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On the convergence of adaptive stochastic collocation for elliptic partial
differential equations with affine diffusion

Martin Eigel, Oliver Ernst, Björn Sprungk, Lorenzo Tamellini

Abstract

Convergence of an adaptive collocation method for the stationary parametric diffusion equation with finite-dimensional
affine coefficient is shown. The adaptive algorithm relies on a recently introduced residual-based reliable a posteriori error
estimator. For the convergence proof, a strategy recently used for a stochastic Galerkin method with an hierarchical error
estimator is transferred to the collocation setting.

1 Introduction

Collocation methods have become a mainstay for solving equations containing high-dimensional parameters such as arise
in uncertainty quantification (UQ) analyses of ordinary or partial differential equations (ODE/PDE) with uncertain model
coefficients [37, 45, 1]. It was realized early on that already moderately high-dimensional problems become tractable only
when the approximations are based on sparse subspaces of the basic tensor product construction [42, 41, 10, 36, 9, 4].

Subsequent work established that, under mild conditions, certain classes of random PDEs are tractable even in presence
of countably many parameter variables [15, 16, 44, 14, 14, 3, 46, 33, 2, 11, 25]. These results prove that there exists
a sequence of converging approximation operators (be they of collocation or Galerkin/projection nature) and derive the
corresponding convergence rates. Such sequence of converging approximation operators can be sometimes estimated a
priori as in [46, 11, 25]. Another possible procedure is to rely instead on a posteriori adaptive strategies: the details of
these strategies vary depending on the type of approximation operators (projection/collocation) and, moreover, these a
posteriori adaptive strategies are often based on heuristics known to behave well in practice (even better than the a priori
constructions) but for which a proof of convergence is lacking.

For projection approaches, adaptive stochastic Galerkin finite element methods (ASGFEM), which control the discretization
of both physical and parametric variables, are well-studied. The extensive research activity in the last years comprises in
particular residual-based error estimators [20, 24, 22, 23] and hierarchical error estimators [5, 8, 18, 6]. The setting in
these works is similar to the one considered here, i.e., linear elliptic PDEs with affine parametric coefficients. However,
there a countable infinite expansion is assumed, which makes an additional dimension adaptivity necessary. With the
employed Legendre chaos discretization for the parameter space, only the margin of the active set of polynomials has
to be considered in the error estimator. The developed error estimators are shown to be reliable and efficient, which for
hierarchical estimators usually requires additional assumptions. Convergence of an ASGFEM algorithm was first shown
in [24] for a residual estimator and, using a different argument, in [6] for a hierarchical estimator. A goal-oriented error
estimator was presented in [7] and the more involved case of nonlinear coefficients and Gaussian parameters has only
been considered recently in [21] with a low-rank hierarchical tensor discretization.

On the stochastic collocation side, the current literature discusses quite extensively algorithms for stochastic adaptivity,
whereas much less attention has been devoted to (reliable) spatial adaptivity. To date, most adaptive sparse grid approx-
imation schemes involve some variation of the basic procedure proposed by Gerstner and Griebel in [28], see also [32].
This algorithm drives adaptivity in the parameter variables by exploring at each iteration a certain number of admissible
sparse subspaces to the approximation and then evaluating for each of these an error indicator ; this requires solving a
certain number of PDEs. The subspace with the largest error indicator is selected and added to the approximation, and
a new set of admissible sparse subspaces for the next enrichment step is generated. Several error indicators and varia-
tions of the selection strategy have been considered, see e.g. [34, 29, 44, 14, 40, 27]. A crucial point is that these error
indicators are heuristics. Conversely, the work by [31] proposes a variation of the Gerstner–Griebel algorithm based on a
reliable residual-based error estimator which can control adaptivity in both the physical and parametric variables. Another
significant difference compared with typical indicator-based adaptive algorithms is that in the procedure proposed in [31]
evaluates the error estimator without solving additional PDEs. This allows significant computational savings with respect to
the basic Gerstner–Griebel algorithm. For other works discussing spatial adaptivity in the context of stochastic collocation
methods, see [43, 35].
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No convergence analysis is given in [31] for the proposed algorithm, and our contribution in this work is to close this gap. We
do this by proving convergence of a slight modification of the algorithm in [31] thus establishing the first (to our knowledge)
convergence result for an adaptive sparse collocation method. Our convergence analysis is based on a convergence
theorem for abstract adaptive approximations (i.e., which covers both projection and collocation approximations, as well as
other possible approximation strategies) w.r.t. the parameter variables. We derive this theorem by generalizing some results
given in [6], which focused on convergence of adaptive stochastic Galerkin methods. This approach of proving convergence
requires that the error estimator used have the propery of reliability. In [31] the authors already established this property
for their error estimator, but only for a specific model problem, namely, an elliptic PDE whose diffusion coefficient depends
linearly on a finite number of parameters. Moreover, we also require the underlying univariate sequence of collocation
points to be nested in order that the sparse collocation construction is interpolatory. Hence, our particular convergence
result is also tied to these assumptions on the underlying PDE and collocation points. However, we think that the general
approach on establishing convergence of adaptive sparse collocation methods presented in this paper might be adapted
to more general cases in the future. We note that our analysis considers adaptivity in the parameter variables only, i.e., we
consider the semi-discrete setting.

The remainder of this paper is structured as follows. Sections 2 and 3 contain preliminary information: in particular, Sec-
tion 2 states the model problem and recalls the results in [6] that will be instrumental for the rest of the work, while Section 3
gives details on the construction of adaptive sparse grid collocation schemes. Sections 4 and 5 contain our main results:
Sections 4 contains the statement of the specific adaptive collocation algorithm, the associated convergence result, and
some discussion on computational aspects, while Section 5 contains the proof of the convergence result. Finally, conclu-
sions and future research directions are outlined in Section 6.

2 Preliminaries

In this section we specify the model problem under consideration and recall basic properties of its solution. Furthermore,
we discuss general adaptive approximations w.r.t. the parameter variables and state an abstract convergence result which
provides the basis of our convergence analysis for adaptive sparse grid collocation.

