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Optimal control and directional differentiability for elliptic
quasi-variational inequalities

Amal Alphonse, Michael Hintermüller, Carlos N. Rautenberg

Abstract

We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a num-
ber of results on the existence of solutions, directional differentiability and optimal control of such
QVIs. We give three existence theorems based on an order approach, an iteration scheme and
a sequential regularisation through partial differential equations. We show that the solution map
taking the source term into the set of solutions of the QVI is directionally differentiable for general
unsigned data, thereby extending the results of our previous work which provided a first differen-
tiability result for QVIs in infinite dimensions. Optimal control problems with QVI constraints are
also considered and we derive various forms of stationarity conditions for control problems, thus
supplying among the first such results in this area.

1 Introduction

Quasi-variational inequalities (QVIs) are generalisations of variational inequalities (VIs) where the con-
straint set in which the solution is sought depends on the unknown solution itself. The very nature of the
dependency of the constraint set on the solution intrinsically leads to a complicated and challenging
mathematical structure since it significantly amplifies the nonlinear and nonsmooth nature of VIs. An-
other attribute that fundamentally distinguishes QVIs from VIs is the lack of uniqueness of solutions (in
general) which then necessitates the consideration of multi-valued or set-valued solution mappings.
QVIs arise in a multitude of models describing phenomena in fields such as biology, physics, eco-
nomics and social sciences amongst others. First introduced by Bensoussan and Lions [14, 40] in the
study of stochastic impulse controls, specific applications involving QVIs are thermoforming processes
[3], the formation and growth of lakes, rivers and sandpiles [51, 12, 50, 48, 50, 48, 13], games in the
context of generalised Nash equilibrium problems [29, 23, 46], and magnetisation of superconductors
[38, 11, 49, 54]. See [4, 9] for additional details and references.

In this paper, we focus on elliptic QVIs of obstacle type or compliant obstacle problems. These have
the form

find y ∈ K(y) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ K(y) where K(y) := {v ∈ V : v ≤ Φ(y)}. (1)

Here f ∈ V ∗ is data, Φ: V → V is a given obstacle map, and V is a Hilbert space possessing
an ordering ≤ which is used in the definition of the constraint set (we shall be more precise below).
Let us define Q to be the solution map associated to (1), so that it reads y ∈ Q(f). We develop
in this paper theory addressing the matters of existence for (1), directional differentiability of Q and
stationarity conditions for optimal control problems with QVI constraints of the form

min
u∈Uad
y∈Q(u)

1

2
‖y − yd‖2

H +
ν

2
‖u‖2

U . (2)
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Different methodologies exist for the mathematical treatment of existence for QVIs. There is an ap-
proach based on order that was pioneered by Tartar [58] which relies on the existence of subsolutions
and supersolutions to guarantee existence of solutions (typically, one takes 0 as a subsolution which
would hold under sign conditions on the source term). In certain cases, the QVI can be expressed as a
generalized equation and it therefore belongs to a more general problem class [35, 36, 24, 34, 25]. In
problems involving constraints on derivatives (which is not the case under consideration in this paper),
special forms of regularisation of the constraint that modify the partial differential operator may be
suitable, see [54, 43, 7, 8]. For more details, we refer the reader to [4]. We discuss in §2 appropriate
conditions on the function spaces and the obstacle map Φ for Q to be well defined. One approach re-
lies on an iteration argument where a contraction-type property of Φ is used. Another existence result
is given for source terms bounded from below by a non-negative function using the aforementioned
Birkhoff–Tartar theory, and we also study a sequential regularisation approach of the QVI by PDEs
where the QVI constraint is handled by a smoothing via Moreau–Yosida.

Literature on the differentiability and sensitivity analysis for solution maps associated to QVIs in infi-
nite dimensions is almost non-existent: our contributions [3, 5] appear to be the first ones that address
these issues. In [3], we give a first directional differentiability result for the solution map taking the
source term into the set of solutions for non-negative sources and directions whilst in [5] we stud-
ied continuity properties related to minimal and maximal solution mappings of QVIs. In §3, we derive
directional differentiablity results for Q. We extend here our previous work [3] which provided differ-
entiability results for source and direction terms that are non-negative; in this paper we shall remove
this restriction in our Theorems 3.12 and 3.15 which utilise the new results from the preceding sec-
tion. We give a characterisations of the QVI that is satisfied by the directional derivative of Q as a
complementarity system and in §3.3 we also prove a continuity result that shows that the derivative
depends continuously on the direction under some assumptions. This gives a comprehensive answer
to the question of sensitivity analysis of QVIs.

The scarcity of work done on the optimal control of QVIs in infinite dimensions is unsurprisingly even
more pronounced; see [2, 5, 20, 21, 45] for some of the very few contributions. In our work [5], in
addition to stability properties we also provided results on the optimal control of minimal and maximal
solutions of QVIs. While this article was under preparation, we note that [61] has appeared wherein
the author considers elliptic QVIs and their differential sensitivity and optimal control but for Frèchet
differentiable obstacle maps Φ; we assume only Hadamard or bounded differentiability of Φ for the
differentiability results. For QVIs in the finite dimensional setting, see [44] and the references therein.
In sharp contrast, control problems with VI constraints has attracted wide attention: see for example
[10, 42, 16, 15, 33, 32, 31, 60] and the references therein. We shall consider in §4 the optimal control
problem (2) where existence of the optimal control will be shown using a standard calculus of variations
argument. Then we turn our attention to the derivation of stationarity conditions for the optimal control
and state. There are a number of concepts of stationarity for these types of control problems, see [32]
for a discussion. We work on obtaining first Bouligand stationarity in §5.1, then E -almost C-stationarity
conditions [31, 30] in §5.2 by approximating the QVI control-to-state map through PDEs (as done in
§2.3) and then passing to the limit. In §5.3 we provide a strong stationarity result.

1.1 Contributions of the paper

We summarise the main results of this work.

� Existence for (1):
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Optimal control and directional differentiability for elliptic quasi-variational inequalities 3

� Theorem 2.3: iteration by solutions of VIs using complete continuity of Φ,

� Theorem 2.6: Birkhoff–Tartar order approach under lower bounds on Φ and the source
term,

� Theorem 2.11: sequential regularisation by PDEs under complete continuity of Φ.

� Directional differentiability for QVIs:

� Theorem 3.12: for locally boundedly differentiable (see Definition 3.8) maps Φ with no
restriction on the sign on the source and direction terms,

� Theorem 3.15: for locally Hadamard differentiable maps Φ for source/direction terms
bounded from below.

� Properties:

� Proposition 2.1: complementarity characterisations of the QVI (1),

� Propositions 3.13 and 3.16: complementarity characterisations of the QVI satisfied by the
directional derivative of the solution map,

� Proposition 3.18: uniqueness for the QVI satisfied by directional derivative and continuity
properties.

� Optimal control:

� Theorem 4.1: existence of optimal controls for (2).

� Stationarity conditions for (2):

� Proposition 5.1: Bouligand stationarity,

� Theorem 5.4: E -almost C stationarity,

� Theorem 5.6: strong stationarity.

1.2 Basic assumptions and notations

We make some standing assumptions that are necessary throughout the paper, except where men-
tioned otherwise.

Let V ⊂ H be an embedding of separable Hilbert spaces and suppose that there exists an ordering
to elements of H via a closed convex cone H+ satisfying H+ = {h ∈ H : (h, g) ≥ 0 ∀g ∈ H+};
the ordering then is h1 ≤ h2 if and only if h2 − h1 ∈ H+. This also induces an ordering for V in the
obvious way and we write V+ := {v ∈ V : v ≥ 0}. It also induces an ordering for V ∗ via

V ∗+ := {f ∈ V ∗ : 〈f, v〉 ≥ 0 ∀v ∈ V+},

where 〈·, ·〉 = 〈·, ·〉V ∗,V is the standard duality pairing. We write h+ for the orthogonal projection of
h ∈ H onto the space H+ and we have the decomposition h = h+ − h−. We suppose that v ∈ V
implies that v+ ∈ V and that there exists a constant C > 0 such that for all v ∈ V ,∥∥v+

∥∥
V
≤ C ‖v‖V .
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An example of such a space V is the Sobolev space V = W 1,p(Ω) over a domain Ω for 1 ≤ p ≤ ∞
with H = L2(Ω) (see [1] for a definition). The ordering relation u ≤ v in this case is equivalent to
‘u ≤ v a.e. in Ω’ as expected.

We take the obstacle map Φ: V → V to be increasing and A : V → V ∗ to be a linear operator that
satisfies the following properties for all u, v ∈ V :

〈Au, v〉 ≤ Cb ‖u‖V ‖v‖V , (boundedness)

〈Au, u〉 ≥ Ca ‖u‖2
V , (coercivity)

〈Au+, u−〉 ≤ 0. (T-monotonicity)

Since later V will be assumed to be part of a Gelfand triple with a pivot space H , we will only rarely
need to use the inner product on V and when we do so this will always be denoted by (·, ·)V (with the
subscript). The identity operator will be denoted by I.

We denote continuous, dense, and compact embeddings of spaces by ↪→,
d
↪−→, and

c
↪−→ respectively.

The notation BR(u) will be used to mean the closed ball in V of radius R centred at u.

2 Existence for QVIs

We begin by discussing three existence results for (1), reproduced here:

y ≤ Φ(y) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(y),

involving different approaches. We begin by obtaining existence through iteration by solutions of VIs.
Then we consider a translation of the theory by Birkhoff–Tartar for source terms that are bounded
from below and we finish by considering a sequential regularisation approach through PDEs. These
existence results entail different assumptions. The third approach, which is useful for purposes of
numerical realisation, requires only complete continuity of Φ and furthermore the assumption of Φ
being increasing can be dropped. The first approach also requires complete continuity in addition
to having either a smallness condition on the boundedness of Φ or a non-empty intersection of the
constraint sets associated to the QVI for varying obstacles. The second approach does not need any
compactness but instead one needs the obstacle map and the data to be bounded from below in a
certain sense.

Before we proceed, let us give the following characterisation of (1).

Proposition 2.1. The problem (1) is equivalent to the complementarity system

ξ := f − Ay,
ξ ≥ 0,

〈ξ,Φ(y)− y〉 = 0,

0 ≤ Φ(y)− y.

Proof. The proof is standard. By definition, ξ satisfies 〈ξ, y − v〉 ≥ 0 for all feasible v. Setting
v = Φ(y) and then v = 2y − Φ(y), we obtain the the orthogonality condition for ξ. Testing with
v = y − ϕ for ϕ ≥ 0 a.e. gives the stated non-negativity.

DOI 10.20347/WIAS.PREPRINT.2747 Berlin 2020
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2.1 Iteration scheme

Let S : V ∗×V → V be the usual solution mapping associated to the class of VIs under consideration,
i.e. y = S(f, ψ) solves

y ≤ Φ(ψ) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(ψ).

Take a source term f ∈ V ∗ and set y0 := A−1f = S(f,∞). The function y1 := S(f, y0) satisfies
y1 ≤ S(f,∞) ≡ y0 by the comparison principle [53, §4:5], and defining

yn := S(f, yn−1),

we see that yn ≤ yn−1 by repeated applications of the comparison principle. Hence {yn} is mono-
tonically decreasing and each yn satisfies

yn ∈ V, yn ≤ Φ(yn−1) : 〈Ayn − f, yn − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(yn−1). (3)

We look for a uniform bound on {yn}. When the obstacle map is such that it always dominates some
given function v0 ∈ V , this is easy since we may test with v = v0. Otherwise, we need the following.

Lemma 2.2. If

‖Φ(v)‖V ≤ CX ‖v‖V ∀v ∈ V where CX <
Ca
Cb

, (4)

then {yn} is bounded in V .

Proof. Since yn ≤ yn−1 and Φ is increasing, Φ(yn) ≤ Φ(yn−1) and so Φ(yn) is a valid test function
in (3) and we obtain

Ca ‖yn‖2
V ≤ 〈Ayn,Φ(yn)〉+ 〈f, yn − Φ(yn)〉
≤ Cb ‖yn‖V ‖Φ(yn)‖V + ‖f‖V ∗ ‖yn − Φ(yn)‖V
≤ CbCX ‖yn‖2

V + (1 + CX) ‖f‖V ∗ ‖yn‖V .
From this, we deduce that under the condition on CX in (4), yn is bounded in V .

