(0; t) = uxx(0; t) = uxx(l; t) = 0; u(l; t) = m(t); 8 t 2 [0; T ];

�x(0; t) = 0; �� �x(l; t) = �� (�(l; t)� ��(t)); 8 t 2 [0; T ];

u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); 8x 2 
; (1.5c)

The equations (1.5a) and (1.5b) represent the balance laws of momentum and energy, re-

spectively. The physical meanings of the involved quantities are: � { constant mass density,

� { positive constant heat conductivity, g { density of heat sources or sinks, l { length of the

rod (which is normalized to unity: l := 1), �� { positive constant heat exchange coe�cient,

�� { temperature of the surrounding medium. The couple stress leads to the Ginzburg{term

� �uxxxx, � being another positive material constant. The boundary condition for u at x = 1

re
ects the pulling and pushing of the rod in the course of time by a prescribed elongation

m. The other boundary condition for the momentum balance has been taken in analogy
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to [11]. The boundary condition for the energy balance models a heat exchange with the

surrounding temperature at x = 1 using Newton's law. We normalize all physical constants

to 1, except for �1 which is set to 0. In order to deal with homogeneous boundary conditions,

we transform the system (1.5) by ~u(x; t) := u(x; t)�x �m(t). An additional term � �x � �m(t)

appears only on the left hand side of the momentum balance. We now have " = ux +m(t)

instead of " = ux. For simplicity, the tilde for u and ux, repectively, is omitted. We denote

by ~� the polynom (1.4) where " = ux is replaced by " = ux +m(t).

In this paper, we consider the optimal control of the phase transitions governed by the

following weak formuation of (1.5):

Z
T

0
< utt(s); �(s) >H�1�H

1

0

ds +

Z
T

0

Z


x �m(s)�dxds +

Z
T

0

Z



~� �x dxds

�

Z
T

0

Z


uxxx �x dxds = 0; 8� 2 L

2(0; T ;H1
0 (
)); (1.6a)

�t � � (ux +m(t)) (uxt + _m(t))� �xx = g; a.e. in Q; (1.6b)

u(0; t) = u(1; t) = 0; 8 t 2 [0; T ]; uxx(0; t) = uxx(1; t) = 0; a.e. in (0; T );

�x(0; t) = 0; ��x(1; t) = �(1; t)� ��(t); a.e. in (0; T );

u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); 8x 2 
; (1.6c)

where we want to admit state constraints for the total stress � de�ned by (1.4) and the

temperature �. Under the following assumptions

(H1) m 2 H
3(0; T ); g 2 L

2(0; T ;L2(
)); g(x; t) � 0 on Q;

�� 2 H
1(0; T ); ��(t) > 0 on [0; T ]; (1.7)

(H2) u0 2 H
3
E

(
) := fu 2 H
3(
)

��� u(0) = u
00(0) = u(1) = u

00(1) = 0g;

u1 2 H
1
0 (
); �0 2 H

1(
); �0(x) > 0 on 
; (1.8)

the existence and uniqueness of a weak solution has been proved in [4].

Theorem 1.1 Suppose that (H1) and (H2) are satis�ed. Then the system (1.6) has a solu-

tion (u; �) on Q satisfying

u 2 X1;T := W
2;1(0; T ;H�1(
)) \W 1;1(0; T ;H1(
)) \ L1(0; T ;H3

E
(
)) and

� 2 X2;T := H
2;1(Q) \ L1(0; T ;H1(
)); (1.9)

for any T > 0.

Lemma 3.5 in [4] states uniqueness. We recall that, with stronger assumptions for the data,

the existence and uniqueness of a classical solution can be proved (see [11],[2],[4]).
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Related optimal control problems have been studied so far in [1] concerning load{driven

experiments, state constraints for those problems have been imposed in [9] and [10]. Therein,

boundary control problems with state constraints for the transversal displacement and on

the shear strain, respectively, were introduced. It has been left out as an open problem

whether state constraints for total stress and for the temperature are possible.

