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On the differentiability of the minimal and maximal solution maps
of elliptic quasi-variational inequalities
Amal Alphonse, Michael Hintermüller, Carlos N. Rautenberg

Abstract

In this short note, we prove that the minimal and maximal solution maps associated to elliptic
quasi-variational inequalities of obstacle type are directionally differentiable with respect to the
forcing term and for directions that are signed. On the way, we show that the minimal and maximal
solutions can be seen as monotone limits of solutions of certain variational inequalities and that
the aforementioned directional derivatives can also be characterised as the monotone limits of
sequences of directional derivatives associated to variational inequalities.

1 Introduction

Quasi-variational inequalities (QVIs) are variational inequalities (VIs) where the constraint set over
which the solution is sought also depends on the solution itself. As such, QVI problems are highly
nonlinear and nonconvex and in sharp contrast to the usual setting for VIs, QVIs usually possess
multiple solutions. In certain situations, the set of solutions can be ordered in the sense that there exist
minimal and maximal solutions. In this paper, we address the directional differentiability of the maps
taking the source term of a QVI into the minimal and maximal solutions. The above-mentioned quirks
of QVIs endow their study with substantial technical issues to overcome when examining questions of
stability analysis and differential sensitivity.

QVIs were first formulated by Bensoussan and Lions [10, 17] in the modelling of stochastic impulse
controls. Applications of QVIs are ubiquitous. Among some, we mention thermoforming processes [1],
the formation and growth of lakes, rivers and sandpiles [25, 8, 24, 22, 9], generalised Nash equilib-
rium games [15, 13, 20], and magnetisation of superconductors [16, 7, 23, 26]. Additional details and
references can be found in our survey paper [2] and the book [6].

We focus on elliptic QVIs of obstacle type (these are also known as implicit obstacle problems). The
precise formulation is as follows. Let V ⊂ H be a continuous and dense embedding of separable
Hilbert spaces and suppose that there exists an ordering to elements of H via a closed convex cone
H+ that satisfies

H+ = {h ∈ H : (h, g) ≥ 0 ∀g ∈ H+}.
The ordering is defined by: h1 ≤ h2 if and only if h2 − h1 ∈ H+. This endows an ordering for V in
the obvious way and we write V+ := {v ∈ V : v ≥ 0}. It also induces one for the dual space V ∗ via

V ∗+ := {f ∈ V ∗ : 〈f, v〉 ≥ 0 ∀v ∈ V+},

where 〈·, ·〉 = 〈·, ·〉V ∗,V is the standard duality product. We write h+ for the orthogonal projection of
h ∈ H onto the spaceH+ and we use the decomposition h = h+−h−. Suppose that v ∈ V implies
that v+ ∈ V and that there exists a constant C > 0 such that ‖v+‖V ≤ C ‖v‖V for all v ∈ V .1

1For an example, we may take V to be the Sobolev space V = H1(Ω) over a domain Ω with H = L2(Ω). The
ordering relation u ≤ v in this case is equivalent to the expected one: ‘u ≤ v a.e. in Ω’.
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Let A : V → V ∗ a linear operator that satisfies the following properties for all u, v ∈ V :

〈Au, v〉 ≤ Cb ‖u‖V ‖v‖V , (boundedness)

〈Au, u〉 ≥ Ca ‖u‖2
V , (coercivity)

〈Au+, u−〉 ≤ 0. (T-monotonicity)

Given an obstacle map Φ: H → V , defining the constraint set K : V ⇒ V by K(y) := {v ∈ V :
v ≤ Φ(y)}, and given f ∈ V ∗, we consider QVIs of the form

find y ∈ K(y) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ K(y). (1)

We take Φ to be increasing, i.e., u ≤ v implies Φ(u) ≤ Φ(v), and we define Q to be the solution
map associated to (1), so that it reads y ∈ Q(f). To prove that the set Q(f) is non-empty (and
indeed to properly define the problem under study in this article) we need some additional details.