2.1 Model Problem

We consider a common model problem arising in uncertainty propagation via random differential equations, i.e., the sta-
tionary diffusion equation containing a coefficient function which depends linearly on a high-dimensional parameter. Specif-
ically, we wish to solve the parametric elliptic boundary value problem

−∇ · (a(y)∇u(y)) = f, on D ⊂ Rd (1a)

u(y) = 0, on ∂D. (1b)

The domain D ⊂ Rd is assumed to be bounded and Lipschitz, f ∈ L2(D) and the coefficient a(y) ∈ L∞(D) is given
by

a(x ,y) = a0(x ) +

M∑
m=1

am(x ) ym, y ∈ Γ := ΓM , Γ := [−1, 1], (2)

where M ∈ N is a finite number and a0, . . . , aM ∈ L∞(D). Further, we assume that the functions a0, . . . , aM ∈
L∞(D) satisfy the uniform ellipticity condition

M∑
m=1

|am(x )| ≤ a0(x )− r, ∀x ∈ D, (3)

for some r > 0. This implies that
amin := min

y∈Γ
ess inf
x∈D

a(x ,y) ≥ r > 0. (4)

We then define the constant
α := 1− amin

infx∈D a0(x )
∈ (0, 1), (5)

which will turn out to be important in Theorem 1 below. Due to the uniform ellipticity assumption, the weak solution u(y) ∈
H = H1

0 (D) exists for any y ∈ Γ and satisfies u ∈ C(Γ;H).
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Polynomial expansions In order to approximate the solution u of (1), or rather the parameter-to-solution map y 7→
u(·,y) ∈ H, we shall analyze polynomial expansions of u in the parameter y ∈ Γ,

u(x ,y) =
∑
k∈F

uk (x )Pk (y), F := NM0 , uk ∈ H, (6)

where Pk (y) =
∏M
m=1 Pkm(ym) is a finite product of univariate polynomials Pk : Γ → R of degree k with P0 ≡ 1.

Two common choices for the basic polynomials Pk are

1 Taylor polynomials: Pk (y) := yk =
∏M
m=1 y

km
m where then

uk (x ) = tk (x ) :=
1

k !
∂ku(x ,0),

2 Legendre polynomials: Pk (y) := Lk (y) =
∏M
m=1 Lkm(ym) withLk denoting the kthL2

µ1
-normalized Legendre

polynomial w.r.t. the uniform distribution µ1(dx) = dy
2 on Γ = [−1, 1] and

uk (x ) :=

∫
Γ

u(x ,y)Lk (y) µ(dy).

Since u ∈ C(Γ;H) ⊂ L2
µ(Γ;H) we have that the expansion (6) using Legendre polynomials converges in L2

µ(Γ;H).
The following result due to [3] establishes under suitable assumptions an `p-summability of both Taylor and Legendre
coefficients which, for instance, implies that the Taylor expansion (6) of u converges in L∞(Γ;H).

Theorem 1 ([3, Theorem 2.2 & 3.1, Corollary 2.3 & 3.2]). Let the condition (3) for a as in (2) be satisfied. Then a unique
solution u of the corresponding elliptic problem (1) exists and belongs toC(Γ;H). Moreover, for any ρ := (ρm)Mm=1 with
1 < ρm < α−1 with α as in (5)

1 the Taylor coefficients tk ∈ H of u satisfy (ρk‖tk‖H)k∈FM ∈ `2(FM ),

2 and the Legendre coefficients uk ∈ H of u satisfy (b−1
k ρk‖uk‖H)k∈FM ∈ `2(FM ) with bk :=

∏M
m=1

√
1 + 2km.

Remark 2. The authors of [3] actually consider the infinite-dimensional noise case, i.e., with M = ∞ in (2), and prove
the results stated in Theorem 1 under the assumption that∥∥∥∥∑∞m=1 ρm|am|

a0

∥∥∥∥
C(D)

< 1,

for a sequence ρ := (ρm)m≥1 with ρm > 1. Hence, Theorem 1 can be derived easily from this general case by setting
am(x ) ≡ 0 and ρm > 1 arbitrarily for m > M :∥∥∥∥∑∞m=1 ρm|am|

a0

∥∥∥∥
C(D)

=

∥∥∥∥∥
∑M
m=1 ρm|am|

a0

∥∥∥∥∥
C(D)

< α−1

∥∥∥∥∑∞m=1 |am|
a0

∥∥∥∥
C(D)

≤ α−1 (1− amin) = 1.

2.2 Adaptive Polynomial Approximation

Given the decay rate stated in Theorem 1 for the norms of the coefficients uk of the expansion (6), a polynomial ap-
proximation of u seems feasible. To this end, we consider the truncated expansions uΛ based on a finite multi-index set
Λ ⊂ F ,

uΛ := SΛu =
∑
k∈Λ

ûkPk , ûk ∈ H,

whereSΛ denotes a suitable approximation operator and ûk are approximations to the true coefficients uk of u (cf. (6)). For
instance, SΛ could be the operator associated with a Galerkin approach for approximating u using the finite-dimensional
polynomial space

PΛ(Γ) := span {Pk : k ∈ Λ} ,

or, as we in our case later, the operator associated to sparse grid collocation based on Λ. At this point we do not need to
further specify SΛ.
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Algorithm 1 Generic adaptive algorithm

Λ0 = {0}
u0 := SΛ0u
for n ∈ N0 do

Choose a candidate set of multi-indices Cn ⊂ F \ Λn for enriching Λn
Evaluate estimates of the error contribution on the candidate set:

ηn(k) = η(k , un), k ∈ Cn

Determine marked indicesMn ⊂ Cn (according to a given marking strategy based on ηn(k));
Set Λn+1 := Λn ∪Mn

Set un+1 := SΛn+1
u.

end for

We consider in particular an adaptive approach to compute such polynomial approximations uΛ. More specifically, starting
from an initial set Λ0 ⊂ F we construct nested multiindex sets Λn ⊂ Λn+1, n ∈ N0, and compute the associated
polynomial approximations un := SΛnu by the generic adaptive algorithm detailed in Algorithm 1. Again, we do not further
specify how to compute the estimates ηn(k) = η(k , un) at this point. Instead, we provide a fairly general convergence
theorem for Algorithm 1, stating conditions on ηn(k) that guarantee convergence of the algorithm.