The assumption (4) places a limitation on the variation on the bound of the constraint map Φ which
implies uniqueness of solutions for (1).

Theorem 2.3. For any f ∈ V ∗, under the assumptions

either there exists v0 ∈ V : Φ(v) ≥ v0 for all v ∈ V , or (4), (5)

Φ: V → V is completely continuous, (6)

there exists a solution y ∈ Q(f)∩(−∞, A−1f ] which is the weak limit of the sequence {yn} defined
above.

Proof. We obtain, thanks to monotonicity and the above lemma that yn ⇀ y in V (for the full se-
quence) for some y. Taking v∗ ∈ V with v∗ ≤ Φ(y) and taking as test function vn = v∗ − Φ(y) +
Φ(yn−1), which is feasible for the VI for yn and strongly converges to v∗, we can easily pass to the
limit in (3) and we find y ∈ Q(f) in the stated interval.

We have shown that Q : V ∗ ⇒ V is well defined under the above circumstances.

Remark 2.4. If the source term f is non-negative (i.e. if f ∈ V ∗+), Φ: H → V , and Φ(0) ≥ 0,
then the function 0 acts a subsolution for the map S(f, ·) which, in combination with the supersolution
y0 defined as above, allows us to directly apply the theory of fixed points in vector lattices of Tartar–
Birkhoff and obtain existence of solutions for (1) in the interval [0, y0]. In this case one does not need
the assumption (5). This was the approach taken in [3].
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2.2 Translation of Birkhoff–Tartar order approach

In this section, we translate the Birkhoff–Tartar-type existence results for QVIs with non-negative
source terms (see Remark 2.4) to QVIs with source terms that are allowed to be negative. This leads
to different assumptions than those made in §2.1. The bedrock of this technique, as detailed in the
introduction, is the result of Tartar [58] that gives existence of fixed points for increasing maps that
possess subsolutions and supersolutions, see also [6, Chapter 15, §15.2].

Let G ∈ V ∗+ be given such that Φ: H → V satisfies the property

Φ(−A−1(rG)) ≥ −A−1(rG) for all r ≥ 1 arbitrarily close to 1. (7)

We think ofG as a ‘lower bound’ function. The next example illustrates the existence of such a function
G to a map Φ related to solution maps of elliptic PDEs.

Example 2.5. Suppose V ⊂ H ⊂ V ∗ is a Gelfand triple with H = L2(Ω) on a bounded Lipschitz
domain Ω ⊂ Rn. Let Φ(u) = ϕ be defined as the solution of

Bϕ = f0 + u,

where B : V → V ∗ is a bounded linear and coercive operator which is T-monotone and f0 ≥ 0 is
data. The interest in such obstacle mappings is not merely academic, see [3] for some applications.
We claim that if G is such that

BA−1G ≥ A−1G,

then (7) is satisfied. To see this, set v := Φ(−A−1rG) so that Bv = f0−A−1rG. Adding the same
term to both sides, we obtain B(v+A−1rG) = f0 +BA−1rG−A−1rG. Test this with the function
(v + A−1rG)− to obtain

〈B(v + A−1rG)−, (v + A−1rG)−〉 =

∫
Ω

−(f0 +BA−1rG− A−1rG)(v + A−1rG)−,

and the right-hand side of this is less than zero since f0 ≥ 0.

While the assumption of the existence of such a G may appear to be restrictive, note that choosing
G ≡ 0 recovers the results of [3] which has been successfully applied to an application in thermo-
forming.

Theorem 2.6. Let G ∈ V ∗+ and r ≥ 1 be according to (7). Given f ∈ V ∗ with f ≥ −G, there exist
solutions yr ∈ Q(f) ∩ [−A−1(rG), A−1f ].

Furthermore, defining the family of obstacle maps Ψτ : H → V by

Ψτ (w) := Φ(w − A−1(τG)) + A−1(τG), (8)

the function wr := yr + A−1(rG) satisfies

wr ≤ Ψr(wr) : 〈Awr − (f + rG), wr − v〉 ≤ 0 ∀v ∈ V : v ≤ Ψr(wr)

and lies in [0, A−1(f + rG)]. We write wr ∈ Hr(f + rG).

DOI 10.20347/WIAS.PREPRINT.2747 Berlin 2020



Optimal control and directional differentiability for elliptic quasi-variational inequalities 7

Proof. Firstly, observe that by the assumptions on Φ, we have for all τ ≥ 1 that the obstacle map Ψτ

(defined in (8)) is increasing and satisfies Ψτ (0) ≥ 0. Hence, for f ∈ V ∗+, there exist [58] solutions
wτ ∈ [0, A−1f ] to the QVI

find w ∈ V,w ≤ Ψτ (w) : 〈Aw − f, w − v〉 ≤ 0 ∀v ∈ V : v ≤ Ψτ (w),

and we write w ∈ Hτ (f). We therefore have the existence of wr ∈ Hr(f + rG) for any r ≥ 1
satisfying the inequality in the statement of the theorem. Define now yr := wr − A−1(rG) which,
since

wr ≤ Ψr(wr) = Φ(wr − A−1(rG)) + A−1(rG),

is feasible in the sense that yr ≤ Φ(yr). Furthermore, Ayr − f = Awr − (f + rG) and if ϕ :=
v − A−1(rG) then yr − ϕ = wr − v and we have

yr ≤ Φ(yr) : 〈Ayr−f, yr−ϕ〉 ≤ 0 ∀ϕ : ϕ ≤ Ψr(wr)−A−1(rG) = Φ(wr−A−1(rG)) = Φ(yr).

This shows existence for (1).

Remark 2.7. If (7) holds at some particular r ≥ 1 (and rather than for all r close to 1) then the
results of this section clearly still hold for that value of r. The assumption (7) is phrased as it is due to
necessity in later sections.

2.3 Sequential regularisation by PDEs

In this section, we obtain existence results for (1) by regularising the QVI by PDEs. There has been
considerable effort on various aspects and methods of regularisation of VIs by PDEs; see for example
[27, §3.2] for an approach similar to what we consider here and [39] and [37, §IV] for a penalisation
involving approximations to the Heaviside graph (see also [53, §5:3] on this). We make use of and
adapt the work of Hintermüller and Kopacka [31] for VIs in this section. We take H := L2(Ω) on a

bounded Lipschitz domain Ω ⊂ Rn and work in the Gelfand triple setting (V,H, V ∗) with V
c
↪−→ H .

For ρ > 0, let mρ(·) ≡ maxgε(ρ)(0, ·) be the following regularisation of the positive part function

(·)+ = max(0, ·):

mρ(r) :=


0 : r ≤ 0
r2

2ε
: 0 < r < ε

r − ε
2

: r ≥ ε;

here, ε = ε(ρ) > 0 is a smoothing parameter utilised for ensuring differentiability at 0 and ρ is a
penalty parameter which we send to zero later (this is the so-called global penalisation used in [31]).
We suppose that {ε(ρ)} is a bounded sequence; since mρ is an exact penalisation of the associated
constraint set, it is not necessary to drive ε → 0. Since mρ : R → R is C1 with m′ρ ∈ [0, 1], by [18,
Lemma 2.83], mρ : W 1,p(Ω) → W 1,p(Ω) for p ∈ [1,∞). We will assume that V is such that this
property holds, i.e., that mρ : V → V .

We consider the penalisation1

Ayρ +
1

ρ
mρ(yρ − Φ(yρ)) = f (9)

1For the results of this section, it would be sufficient to simply consider max(0, ·) instead of mρ, but in anticipation of
the optimal control problem that we shall later study (in particular when we derive optimality conditions), it becomes useful
to smooth out the max function like we have done here.
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of (1) and study the convergence properties of its solution as ρ→ 0.

Remark 2.8. In fact, we do not need Φ to be increasing for the results in this section.

Lemma 2.9. Let Φ: V → H be completely continuous. Given f ∈ V ∗, there exists a solution
yρ ∈ V of (9). Furthermore, every solution satisfies

‖yρ‖V ≤ C−1
a

(
‖f‖V ∗ +

Cε

ρ

)
, (10)

where C is the constant of continuity for the embedding V ↪→ L1(Ω).

Proof. Since Φ is completely continuous, it is compact and therefore bounded. We see that, using
H ↪→ V ∗ and the Lipschitz continuity of mρ [31, Lemma 2.5 (v)],∥∥∥∥Ay +

1

ρ
mρ(y − Φ(y))

∥∥∥∥
V ∗
≤ Cb ‖y‖V +

C

ρ
‖y − Φ(y)‖H ,

so that A+ 1
ρ
mρ(I− Φ) is a bounded operator. Let us show that it is also coercive. Observe that

1

ρ

∫
Ω

mρ(y − Φ(y))y =
1

2ερ

∫
{0<y−Φ(y)<ε}

(y − Φ(y))2y +
1

ρ

∫
{y−Φ(y)>ε}∩{y≥0}

(
y − Φ(y)− ε

2

)
y

+
1

ρ

∫
{y−Φ(y)>ε}∩{y<0}

(
y − Φ(y)− ε

2

)
y.

The first term on the right-hand side can be bounded as

1

2ερ

∣∣∣∣∫
{0<y−Φ(y)<ε}

(y − Φ(y))2y

∣∣∣∣ ≤ ε

2ρ

∫
Ω

|y| ≤ Cε

2ρ
‖y‖V

where we used that V ↪→ H ↪→ L1(Ω) are continuous embeddings. The second term can be
neglected:

1

ρ

∫
{y−Φ(y)>ε}∩{y≥0}

(
y − Φ(y)− ε

2

)
y ≥ ε

2ρ

∫
{y−Φ(y)>ε}∩{y≥0}

|y| ≥ 0,

whilst the third term is

1

ρ

∫
{y−Φ(y)>ε}∩{y<0}

(
y − Φ(y)− ε

2

)
y ≤ ε

2ρ

∫
Ω

|y| ≤ Cε

2ρ
‖y‖V

since on the domain of integration, we have (y − Φ(y)− ε/2) y ≤ εy/2. Hence,

〈Ay, y〉+
1

ρ

∫
Ω

mρ(y − Φ(y))y ≥ Ca ‖y‖2
V −

Cε

ρ
‖y‖V ,

and we see that if we divide both sides by ‖y‖V and take the limit ‖y‖V →∞, the resulting right-hand
side diverges and the operator is coercive.

Using the complete continuity and V
c
↪−→ H , the term ρ−1mρ(y − Φ(y)) is completely continuous,

giving the pseudo-montonicity of the full elliptic operator. Then standard results (eg. [56, §2, Lemma
2.1, Example 2.B and Corollary 2.2]) yield existence. The estimate stated in the lemma is a simple
consequence of the above coercivity estimate.
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Remark 2.10. In case there exists an element v0 ∈ V such that v0 ≤ Φ(v) for all v ∈ V (this is true
in the VI case, for example), then the bound (10) on y can be replaced with a different bound which
is independent of ε and ρ. Indeed, omitting the subscript ρ in yρ for ease of reading, testing (9) with
y − v0 and manipulating with∫

Ω

mρ(y − Φ(y))(y − v0) =

∫
Ω

(mρ(y − Φ(y))−mρ(v0 − Φ(y)))(y − v0)

+

∫
Ω

mρ(v0 − Φ(y)))(y − v0)

≥ 0

(by monotonicity and because mρ ≡ 0 on (−∞, 0]), we have

Ca ‖y‖2
V ≤ Cb ‖y‖V ‖v0‖V + ‖f‖V ∗ ‖y‖V + ‖f‖V ∗ ‖v0‖V

≤ Ca
3
‖y‖2

V +
3C2

b

4Ca
‖v0‖2

V +
3

4Ca
‖f‖2

V ∗ +
Ca
3
‖y‖2

V +
1

2
‖f‖2

V ∗ +
1

2
‖v0‖2

V .