Now, in [4] we have shown the di�erentiability of the observation operator as mapping

into the solution space X1;T � X2;T , while in [1] only the di�erentiability into the Banach

space

B = W
1;1(0; T ;L2(
)) \ L1(0; T ;H1

0(
) \H2(
))

� L
2(0; T ;H1(
)) \ L1(0; T ;L2(
)) (1.10)

has been proved. Since X2;T is continuously imbedded in C(
T ), this means that also

pointwise constraints on the temperature � and therefore on the stress �, too, can now be

included in the control problem. This was not possible in [9] and [10] where only pointwise

constraints on the displacement u and the strain ", respectively, could be admitted. Note that

pointwise constraints for � are very realistic for the particular experimental setup discussed

here, where � is kept close to a prescribed (constant) temperature � (see also remark 4.1 in

[4]). Since we do not want to di�erentiate with respect to the distributed heat sources and

sinks, g, we even have Fr�echet di�erentiability with the result given in [4].

We de�ne

M := Mm �M��
; (1.11)

where

Mm :=
n
m 2 H

3(0; T )
��� m(0) = 0; _m(0) = 0; �m(0) = 0

o
;

M��
:=

n
�� 2 H

1(0; T )
��� ��(t) > 0 on [0; T ]

o
; (1.12)

and the control space

Z := H
3(0; T )�H

1(0; T ); (1.13)

therefore M� Z. The solution operator is denoted by

G(�; �) : M 3 (m; ��) 7! (u; �) 2 X1;T �X2;T � C(Q) �C(Q): (1.14)

Note that u 2 X1;T implies ux 2 C(Q) and therefore, � 2 C(Q), too. From [4] we have the

following properties of the solution operator.

Theorem 1.2 G(�; �) is Fr�echet di�erentiable as mapping between the open setM and X1;T�

X2;T , and the Fr�echet derivative G0(m; ��)�(h; l) =: (�; ) of G at (m; ��) applied to (h; l) 2 Z

is given as the unique solution to the system
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Z
T

0
< �tt(s); �(s) >H�1�H

1

0

ds �

Z
T

0

Z


�xxx �x dxds = �

Z
T

0

Z


x �h(s) � dxds

�

Z
T

0

Z



�
" + (� + F

00

2 (")) (�x + h(s))
�
�x dxds ; 8 � 2 L

2(0; T ;H1
0(
)); (1.15a)

 t �  xx = � "t (�x + h(t)) + " "t  + � " (�xt + _h(t)); a.e. in Q; (1.15b)

�(x; 0) = �t(x; 0) = 0 =  (x; 0); 8x 2 
;

�(0; t) = �(1; t) = 0; 8 t 2 [0; T ]; �xx(0; t) = �xx(1; t) = 0; a.e. in (0; T );

 x(0; t) = 0; � x(1; t) =  (1; t)� l(t); a.e. in (0; T ); (1.15c)

where G(m; ��) = (u; �) and " = ux +m.

Clearly, we have (�; ) 2 X1;T �X2;T � C(Q)� C(Q), and again, �x 2 C(Q), too.

Since the strain " plays the role of the order parameter, it is quite natural to consider

cost functionals involving ". On the other hand, the natural control variables are m and ��;

in fact, these variables are used to control the processes in actual industrial applications of

SMA.

We are going to consider two problems. First, we take the elongation m as the control

variable, and, to simplify, we consider �� as given data. We impose state constraints for both

the stress and the temperature. Second, we take �� as control variable, m as given data and

prescribe constraints for the total stress.

2 Control by Elongation

We study the following problem.

(CP1) Minimize J(m), subject to (1.6), (�; �) 2 C and m 2 Uad:

Here, Uad denotes the set of admissible controls, and is some nonempty, convex, bounded,

and closed subset of Mm. C is given by

C :=
n

(�; �) 2 C(Q)� C(Q)
��� c1 � �(x; t) � c2; c3 � �(x; t) � c4; 8 (x; t) 2 Q

o
: (2.1)

The cost functional is assumed in the form

J(m) =
Z

T

0

Z



�1(ux(x; t); �(x; t)) dx dt +
Z

T

0
�2(

:::

m (t)) dt ; (2.2)

where �1 2 C
2(IR2);�2 2 C

1(IR), and where �2 is convex in its argument. A particular

form could be

J(m) = �1

�
k� � � k

2
L2(Q) + k � � � k

2
L2(Q)

�
+ �2k

:::

m k
2
L2(0;T ); (2.3)
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where �1 and �2 are non{negative constants, and where � and � denote the desired temper-

ature and stress distributions during the evolution of the process, respectively. Of course,

also other cost functionals are conceivable in actual applications.

The following existence result can be shown with standard compactness arguments.

Theorem 2.1 Assume that there is at least one admissible control m such that the solution

to (1.6) yields (�; �) 2 C. Then there exists an optimal solution to the above control problem.