The following theorem draws upon the work [6] on the convergence of adaptive stochastic Galerkin methods. Specifically,
it is a compact summary of a way of proving for convergence for stochastic Galerkin outlined in detail in [6, Section 6 and
7], slightly modified to fit the application to adaptive sparse grid collocation. We state the theorem here and provide the
proof at the end of the section.

Theorem 3 (cf. [6]). Let un denote the approximations constructed via Algorithm 1. Assume that

1 the total error estimator ηn :=
∑

k∈Cn ηn(k) is reliable, i.e., there exists a constant C < ∞ independent of n
such that

‖u− un‖ ≤ Cηn,

where ‖ · ‖ denotes a suitable norm for functions v : Γ→ H,

2 there exists a sequence of non-negative numbers (η∞(k))k∈F ∈ `1(F) such that for (η̂n(k))k∈F with η̂n(k) :=
ηn(k) for k ∈ Cn ∪ Λn and η̂n(k) = 0 otherwise, we have

lim
n→∞

‖η∞ − η̂n‖`1 = 0,

3 there exists a constant c > 0 independent of n such that for all k ∈ Cn \Mn we have

ηn(k) ≤ c
∑

i∈Mn

ηn(i).

From these assumptions it follows that

lim
n→∞

‖u− un‖ = 0.

Remark 4. Before we prove the theorem, we comment on the second and third assumption:

1 The third assumption is generally easily to satisfy. For instance, simply choosing Mn := arg maxk∈Cn ηn(k)
satisfies the assumption with c = 1.

2 For sparse grid collocation, the second assumption turns out to be the most difficult to verify. Moreover, it is probably
the most cryptic assumption of the theorem. It can usually be verified as follows: assuming the sequence un has a
limit u∞ with corresponding error estimators η∞(k) := η(k , u∞), conclude from un → u∞ that ‖η∞−η̂n‖`1 →
0 by exploiting continuity properties of the error estimator η(k , un) w.r.t. un. Note that in principle u∞ is just the
limit of un, but does not necessarily coincide with the actual solution of the PDE (1). The fact that u∞ = u is the
asesrtion of the theorem.
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3 As we will see in the proof of Theorem 3, the second assumption represents some kind of saturation of the reliable
error estimators ηn: since ‖η∞ − η̂n‖`1(N) → 0 we have that

ηn ≤
∑
k∈Cn

η∞(k) +
∑
k∈Cn

|ηn(k)− η∞(k)| ≤
∑
k∈Cn

η∞(k) + ‖η̂n − η∞‖`1(N)

converges to zero if
∑

k∈Cn η∞(k) does. Since ‖η̂n − η∞‖`1(N) < ∞ we can expect η∞(k) to decay for large
multi-indices k . Thus, if Cn tends to include increasingly larger multi-indices k , then

∑
k∈Cn η∞(k) should decay

to zero. This will be made rigorous in the subsequent proof.

The proof of Theorem 3 employs the following abstract lemma which was shown for the case p = 2 in [6, Lemma 15].
Since their proof can be generalized to arbitrary 1 ≤ p <∞ without any significant modification we simply state the result
and refer to [6, Lemma 15] for a detailed proof.

Lemma 5 (cf. [6, Lemma 15]). Let z = (zk)k∈N ∈ `p(N), p ∈ [1,∞), and z (n) = (z
(n)
k )k∈N ∈ `p(N), n ∈ N0, be

sequences of non-negative numbers satisfying limn→∞ ‖z−z (n)‖`p = 0. Assume further that there exists a continuous
function g : [0,∞)→ [0,∞) with g(0) = 0 and a sequence of nested subsets Jn ⊂ N, i.e., Jn ⊂ Jn+1, such that

∀n ∈ N0 ∀k /∈ Jn+1 : z
(n)
k ≤ g

 ∑
i∈Jn+1\Jn

(
z

(n)
i

)p .

Then limn→∞
∑
k/∈Jn z

p
k = 0.

Proof of Theorem 3. Since the error estimator is reliable, we only need to show that

lim
n→∞

ηn = lim
n→∞

∑
k∈Cn

ηn(k) = 0.

Due to ∑
k∈Cn

ηn(k) ≤
∑
k∈Cn

η∞(k) +
∑
k∈Cn

|ηn(k)− η∞(k)| ≤
∑
k∈Cn

η∞(k) + ‖η̂n − η∞‖`1(N),

as well as ‖η̂n − η∞‖`1 → 0 by assumption, the statement of the theorem follows if

lim
n→∞

∑
k∈Cn

η∞(k) = 0.

In order to show this we apply Lemma 5 as follows: we identify the countable set F with N, η∞ with z and η̂n with z (n).
Recall that by assumption ‖η̂n − η∞‖`1 → 0. Thus, the first assumption of Lemma 5 is satisfied. Moreover, we identify
the Λn ⊂ F with Jn ⊂ N. These sets are nested and Jn+1 \ Jn corresponds toMn. By our third assumption and the
construction of η̂n there holds for each n ∈ N

η̂n(k) ≤ c
∑

i∈Mn

η̂n(i) ∀k /∈ Λn+1,

since η̂n(k) = 0 for k /∈ Cn ∪ Λn and (Cn ∪ Λn) \ Λn+1 = Cn \Mn. Thus, the second assumption of Lemma 5 is
also satisfied with g(s) = cs. Hence, we can apply Lemma 5 to z ' η∞ and zn ' η̂n and obtain that

lim
n→∞

∑
k /∈Λn

η∞(k) = 0,

which by
∑

k∈Cn η∞(k) ≤
∑

k /∈Λn
η∞(k) concludes the proof.