This gives the uniform bound

Ca
3
‖y‖2

V ≤
(

3C2
b

4Ca
+

1

2

)
‖v0‖2

V +

(
3

4Ca
+

1

2

)
‖f‖2

V ∗ .

Thanks to this lemma, for every source term fρ ∈ V ∗, the following equation has a solution yρ:

Ayρ +
1

ρ
mρ(yρ − Φ(yρ)) = fρ. (11)

We write the possibly multivalued solution mapping associated to this equation as Pρ : V ∗ ⇒ V ,
so (11) reads yρ ∈ Pρ(fρ). The next theorem shows that solutions of QVIs can be approximated
by solutions of (11) if we choose the parameter ε such that {ε(ρ)/ρ}ρ is bounded; note that is a
requirement special to our QVI case and was not necessary in the setting of [31].

Theorem 2.11. Let V be a Hilbert space, {ε(ρ)/ρ} be bounded2, and let (6) hold. Take a sequence
fρ → f in V ∗. Then there exists a subsequence {ρn}n and elements yρn ∈ Pρn(fρn) such that
yρn → y in V where y ∈ Q(f).

Proof. The proof is in four steps and is similar to the proof of Theorem 2.3 of [31].

1. Uniform estimates and feasibility of limit. For each ρ, let yρ be a solution of (11) (such a selection is
possible due to the axiom of countable choice). By Lemma 2.9, it satisfies the bound

Ca ‖yρ‖V ≤ ‖fρ‖V ∗ +
Cε

ρ
,

and this is bounded because we took ε(ρ)/ρ to be bounded, and hence for a subsequence (which we
do not attempt to differentiate for ease of reading), yρ ⇀ y in V to some y. Rearranging the equality
(11),

‖mρ(yρ − Φ(yρ))‖V ∗ = ρ ‖fρ − Ayρ‖V ∗ ≤ Cρ

2See Remark 2.13 regarding this assumption.
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and therefore mρ(yρ − Φ(yρ))→ 0 in V ∗ as ρ→ 0. Since ε(ρ)/ρ is bounded, we have ε(ρ)→ 0;
we use this in the following calculation:∥∥∥∥max(0, y − Φ(y))−max

ε(ρ)
(0, yρ − Φ(yρ))

∥∥∥∥
V ∗
≤ ‖max(0, y − Φ(y))−max(0, yρ − Φ(yρ))‖H

+

∥∥∥∥max(0, yρ − Φ(yρ))−max
ε(ρ)

(0, yρ − Φ(yρ))

∥∥∥∥
H

≤ ‖y − yρ‖H + ‖Φ(y)− Φ(yρ)‖H +
ε(ρ)

2
|Ω|1/2

→ 0

using [31, Lemma 2.1 (iv)] (in fact, up to here, complete continuity of Φ: V → H would suffice rather
than (6)). Hence we find max(0, y − Φ(y)) = 0, which tells us that y ≤ Φ(y).

2. Monotonicity formula. For v ∈ V , we get by adding and subtracting the same term and using the
monotonicity of mρ,

mρ(yρ − Φ(yρ))(yρ − v) = (mρ(yρ − Φ(yρ))−mρ(v − Φ(yρ)))(yρ − Φ(yρ) + Φ(yρ)− v)

+mρ(v − Φ(yρ))(yρ − v)

≥ mρ(v − Φ(yρ))(yρ − v). (12)

3. Passage to the limit. Test the equation (11) with yρ − v for v ∈ V and use (12) to find

〈Ayρ, yρ〉+
1

ρ

∫
Ω

mρ(v − Φ(yρ))(yρ − v) ≤ 〈fρ, yρ − v〉+ 〈Ayρ, v〉. (13)

Now, choose an arbitrary v∗ ∈ V with v∗ ≤ Φ(y) and select the test function to be

vρ = v∗ − Φ(y) + Φ(yρ).

This satisfies vρ → v∗ in V and vρ ≤ Φ(yρ). With this choice, the second term on the left-hand side
of (13) of the above inequality is equal to zero by definition of mρ. Hence we find

〈Ayρ, yρ〉 ≤ 〈fρ, yρ − vρ〉+ 〈Ayρ, vρ〉.

Take the limit inferior as ρ→ 0 and use weak lower semicontinuity to get y ∈ Q(f).

4. Strong convergence. Define vρ := y + Φ(yρ)− Φ(y) which has the properties

vρ → y in V ,

vρ ≤ Φ(yρ),

yρ − vρ = (yρ − y) + (Φ(y)− Φ(yρ)) ⇀ 0 in V ,

the first holding due to complete continuity since we already have yρ ⇀ y in V . By coercivity we
obtain the estimate

〈A(yρ − vρ), yρ − vρ〉 ≥ Ca ‖(yρ − y) + (Φ(y)− Φ(yρ))‖2
V

= Ca ‖yρ − y‖2
V + Ca ‖Φ(y)− Φ(yρ)‖2

V + 2Ca(yρ − y,Φ(y)− Φ(yρ))V .

DOI 10.20347/WIAS.PREPRINT.2747 Berlin 2020



Optimal control and directional differentiability for elliptic quasi-variational inequalities 11

Testing (11) appropriately, we have

〈A(yρ − vρ), yρ − vρ〉 = 〈fρ, yρ − vρ〉 −
1

ρ

∫
Ω

mρ(yρ − Φ(yρ))(yρ − vρ)− 〈Avρ, yρ − vρ〉

and to this we apply the monotonicity formula and the above calculation to find

Ca ‖yρ − y‖2
V ≤ −Ca ‖Φ(y)− Φ(yρ)‖2

V − 2Ca(yρ − y,Φ(y)− Φ(yρ))V

+ 〈fρ, yρ − vρ〉 −
1

ρ

∫
Ω

mρ(vρ − Φ(yρ))(yρ − vρ)− 〈Avρ, yρ − vρ〉

≤ −Ca ‖Φ(y)− Φ(yρ)‖2
V − 2Ca(yρ − y,Φ(y)− Φ(yρ))V + 〈fρ, yρ − vρ〉

− 〈Avρ, yρ − vρ〉. (since vρ ≤ Φ(yρ))

By complete continuity of Φ, the first and second terms converge to zero (the second being the inner
product of a weakly and a strongly convergent sequence). This reasoning also applies to the third term
and fourth term. Hence yρ → y strongly in V .

Remark 2.12. If Q(f) is a singleton, then the convergence result of the previous theorem holds for
the entire sequence and not just a subsequence because the limit y = Q(f) is unique.

Remark 2.13. In the situation of Remark 2.10, the requirement that {ε(ρ)/ρ} is bounded for Theo-
rem 2.11 is unnecessary. Since {ε(ρ)} is bounded, we have (for a subsequence that we relabelled)
ε(ρ) → ε̄ for some ε̄ ≥ 0 and we can replace the calculation in the first step of the proof of the
previous theorem by∥∥∥∥max

ε̄
(0, y − Φ(y))−max

ε(ρ)
(0, yρ − Φ(yρ))

∥∥∥∥
V ∗
≤
∥∥∥max

ε̄
(0, y − Φ(y))−max

ε̄
(0, yρ − Φ(yρ))

∥∥∥
H

+

∥∥∥∥max
ε̄

(0, yρ − Φ(yρ))−max
ε(ρ)

(0, yρ − Φ(yρ))

∥∥∥∥
H

≤ ‖y − yρ‖H + ‖Φ(y)− Φ(yρ)‖H +
3

2
|ε̄− ε(ρ)|

→ 0

with the convergence due to [31, Lemma 2.1 (iv) and (v)].

Example 2.14. The prototypical example for Φ to have in mind is a map given by the inverse of a
partial differential operator such as

Φ(w) := L−1w + f0,

for example with L : V → V ∗ a second-order linear elliptic operator on a bounded Lipschitz domain
Ω and f0 ∈ V . The validity of elliptic regularity and continuous dependence estimates for L would
give compactness properties for Φ and weak maximum principles yield the increasing property. See
[3, §1.2] for more details on this and on an application to fluid flow.

We shall need more assumptions on the obstacle map in the forthcoming sections and these will
mainly be differentiability requirements on Φ. In case of the example above with a linear L, these
can be checked without great difficulty. In [3, §6] we studied in substantial detail an application in
thermoforming and the mathematical model given there of the thermoforming process involves a QVI
with a nonlinear obstacle mapping Φ related to a solution of a PDE and we showed that all desired
assumptions (including those on differentiability) were satisfied.
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3 Directional differentiability

In this section, we extend the results of our previous work [3] which dealt with directional differentiability
of the solution map Q associated to (1) for non-negative source terms and directions. Here, we shall
see that similar results hold for

(a) unsigned source and direction terms and

(b) for source and direction terms bounded from below

by using two different approaches. Formally, the goal is to show that there exists a Q′(f)(d) ∈ V
such that

lim
s→0+

Q(f + sd)−Q(f)

s
= Q′(f)(d).

This is merely a formal limit since Q : V ⇒ V is set valued and not single valued in general, however
in case Q : V → V is single valued, it is precise. It is important to obtain such a sensitivity result not
only for applications but also for the procurement of strong stationarity conditions for optimal control
problems with QVI constraints, a topic that we will address in §5.3.

In order to show differentiability, in the case (a), we will consider an iteration argument similar to that in
§2.1 and for (b) we shall utilise the results of §2.2 and apply the results of our earlier work [3]. In both
cases, we fundamentally require the differentiability result for VIs [41] for which more structure on the
function space framework is required in the form of the next assumption.

Assumption 3.1. Suppose that H := L2(X;µ) where X is a locally compact topological space
which is σ-compact and µ is a Radon measure on X and let V ⊂ H ⊂ V ∗ be a Gelfand triple.
Furthermore, we assume that

V ∩ Cc(X)
d
↪−→ Cc(X) and V ∩ Cc(X)

d
↪−→ V.

This allows us to define the notions of capacity, quasi-continuity and related concepts, consult [41, §3],
[28, §3] and [17, §6.4.3] for more details. We will typically choose X to be Ω or its closure Ω (where
Ω ⊂ Rn is a sufficiently regular domain) depending on the choice of V .

Remark 3.2. Here are some concrete examples taken from [3, §1.2].

1 Let Ω be a bounded Lipschitz domain, V = H1
0 (Ω) or V = H1(Ω) and let A be the linear

second-order elliptic operator

〈Au, v〉 =
n∑

i,j=1

∫
Ω

aij
∂u

∂xi

∂v

∂xj
+

n∑
i=1

∫
Ω

bi
∂u

∂xi
v +

∫
Ω

c0uv

with coefficients aij, bi, c0 ∈ L∞(Ω) such that for all ξ ∈ Rn and for someC > 0,
∑n

i,j=1 aijξiξj ≥
C|ξ|2 a.e., and c0 ≥ λ > 0 with λ a constant. The space X is

X :=

{
Ω : if V = H1

0 (Ω)

Ω : if V = H1(Ω).

2 Let Ω be the half space of Rd for d ≥ 2, A = −∆ + Id with V = H1(Ω) and X := Ω. We
could also have chosen Ω = X := Rd for any d ≥ 1.
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3 Let V = Hs(Ω), s ∈ (0, 1), on a bounded Lipschitz domain Ω, where the classical fractional
Sobolev space Hs(Ω) is defined as the subspace of L2(Ω) with the following norm finite:

‖u‖Hs(Ω) :=

(∫
Ω

u2 +

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s

) 1
2

. (14)

Set 〈Au, v〉 = (u, v)Hs(Ω). In this case, X := Ω. More details of fractional Sobolev spaces
and fractional Laplace operators can be found in [57, 19].

4 The singular integral definition of the fractional Laplacian for sufficiently smooth functions u : Rd →
R is

(−∆)su(x) := c

∫
Rd

u(x)− u(y)

|x− y|n+2s
dy, where c =

4sΓ(d/2 + s)

πd/2|Γ(−s)|
,

again for s ∈ (0, 1). Pick V = Hs(Rd) (this space is defined through (14) with the obvious
modifications) and define the operator

〈Au, v〉 :=

∫
Ω

(−∆)s/2u(−∆)s/2v +

∫
Ω

uv,

and here we choose X := Rd.