1.1 Existence of (extremal) solutions

Fixing an obstacle ϕ ∈ V , consider the VI

u ∈ K(ϕ) : 〈Au− f, u− v〉 ≤ 0 ∀v ∈ K(ϕ)

and denote its solution map S : V ∗ × V → V so that u = S(f, ϕ). It follows that Q(f) is the set of
fixed points of ϕ → S(f, ϕ). In order to show the presence of fixed points, we are going to assume
the existence of a subsolution u and a supersolution u for S(f, ·), that is,

∃u, u ∈ V s.t. u ≤ S(f, u) and u ≥ S(f, u).

Remark 1.1. For a supersolution, we can take any u satisfying u ≥ A−1f where the right-hand
side is (by definition) the solution of the equation Az = f. This is a valid choice since A−1f =
S(f,∞) ≥ S(f, u). If f ≥ 0 and Φ(0) ≥ 0, then we may take u = 0 to be a subsolution:
0 = S(0, 0) ≤ S(f, 0).

Under these circumstances, we can apply the Birkhoff–Tartar theory [28, 11] (see also [5, Chapter
15.2.2] and [19, Chapter 2.5]) of fixed points in vector lattices to obtain not only that

Q(f) ∩ [u, u] 6= ∅

(i.e., (1) has solutions), but moreover, there exists a minimal solution m(f) and a maximal solution
M(f) in this interval with respect to the ordering introduced above. These satisfy

m(f) ≤ y ≤ M(f) ∀y ∈ Q(f) ∩ [u, u].

1.2 Aim of the article

In this paper, we are interested in the directional differentiability of f 7→ m(f) and f 7→ M(f).
We will show that, under some assumptions, these maps are indeed directionally differentiable for a
subset (that we will specify below) of directions belonging to V ∗. That is, we prove the existence of the
following limits:

lim
s→0+

m(f + sd)−m(f)

s
and lim

s→0+

M(f + sd)−M(f)

s
. (2)
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On the differentiability of minimal and maximal solution maps of elliptic QVIs 3

This builds upon our previous works [1, 4, 3] in two ways. In [1, 4] we showed that Q has a contingent
derivative; essentially, we proved that for every u ∈ Q(f), given a direction d ∈ V ∗, there exists
us ∈ Q(f + sd) and (a directional derivative) α ∈ V such that

lim
s→0+

us − u
s

= α

(with the limit taken in V ). In [4], we also derived further existence results for (1) and procedures to
iteratively approach solutions of the QVI. Furthermore, we also obtained stationarity systems for opti-
mal control problems with QVI constraints. On the other hand, in [3], we studied continuity properties
of the extremal operators m and M. This work then can be considered as a bridge between these two
sets of papers.

The motivation of this study is twofold:

(i) the mathematical problem itself is challenging and interesting

(ii) in applications involving optimal control problem with QVI control-to-state maps, as typically
there are many states associated to a single (optimal) control (due to non-uniqueness of solu-
tions), it can be important to minimise the difference M(f) − m(f). For example, in the case
of thermoforming, manufacturers may wish to reproduce shapes or products that are within a
certain acceptable tolerance value.

In the latter case, continuity properties of these maps (studied in [3]) are vital for the existence of the
optimal control and differentiability properties are needed for writing down strong stationarity condi-
tions.

The idea is to base our developments on the differentiability results obtained in [4]; let us recall this
and set the scene in the next section.

Notation. Throughout the rest of the paper, we shall use the notation o(·) to denote a remainder
term, i.e., s−1o(s)→ 0 in V as s→ 0+. The notation BR(z) will be used to mean the closed ball in
V of radius R centred at z.

2 Preliminary material on QVIs

The next assumption has the consequence that the notions of capacity, quasi-continuity and related
concepts are well defined, see [18, §3] and [14, §3]. Concrete examples of V (and the elliptic operator
A) can be found in [1, §1.2].

Assumption 2.1. Suppose that H := L2(Ω;µ) where Ω is a locally compact topological space
which is σ-compact and µ is a Radon measure on Ω. We further assume that

V ∩ Cc(Ω) ⊂ Cc(Ω) and V ∩ Cc(Ω) ⊂ V are dense embeddings.

Let us introduce the following notion of differentiability for operators.

Definition 2.2 ([27, §2]). A map T : X → Y between Banach spaces is said to be boundedly direc-
tionally differentiable at x ∈ X if there exists a map T ′(x) : X → Y such that

lim
s→0+

T (x+ sh)− T (x)− sT ′(x)(h)

s
= 0 uniformly in h on bounded subsets of Y .
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Note that Fréchet differentiable operators are boundedly directionally differentiable.