3 Adaptive Sparse Grid Collocation.

We now introduce the sparse grid collocation approach and discuss how adaptive sparse grids algorithms can be derived
from the abstract Algorithm 1. In particular, we show how to obtain the classical a-posterior adaptive algorithm from
[28], based on heuristic error indicators (as opposed to reliable error estimators as in [31]). As already discussed in
the introduction, changing from indicators to estimators is key to prove convergence. Our version of the estimator-based
algorithm and its convergence are then discussed in the next sections.
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Leja sequences of points. The first ingredient for any sparse grid construction is the choice of the underlying univariate
sequences of collocation points. In this work, we consider nested point sequences, and a particularly convenient construc-
tion is offered by Leja points. Leja sequences on Γ = [−1, 1] are defined recursively by first choosing y(1) ∈ Γ and then
setting

y(i) = arg max
y∈Γ

i−1∏
k=1

(y − y(k)), i ∈ N0, (7)

see e.g. [12, 14, 13, 44, 38]. The standard choice is to set y1 = −1: equation (7) then leads to

y(1) = −1, y(2) = 1, y(3) = 0, y(4) ≈ −0.57735, y(5) ≈ 0.65871, . . . .

Another common sequence, referred to as R-Leja (real Leja) points, is obtained by carrying out the Leja construction on
the upper unit circle in the complex plane in place of Γ = [−1, 1] and then projecting the results onto the real line. This
results in (see e.g. [12] for a proof):

y(i) = cosφ(i) i ∈ N0

φ(1) = 0, φ(2) = π, φ(3) = π/2, φ(2n+2) =
φ(n+2)

2
, φ(2n+3) = φ(2n+2) + π.

Sparse grid collocation. We consider hierarchical sparse grid collocation based on nested sequences of node sets,
such as the Leja sequences just introduced. To this end, let (y(i))i∈N0 ⊂ [−1, 1] denote a sequence of univariate
interpolation nodes with associated node sets,

Yn := {y(i) : i = 0, . . . , n} ⊂ Γ, n ∈ N0.

Moreover, let Pn(Γ) denote the set of all univariate polynomials on Γ of degree at most n ∈ N0. We can then define for
any Hilbert space-valued continuous function f : Γ→ H two objects:

� a Lagrange interpolant In : C(Γ;H)→ Pn(Γ;H),

� a univariate detail operator ∆n : C(Γ;H)→ Pn(Γ;H),

∆0 = I0, ∆n := In − In−1, n ∈ N.

The detail operators may be conveniently expressed in terms of the sequence (hn)n∈N0
of hierarchical Lagrange polyno-

mials associated with the nested sequence of node sets (Yn)n∈N defined by

hn(y) :=

n−1∏
i=0

y − y(i)

y(n) − y(i)
∈ Pn, n ∈ N0. (8)

The nth hierarchical Lagrange polynomial is simply the last of the n + 1 Lagrange fundamental polynomials (`
(n)
j )nj=0

associated with the node set Yn. As is easily verified by evaluating at the nodes of Yn, the interpolant Inf of a function
f ∈ C(Γ;H) can be expressed recursively as

(Inf)(y) = (In−1f)(y) + [f(y(n))− (In−1f)(y(n))]hn(y), n ∈ N,

and therefore
∆nf =

[
f(y(n))− (In−1f)(y(n))

]
hn, n ∈ N.

The term f(y(n)) − In−1f(y(n)) = (f − In−1f)(y(n)) is also called hierarchical surplus. Next, consider tensorized
detail operators

∆i :=

M⊗
m=1

∆im .

Given a (finite) subset Λ ⊂ F we define the sparse grid collocation operator associated with the sparse grid YΛ by

SΛ :=
∑
i∈Λ

∆i , YΛ :=
⋃
i∈Λ

Yi , Yi := Yi1 × Yi2 × . . .× YiM .

We require the multi-index sets Λ ⊂ F to be downward-closed (or monotone), which is the property that

i ∈ Λ implies i − em ∈ Λ,

DOI 10.20347/WIAS.PREPRINT.2753 Berlin 2020
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where em denotes themth canonical unit multi-index. Downward-closedness of Λ implies three facts (see e.g. [25]): First,

YΛ =
{
y(i) : i ∈ Λ

}
, y(i) := (y(i1) y(i2) · · · y(iM )) ∈ Γ;

second, that the sparse grid collocation operator yields an approximation in PΛ(Γ;H),

SΛ : C(Γ;H)→ PΛ(Γ;H)

and third, together with the nestedness of the node sets, that SΛ is interpolatory, i.e.,

SΛf(y(i)) = f(y(i)) ∀y(i) ∈ YΛ.

Adaptive sparse grid collocation algorithms. Two ways to construct monotone multi-index sets Λ for (hierarchical)
sparse grid collocation are the classical algorithm introduced by Gerstner & Griebel in [28] (as well as numerous variations
mentioned in the literature survey in the introduction) and the alternative algorithm introduced by Guignard & Nobile in
[31]. Both can be seen as specific instances of the generic Algorithm 1. We describe the former here and the latter (or
rather, a slight variation of it) in the next section, together with a convergence analysis. To introduce these algorithms, we
need to specify three “ingredients”: the candidate set Cn, a marking strategy for determining the marked setMn ⊂ Cn,
and corresponding estimates ηn(k) for the error contribution of indices in the candidate set. To this end, we require the
following definitions:

� The margin Marg(Λ) ⊂ F of a multi-index set Λ ⊂ F is given by

Marg(Λ) := {k ∈ F \ Λ: k − em ∈ Λ for some m ∈ N}.

� The reduced margin R(Λ) ⊂ Marg(Λ) of a subset Λ ⊂ F is given by

R(Λ) := {k ∈ Marg(Λ): k − em ∈ Λ for all m ∈ N}.