The necessary optimality conditions for the control problem are given by the following

theorem. Since here �� is given, we write G(m) instead of G(m; ��).

Theorem 2.2 Let m 2 Uad denote any solution to the optimal control problem (CP1), and

let (u; �) = G(m). Then there exist a real number �1 � 0 and Borel measures (�1; �2) =: � 2

(C(Q) � C(Q))0 with �1 + k�k(C(Q)�C(Q))0 > 0 such that
R
(�̂ � �) d�1 +

R
(�̂ � �) d�2 � 0,

8 (�̂; �̂) 2 C, as well as functions (p; q) 2 L
2(0; T ;H1

0(
)) � L
2(0; T ;L2(
)) satisfying the

following optimality conditions.

State equations:

Z
T

0
< utt(s); �(s) >H�1�H

1

0

ds +
Z

T

0

Z


x �m(s)�dxds +

Z
T

0

Z



�
� (ux +m(s))

+F 0

2(ux +m(s))
�
�x dxds �

Z
T

0

Z


uxxx �x dxds = 0; 8� 2 L

2(0; T ;H1
0 (
)); (2.4a)

�t � � (ux +m(t)) (uxt + _m(t))� �xx = g; a.e. in Q; (2.4b)

u(0; t) = u(1; t) = 0; 8 t 2 [0; T ]; uxx(0; t) = uxx(1; t) = 0; a.e. in (0; T );

�x(0; t) = 0; ��x(1; t) = �(1; t)� ��(t); a.e. in (0; T ); (2.4c)

u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); 8x 2 
: (2.4d)

Adjoint state equations:

Z
T

0
< �tt(s); p(s) >H�1�H

1

0

ds �
Z

T

0

Z


�xxx px dxds +

Z
T

0

Z



��
(� + F

00

2 (")) px

�� "t q

�
�x � � " q �xt

�
dxds = �1

Z
T

0

Z


D1�1(ux; �) �x dxds +

Z
@~�

@"
�x d�2 ;

8 � 2 X1;T ; (2.5a)Z
T

0

Z



�
q ('t � 'xx � " "t ' ) + " px '

�
dxds = �1

Z
T

0

Z


D2 �1(ux; �)'dxds

+
Z
"'d�2 +

Z
'd�1 ; 8' 2 X2;T : (2.5b)

6



Optimality conditions:

Z
T

0

Z



n
� �h(s) p x + _h(s) q � "� h(s)

�
px (� + F

00

2 (")) + q � "t

� o
dxds

+ �1

Z
T

0

n
�0

2(
:::

m (s))
:::

h (s)
o

ds +
Z

@~�

@m
h d�2 � 0;

h = m̂�m; 8 m̂ 2 Uad: (2.6)

In addition, �1 = 1 if the Slater condition is satis�ed, i.e. there exists some m̂ 2 Uad

such that the unique solution (�; ) of the linearized state equations (1.15) corresponding to

h = m̂�m satis�es the condition

c1 < �(x; t) +  (x; t) < c2; and (2.7)

c3 < ~�(x; t) +  (x; t) "(x; t) + (�x(x; t) + h(t))
�
�(x; t) + F

00

2 ("(x; t))
�

< c4; 8 (x; t) 2 Q:

Proof. Now, a solution to (CP1) is denoted by m
�, and therefore h = m � m

�. Let

us denote by J
0(m) 2 (H3(0; T ))0 the Fr�echet derivative of the cost functional J(m), by

F(G(m)) = ~�, and by
h
Dm

�
�;F(G(m))

�i
�

the adjoint mapping of the di�erential. Moreover,

let < :; : > denote the dual pairing between the spaces (H3(0; T ))0 and H
3(0; T ). Applying

theorem 5.2 of [5], we conclude that there exist Borel measures (�1; �2) = � 2 (C(Q)�C(Q))0

and some �1 � 0 satisfying

�1 + k�k(C(Q)�C(Q))0 > 0; (2.8)

< �; z �

�
�
�
;F(G(m�))

�
> � 0; 8 z 2 C; (2.9)

< �1J
0(m�) +

h
Dm

�
�
�
;F(G(m�))

�i
�

�;m�m
�
> � 0; 8m 2 K: (2.10)

Furthermore, we have �1 = 1 if the Slater condition

9 ~m 2 Uad such that G(m) + G
0(m) � ( ~m�m) 2 int(C) (2.11)

is satis�ed. Recalling the de�nition of C, we �nd that this condition is eqivalent to (2.7).