The main result that we shall need is the following, which, under certain circumstances, tells us that
Q has a contingent derivative and provides a characterisation of one such derivative. For the sake of
completeness, we provide a compact proof of this theorem in Appendix A.

Theorem 2.3 ([4, Theorem 3.12]). Let Assumption 2.1 hold and suppose that

Φ: V → V is completely continuous. (3)

Given f ∈ V ∗ and d ∈ V ∗, for every y ∈ Q(f), under the local assumptions

there exists ε > 0 s.t. Φ: V → V is Hadamard directionally differentiable on Bε(y), (4)

∃ε > 0 : ‖Φ′(z)(v)‖V ≤ CΦ ‖v‖V ∀z ∈ Bε(y),∀v ∈ V, where CΦ < (1 + C−1
a Cb)

−1, (5)

Φ: V → V is boundedly directionally differentiable at y, (6)

Φ′(y) : V → V is completely continuous, (7)

there exists ys ∈ Q(f + sd) ∩BR(y) (where 0 < R ≤ ε) and α = α(d) ∈ V such that

ys = y + sα + o(s),

where α satisfies the QVI

α ∈ Ky(α) : 〈Aα− d, α− v〉 ≤ 0 ∀v ∈ Ky(α),

Ky(w) := {ϕ ∈ V : ϕ ≤ Φ′(y)(w) q.e. onA(y) and 〈Ay − f, ϕ− Φ′(y)(w)〉 = 0}.
(8)

The directional derivative α = α(d) is positively homogeneous in d. Furthermore, if d ∈ V ∗+ or
−d ∈ V ∗+, (6) can be omitted.

Let us now begin the study with the minimal solution map first.

3 The minimal solution map

Our aim is to show that, given a source term f and a direction d, there exists an element m′(f)(d)
such that

m(f + sd) = m(f) + sm′(f)(d) + o(s).

Theorem 2.3 states that under certain assumptions, given u ∈ Q(f), there exists us ∈ Q(f + sd)
and α ∈ V such that

us = u+ sα + o(s).

We may select u to be the minimal solution m(f) and it remains to prove that the selection mechanism
of the theorem that furnishes the us is indeed such that us ≡ m(f + sd). To do this, we need to take
a closer look at the method of proof of the cited theorem. The proof relies on

(i) creating an iterative sequence of solutions of VIs:

usn = S(f + sd, usn−1)

us0 = u,
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On the differentiability of minimal and maximal solution maps of elliptic QVIs 5

(ii) obtaining, by applying the sensitivity results for VIs by Mignot [18], expansion formulas of the
type

usn = u+ sαn + on(s) (9)

for these elements, and then

(iii) passing to the limit n→∞ and identifying the limits of {usn}, {αn} and {on}.

Thus, it is clear that we need to show that the limit of {usn} is indeed m(f + sd). For this purpose, we
need to prove some properties of m which we shall do so in a series of lemmas.

Let us begin by defining the sequence

un := S(f, un−1),

u0 := u.
(10)

We will assume (3) and that

∃v0 ∈ V : v0 ≤ Φ(u). (11)

Remark 3.1. The assumption (11) essentially asks for K(u) to be non-empty. A typical situation is
where f is taken to be non-negative, in which case u := 0 is a subsolution and Φ is taken such that
Φ(0) ≥ 0 so that v0 ≡ 0 is a possibility.

Under these conditions, in [4, Theorem 2.3], we proved that un has a weak limit which belongs to
Q(f). In fact, the sequence converges monotonically to the minimal solution as the next lemma
demonstrates.

Lemma 3.2. Assume (3) and (11). Then un ↗ m(f) in V .

Proof. By definition, u0 ≤ m(f). By definition of subsolution and by using the comparison principle,
u0 ≤ S(f, u0) = u1 ≤ S(f,m(f)) = m(f). Arguing in a similar way, u0 ≤ un ≤ un+1 ≤ m(f)
for all n.