When we talk about the active set or coincidence set of a solution y to a QVI related to an obstacle
map Φ, we mean the set defined through

A(y) := {x ∈ X : y(x) = Φ(y)(x)} for y ∈ V .

This set is quasi-closed and is defined up to sets of capacity zero. It is important to note that the
set of points defining the active set is taken over X ; in the context of the examples above, this can
sometimes be X = Ω and not merely Ω.

3.1 Differentiability for unsigned sources and directions

In this section, we shall fix an arbitrary f ∈ V ∗ and take an arbitrary but fixed y ∈ Q(f)3. Since we
study differentiability of QVIs, we need some differentiability for the constraint set mapping. Recall the
notation BR(y) ⊂ V to stand for the closed ball in V of radius R centred on u. We will henceforth
assume that

there exists ε > 0 s.t. Φ: V → V is Hadamard directionally differentiable on Bε(y). (15)

Remark 3.3. Note that this is an assumption on the differentiability of Φ on a small ball around the
fixed element y, that is, it is a local assumption and we do not ask for it hold globally on the whole of
V . We shall introduce more local assumptions in the course of the paper and one should bear in mind
that these local assumptions are stated in terms of a fixed element y which, in later sections, needs
to be modified appropriately (for example in §5 such assumptions should be evaluated at the function
that we call y∗). This should become apparent from the context.

3This is possible: for example, by Theorem 2.3 under certain assumptions.
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Pick a direction d ∈ V ∗ and construct, like in §2.1, the sequence

ys0 := y,

ysn := S(f + sd, ysn−1).
(16)

The idea here is to expand each ysn in terms of y, a directional derivative and a remainder term (both
of these would depend on n) and then to pass to the limit in such an expansion. The natural way to
proceed would be to obtain a uniform bound on {ysn} which would result in the existence of a weakly
convergent subsequence {ysnj}. This is not enough to identify the limit of {ysnj} due to the (n − 1)
term in the definition of ysn, so one would need convergence of the whole sequence which holds true
when, for example, one has monotonicity. However, in contrast to the sequence considered in §2.1,
we do not obtain any monotonicity of {ysn} since we do not assume a sign on d. Therefore, for a
convergence of the full sequence, we instead look for a contraction of the map associated to {ysn} on
some closed ball.

Lemma 3.4. Assume that

∃ε > 0 : ‖Φ′(z)(v)‖V ≤ CΦ ‖v‖V ∀z ∈ Bε(y),∀v ∈ V, where CΦ < (1 + C−1
a Cb)

−1. (17)

Then for any 0 < R ≤ ε, S(f + sd, ·) : BR(y)→ BR(y) is a contraction whenever

s ≤ Ca ‖d‖−1
V ∗ R(1− (1 + CbC

−1
a )CΦ).

Proof. Let v ∈ BR(y); we want to show that S(f + sd, v) ∈ BR(y). Observe that, using y =
S(f, y), continuous dependence (eg. [3, Equation (21)]) and the mean value theorem [47, §2, Propo-
sition 2.29],

‖S(f + sd, v)− y‖V ≤ (1 + CbC
−1
a ) sup

λ∈(0,1)

‖Φ′(λv + (1− λ)y)(v − y)‖V + C−1
a s ‖d‖V ∗

≤ (1 + CbC
−1
a )CΦ ‖v − y‖V + C−1

a s ‖d‖V ∗

(since λv + (1− λ)y ∈ BR(y) ⊂ Bε(y))

≤ (1 + CbC
−1
a )CΦR + C−1

a s ‖d‖V ∗ ,

and, using the fact that (1 + CbC
−1
a )CΦ equals a constant strictly less than 1, the right-hand side is

bounded above by R under the stated assumption. This shows that S(f + sd, ·) maps BR(y) into
itself.

To see that the map is a contraction, take v, w ∈ BR(y) and observe that

‖S(f + sd, v)− S(f + sd, w)‖V ≤ (1 + C−1
a Cb) sup

λ∈(0,1)

‖Φ′(λw + (1− λ)v)(w − v)‖V

≤ CΦ(1 + C−1
a Cb) ‖z2 − z1‖V .

Remark 3.5. Observe that when Φ is linear, the boundedness condition (4) is implied by assumption
(17).

Under (17), we have that each ysn ∈ BR(y). By applying the Banach fixed point theorem, we obtain
the following existence and convergence result.

Lemma 3.6. Given f, d ∈ V ∗ and y ∈ Q(f), under the assumptions of the previous lemma, there
exists ys ∈ Q(f + sd) ∩BR(y) such that ysn → ys in V (where ysn is defined in (16)).
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Now, making use of the differentiability result for VIs provided by Mignot [41, Theorem 3.3], we can
expand ys1 = S(f + sd, y) as follows:

ys1 = y + sδ1 + o1(s),

where s−1o1(s)→ 0 as s→ 0+ and δ1 = ∂S(f, y)(d) is the directional derivative of S(f, ·) in the
direction d, and this satisfies the VI

δ1 ∈ Ky : 〈Aδ1 − d, δ1 − v〉 ≤ 0 ∀v ∈ Ky,
Ky := {w ∈ V : w ≤ 0 q.e. onA(y) and 〈Ay − f, w〉 = 0}.

(18)

Here, ‘q.e.’ stands for quasi-everywhere and a statement holds quasi-everywhere if it holds everywhere
except on a set of capacity zero. To acquire an expansion formula for a general ysn, define

δn := ∂S(f, y)[d− AΦ′(y)(Φ′(y)[...Φ′(y)[Φ′(y)(δ0) + δ1] + δ2...] + δn−2] + δn−1)] for n > 1

and

αn :=

{
δ1 : if n = 1

Φ′(y)[Φ′(y)[...Φ′(y)[Φ′(y)(δ1) + δ2] + δ3...] + δn−1] + δn : if n ≥ 2,

and observe the recursion formula

αn = Φ′(y)[αn−1] + δn for n > 1. (19)

In exactly the same way as in [3, Proposition 2], we obtain the following result (the proof is by induction
and we omit it here).

Proposition 3.7. Under the assumptions of the previous lemma, for n ≥ 1,

ysn = y + sαn + on(s) (20)

where αn = αn(d) is positively homogeneous in the direction d and satisfies the VI

αn ∈ Ky(αn−1) : 〈Aαn − d, αn − ϕ〉 ≤ 0 ∀ϕ ∈ Ky(αn−1),

Ky(αn−1) := {ϕ ∈ V : ϕ ≤ Φ′(y)(αn−1) q.e. onA(y) and 〈Ay − f, ϕ− Φ′(y)(αn−1)〉 = 0},

with s−1on(s)→ 0 as s→ 0+.

It remains then to pass to the limit in (20) and to identify the corresponding limits. To this end, observe
that sαn + on(s) = ysn − y → ys − y in V . Assumption (17) provides the existence of a constant
c > 0 such that

‖Φ′(y)(v)‖V ≤
Ca − c
Cb

‖v‖V ,

and thus the sequence {αn} is bounded exactly as shown in the proof of [3, Theorem 6] and we have
the existence of a subsequence {nj} with

αnj ⇀ α in V and onj(s) ⇀ o∗(s) in V .

We can pass to the limit in (20) along this subsequence to obtain

ys = y + sα + o∗(s), (21)
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and it is left for us to show that o∗ is a remainder term and to characterise α suitably. For this, we
need some more notation. Let S0 : V ∗ → V be the map f 7→ u of the following VI with trivial lower
obstacle:

u ∈ V+ : 〈Au− f, u− v〉 ≤ 0 ∀v ∈ V+,

and denote the remainder term associated to the derivative formula of S0 by o(·, · ; ·), that is,

o(s, h; f) :=
S0(f + sh)− S0(f)− sS ′0(f)(h)

s
.

Similarly, we denote the remainder term associated to Φ by l(·, · ; ·).

The idea in [3] was to show that the convergence s−1on(s) → 0 as s → 0+ is uniform in n, which
is sufficient to commute the limits s → 0+ and n → ∞ for s−1on(s), giving the desired behaviour
s−1o∗(s) → 0 as s → 0+. This unformity was shown by the derivation of the estimate (see [3,
Lemma 14])

‖on(s)‖V ≤ Cn−1 ‖o1(s)‖V + Cn−2
(
(1 + C−1

a Cb) ‖l(s, α1; y)‖V
+ ‖o(s, AΦ′(y)(α1)− d;AΦ(y)− f)‖V

)
+ Cn−3

(
(1 + C−1

a Cb) ‖l(s, α2; y)‖V + ‖o(s, AΦ′(y)(α2)− d;AΦ(y)− f)‖V
)

+ ...+ (1 + C−1
a Cb) ‖l(s, αn−1; y)‖V + ‖o(s, AΦ′(y)(αn−1)− d;AΦ(y)− f)‖V

for a constant C < 1, and then the following quantity was shown to vanish uniformly in the limit
s→ 0+:

(1 + C−1
a Cb)

‖l(s, αn; y)‖V
s

+
‖o(s, AΦ′(y)(αn)− d;AΦ(y)− f)‖V

s
.

In the setting of [3] (where f, d ∈ V ∗+), this indeed converges to zero uniformly in n because by
[3, Lemma 12], αn → α in V for the whole sequence and thus the Hadamard differentiability (and
hence compact differentiability, see [55, Proposition 3.3]) of Φ and S0 directly gives the uniform con-
vergence. This argument is not directly applicable in our setting because we do not have convergence
of the whole sequence {αn} nor {AΦ′(y)(αn)} (we merely know that a subsequence converges).
This means that these sets are no longer guaranteed to be embedded into compact sets and so the
compact differentiability of Φ is no longer of help. Thus, we need a strengthening of the Hadamard
differentiability assumption and the right notion in this setting is that of bounded directional differen-
tiability.

Definition 3.8. A map T : X → Y between Banach spaces is said to be boundedly directionally
differentiable at x ∈ X if there exists a positively homogeneous map T ′(x) : X → Y such that

lim
s→0+

T (x+ sh)− T (x)− sT ′(x)(h)

s
= 0 uniformly in h on bounded subsets of Y .

Fréchet differentiable operators are boundedly directionally differentiable. See [55, §2] for more details
and further references. Now we adapt the proof of [3, Lemma 14] under this context.

Proposition 3.9. Assume (15), (17), and

Φ: V → V is boundedly directionally differentiable at y, (22)

Φ′(y) : V → V is completely continuous. (23)

Then s−1o∗(s)→ 0 as s→ 0.
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Proof. Define

an(s) := ‖on(s)‖V and bn(s) := (1+C−1
a Cb) ‖l(s, αn; y)‖V +‖o(s, AΦ′(y)(αn);AΦ(y)− f)‖V .

From the proof of [3, Lemma 14], we see that an satisfies the following recurrence inequality:

an(s) ≤ Can−1(s) + bn−1(s),

where the constant C < 1 by the assumption on CΦ in (17). This implies

an(s) ≤ Cn−1a1(s) + Cn−2b1(s) + Cn−3b2(s) + ...+ Cbn−2(s) + bn−1(s). (24)

Consider

bn−1(s)

s
=

(1 + C−1
a Cb) ‖l(s, αn−1; y)‖V

s
+
‖o(s, AΦ′(y)(αn−1);AΦ(y)− f)‖V

s
.

Since {αn} is bounded, we know that the first term on the right-hand side converges to zero uni-
formly in n by definition of Φ being boundedly directionally differentiable at y. The compactness of
Φ′(y)(·) : V → V implies that AΦ′(y)(·) : V → V ∗ is compact. By definition, the image of a
bounded set under a compact map is relatively compact, meaning that {AΦ′(y)(αn−1)} is a com-
pact set in V ∗. Since the remainder term o above arises from the Hadamard (and hence compact)
differentiability of the solution map associated to VIs, it follows that o(s, h)/s → 0 uniformly for h
belonging to the compact set {AΦ′(y)(αn−1)}. Because {AΦ′(y)(αn−1)} ⊂ {AΦ′(y)(αn−1)}, we
have that

o(s, h;AΦ(y)− f)

s
→ 0 uniformly in h ∈ {AΦ′(y)(αn−1)}

which then gives
bn−1(s)

s
→ 0 uniformly in n.