Now, to continue in a simpli�ed manner, we set �1 = 1.

We introduce the linear and bijective operators L1 : X1;T �X2;T ! L
2(0; T ;H�1(
)) and

L2 : X1;T �X2;T ! L
2(0; T ;L2(
)) with

Z
T

0
< L1(�; )(s); �(s) >H�1�H

1

0

ds �

Z
T

0
< �tt(s); �(s) >H�1�H

1

0

ds

�

Z
T

0

Z


�xxx �x dxds +

Z
T

0

Z



�
" + (� + F

00

2 ("))�x
�
�x dxds ;

8 � 2 L
2(0; T ;H1

0(
)); and (2.12)Z
T

0

Z


L2(�; )'dxds �

Z
T

0

Z



�
 t �  xx � � "t �x � " "t  � � " �xt

�
'dxds ;

8' 2 L
2(0; T ;L2(
)): (2.13)
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Furthermore, denoting

X := X1;T �X2;T ; Y := L
2(0; T ;H�1(
))� L

2(0; T ;L2(
)); (2.14)

z := (z1; z2) 2 Y; withZ
T

0
< z1(s); �(s) >H

�1�H
1

0

ds := �

Z
T

0

Z


x �h(s) � dxds

�

Z
T

0

Z


(� + F

00

2 ("))h(s) �x dxds ; 8 � 2 L
2(0; T ;H1

0 (
)); and (2.15)

Z
T

0

Z


z2 'dxds :=

Z
T

0

Z



�
� "t h(s) + � " _h(s)

�
'dxds ; 8' 2 L

2(0; T ;L2(
));

L : X ! Y; with L[(�; )] := (L1(�; );L2(�; )); (2.16)

the linearized state equations (1.15) take the form

Find (�; ) such that L[(�; )] = z 2 Y; (2.17a)

�(x; 0) = �t(x; 0) = 0 =  (x; 0); 8x 2 
;

�(0; t) = �(1; t) = 0; 8 t 2 [0; T ]; �xx(0; t) = �xx(1; t) = 0; a.e. in (0; T );

 x(0; t) = 0; � x(1; t) =  (1; t); a.e. in (0; T ): (2.17b)

For any continuous linear form 	(:; :) on C(Q) � C(Q) we have an unique element v 2

Y
0 = L

2(0; T ;H1
0 (
))� L

2(0; T ;L2(
)) such that

�
L[(r; s)]; v

�
Y

= 	(rx; s); 8 (r; s) 2 X ; (2.18)

because for an element (r; s) 2 X we have (r; s) = L
�1[(z)] for the unique element z 2 Y and

krxkC(Q) + ksk
C(Q) � Ck(r; s)kX , 8 (r; s) 2 X , C > 0. We select the following continuous

linear form on C(Q)� C(Q)

	(�x;  ) � �1

h Z T

0

Z



�
D1�1(ux; �)�x +D2�1(ux; �) 

�i
dxds +

Z
@~�

@"
�x d�2

+
Z
" d�2 +

Z
 d�1 ; (�; ) 2 X : (2.19)

Then there exists a unique adjoint state v� = (p�; q�) 2 Y 0 such that the following adjoint

state equation is satis�ed

�
L[(r; s)]; v�

�
Y

= 	(rx; s); 8 (r; s) 2 X : (2.20)

This leads to the adjoint system (2.5), and for any solution (�; ) of the linearized state

equations we have 8m 2 K, h = m�m
�,

< J
0(m�) +

h
Dm

�
�
�
;F(G(m�))

�i
�

�; h > =
Z

T

0
�0

2(
:::

m (s))
:::

h (s) ds
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+

Z
T

0

Z



�
D1�1(ux; �)�x +D2�1(ux; �) 

�
dxds

+
Z
@~�

@"
�x d�2 +

Z
" d�2 +

Z
 d�1 +

Z
@~�

@m
hd�2

=
Z

T

0
�0

2(
:::

m (s))
:::

h (s) ds + 	(�; ) +
Z
@~�

@m
hd�2

=

Z
T

0
�0

2(
:::

m (s))
:::

h (s) ds +

Z
@~�

@m
hd�2

+

Z
T

0
< L1(�; )(s); �(s) >

H
�1�H

1

0

ds +

Z
T

0

Z


L2(�; )'dxds

=
Z

T

0
�0

2(
:::

m (s))
:::

h (s) ds +
Z
@~�

@m
hd�2

+

Z
T

0
< z1(s); �(s) >H�1�H

1

0

ds +

Z
T

0

Z


z2 'dxds ; (2.21)

whence (2.6) follows from (2.10). 2

3 Control by Temperature

Now, we study the following problem.