Since Φ is increasing, it follows that v0 ≤ Φ(un) for each n. Hence, we may test the VI for un with
v0 and use Young’s inequality to obtain a uniform bound on un, which in combination with the fact that
{un} is monotonic, leads to

un ⇀ u ∈ Q(f)

(note that the convergence is for the entire sequence) with the passage to the limit (and the claim that
the limit belongs to Q(f)) handled by a standard Mosco argument thanks to (3): indeed, we test the
VI for un with v − Φ(u) + Φ(un−1) where v ∈ V , v ≤ Φ(u) is arbitrarily chosen, and then pass
to the limit. It follows also that u ∈ [u,m(f)] and therefore u = m(f). The strong convergence is a
result of the standard continuous dependence estimate (eg., see [1, Equation (21)]) applied to u and
un along with (3).

Now let s ≥ 0 be small and take d ∈ V ∗+. Since u ≤ S(f, u) ≤ S(f +sd, u), u is also a subsolution
for S(f + sd, ·). In the other direction, we suppose that

u is a supersolution for S(f + sd, ·). (12)

Then, by the argument in §1.1, we have the non-emptiness of the set Q(f + sd) ∩ [u, u].
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Remark 3.3. Asking for u to be a supersolution for the perturbed problem is not a stringent require-
ment since any supersolution for S(f + sd, ·) for any s ≥ 0 is also a supersolution for S(f, ·) and
thus we may always start by taking u to be a supersolution of S(f + s0d, ·) for some fixed s0 > 0.

If we define

ysn := S(f + sd, ysn−1),

ys0 := u,

it follows that ysn ↗ m(f + sd) in V by Lemma 3.2.

Lemma 3.4. Let d ∈ V ∗+. Then m(f + sd) ≥ m(f).

Proof. With un defined as above, we see that ys1 ≥ u1 since d ≥ 0. This implies that ysn ≥ un and
hence, passing to the limit, we have m(f + sd) ≥ m(f).

Let us define (as sketched above) a sequence starting at m(f) with perturbed source term as follows:

usn := S(f + sd, usn−1)

us0 := m(f).

Since m(f) acts as a subsolution, usn → m|[m(f),u](f + sd) by Lemma 3.2 where the notation
m|A(f + sd) refers to the minimal solution on [u, u] ∩ A. But in fact, the limit is the minimal solution
on the full interval [u, u] as the next result shows. That is to say, its limit agrees with the limit of the
sequence {ysn} constructed above.

Lemma 3.5. We have usn ↗ m(f + sd) in V .

Proof. Since m(f) ≥ u, we have us1 ≥ ys1 and thus usn ≥ ysn. Passing to the limit,

us := m|[m(f),u](f + sd) ≥ m(f + sd).

By definition, m(f + sd) is minimal on [u, u] and us is the minimal on [m(f), u], but we also have
that m(f + sd) ∈ [m(f), u] by Lemma 3.4. Hence it must be the case that us = m(f + sd).

With all the preparations complete, we are ready to state the differentiability result.

Theorem 3.6. Let Assumption 2.1 hold. In addition to (3) , (11) and (12), assume the local assump-
tions

there exists ε > 0 s.t. Φ: V → V is Hadamard directionally differentiable on Bε(m(f)), (13)

∃ε > 0 : ‖Φ′(z)(v)‖V ≤ CΦ ‖v‖V ∀z ∈ Bε(m(f)), ∀v ∈ V,
where CΦ < Ca(Ca + Cb)

−1, (14)

Φ′(m(f)) : V → V is completely continuous. (15)

Then the map m : V ∗ → V is directionally differentiable in every direction d ∈ V ∗+:

lim
s→0+

m(f + sd)−m(f)

s
= m′(f)(d).
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On the differentiability of minimal and maximal solution maps of elliptic QVIs 7

Furthermore, m′(f)(d) satisfies the QVI2

α ∈ Km(α) : 〈Aα− d, α− v〉 ≤ 0 ∀v ∈ Km(α),

Km(α) := {ϕ ∈ V : ϕ ≤ Φ′(m(f))(α) q.e. on {m(f) = Φ(m(f))}
and 〈Am(f)− f, ϕ− Φ′(m(f))(α)〉 = 0}.

(16)

Proof. The proof is as described at the start of this section. Indeed, a straightforward application of
Theorem 2.3 gives the existence of α ∈ V such that the limit us of {usn} satisfies

us = m(f) + sα + o(s),

and Lemma 3.5 tells us that us = m(f + sd).