These facts along with (24) imply that for every ε > 0, there exists an s0 independent of n such that

‖on(s)‖V
s

≤ ε when s ≤ s0

which means precisely that s−1on(s)→ 0 as s→ 0+ uniformly in n. Finally, using the weak conver-
gence of the subsequence onj , taking the liminf as nj →∞ and using the weak lower semicontinuity
of norms in the above inequality for n = nj , we deduce that s−1o∗(s)→ 0 as s→ 0+.

Remark 3.10. Assumptions (15), (6), (23), (17) are related to assumptions (A1), (A2), (A3), (A5) of
the paper [3].

As a byproduct of the above result, we find that the whole sequence {αn} indeed converges.

Lemma 3.11. Under the assumptions of the previous proposition, αn → α in V (for the whole
sequence).

Proof. Consider the difference quotient

rn(s) := αn +
on(s)

s
=
ysn − y
s
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which, thanks to the strong convergence of ysn and (21), is such that

lim
n→∞

rn(s) =
ys − y
s

= α +
o∗(s)

s

(this limit and the ones below are all taken in V ). We claim that

lim
s→0+

rn(s) = αn uniformly in n.

This follows because the quantity rn(s) − αn = on(s)/s converges to zero as s → 0+ uniformly in
n as we have seen in the proof of Proposition 3.9, and the Moore–Osgood theorem [22, §I.7, Lemma
6] then applies, giving the existence of iterated limits as well as commutability and we get

α = lim
s→0+

(
α +

o∗(s)

s

)
= lim

s→0+
lim
n→∞

rn(s) = lim
n→∞

lim
s→0+

rn(s) = lim
n→∞

αn

with the first equality thanks to Proposition 3.9.

This strong convergence opens the door for the characterisation of the directional derivative as in [3]
— namely, it allows us to pass to the limit in the recurrence formula (19) which involves the terms αn
and αn−1 (for which arguments using convergences of subsequences would not be viable). See §5.1
and §5.2 in [3] for more details. Finally, we obtain the following theorem.

Theorem 3.12. Given f ∈ V ∗ and d ∈ V ∗, for every y ∈ Q(f), under assumption (6), the local
assumptions (15), (17), (22), (23), and Assumption 3.1, there exists ys ∈ Q(f +sd)∩BR(y) (where
0 < R ≤ ε) and α = α(d) ∈ V such that

ys = y + sα + o(s)

holds where s−1o(s)→ 0 as s→ 0+ in V and α satisfies the QVI

α ∈ Ky(α) : 〈Aα− d, α− v〉 ≤ 0 ∀v ∈ Ky(α),

Ky(w) := {ϕ ∈ V : ϕ ≤ Φ′(y)(w) q.e. onA(y) and 〈Ay − f, ϕ− Φ′(y)(w)〉 = 0}.
(25)

The directional derivative α = α(d) is positively homogeneous in d.

Furthermore, if d ∈ V ∗+ or −d ∈ V ∗+, (22) can be omitted.

Proof. The proof has been sketched above and we detail here the final claim. Indeed, supposing
d ≥ 0, we easily obtain ysn+1 ≥ yn which directly implies that αn+1 ≥ αn, leading to αn ⇀ α for the
full sequence. This fact then implies (along the same lines as [3, Lemma 5.4]) that αn → α in V (we
get this long before Lemma 3.11, which becomes superfluous) so that {αn} belongs to a compact
set in V and the Hadamard differentiability for Φ is enough for Proposition 3.9. If instead d ≤ 0, the
inequalities above are merely flipped.

In the theorem, the existence of a particular y ∈ Q(f) is assumed ; conditions under Q(f) is non-
empty were given in the existence results of §2. Observe that the theorem generalises the result of
Theorem 1.6 in [3].

We now look for an analogue of the complementarity characterisation of Proposition 2.1 for the QVI
(25) satisfied by the directional derivative. First, recall Ky from (18) and that the polar cone of a set
M ⊂ V is defined

M◦ = {g ∈ V ∗ : 〈g, v〉 ≤ 0 ∀v ∈M}.
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Proposition 3.13. The QVI (25) is equivalent to the complementarity system

α− Φ′(y)(α) ∈ Ky,
ξd = d− Aα,
ξd ∈ (Ky)◦,
〈ξd,Φ′(y)(α)− α〉 = 0.

Proof. Observe that α − Φ′(y)(α) belongs to the set Ky. Define ξd := d − Aα which by definition
satisfies

α− Φ′(y)(α) ∈ Ky : 〈ξd, α− v〉 ≥ 0 ∀v ∈ V : v − Φ′(y)(α) ∈ Ky.

Taking v = Φ′(y)(α) here and then v = 2α − Φ′(y)(α) (which is feasible since v − Φ′(y)(α) is
twice a function that belongs to Ky) shows the orthogonality condition.

Letw ∈ Ky and select v = α+w (this is feasible since v−Φ′(y)(α) = α−Φ′(y)(α)+w ∈ Ky+Ky
and the critical cone is closed under addition). With this choice, we obtain

〈ξd, w〉 ≤ 0 ∀w ∈ Ky,

meaning precisely that ξd ∈ (Ky)◦.

3.2 Differentiability for sources and directions bounded from below

We now prove differentiability using different assumptions. Namely we consider source and direction
terms that are bounded from below by a negative functional and we drop the bounded differentiability
assumption on Φ, like in §2.2. By making a transformation, we will rewrite the QVI as another QVI
involving non-negative source and direction to which we directly apply [3]. The advantage of this ap-
proach in contrast to the previous section is that, as mentioned, Hadamard differentiability is sufficient.

Indeed, like in §2.2, given a lower bound functional G ∈ V ∗+, take a source term f ≥ −G and fix
w ∈ H1(f + G) where we recall that the notation H was defined in Theorem 2.6. In addition to
assumption (6), we need the following. Assume that

(15) holds with y replaced with w − A−1G. (26)

(17) holds with y replaced with w − A−1G. (27)

(23) holds with y replaced with w − A−1G. (28)

These hypotheses imply that Ψ1 satisfies the assumptions made on the obstacle map in Theorem 1
of [3].

Remark 3.14. Strictly speaking, in [3], instead of (15) or (26) we assumed the stronger condition
that Φ: V → V is (globally) Hadamard differentiable. That, however, is not necessary as the local
condition (15) or (26) suffices upon inspection of the proofs in [3].

Take now a direction d ∈ V ∗ such that d ≥ −G; by [3, Theorem 1], we know that there exists a
ws ∈ H1(f +G+ s(d+G)) ∩ [w,A−1(f +G+ s(d+G))] such that

ws = w + sβ + o(s)
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where o is a remainder term and β = β(f +G; d+G) is a directional derivative satisfying

β ∈ KwΨ1
(β) : 〈Aβ − (d+G), β − v〉 ≤ 0 ∀v ∈ KwΨ1

(β),

KwΨ1
(v) := {ϕ ∈ V : ϕ ≤ Ψ′1(w)(v) q.e. onAΨ1(w) and 〈Aw − (f +G), ϕ−Ψ′1(w)(v)〉 = 0}.

Here the set AΨ1(w) = {w = Ψ1(w)} is the active set associated to the obstacle map Ψ1 and we
used the fact that Ψ′r(w)(d) = Φ′(w − A−1(rG))(d).

We know that since w ∈ H1(f +G) and ws ∈ H1(f + sd+ (1 + s)G), by Theorem 2.6,

y := w − A−1G ∈ Q(f) and ys := ws − A−1(1 + s)G ∈ Q(f + sd),

and we have, using the above expansion formula and the linearity of A−1,

ys = y + s(β − A−1G) + o(s).

This gives us a differentiability formula for source terms and directions satisfying f, h ≥ −G.

Theorem 3.15. Let f, d ∈ V ∗ with f ≥ −G a source term and let d ≥ −G be a direction. For any
y ∈ Q(f)∩ [−A−1G,A−1f ], under assumptions (7), (6), the local assumptions (26), (27), (28), and
Assumption 3.1, there exists ys ∈ Q(f + sd) ∩ [y − sA−1G,A−1(f + sd)] and α = α(d) ∈ V
such that

ys = y + sα + o(s)

holds where s−1o(s)→ 0 as s→ 0+ in V and α satisfies the QVI

α ∈ KyG(α) : 〈Aα− d, α− v〉 ≤ 0 ∀v ∈ KyG(α),

KyG(v) := {ϕ ∈ V : ϕ ≤ Φ′(y)(v + A−1G)− A−1G q.e. onA(y) and

〈Ay − f, ϕ+ A−1G− Φ′(y)(v + A−1G)〉 = 0}.
(29)

Naturally, whenG ≡ 0 we recover the results of [3]. The constraint set above depends on the function
G that was used to set up the transformation; this is natural since the ‘base’ function y and the
perturbation ys also depend on G. Note the identity

KyG(α) = Ky(α + A−1G)− A−1G.

We now state a complementarity characterisation for the QVI satisfied by α. The proof is similar to
that of Proposition 3.13 and is omitted.

Proposition 3.16. The QVI (29) is equivalent to the complementarity system

α + A−1G− Φ′(y)(α + A−1G) ∈ Ky,
ξd = d− Aα,
ξd ∈ (Ky)◦,
〈ξd,Φ′(y)(α + A−1G)− α− A−1G〉 = 0.

3.3 Continuity properties of the directional derivative

We now study the conditions under which continuity of the map taking the direction d into the direc-
tional derivative α in (25) and (29) is assured. In the next lemma, note that we do not require (27)
since we only need boundedness of Φ′(y).
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Lemma 3.17. Let the local assumptions (17) and (23) (or (27) and (28)) hold. If dn → d in V ∗, then
there exists a subsequence {nj} and solutions αnj of the QVI (25) (or (29)) with source term dnj
such that

αnj → α in V

where α is a solution of (25) (or (29)) with source term d.

Proof. We again prove just the case for the QVI (25) obtained in §3. First observe that (17) implies

‖Φ′(y)(v)‖V ≤ CΦ ‖v‖V where CΦ < (1 + C−1
a Cb)

−1.

The derivative αn associated to dn satisfies

αn ∈ Ky(αn) : 〈Aαn − dn, αn − v〉 ≤ 0 ∀v ∈ Ky(αn).

We choose v = Φ′(y)(αn) as a test function. This leads to

Ca ‖αn‖2
V ≤ ‖dn‖V ∗ ‖αn‖V + (Cb ‖αn‖V + ‖dn‖V ∗) ‖Φ′(y)(αn)‖V
≤ C ‖αn‖V + (Cb ‖αn‖V + C)CΦ ‖αn‖V ,

and we see that since Ca − CbCΦ is strictly positive, {αn} is bounded and we obtain, for a subse-
quence,

αn ⇀ α in V

for some α ∈ V that we need to identify. We first prove that the above convergence is also strong.
Indeed, take n,m ∈ N and in the inequality for αn, take the test function vn = αm − Φ′(y)(αm) +
Φ′(y)(αn) which is clearly feasible, whilst in the inequality for αm, set v = αn − Φ′(y)(αn) +
Φ′(y)(αm) to obtain

〈Aαn − dn, αn − αm + Φ′(y)(αm)− Φ′(y)(αn)〉 ≤ 0,

〈Aαm − dm, αm − αn + Φ′(y)(αn)− Φ′(y)(αm)〉 ≤ 0.

Adding these inequalities, we find

〈A(αn − αm)− (dn − dm), αn − αm + Φ′(y)(αm)− Φ′(y)(αn)〉 ≤ 0,

which implies

Ca ‖αn − αm‖2
V ≤ 〈(dn − dm), αn − αm〉+ 〈A(αm − αn)− (dm − dn),Φ′(y)(αm)− Φ′(y)(αn)〉
≤ ‖dn − dm‖V ∗ ‖αn − αm‖V + Cb ‖αm − αn‖V ‖Φ

′(y)(αm)− Φ′(y)(αn)‖V
+ ‖dm − dn‖V ∗ ‖Φ′(y)(αm)− Φ′(y)(αn)‖V
≤ C ‖dn − dm‖V ∗ + CbC ‖Φ′(y)(αm)− Φ′(y)(αn)‖V

+ ‖dm − dn‖V ∗ ‖Φ′(y)(αm)− Φ′(y)(αn)‖V ,

and this tends to zero since {dn} is a Cauchy sequence in V ∗ and the weak convergence of {αn} in
V implies the strong convergence of {Φ′(y)(αn)} in V . Hence {αn} is a Cauchy sequence and we
indeed have (still for a subsequence) the strong convergence

αn → α in V .