� The monotone envelope EΛ(k) ⊂ Marg(Λ) of a multi-index k ∈ Marg(Λ):

EΛ(k) :=
⋂
{E ⊂ Marg(Λ): k ∈ E and Λ ∪ E is monotone}.

Note thatEΛ(k) is the smallest (in cardinality) monotone multi-index set containing Λ∪{k} and that for k ∈ R(Λ)
we have EΛ(k) = {k} by construction.

The adaptive procedure in [28] now chooses

� as its candidate set the reduced margin of Λn, i.e. Cn = R(Λn);

� and estimates the error contribution of k ∈ Cn by the Lp-norm of the hierarchical surplus, i.e.,

ηn(k) = ‖∆ku‖Lpµ(Γ;L2(D)), k ∈ R(Λn). (9)

Note that this is merely an error indicator and not a proper estimator, i.e., no proof of the properties required by
Theorem 3 is available. A large body of literature, however, provides numerical evidence that this error indicator is
quite robust and gives good results in practice;

� its marking strategy selects the index in the reduced margin for which the value of ηn is largest to comprise the
marked set, i.e.,Mn = {arg maxk∈R(Λn) ηn(k)}. Another possibility would be to use a Dörfler marking strategy
and mark e.g. the 50% of the indices in the reduced margin with the largest ηn, cf. [19].

Algorithm 2 summarizes the Gerstner–Griebel scheme as pseudocode. Note that, since SΛ is interpolatory for Yn nested
and Λ monotone, we can efficiently compute ηn in Equation 9, and therefore SΛn+1 based on SΛn . For this, let i ∈ R(Λn)
and Λn+1 = Λn ∪ {i}. Then,

∆iu = [u(y(i))− (SΛnu)(y(i))]hi , hi (y) :=
∏
m≥1

him(ym),

where the hi are the univariate hierarchical Lagrange polynomials defined in (8), see, e.g., [14]. The main shortcoming of
this approach is that the computation of ∆iu requires solving the PDE to evaluate u(y(i)), and for this reason one may
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Algorithm 2 Adaptive sparse grid algorithm of Gerstner and Griebel [28]

Λ0 := {0}
u0 := SΛ0u
for n ∈ N0 do

Compute reduced margin R(Λn)
Compute error indicators (reduced margin): ηn(k) = ‖∆ku‖Lp(Γ;L2(D)), k ∈ R(Λn)
Choose k∗n := arg maxk∈R(Λn) ηn(k)
Set Λn+1 := Λn ∪ {k∗n}
Set un+1 := SΛn+1u.

end for

refer to this algorithm as fully a posteriori. If the reduced margin is large, this operation can be expensive. Moreover, as
previously mentioned, the choice of ηn in (9) is a heuristic and no convergence proof for the adaptive algorithm is available.
To overcome this issue, we introduce and analyze in the next Section another variation of Algorithm 1, for which we can
prove convergence.

We close this section by pointing out that using a hierarchical basis is convenient but not necessary, and the standard
(non-hierarchical) Lagrange basis can also be used to implement Algorithm 2. One would then need to resort to the
so-called combination technique [30] to evaluate the detail operators ∆iu and the computation of needs to be adjusted
accordingly, see e.g. [40, 31]; this has the advantage that non-nested sequences of node sets (such as zeros of orthogonal
polynomials) can be used if desired, see e.g. [40, 25].

4 Adaptive Sparse Collocation for the Diffusion Problem

We now turn attention to the above-mentioned slight variation of the adaptive algorithm by Guignard & Nobile from [31];
see Remark 7 for a discussion on the difference between the two versions. This algorithm is based on the following error
estimator, for which reliability is also established in [31].

Proposition 6 ([31, Proposition 4.3] ). Let u denote the solution of the random elliptic PDE given in equation (1) with linear
diffusion coefficient as in (2), and let Λ ⊂ F be a monotone subset such that the sparse grid collocation operator SΛ as
introduced in Section 3 is interpolatory. Then, for any p ∈ [1,∞] we have

‖u− SΛu‖Lpµ(Γ;H1
0 (D)) ≤

1

amin

∑
k∈Marg(Λ)

‖∆k (a∇SΛu)‖Lpµ(Γ;L2(D)).

This proposition suggests to use ‖∆k (a∇SΛnu)‖Lpµ(Γ;L2(D)) as error estimators ηn(k) for adaptively constructing the
sparse grid approximations un = SΛnun and also to consider the whole margins Marg(Λn) as candidate sets. This
yields Algorithm 3. Note here that the value p ∈ [1,∞] has to be chosen in advance and that Cn := Marg(Λn) ⊂ F is
in fact finite for finiteM . Moreover, we highlight that Proposition 6 implies that Algorithm 3 satisfies the first assumption (the
reliable error estimate) of the abstract convergence result, Theorem 3. Besides that also the third assumption of Theorem
3 is satisfied by construction, i.e, by the marking strategyMn := EΛn(k∗n) and the choice of k∗n , cf. Remark 4.

Remark 7 (Adaptive algorithm in [31]). The difference between Algorithm 3 and the version in [31] is that in [31] the
following profit indicators are introduced instead of the error estimators ηn(k) given in (10):

πn(k) :=

∑
i∈EΛn (k) ηn(i)∑
i∈EΛn (k)W (i)

, k ∈ Marg(Λn), (11)

with W (i) denoting the work contribution of the multi-index i , i.e., the number of new grid points required to evaluate ∆i .
Then, k∗n is chosen as

k∗n := arg max
k∈Cn

πn(k), Mn := EΛn(k∗n). (12)

In our case of linearly growing univariate node sets |Yn| = n+1 we haveW (i) ≡ 1, i.e., πn(k) = 1
|EΛn (k)|

∑
i∈EΛn (k) ηn(i)

corresponds to the average error estimator on the monotone envelope EΛn(k). This adaptive algorithm thus favors multi-
indices belonging to the reduced margin. We provide a more detailed discussion on both versions of the adaptive algorithm
for the elliptic problem in Section 4.2 with a focus on computational aspects.
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Algorithm 3 Adaptive sparse grid algorithm for the diffusion problem (1)