The QVI (16) satisfied by the derivative α in general possesses multiple solutions, hence the question
of how to numerically solve for the derivative naturally arises. Here, we can answer positively: the
derivative is determined as the monotone limit of the sequence {αn} (see (9)) of solutions of VIs
where each αn satisfies

αn ∈ Km(αn−1) : 〈Aαn − d, αn − ϕ〉 ≤ 0 ∀ϕ ∈ Km(αn−1),

Km(αn−1) := {ϕ ∈ V : ϕ ≤ Φ′(m(f))(αn−1) q.e. on {m(f) = Φ(m(f))}
and 〈Am(f)− f, ϕ− Φ′(m(f))(αn−1)〉 = 0}.

A direct consequence of the monotonicity of {usn} allows us to conclude that αn ↗ α in V .

4 The maximal solution map

The strategy in this section is the same as §3. Here, we reverse the sign of the direction term in order
to enforce monotonicity of a certain sequence.

In (10), if we instead start with the initial iterate at a supersolution, we are able to provide analogous
results. To wit, taking for n ≥ 1, un = S(f, un−1) as before, let now

u0 := u.

A similar argument to the proof of Lemma 3.2 proves the next lemma.

Lemma 4.1. Assume (3) and that

∃v0 ∈ V : v0 ≤ Φ(v) ∀v ∈ V : v ≤ u. (17)

Then un ↘ M(f) in V .

Take s ≥ 0 to be small. Observe that for any d ∈ V ∗ with d ≤ 0, u is a supersolution for S(f +sd, ·)
too: u ≥ S(f, u) ≥ S(f + sd, u) by the sign on d. Akin to the previous section, we are going to
assume that

u is a subsolution for S(f + sd, ·). (18)
2Note that the coincidence set appearing in the critical cone Km(α) defined in (16) is of course taken over Ω, i.e.,

{m(f) = Φ(m(f))} = {x ∈ Ω : m(f)(x) = Φ(m(f))(x)}.
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Lemma 4.2. Let d ∈ −V ∗+. Then M(f + sd) ≤ M(f).

Proof. Define

ysn := S(f + sd, ysn−1),

ys0 := u.

It follows that u1 ≥ ys1 and therefore un ≥ ysn. Passing to the limit and using the above lemma, we
see that M(f) ≥ M(f + sd).

It is not difficult to see that M(f) is a supersolution for S(f + sd, ·) for non-positive d. This allows us
to construct the perturbed sequence starting at M(f) and we obtain the next result.

Lemma 4.3. Let d ∈ −V ∗+ and define

usn := S(f + sd, usn−1),

us0 := M(f).

Then usn ↘ M(f + sd).

Proof. We see that, using Lemma 4.2, us1 ≥ S(f + sd,M(f + sd)) = M(f + sd), implying
usn ≥ M(f + sd). Since M(f) is a supersolution for S(f + sd, ·), we obtain, by Lemma 4.1, usn ↘
us = M[u,M(f)](f + sd) ≥ M(f + sd) since [u,M(f)] ⊂ [u, u]. But Lemma 4.2 tells us that in fact
M(f + sd) belongs to [u,M(f)] so we must have us ≤ M(f + sd) because M(f + sd) is also the
largest element on [u,M(f)].

Theorem 4.4. Let Assumption 2.1 hold. In addition to (3), (17), (18), suppose that the local assump-
tions (13),(14) and (15) (provided all instances of m(f) are replaced by M(f)) hold.

Then the map M : V ∗ → V is directionally differentiable in every direction d ∈ −V ∗+:

lim
s→0+

M(f + sd)−M(f)

s
= M′(f)(d), (19)

and the derivative M′(f)(d) satisfies the QVI (16) with all instances of m(f) replaced by M(f).

Proof. This is again due to Theorem 2.3 and Lemma 4.3.