DOI 10.20347/WIAS.PREPRINT.2747 Berlin 2020



A. Alphonse, M. Hintermüller, C. N. Rautenberg 22

Now, in the inequality for αn, choose the test function vn := v − Φ′(y)(α) + Φ′(y)(αn) where v is
such that v ∈ Ky(α). It follows that vn → v in V . This allows us to pass to the limit and we get

〈Aα− d, α− v〉 ≤ 0 ∀v ∈ Ky(α)

and it remains to be seen that α ∈ Ky(α).

This is easy to do: the strong convergence of αn in V implies that αn → α pointwise q.e. and we
know that αn−Φ′(y)(αn) ≤ 0 on {y = Φ(y)} \An where An is a set of capacity zero. Utilising the
fact that a countable union of sets of capacity zero has capacity zero, we find α− Φ′(y)(α) ≤ 0 q.e.
on {y = Φ(y)}. This shows that α solves the desired QVI.

The continuity result in the next proposition strengthens the previous lemma and is crucial for several
results that we need in §5.3 for strong stationarity.

Proposition 3.18. Suppose that

Φ′(y) : V → V is Lipschitz with Lipschitz constant CL satisfying CL < Ca/Cb. (30)

Then solutions to the QVIs (25) and (29) are unique and furthermore, under also the assumptions of
the previous lemma, d 7→ α(d) is continuous from V ∗ to V .

Proof. Consider two solutions of (25):

α1 ∈ Ky(α1) : 〈Aα1 − d, α1 − v1〉 ≤ 0 ∀v1 ∈ Ky(α1),

α2 ∈ Ky(α2) : 〈Aα2 − d, α2 − v2〉 ≤ 0 ∀v2 ∈ Ky(α2).

Take v1 = α2 − Φ′(y)(α2) + Φ′(y)(α1) and a similar ansatz for v2 and we end up with

〈Aα1 − d, α1 − α2 − Φ′(y)(α1) + Φ′(y)(α2)〉 ≤ 0,

〈Aα2 − d, α2 − α1 − Φ′(y)(α2) + Φ′(y)(α1)〉 ≤ 0.

Adding and manipulating leads to

Ca ‖α1 − α2‖2
V ≤ 〈A(α1 − α2),Φ′(y)(α1)− Φ′(y)(α2)〉 ≤ CbCL ‖α1 − α2‖2

V ,

which gives α1 = α2 under the assumption of the lemma. The continuity is a result of applying
the subsequence principle to the result of the previous lemma to deduce that the whole sequence
converges (since the limiting inequality has a unique solution). The same argument with the correct
modifications proves the result for (29).

4 Existence of optimal controls

We now address the optimal control problem (2). The function space context requires V ⊂ H ⊂ V ∗

to be a Gelfand triple of Hilbert spaces and U ↪→ H to be a given Hilbert space. Given a desired state
yd ∈ H , define J : H × U → R by

J(y, u) :=
1

2
‖y − yd‖2

H +
ν

2
‖u‖2

U ,

and with Uad ⊆ U not necessarily bounded, we consider the problem (2) which we recall here:

min
u∈Uad
y∈Q(u)

J(y, u).
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Theorem 4.1. Let U
c
↪−→ V ∗ and let Uad ⊂ U be a weakly sequentially closed4set and let (5) and (6)

hold. Then there exists an optimal control u∗ ∈ Uad and associated state y∗ ∈ Q(u∗) to the problem
(2).

Proof. Let un ∈ Uad be an infimising sequence with yn ∈ Q(un) (this exists by Theorem 2.3), i.e.,

J(yn, un)→ inf
u∈Uad,
y∈Q(u)

J(y, u).

Then un and yn are bounded in U and V respectively (the latter arises from (5)) and therefore, there
exists a subsequence such that

unj ⇀ u∗ in U,

ynj ⇀ y∗ in V .

By assumption, u∗ also belongs to Uad. Since the yn are solutions of QVIs, we have the following
estimate ∥∥ynj − ynk∥∥V ≤ C

(∥∥unj − unk∥∥V ∗ +
∥∥Φ(ynj)− Φ(ynk)

∥∥
V

)
.

In the limit, the first term on the right-hand side vanishes due to the compact embedding, and the
second term vanishes too because Φ is completely continuous. Thus {ynj} is Cauchy in V and it
has a strong limit in V to y∗. Taking an arbitrary v ∈ V such that v ≤ Φ(y∗), we set vnj :=
v − Φ(y∗) + Φ(ynj) and use this as a test function in the QVI for ynj in which we can pass to
the limit and find y∗ ∈ Q(u∗). To see that this pair is optimal, we observe that (dispensing with the
subsequence notation now)

J(y∗, u∗) ≤ lim inf
n→∞

J(yn, un) ≤ lim
n→∞

J(yn, un) = min
u∈Uad
y∈Q(u)

J(y, u).

Regarding regularity of the optimal control, see Theorem 5.4. In general there is no uniqueness for the
optimal control and state regardless of whether Q is single valued or not.

Remark 4.2. For optimal control problems with more general quasi-variational constraints one might
need to assume Mosco convergence properties of the constraint sets. Given the structure of our uni-
laterally constrained compliant obstacle problem, this is obtained due in part to the complete continuity
assumption on Φ.

For the rest of the paper, we will just take U ≡ H for simplicity.

5 Stationarity

In this section, we shall derive three forms of necessary conditions satisfied by optimal controls and
states. Let us first define some concepts of stationarity which are motivated by analogous concepts
from the VI case and also by the results that we shall obtain later.

4That is, if un ⇀ u in U with un ∈ Uad, then u ∈ Uad.
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Let (y, u) be a solution of (2). Certain sets associated to the lower-level QVI problem in (2) are impor-
tant in stating stationarity conditions. Recalling the notation ξ in Proposition 2.1, let us formally define
then the following sets:

A := {y = Φ(y)} is the active (or coincidence) set,

I := {y < Φ(y)} is the inactive set,

As := {ξ > 0} is the strongly active set,

B := {y = Φ(y)} ∩ {ξ = 0} is the biactive set.

These definitions are merely heuristic due to the low regularity of ξ, see for example [26, Definitions
2.4.1 and 2.4.2] for a rigorous way to define these objects.

We say that (y, u) ∈ V ×H is a C-stationarity point of (2) if (y, u) is a solution of (2) and there exists
(p, ξ, λ) ∈ V × V ∗ × V ∗ such that

y + λ+ A∗p = yd, (31a)

Ay − u+ ξ = 0, (31b)

u ∈ Uad : (νu− p, u− v) ≤ 0 ∀v ∈ Uad, (31c)

ξ ≥ 0 in V ∗, y ≤ Φ(y), 〈ξ, y − Φ(y)〉 = 0, (31d)

〈ξ, p+〉 = 〈ξ, p−〉 = 0 (31e)

〈λ, p〉 ≥ 0, 〈λ, y − Φ(y)〉 = 0, (31f)

〈λ, v〉 = 0 ∀v ∈ V : v = 0 on Ω \ I. (31g)

The function p is said to be the adjoint state and λ is the Lagrange multiplier associated to the adjoint
state equation (31a). Note that we use the condition (31e) in lieu of the more commonly seen condition

p = 0 a.e. in {ξ > 0}

due to the low regularity of ξ.

The condition (31g) is in practice difficult to check due to the fact that in general, λ possesses only
the low V ∗ regularity. Therefore, one looks for a weaker concept. In the first instance, for an almost
C-stationarity point, (31g) is replaced by

〈λ, v〉 = 0 ∀v ∈ V : v = 0 on Ω \ I, v|I ∈ H1
0 (I).

More generally, an E -almost C-stationarity point, the concept of which was introduced by Hintermüller
and Kopacka in [31, 30], satisfies (31a)–(31f) but now (31g) is replaced with

∀τ > 0,∃Eτ ⊂ I with |I \ Eτ | ≤ τ : 〈λ, v〉 = 0 ∀v ∈ V : v = 0 on Ω \ Eτ .

This is a condition that arises from an application of Egorov’s theorem as we shall see later.

Now, in the other direction, a point which satisfies (31a)–(31d) and additionally

p ≥ 0 q.e. on B and p = 0 q.e. onAs,
〈λ, v〉 ≥ 0 ∀v ∈ V : v ≥ 0 q.e. on B and v = 0 q.e. onAs,

is called a strong stationarity point, which is typically the most stringent notion of stationarity possible
and requires differentiability of the control-to-state map to be obtainable.
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In the proceeding sections, we will show that there exist E−almost C-stationarity and strong stationar-
ity points under various assumptions. We will, however, first start in §5.1 with the so-called Bouligand
stationarity which is a primal condition and is defined below. It also requires differentiability of Q.

For sections §5.2–5.3, we will work in the setting of V = H1
0 (Ω) with H = L2(Ω) (as before) and

we take Uad to have the form

Uad = {u ∈ H : ua ≤ u ≤ ub a.e. in Ω} (32)

for given functions ua, ub ∈ H .

5.1 Bouligand stationarity

In the case where Q is directionally differentiable from the results of §3, we have the following Bouli-
gand stationarity (or B-stationarity) characterisation of the optimal control, see [41, §5] and [42, Lemma
3.1] for the VI case. To start, define the radial cone of Uad at u∗ by

RUad(u
∗) = {h ∈ H : ∃s∗ > 0 s.t. u∗ + sh ∈ Uad ∀s ∈ [0, s∗]},

and the tangent cone by
TUad(u∗) := RUad(u

∗).

Proposition 5.1 (Bouligand stationarity). Let (u∗, y∗) be a minimiser of (2) and let the local assump-
tions (17), (23) and (30) hold at y∗. If the assumptions of Theorem 3.12 hold, then

(αh, y
∗ − yd) + ν(u∗, h) ≥ 0 ∀h ∈ TUad(u∗), (33)

whereas if instead the assumptions of Theorem 3.15 hold, the above inequality holds for all

h ∈ RUad(u
∗) ∩ (H+ −G).

The term αh above is the directional derivative associated to the perturbation ys ∈ Q(u∗+ sh) given
through Theorem 3.12 or Theorem 3.15 respectively.

Proof. Consider the case in which Theorem 3.12 is applicable. By definition of the minimiser, we have
J(ys, u

∗ + sh) ≥ J(y∗, u∗) for any admissible direction h, s ≥ 0 and any ys ∈ Q(u∗ + sh), and
it is clear that every h in the radial cone of Uad at u∗ is an admissible direction. Writing this inequality
out, we get

0 ≤ ‖ys − yd‖2
H + ν ‖u∗ + sh‖2

U − ‖y
∗ − yd‖2

H − ν ‖u
∗‖2
U

= ‖ys‖2
H − ‖y

∗‖2
H + 2(y∗ − ys, yd) + νs2 ‖h‖2

U + 2νs(u∗, h).

We select ys as given by Theorem 3.12 after having initially selected y∗ ∈ Q(u∗), which satisfies
ys = y∗+sαh+o(s) where αh is the directional derivative (uniquely determined thanks to Proposition
3.18) and o is a remainder term. This leads to

0 ≤ ‖y∗ + sαh + o(s)‖2
H − ‖y

∗‖2
H − 2(sαh + o(s), yd) + νs2 ‖h‖2

U + 2νs(u∗, h)

= ‖sαh + o(s)‖2
H + 2(sαh + o(s), y∗ − yd) + νs2 ‖h‖2

U + 2νs(u∗, h)

= s2
∥∥αh + s−1o(s)

∥∥2

H
+ 2(sαh + o(s), y∗ − yd) + νs2 ‖h‖2

U + 2νs(u∗, h).
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Dividing by s and sending to zero, the above yields

0 ≤ 2(αh, y
∗ − yd) + 2ν(u∗, h) ∀h ∈ RUad(u

∗),

and by density and the continuity result of Proposition 3.18, also for h ∈ TUad(u∗).
In the setting where Theorem 3.15 is applied, the above displayed inequality only holds for all h ∈
RUad(u

∗) ∩ (H+ −G) since we need the direction to be bounded from below by a function G. Then
taking the closure in H again leads to the stated inequality.