Λ0 := {0}
u0 := SΛ0u
for n ∈ N0 do

Compute margin as candidate set Cn := Marg(Λn)
Compute error estimators:

ηn(k) := ‖∆k (a∇un)‖Lpµ(Γ;L2(D)), k ∈ Marg(Λn) (10)

choose k∗n := arg maxk∈Cn ηn(k)
setMn := EΛn(k∗n)
set Λn+1 := Λn ∪Mn

compute un+1 := SΛn+1
u.

end for

We now turn to our main result stating the convergence of Algorithm 3 under rather mild assumptions on the employed uni-
variate interpolation nodes. In particular, we assume an algebraic growth of the corresponding operator norm of univariate
the detail operators

‖∆k‖∞ := sup
06≡f∈C(Γ;R)

‖∆kf‖C(Γ;R)

‖f‖C(Γ;R)
, k ∈ N0.

Theorem 8 (Convergence of Algorithm 3). Given the assumptions of Theorem 1 and assuming that there exist finite
constants 0 ≤ c, θ <∞ such that

‖∆k‖∞ ≤ (1 + ck)θ ∀k ∈ N0, (13)

the approximations un constructed by Algorithm 3 satisfy

lim
n→∞

‖u− un‖Lpµ(Γ;H1
0 (D)) = 0.

We already discussed above that Algorithm 3 satisfies the first and third assumption of the abstract convergence theorem,
Theorem 3. Thus, it remains to verify the second assumption. This turns out to be rather technical and is outlined in details
in Section 5. We comment first on the additional assumption of Theorem 8.

Remark 9 (Leja sequences). The condition (13) on the "Lebesgue constant"‖∆i‖∞ of the univariate detail operators is
satisfied if the corresponding interpolation operators In possess an at most algebraically increasing Lebesgue constant

‖In‖∞ := sup
0 6≡f∈C(Γ;R)

‖Inf‖C(Γ;R)

‖f‖C(Γ;R)
≤ c

2
nθ ∀n ≥ 1, (14)

for finite constants 0 ≤ c, θ < ∞. In fact, (13) is satisfied since for ∆0 = I0 we have ‖∆0‖∞ = ‖I0‖∞ = 1 and (14)
implies

‖∆i‖∞ ≤ ‖Ii‖∞ + ‖Ii−1‖∞ ≤ ciθ ∀i ≥ 1.

Note that the algebraic growth (14) holds, for instance, for interpolation based on Leja and R-Leja nodes y(j) ∈ [−1, 1]
introduced earlier, see [12, 13, 39] and references therein.

4.1 Extensions of Theorem 8

In this subsection we comment on two possible extensions of the convergence result in Theorem 8.

Extension to Clenshaw–Curtis nodes. Algorithm 3 as well as the proof of Theorem 8 can easily be extended to non-
linearly growing nested univariate nodes sets

Yn = {y(i) : i = 0, . . . , g(n)}, n ∈ N0,

where g(·) : N0 → N denotes the growth function with m(0) = 1. A common example for such node sets are the
Clenshaw–Curtis nodes combined with the doubling rule g(n) = 2n + 1 for n ≥ 1. Note that the resulting univariate
interpolation operators In satisfy condition (14) (see e.g. [39]) and therefore the assumptions of Theorem 8, cf. Remark 9.
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Proving the convergence of the adaptive algorithm in [31]. As outlined in Remark 7 the adaptive algorithm proposed
in [31] differs from Algorithm 3 only by the marking strategy, or to be more precise, by the choice of k∗n , see (12). Thus,
in order to extend Theorem 8 to this algorithm it suffices to verify that the third assumption of the general Theorem 3 also
holds for the marking strategy (12) w.r.t. to the error estimators ηn given in (10). This can be ensured by a mild additional
assumption: there exists a constant 0 < c <∞ such that for any monotone multi-index set Λ we have

max
k∈Marg(Λ)

ηΛ(k) ≤ c max
k∈R(Λ)

ηΛ(k), ηΛ(k) := ‖∆k (a∇SΛu)‖Lpµ(Γ;L2(D)), (15)

i.e., the largest error estimator in the full margin can be bounded by the constant times the largest error estimator in the
reduced margin. Indeed, by construction of the profits πn in (11) and of the marking strategy in (12) we always have

max
k∈R(Λn)

ηn(k) ≤
∑

i∈Mn

ηn(i),

due to πn(k) = ηn(k) for k ∈ R(Λn). Condition (15) then guarantees that the third assumption of Theorem 3 is
also satisfied for the marking strategy (12). We consider (15) as a plausible assumption in practice, although pathological
counterexamples might possibly be constructed.

4.2 Computational Considerations

Having established the convergence of the adaptive Algorithm 3, we comment on the computational advantages and
disadvantages of this algorithm compared to the classical Gerstner & Griebel adaptive sparse grid algorithm (GG algorithm
for short in the following) as outlined in Section 3:

1 The GG algorithm considers candidate indices in the reduced margin instead of the full margin. This makes treating
problems with high-dimensional parameters somewhat easier with the GG algorithm, since the size of the full margin
grows substantially faster than the reduced margin.

2 However, as already mentioned, the GG algorithm is fully a posteriori : evaluating the error indicators involves actually
evaluating u (i.e., solving additional PDEs) on the new collocation points Y+

n (k) = Yk \ YΛn∪{k} for each k ∈
R(Λn), see (9) Algorithm 2. By contrast, Algorithm 3 computes its error estimator by evaluating the current sparse
grid interpolant un at the new collocation points Y+

n (k) for k ∈ Marg(Λn). This is a significant advantage of the
error estimator-based algorithms over the GG algorithm, in particular if solving the PDE for individual parameter
values is computationally expensive.