(CP2) Minimize J(��), subject to (1.6), � 2 S and �� 2 Uad:

Here, Uad �M��
. S is given by

S :=
n
� 2 C(Q)

��� c5 � �(x; t) � c6; 8 (x; t) 2 Q
o
: (3.1)

The cost functional is assumed in the form

J(��) =
Z

T

0

Z



�1(ux(x; t)) dx dt +
Z

T

0
�2(��(t)) dt ; (3.2)

where �1 2 C
2(IR2);�2 2 C

1(IR), and where �2 is convex in its argument. A particular

form could be

J(g; ��) = �1 kux � ux k
2
L2(Q) + �2k��k

2
L2(0;T ); (3.3)

where �1, �2, and �3 are non{negative constants, and where ux denotes the desired strain

distribution during the evolution of the process. Again, also other cost functionals are

conceivable.

The following existence result can be shown with standard compactness arguments as

before.

Theorem 3.1 Assume that there is at least one admissible control �� such that the solution

to (1.6) yields � 2 S. Then there exists an optimal solution to the above control problem.
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We give the necessary conditions of optimality in the following theorem. Since now m is

given, we write G(��) instead of G(m; ��).

Theorem 3.2 Let �� 2 Uad denote any solution to the optimal control problem (CP2), and

let (u; �) = G(��). Then there exist a real number �2 � 0 and a Borel measure �3 2 (C(Q))0

with �2 + k�3k(C(Q))0 > 0 such that
R

(�̂ � �) d�3 � 0, 8 �̂ 2 S, as well as functions (p; q) 2

L
2(0; T ;H1

0 (
))� L
2(0; T ;H1(
)) satisfying the following optimality conditions.

State equations:

Z
T

0
< utt(s); �(s) >H�1�H

1

0

ds +

Z
T

0

Z


x �m(s)�dxds +

Z
T

0

Z



�
� (ux +m(s))

+F 0

2(ux +m(s))
�
�x dxds �

Z
T

0

Z


uxxx �x dxds = 0; 8� 2 L

2(0; T ;H1
0 (
)); (3.4a)

�t � � (ux +m(t)) (uxt + _m(t))� �xx = g; a.e. in Q; (3.4b)

u(0; t) = u(1; t) = 0; 8 t 2 [0; T ]; uxx(0; t) = uxx(1; t) = 0; a.e. in (0; T );

�x(0; t) = 0; ��x(1; t) = �(1; t)� ��(t); a.e. in (0; T ); (3.4c)

u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); 8x 2 
: (3.4d)

Adjoint state equations:

Z
T

0
< �tt(s); p(s) >H�1�H

1

0

ds �

Z
T

0

Z


�xxx px dxds +

Z
T

0

Z



��
(� + F

00

2 (")) px

�� "t q

�
�x � � " q �xt

�
dxds = �1

Z
T

0

Z


D1�1(ux) �x dxds +

Z
@~�

@"
�x d�3 ;

8 � 2 X1;T ; (3.5a)Z
T

0

Z



�
q ('t � " "t ' ) + qx 'x + " px '

�
dxds +

Z
T

0
'(1; s) q(1; s) ds =

Z
"'d�3 ;

8' 2 X2;T : (3.5b)

Optimality conditions:

Z
T

0

n
�0

2(��(s)) � q(1; s)
o
l(s) ds � 0; l = �̂� � ��; 8 �̂� 2 Uad: (3.6)

Again, �2 = 1 if the Slater condition is satis�ed, i.e. there exists some �̂� 2 Uad such that the

unique solution (�; ) of the linearized state equations (1.15) corresponding to l = �̂� � ��

satis�es the condition

c5 < ~�(x; t) +  (x; t) "(x; t) + �x(x; t)
�
�(x; t) + F

00

2 ("(x; t))
�

< c6; 8 (x; t) 2 Q: (3.7)

10



Proof. The proof to this theorem is analogue to the last one with the di�erence that the

adjoint variable q 2 L2(0; T ;H1(
)). 2
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