In a similar way to §3, we obtain that αn ↘ α in V where

αn ∈ KM(αn−1) : 〈Aαn − d, αn − ϕ〉 ≤ 0 ∀ϕ ∈ KM(αn−1),

KM(αn−1) := {ϕ ∈ V : ϕ ≤ Φ′(M(f))(αn−1) q.e. on {M(f) = Φ(M(f))}
and 〈AM(f)− f, ϕ− Φ′(M(f))(αn−1)〉 = 0}.
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On the differentiability of minimal and maximal solution maps of elliptic QVIs 9

A Sketch proof of Theorem 2.3

We give here a compact presentation of the proof of Theorem 2.3 for the convenience of the reader;
full details and additional explanation can be found in [4, §3.1].

Fix an arbitrary f ∈ V ∗ and take an arbitrary but fixed y ∈ Q(f). Recall the notation BR(y) ⊂ V
to stand for the closed ball in V of radius R centred on u. Pick a direction d ∈ V ∗ and construct the
sequence

ys0 := y,

ysn := S(f + sd, ysn−1).
(20)

We obtain the following existence and convergence result.

Lemma A.1. Given f, d ∈ V ∗ and y ∈ Q(f), under the local assumptions (4) and (5), there exists
ys ∈ Q(f + sd) ∩BR(y) such that

ysn → ys in V

as long as s ≤ Ca ‖d‖−1
V ∗ R(1− (1 + CbC

−1
a )CΦ).

Proof. First, let us show that for any 0 < R ≤ ε, S(f + sd, ·) : BR(y) → BR(y) is a contraction
for s as above. Indeed, let v ∈ BR(y). Using continuous dependence (eg. [1, Equation (21)]) and the
mean value theorem [21, §2, Proposition 2.29],

‖S(f + sd, v)− y‖V ≤ (1 + CbC
−1
a ) sup

λ∈(0,1)

‖Φ′(λv + (1− λ)y)(v − y)‖V + C−1
a s ‖d‖V ∗

≤ (1 + CbC
−1
a )CΦR + C−1

a s ‖d‖V ∗ ,

since λv + (1 − λ)y ∈ BR(y) ⊂ Bε(y). Using the fact that (1 + CbC
−1
a )CΦ < 1, the right-hand

side is bounded above by R under the stated assumption. This shows that S(f + sd, ·) maps BR(y)
into itself. To see that the map is a contraction, take v, w ∈ BR(y) and observe that

‖S(f + sd, v)− S(f + sd, w)‖V ≤ (1 + C−1
a Cb) sup

λ∈(0,1)

‖Φ′(λw + (1− λ)v)(w − v)‖V

≤ CΦ(1 + C−1
a Cb) ‖z2 − z1‖V .

We finish by applying the Banach fixed point theorem.

Making use of the differentiability result for VIs provided by Mignot [18, Theorem 3.3], we can expand

ys1 = y + sδ1 + o1(s),

where s−1o1(s)→ 0 as s→ 0+ and δ1 = ∂S(f, y)(d) is the directional derivative of S(f, ·) in the
direction d, and this satisfies the VI

δ1 ∈ Ky : 〈Aδ1 − d, δ1 − v〉 ≤ 0 ∀v ∈ Ky,
Ky := {w ∈ V : w ≤ 0 q.e. onA(y) and 〈Ay − f, w〉 = 0}.

(21)

To acquire an expansion formula for a general ysn, define

δn := ∂S(f, y)[d− AΦ′(y)(Φ′(y)[...Φ′(y)[Φ′(y)(δ0) + δ1] + δ2...] + δn−2] + δn−1)] for n > 1
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and

αn :=

{
δ1 : if n = 1

Φ′(y)[Φ′(y)[...Φ′(y)[Φ′(y)(δ1) + δ2] + δ3...] + δn−1] + δn : if n ≥ 2,

and observe the recursion formula αn = Φ′(y)[αn−1] + δn for n > 1. In exactly the same way as in
[1, Proposition 2], we obtain the following result.

Proposition A.2. Under the assumptions of the previous lemma, for n ≥ 1,

ysn = y + sαn + on(s) (22)

where αn = αn(d) is positively homogeneous in the direction d and satisfies the VI

αn ∈ Ky(αn−1) : 〈Aαn − d, αn − ϕ〉 ≤ 0 ∀ϕ ∈ Ky(αn−1),

Ky(αn−1) := {ϕ ∈ V : ϕ ≤ Φ′(y)(αn−1) q.e. onA(y)

and 〈Ay − f, ϕ− Φ′(y)(αn−1)〉 = 0},

with s−1on(s)→ 0 as s→ 0+.