3 On the other hand, because the error estimators are based on the current approximation, they have to be recom-
puted in each step of Algorithm 3, i.e., ηn(k) 6= ηn+1(k) for any k ∈ Marg(Λn) ∩Marg(Λn+1). This is not
required by the GG algorithm. Thus, the evaluation of the sparse grid interpolant un should be implemented in a
very efficient way, since this operation is repeated at each iteration for an increasingly large number of multi-indices
in the margin. In this sense, the hierarchical representation of the sparse grid interpolant via hierarchical Lagrange
polynomials and hierarchical surpluses is to be preferred to the classical combination technique representation [30],
since the former usually yields a faster evaluation—at the price of a higher offline-cost due to the computation of the
surpluses.

4 The hierarchical sparse grid representation as well as the error estimators by [31] for the diffusion problem require
nested univariate node sets—for an efficient implementation and reliability, respectively. Instead, the GG algorithm
also works with non-nested nodes, see e.g. [40, 25, 26]. This might be a rather minor point, since suitable nested
node families in form of Leja or Clenshaw-Curtis nodes are available.

As an extensive numerical study on the error estimator-based adaptive scheme has been already conducted in [31],
we present no further numerical experiments here. For instance, in [31] the authors observed for several numerical test
examples of the diffusion problem (1) that the error estimator stated in Proposition 6 is sharp. These test examples included
different dimensions of the physical domain (d = 1, 2) as well as different numbers M of parameter variables and
different expansion functions am in the definition of the diffusion coefficient. Besides this, a second set of experiments
in [31] compared the performance of the error estimator-based algorithm and the GG algorithm: both showed a similar
performance w.r.t. the number of grid points in the corresponding adaptively constructed sparse grids YΛn (recall that
each sparse grid point corresponds to a PDE solve); however, if all PDE solves (i.e., also those necessary for evaluating
the profits on the margin) are taken into account, than the GG algorithm performed significantly less effectively.

Although the setting and the algorithm in [31] slightly differs from the setting and Algorithm 3 considered here, these
differences are negligible for the numerical performance for the following reasons:
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� The version of Algorithm 3 considered in [31] considers normalized profit indicators πn for the indices k , see (11).
However, previous numerical evidence for the GG algorithm suggests that whether error indicators or profit indicators
are used does not play a major role for the convergence, see e.g. [40]. Therefore, for the same reasons, one can
expect Algorithm 3 to exhibit similar numerical behavior as the adaptive algorithm in [31].

� Although the second set of results in [31] is for Clenshaw–Curtis collocation points only, it is well-known that in
practice the performance of Leja and Clenshaw–Curtis points is quite similar for adaptive sparse grid collocation
using the GG algorithm, see e.g. [38]. Thus, it is again reasonable to assume that similar results to those reported
in [31] also hold for Algorithm 3 using Leja nodes.

� The tests in [31] are performed with p =∞ only, both for the evaluation of the error and for the computation of the
error indicator. Our theory covers any p ∈ [1,∞], and we expect that GG and Algorithm 3 would behave similarly
also for p 6=∞.

5 Proof of Convergence

We collect four auxiliary results required for the subsequent proof of our main result, Theorem 8. First, we recall a statement
on the Lebesgue constant of the tensorized detail operators ∆i given in (13).

Proposition 10 ([14, Section 3]). There holds for

‖∆i‖∞ := sup
06≡f∈C(Γ;R)

‖∆if‖C(Γ;R)

‖f‖C(Γ;R)
, i ∈ F ,

that

‖∆i‖∞ =

M∏
m=1

‖∆im‖∞.

Next, we provide an estimate for the sparse grid collocation operator SΛ applied to Taylor polynomials/multivariate mono-
mials given an algebraically growing Lebesgue constant of the univariate detail operators. This result is similar to [25,
Proposition 3.1].

Proposition 11. Let there exist constants 1 < c <∞ and θ <∞ such that

‖∆i‖∞ := sup
06≡f∈C(Γ;R)

‖∆if‖C(Γ;R)

‖f‖C(Γ;R)
≤ (1 + ci)θ, ∀i ∈ N.

Then for the Taylor polynomials Tk (y) := yk , k ∈ F , and Γ = [−1, 1]M we have

sup
Λ⊆F
‖SΛTk‖C(Γ;R) ≤

M∏
m=1

(1 + ckm)1+θ, k ∈ F .

Proof. First, notice that withRk := {j ∈ F : jm ≤ km ∀m = 1, . . . ,M},

sup
Λ⊆F
‖SΛTk‖C(Γ;R) = max

Λ⊆Rk

‖SΛTk‖C(Γ;R),

since ∆iTk ≡ 0 if for any m we have im > km. Moreover, the triangle inequality yields

‖SΛTk‖C(Γ;R) ≤
∑
i∈Λ

‖∆iTk‖C(Γ;R) ≤
∑
i∈Λ

‖∆i‖∞ ‖Tk‖C(Γ;R) ≤
∑
i∈Λ

M∏
m=1

(1 + cim)θ.

Since we are considering Λ to be a subset ofRk , we can further bound the last term as

∑
i∈Λ

M∏
m=1

(1 + cim)θ ≤
∑
i∈Rk

M∏
m=1

(1 + ckm)θ = |Rk |
M∏
m=1

(1 + ckm)θ =

M∏
m=1

(1 + ckm)1+θ,

since |Rk | =
∏M
m=1(1 + km).
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Furthermore, we require a rather general result on the summability of sequences on F .

Lemma 12 ([17, Lemmas 2 & 3]). For any 0 < q < 1, one has

ρ ∈ RM and min
m=1,...,M

|ρm| > 1 ⇐⇒
(
ρ−k

)
k∈F ∈ `

q(F).

Moreover, for any 0 < q < 1 and any algebraic factor

β(k) :=

M∏
m=1

(1 + ckm)θ, k ∈ F ,

with finite c, θ ≥ 0, one has

ρ ∈ RM and min
m=1,...,M

|ρm| > 1 ⇐⇒
(
β(k) ρ−k

)
k∈F ∈ `

q(F).