5.2 E -almost C-stationarity

As we specified above, we shall take V = H1
0 (Ω) and Uad as in (32) from now on. In this section we

will show E -almost C-stationarity for the optimal pair by passing to the limit in the stationarity system
satisfied by the optimal pair of the PDE regularisation of the QVI. Recall the notations and framework
of §2.3 where we studied the convergence of solutions of certain PDEs to a solution of the associated
QVI. Consider for each ρ > 0 the penalisation of (2):

min
u∈Uad

J(yρ, u) s.t. Ayρ +
1

ρ
mρ(yρ − Φ(yρ)) = u, (34)

or equivalently, recalling the map Pρ from §2.3,

min
u∈Uad

yρ∈Pρ(u)

J(yρ, u).

We shall first check that this minimisation problem suitably approximates (2).

Lemma 5.2. Let (6) hold and suppose that Q is single-valued. Then there exist optimal pairs (y∗ρ, u
∗
ρ)

of (34) and an optimal pair (y∗, u∗) of (2) such that

(y∗ρ, u
∗
ρ)→ (y∗, u∗) in V ×H .

Proof. Let (y∗ρ, u
∗
ρ) denote an optimal pair of (34), which must satisfy

J(y∗ρ, u
∗
ρ) ≤ J(wρ, u) ∀u ∈ Uad, ∀wρ ∈ Pρ(u). (35)

Given any fixed ũ ∈ Uad, we pick a subsequence {ỹρn} such that Pρn(ũ) 3 ỹρn → ỹ where
ỹ ∈ Q(ũ); this is possible by Theorem 2.11. The inequality (35) implies that J(y∗ρn , u

∗
ρn) is bounded

above by J(ỹρn , ũ) which in turn is bounded uniformly in ρn because ỹρn is bounded in V by the
estimate of Lemma 2.9. Furthermore, by Lemma 2.9,

∥∥y∗ρn∥∥V ≤ C−1
a

(∥∥u∗ρn∥∥V ∗ +
Cε

ρ

)
hence for another subsequence (which we shall relabel)

u∗ρn ⇀ u∗ in Uad,

y∗ρn ⇀ y∗ in V ,
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for some (u∗, y∗) that we need to show is an optimal pair. By following steps 3 and 4 in the proof of
Theorem 2.11, y∗ρn → y∗ = Q(u∗) in V (since u∗ρn → u∗ in V ∗). Hence (y∗, u∗) is a feasible point
of (2). Then observe that for (ŷ, û) being any optimal point of (2),

J(ŷ, û) ≤ J(y∗, u∗) ≤ lim inf
n→∞

J(y∗ρn , u
∗
ρn) ≤ lim sup

n→∞
J(y∗ρn , u

∗
ρn) ≤ lim sup

n→∞
J(w∗ρn , û) ∀w∗ρn ∈ Pρn(û)

with the last inequality by (35). Now it becomes necessary for Q to be single-valued since then,
ŷ = Q(û) and it must be the case that we can select a sequence {w∗ρn} such that w∗ρn ∈ Pρn(û)
andw∗ρn ⇀ ŷ in V (by Theorem 2.11), and since the convergence is strong inH (for a subsequence),
we find

J(ŷ, û) ≤ J(y∗, u∗) ≤ lim
n→∞

J(y∗ρn , u
∗
ρn) ≤ J(ŷ, û).

Because J(ŷ, û) is the minimal value and hence is either independent of (ŷ, û) or uniquely deter-
mined by (ŷ, û), the subsequence principle shows that J(y∗ρ, u

∗
ρ) → J(ŷ, û) (for the entire se-

quence). Furthermore, the above inequality shows that (y∗, u∗) is optimal and we get u∗ρ → u∗ in
H since we have weak convergence and the convergence of the norm.

To derive stationarity conditions for the regularised problem (34), we check the Zowe–Kurcyusz con-
straint qualification [62] (see also the Robinson constraint qualification [52]).

Lemma 5.3. Suppose that

∃ε > 0 : Φ: V → V ∗ is continuously Fréchet differentiable on Bε(y
∗), (36)

∃ε > 0 : Φ′(z)(v)v ≤ CPv
2 a.e. in Ω ∀z ∈ Bε(y

∗),∀v ∈ V, where CP < 1. (37)

Then, for ρ sufficiently small and any optimal point (y∗ρ, u
∗
ρ) of (34), there exists p∗ρ ∈ V such that

y∗ρ +
1

ρ
m′ρ(y

∗
ρ − Φ(y∗ρ))(I − Φ′(y∗ρ))(p

∗
ρ) + A∗p∗ρ = yd,

〈νu∗ρ − p∗ρ, u∗ρ − v〉 ≤ 0 ∀v ∈ Uad.

Proof. We introduce the following notation:

X := V ×H, F (x) := J(y, u), C := V × Uad, g(x) = g(y, u) := Ay +
1

ρ
mρ(y − Φ(y))− u,

C(xρ) := {k(v − y∗ρ, h− u∗ρ) : v ∈ V, h ∈ Uad, k ≥ 0}, xρ = (y∗ρ, u
∗
ρ).

We must check that g′(xρ)C(xρ)−K(g(xρ)) = V ∗, but since C̃ := V × {0} ⊂ C(xρ), it suffices
to verify g′(xρ)C̃ = V ∗. Observing that

g′(xρ)(y, 0) := Ay +
1

ρ
m′ρ(y

∗
ρ − Φ(y∗ρ))(y − Φ′(y∗ρ)(y)),

it follows that we need existence for

Az +
1

ρ
m′ρ(y

∗
ρ − Φ(y∗ρ))(I − Φ′(y∗ρ))(z) = f. (38)

As Φ is Fréchet differentiable, Φ′(y∗ρ) : V → V ∗ is a bounded linear operator. Furthermore, by (37),

1

ρ

∫
Ω

m′ρ(y
∗
ρ − Φ(y∗ρ))(I − Φ′(y∗ρ))(z)z ≥ 0 ∀z ∈ V
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so that the elliptic operator is coercive. Thus the Lax–Milgram theorem allows us to conclude existence
for the PDE. Then applying, for example, [59, Theorem 6.3], we get the existence of p∗ρ ∈ V such that
for all k ≥ 0,

〈y∗ρ − yd +
1

ρ
m′ρ(0, y

∗
ρ − Φ(y∗ρ))(I − Φ′(y∗ρ))p

∗
ρ + A∗p∗ρ, k(c1 − y∗ρ)〉 ≥ 0 ∀c1 ∈ V,

(νu∗ρ − p∗ρ, k(c2 − u∗ρ)) ≥ 0 ∀c2 ∈ Uad.

As c1 ∈ V can be chosen arbitrarily, we find the stated result.

Assumption (37) is sufficient to guarantee that (38) has a solution but perhaps not necessary.

Now the object is to pass to the limit which we shall do in the next theorem. In it, we will use the
following fact. Since we have shown that y∗ρ → y∗ in V , whenever ρ is sufficiently small, we obtain
that y∗ρ ∈ Bε(y

∗) and hence for such ρ the assumption (37) is applicable and thus

Φ′(y∗ρ)(p
∗
ρ)p
∗
ρ ≤ CP (p∗ρ)

2 a.e. in Ω.

Theorem 5.4 (E -almost C-stationarity). Let (6) and the local assumptions (36) and (37) hold and
suppose that Q is single-valued. Then there exists an E -almost C-stationarity point (y∗, u∗) for (2),
i.e., (y∗, u∗) is an optimal point and there exists (p∗, ξ∗, λ∗) ∈ V × V ∗ × V ∗ such that

y∗ + λ∗ + A∗p∗ = yd,

Ay∗ − u∗ + ξ∗ = 0,

u ∈ Uad : (νu∗ − p∗, u∗ − v) ≤ 0 ∀v ∈ Uad,
ξ∗ ≥ 0 in V ∗, y∗ ≤ Φ(y∗), 〈ξ∗, y∗ − Φ(y∗)〉 = 0,

〈λ∗, p∗〉 ≥ 0, 〈λ∗, y∗ − Φ(y∗)〉 = 0,

p∗ = 0 a.e. in {ξ∗ > 0},
∀τ > 0,∃Eτ ⊂ {y∗ < Φ(y∗)} with |{y∗ < Φ(y∗)} \ Eτ | ≤ τ : 〈λ∗, v〉 = 0 ∀v ∈ V : v = 0 on Ω \ Eτ .

In addition, (y∗, u∗, p∗, ξ∗, λ∗) can be characterised as a limit of the following subsequences (which
we have relabelled):

y∗ρ → y∗ in V

u∗ρ → u∗ in H

p∗ρ ⇀ p∗ in V

ρ−1mρ(y
∗
ρ − Φ(y∗ρ))→ ξ∗ in V ∗

ρ−1m′ρ(y
∗
ρ − Φ(y∗ρ))(I− Φ′(y∗ρ))p

∗
ρ ⇀ λ∗ in V ∗

(39)

where (y∗ρ, u
∗
ρ, p
∗
ρ) are as in Lemma 5.3.

Furthermore, if ua, ub ∈ V then the optimal control has the regularity u∗ ∈ V .

Proof. The proof is similar to that of [31, Theorem 3.4]. Proposition 2.1 directly gives the fourth line in
the system. If we test the equation satisfied by the adjoint p∗ρ from the last lemma with itself and use
assumption (37), we easily find for a subsequence (relabelled here) the convergence

p∗ρ ⇀ p∗ in V .
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Using the equivalence of the VI relating u∗ρ and p∗ρ in the previous lemma to a projection (see [31,
Theorem 2.3] or [37, §II.3]), thanks to the strong convergence in H of p∗ρ, we find that

u∗ρ =
1

ν
p∗ρ + max

(
0, ua −

p∗ρ
ν

)
−max

(
0,
p∗ρ
ν
− ub

)
→ 1

ν
p∗ + max

(
0, ua −

p∗

ν

)
−max

(
0,
p∗

ν
− ub

)
= u∗.

It follows that u∗ ∈ V if ua and ub belong to V . Define

λ∗ρ :=
1

ρ
m′ρ(y

∗
ρ − Φ(y∗ρ))(I− Φ′(y∗ρ))p

∗
ρ = yd − y∗ρ − A∗p∗ρ,

ξ∗ρ :=
1

ρ
mρ(y

∗
ρ − Φ(y∗ρ)) = u∗ρ − Ay∗ρ,

which, since their right-hand sides converge, satisfy the following convergences both in V ∗:

λ∗ρ ⇀ λ∗ := yd − y∗ − A∗p∗ and ξ∗ρ → ξ∗ := u∗ − Ay∗.

Test the adjoint equation in Lemma 5.3 with p∗ρ and use (37) to see that

〈A∗p∗ρ, p∗ρ〉+ (y∗ρ − yd, p∗ρ) = −1

ρ

∫
m′ρ(y

∗
ρ − Φ(y∗ρ))(I − Φ′(y∗ρ))(p

∗
ρ)

2 ≤ 0.

Taking the limit inferior of this, recalling the definition of λ∗ and using the weak lower semicontinuity,
we obtain

〈λ∗, p∗〉 = −〈A∗p∗, p∗〉+ (yd − y∗, p∗) ≥ 0.

Observe that since m′ρ vanishes on (−∞, 0],

〈λ∗ρ, (y∗ρ − Φ(y∗ρ))
−〉 =

1

ρ

∫
Ω

m′ρ(y
∗
ρ − Φ(y∗ρ))(I − Φ′(y∗ρ))(p

∗
ρ)(y

∗
ρ − Φ(y∗ρ))

− = 0,

which, due to the continuity of max(0, ·) : V → V , implies that

〈λ∗, (y∗ − Φ(y∗))−〉 = 0

and since y∗ ≤ Φ(y∗), we have shown that 〈λ, y∗ − Φ(y∗)〉 = 0.