It remains then to pass to the limit in (22) and to identify the corresponding limits. To this end, observe
that sαn + on(s) = ysn − y → ys − y in V . Assumption (5) provides the existence of a constant
c > 0 such that

‖Φ′(y)(v)‖V ≤
Ca − c
Cb

‖v‖V ,

and thus the sequence {αn} is bounded exactly as shown in the proof of [1, Theorem 6] and we have
the existence of a subsequence {nj} with

αnj
⇀ α in V and onj

(s) ⇀ o∗(s) in V .

We can pass to the limit in (22) along this subsequence to obtain

ys = y + sα + o∗(s), (23)

and it is left for us to show that o∗ is a remainder term and to characterise α suitably. For this, we
need some more notation. Let S0 : V ∗ → V be the map f 7→ u of the following VI with trivial lower
obstacle:

u ∈ V+ : 〈Au− f, u− v〉 ≤ 0 ∀v ∈ V+, (24)

and denote the remainder term associated to the derivative formula of S0 by o(·, · ; ·), that is,

o(s, h; f) :=
S0(f + sh)− S0(f)− sS ′0(f)(h)

s
.

Similarly, we denote the remainder term associated to Φ by l(·, · ; ·).

Now we adapt the proof of [1, Lemma 14] under this context.

Proposition A.3. Assume (4), (5), (6) and (7). Then s−1o∗(s)→ 0 as s→ 0.
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Proof. Define
an(s) := ‖on(s)‖V

and
bn(s) := (1 + C−1

a Cb) ‖l(s, αn; y)‖V + ‖o(s, AΦ′(y)(αn);AΦ(y)− f)‖V .
From the proof of [1, Lemma 14], we see that an satisfies

an(s) ≤ Cn−1a1(s) + Cn−2b1(s) + Cn−3b2(s) + ...+ Cbn−2(s) + bn−1(s). (25)

where the constant C < 1 by the assumption on CΦ in (5). Consider

bn−1(s)

s
=

(1 + C−1
a Cb) ‖l(s, αn−1; y)‖V

s
+
‖o(s, AΦ′(y)(αn−1);AΦ(y)− f)‖V

s
.

Since {αn} is bounded, the first term on the right-hand side converges to zero uniformly in n due to (6).
The compactness of Φ′(y)(·) : V → V implies that {AΦ′(y)(αn−1)} is a compact set in V ∗. Since
the remainder term o above arises from the Hadamard differentiability of the solution map associated
to VIs, it follows that o(s, h)/s→ 0 uniformly for h belonging to the compact set {AΦ′(y)(αn−1)}. It
follows that

bn−1(s)

s
→ 0 uniformly in n.

These facts along with (25) imply that s−1on(s) → 0 as s → 0+ uniformly in n. Finally, using the
weak convergence of the subsequence onj

, taking the liminf as nj → ∞ and using the weak lower
semicontinuity of norms in the above inequality for n = nj , we deduce the result.

As a byproduct of the above result, we find that the whole sequence {αn} indeed converges.

Lemma A.4. Under the assumptions of the previous proposition, αn → α in V (for the whole se-
quence).

Proof. Defining

rn(s) := αn +
on(s)

s
=
ysn − y
s

,

we see that, thanks to the strong convergence of ysn and (23),

lim
n→∞

rn(s) = α +
o∗(s)

s
.

We claim that
lim
s→0+

rn(s) = αn uniformly in n.

This follows because the quantity rn(s) − αn = on(s)/s converges to zero as s → 0+ uniformly in
n as we have seen in the proof of Proposition A.3, and the Moore–Osgood theorem [12, §I.7, Lemma
6] then applies, giving the existence of iterated limits as well as commutability and we get

α = lim
s→0+

(
α +

o∗(s)

s

)
= lim

s→0+
lim
n→∞

rn(s) = lim
n→∞

lim
s→0+

rn(s) = lim
n→∞

αn.

This strong convergence allows for the characterisation of the directional derivative as stated in the
theorem — namely, it allows us to pass to the limit in the recurrence formula for αn (see above), which
is given in terms of αn−1 (for which arguments using convergences of subsequences would not be
viable). See §5.1 and §5.2 in [1] for more details.
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