Finally, since y∗ρ → y∗ in V , yρ → y∗ pointwise a.e. in Ω for a subsequence that we do not relabel.
Take x ∈ Ω such that y∗(x)− Φ(y∗)(x) < 0, then there exists a ρ0 such that if ρ ≤ ρ0, then

yρ(x)− Φ(yρ)(x) ≤ 1

2
(y∗(x)− Φ(y∗)(x)) < 0

and hence m′ρ(yρ(x) − Φ(yρ)(x)) = 0 for ρ ≤ ρ0. This gives λ∗ρ(x) = 0 for all such ρ. That
is, λ∗ρ → 0 pointwise a.e. on {y∗ < Φ(y∗)}, and then applying Egorov’s theorem gives the final
statement of the system.

For the remaining statement, let us introduce the sets

M1(ρ) := {0 ≤ y∗ρ − Φ(y∗ρ) < ε} and M2(ρ) := {y∗ρ − Φ(y∗ρ) ≥ ε}.
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Since 〈ξρ, y∗ρ − Φ(y∗ρ)〉 → 〈ξ, y − Φ(y)〉 = 0, we find (after recalling the definition of mρ),

(ξρ, y
∗
ρ − Φ(y∗ρ)) =

1

ρ

∫
Ω

mρ(y
∗
ρ − Φ(y∗ρ))(y

∗
ρ − Φ(y∗ρ))

=
1

ρ

∫
M1(ρ)

(y∗ρ − Φ(y∗ρ))
3

2ε
+

1

ρ

∫
M2(ρ)

(
y∗ρ − Φ(y∗ρ)−

ε

2

)
(y∗ρ − Φ(y∗ρ)) (40)

→ 0,

and as both integrands in (40) are non-negative, each integral must individually converge to zero too.
Hence∥∥∥∥∥χM1(ρ)(y

∗
ρ − Φ(y∗ρ))

3
2

√
ρε

∥∥∥∥∥
L2(Ω)

→ 0 and

∥∥∥∥χM2(ρ)(y
∗
ρ − Φ(y∗ρ)− ε

2
)

√
ρ

∥∥∥∥
L2(Ω)

→ 0, (41)

where for the second convergence we used the fact that y∗ρ − Φ(y∗ρ) ≥ y∗ρ − Φ(y∗ρ) − ε
2
≥ 0. We

calculate

〈ξ∗ρ, p∗ρ〉 =
1

ρ

∫
M1(ρ)

(y∗ρ − Φ(y∗ρ))
2

2ε
p∗ρ +

1

ρ

∫
M2(ρ)

(
y∗ρ − Φ(y∗ρ)−

ε

2

)
p∗ρ

=
1

2

∫
Ω

χM1(ρ)

(y∗ρ − Φ(y∗ρ))
3/2

√
ρε

(y∗ρ − Φ(y∗ρ))
1/2

√
ρε

χM1(ρ)p
∗
ρ

+

∫
Ω

χM2(ρ)

(
y∗ρ − Φ(y∗ρ)− ε

2

)
√
ρ

χM2(ρ)p
∗
ρ√

ρ

≤ 1

2

∥∥∥∥∥χM1(ρ)

(y∗ρ − Φ(y∗ρ))
3/2

√
ρε

∥∥∥∥∥
∥∥∥∥∥(y∗ρ − Φ(y∗ρ))

1/2

√
ρε

χM1(ρ)p
∗
ρ

∥∥∥∥∥
+

∥∥∥∥∥χM2(ρ)

(
y∗ρ − Φ(y∗ρ)− ε

2

)
√
ρ

∥∥∥∥∥
∥∥∥∥χM2(ρ)p

∗
ρ√

ρ

∥∥∥∥ . (42)

Now, using (41), the first factor in each term above converges to zero and hence the above right-hand
side will converge to zero if we are able to show that the second factor in each term remains bounded.
Since λ∗ρ and p∗ρ are bounded, so is their duality product, and therefore

C ≥ |〈λ∗ρ, p∗ρ〉|

=
1

ρ

∣∣∣∣∫
Ω

m′ρ(y
∗
ρ − Φ(y∗ρ))(I − Φ′(y∗ρ))(p

∗
ρ)p
∗
ρ

∣∣∣∣
=

1

ρ

∣∣∣∣∫
M1(ρ)

y∗ρ − Φ(y∗ρ)

ε
(I − Φ′(y∗ρ))(p

∗
ρ)p
∗
ρ +

∫
M2(ρ)

(I − Φ′(y∗ρ))(p
∗
ρ)p
∗
ρ

∣∣∣∣
≥ 1− CP

ρ

∫
M1(ρ)

y∗ρ − Φ(y∗ρ)

ε
(p∗ρ)

2 +
1− CP
ρ

∫
M2(ρ)

(p∗ρ)
2

=
1− CP
ρ

∫
Ω

χM1(ρ)

y∗ρ − Φ(y∗ρ)

ε
(p∗ρ)

2 +
1− CP
ρ

∫
Ω

χM2(ρ)(p
∗
ρ)

2.

Furthermore, both of the terms on the right-hand side are individually bounded uniformly in ρ as the
integrands are non-negative. This implies from (42) that

〈ξ∗, p∗〉 = 0.
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Replacing p∗ρ by (p∗ρ)
+ in (42) and in the above calculation, we also obtain in the same way (after

using the fact that vn ⇀ v in V implies that v+
n ⇀ v+ in V )

〈ξ∗, (p∗)+〉 = 0.

5.3 Strong stationarity

For the sake of completeness, we give strong stationarity conditions for (2). After providing some
background and context, we reduce this section to the essence of the statement of the result since a
similar result has recently been obtained in [61] whilst this work was under preparation.

Strong stationarity for the VI obstacle problem in the absence of constraints on the control was the
focus of the classical works by Mignot [41, Theorem 5.2] and Mignot–Puel [42]. The approach in the
latter work is as follows. By using the results on the differentiability of the solution map associated to
VIs of Mignot [41], the Bouligand stationarity condition (for example, see Proposition 5.1 with Uad =
H) reads

(αh, y
∗ − yd) + ν(u∗, h) ≥ 0 ∀h ∈ H

where αh denotes the directional derivative of the solution map with respect to the direction h. The key
idea of Mignot and Puel in [42] is to use the fact that the optimal control u∗ in fact belongs to V (this
is a regularity result in certain situations; otherwise one needs to simply assume this) and to extend,
by continuity, the above inequality to

(αh, y
∗ − yd) + ν〈u∗, h〉 ≥ 0 ∀h ∈ V ∗ (43)

so that the set of feasible directions has been enlarged to V ∗. Then, by writing the duality product in
(43) as 〈AA−1h, νu∗〉 and using properties of the projection operator with respect to the bilinear form
generated by A onto the critical cone, it is shown [42, Theorem 3.3] that this inequality is equivalent
to a strong stationarity system. Our theory of differentiability for QVIs [3] (which was for non-negative
sources and directions) could not be immediately used to obtain strong stationarity by arguing in this
fashion since the setting of [3] would have forced Uad to be selected such that Uad ⊂ H+. This is why
the development of the results of §2 and §3 are crucial.

The presence of control constraints complicates the derivation of strong stationarity conditions. In the
VI setting, by using the above-mentioned technique of Mignot and Puel of enlarging the set of feasible
directions onto the dual space in combination with a fine analysis of the various resulting objects and
sets, strong stationarity conditions for VI optimal control problems subject to box constraints were
obtained by Wachsmuth in [60]. The author also showed that certain restrictions are required on the
control bounds in order to obtain a positive answer for strong stationarity, and counterexamples were
given showing that violating those conditions can lead to a lack of strong stationarity. These necessary
conditions (which are stated in (47)–(49) below) in the context of admissible sets as in (32) are implied
[60, Lemma 5.3] by the condition

ua, ub ∈ H1(Ω) with ua < 0 ≤ ub q.e. on Ω, (44)

which in turn implies that the control space must allow for negative functions, meaning that one ulti-
mately needs existence and directional differentiability results for QVIs with source terms and direc-
tions that may be strictly negative5.

5This requirement meant that the differentiability theory of [3] for non-negative sources and directions could not be
directly applied.
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Remark 5.5. For source terms f ∈ Uad with Uad satisfying (44), Q(f) is well defined through
Theorems 2.3 or 2.11 or Theorem 2.6 by taking a lower bound function G ≥ −ua. The derivatives for
directions belonging to Uad also exist by either of the two theorems in §3.

We will address the case where Theorem 3.12 is applicable6 so that the resulting directional derivative
of Q has the form (25). Let (y∗, u∗) be an optimal pair of (2). As in [42], we make the fundamental
assumption that u∗ ∈ V and we refer to Theorem 5.4 from the previous section for the satisfaction of
this assumption. Let us take Uad as stated in (32) where we include the possibility of taking ua = −∞
and ub = ∞, in which case the problem becomes one with no constraints and we can argue as
in [42]. Outside of this case, we can argue as in [60]. Let the assumptions of Proposition 5.1 hold
under the regime of Theorem 3.12 and denote by j : H → V ∗ the inclusion map through the Riesz
isomorphism. Then, as done in [60], the Bouligand stationarity condition (33) can be extended to

(αh, y
∗ − yd) + ν〈h, u∗〉 ≥ 0 ∀h ∈ jTUad(u∗)

V ∗

.

Observe that we needed the continuity in V ∗ of h 7→ αh assured by Proposition 3.18 to do this. This
is starting point of the steps leading to the strong stationarity conditions in [60] for the VI case.

Defining the (quasi-closed) coincidence sets

Ua := {x ∈ Ω : u∗(x) = ua(x)} and Ub := {x ∈ Ω : u∗(x) = ub(x)}

and arguing identically to the proof of [60, Lemma 4.3], we obtain the following sign conditions on u∗:

u∗ = 0 q.e. onAs(y∗) ∩ (Ω \ (Ua ∪ Ub)),
u∗ ≤ 0 q.e. onAs(y∗) ∩ Ub,
u∗ ≥ 0 q.e. on (As(y∗) ∩ Ua) ∪ (B(y∗) ∩ (Ω \ Ub))

where B(y∗) = A(y∗) \ As(y∗) is the biactive set.

Let cap(A) denote the capacity of a Borel subset A of Ω with respect to H1
0 (Ω) (see [17, Definition

6.47]). We have the following strong stationarity characterisation, the proof of which involves modifica-
tions of [60] and is omitted.

Theorem 5.6 (Strong stationarity). Let (y∗, u∗) be an optimal point of (2) with u∗ ∈ V . Suppose that

Φ: V → V is Frèchet differentiable at y∗ (45)

and let (6), the local assumptions7 (15), (17), (22), (23), (30),

(I− Φ′(y∗)) : V → V is invertible, (46)

cap(Ua ∩ B(y∗)) = 0, (47)

ub ≥ 0 q.e. on B(y∗), (48)

u∗ = 0 q.e. onAs(y∗), (49)

6The case where Theorem 3.15 is applied instead (with resulting directional derivative satisfying (29)) requires additional
work which we do not consider in this paper; the complications arise from Proposition 5.1 where we see that the set of
admissible directions for the first-order condition is not a tangent cone but rather the closure of a radial cone intersected
with another set.

7These, of course, should be evaluated at y∗.
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and Assumption 3.1 hold. Then there exists p∗ ∈ V , ξ∗, λ∗ ∈ V ∗ such that

y∗ + (I− Φ′(y∗)∗)λ∗ + A∗p∗ = yd,

Ay∗ − u∗ + ξ∗ = 0,

u∗ ∈ Uad : (νu∗ − p∗, u∗ − v) ≤ 0 ∀v ∈ Uad,
ξ∗ ≥ 0 in V ∗, y∗ ≤ Φ(y∗), 〈ξ∗, y∗ − Φ(y∗)〉 = 0,

p∗ ≥ 0 q.e. on B(y∗) and p∗ = 0 q.e. onAs(y∗),
〈λ∗, v〉 ≥ 0 ∀v ∈ V : v ≥ 0 q.e. on B(y∗)

and v = 0 q.e. onAs(y∗).
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