Note that the original statement in [17, Lemmas 2 & 3] is for the case of countable sequences ρ = (ρm)m∈N ∈ `q(N).

The last auxiliary result provides a simple estimate for the tails of converging series of the same form
(
β(k) ρ−k

)
k∈F as

considered in the previous lemma.

Proposition 13. Let ρ ∈ RM be a vector of numbers ρm > 1, m = 1, . . . ,M , and

β(k) :=

M∏
m=1

(1 + ckm)θ, k ∈ F ,

an algebraic factor with finite c, θ ≥ 0 such that

C :=
∑
k∈F

β(k)ρ−k <∞. (16)

Then, we have for any k ∈ F ∑
j≥k

β(j )ρ−j ≤ C β(k)ρ−k . (17)

Proof. By refactoring, we have

∑
j≥k

β(j )ρ−j =
∑
j≥k

M∏
m=1

(1 + cjm)θρ−jmm =

M∏
m=1

 ∑
jm≥km

(1 + cjm)θρ−jmm

 .

We then obtain for each m = 1, . . . ,M ,

∑
jm≥km

(1 + cjm)θρ−jmm = (1 + ckm)θ ρ−kmm

∞∑
j=0

(
1 + cj + ckm

1 + ckm

)θ
ρ−jm

≤ (1 + ckm)θ ρ−kmm

∞∑
j=0

(1 + cj)
θ
ρ−jm .

Thus, the refactoring argument can be continued as

∑
j≥k

β(j )ρ−j =
∑
j≥k

M∏
m=1

(1 + cjm)θρ−jmm ≤
M∏
m=1

(1 + ckm)θ ρ−kmm

∑
jm≥0

(1 + cjm)θρ−jmm


= β(k)ρ−k

∑
j≥0

M∏
m=1

(1 + cjm)θρ−jmm = C β(k)ρ−k ,

with C as in Equation (16).
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5.1 Proof of Theorem 8

Proof. We prove Theorem 8 by applying Theorem 3. To this end, we need to verify the three assumptions of Theorem
3. The first holds due to Proposition 6 and the third by construction, cf. Remark 4. Hence, it remains to verify the second
assumption. To this end, we set

η̂n(k) :=

{
‖∆k (a∇SΛnu)‖Lpµ(Γ;L2(D)), k ∈ Λn ∪ Cn
0, otherwise,

(18)

and proceed in two steps (see also Remark 4):

1 We define the (formal) limit

u∞ :=
∑

k∈Λ∞

∆ku, Λ∞ :=
⋃
n∈N

Λn, (19)

and verify in Lemma 14 below that u∞ ∈ C(Γ;H1
0 (D)) as well as

lim
n→∞

‖u∞ − un‖C(Γ;H1
0 (D)) = 0.

2 We then set

η∞(k) :=

{
‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)), k ∈ Λ∞ ∪Marg(Λ∞),

0, otherwise,
(20)

and show in Lemma 16 that
lim
n→∞

‖η∞ − η̂n‖`1 = 0,

which concludes the proof.

Lemma 14. Given the assumptions of Theorem 8, the function u∞ in (19) is well-defined in C(Γ;H1
0 (D)), i.e., u∞ ∈

C(Γ;H1
0 (D)), and satisfies

lim
n→∞

‖u∞ − un‖C(Γ;H1
0 (D)) = 0.

Proof. We abbreviate the norms in C(Γ;H1
0 (D)) and C(Γ;R) by ‖ · ‖C . Furthermore, let ρ ∈ RM be such that

1 < ρm < α−1 as in equation (5). Then, with Tk , k ∈ F , denoting the multivariate Taylor polynomials and tk the
corresponding Taylor coefficients of u, we obtain

‖u∞‖C =

∥∥∥∥∥ ∑
i∈Λ∞

∆iu

∥∥∥∥∥
C

=

∥∥∥∥∥ ∑
i∈Λ∞

∑
k∈F

tk∆iTk

∥∥∥∥∥
C

=

∥∥∥∥∥∑
k∈F

tk
∑

i∈Λ∞

∆iTk

∥∥∥∥∥
C

≤
∑
k∈F

‖tk‖H ‖SΛ∞Tk‖C ≤
∑
k∈F

‖tk‖Hβ(k)

≤

(∑
k∈F

ρ2k ‖tk‖2H

)1/2 (∑
k∈F

β(k)2 ρ−2k

)1/2

,

where

β(k) :=

M∏
m=1

(1 + ckm)1+θ, k ∈ F . (21)

Here, we used Proposition 11 in the second inequality in the second line. By Theorem 1 we know that

Cu,ρ :=

(∑
k∈F

ρ2k ‖tk‖2H

)1/2

<∞, (22)

and by Lemma 12 that
(
β(k)2 ρ−2k

)
k∈F ∈ `

1(F). Thus, we can conclude that ‖u∞‖C <∞. Note that interchanging
the series with respect to i ∈ Λ∞ and k ∈ F in the first line above could be made rigorous by first considering only finite
subsetsRj := {k ∈ F : km ≤ jm} ⊂ F and then taking the limit j →∞.

DOI 10.20347/WIAS.PREPRINT.2753 Berlin 2020



M. Eigel, O. Ernst, B. Sprungk, L. Tamellini 14

Next, the continuity of u∞ with respect to y can be concluded from the continuity of un with respect to y and the
subsequently proved convergence of un → u∞ in C(Γ;H). To this end, we apply Lebesgue’s dominated convergence
theorem. We have

u∞ − un =
∑

i∈Λ∞\Λn

∆iu =
∑
k∈F

tk
∑

i∈Λ∞\Λn

∆iTk ,

and by the triangle and Cauchy–Schwarz inequalities we obtain

‖u∞ − un‖C ≤ Cu,ρ

(∑
k∈F

ρ−2k g2
n(k)

)1/2

, gn(k) :=

∥∥∥∥∥∥
∑

i∈Λ∞\Λn

∆iTk

∥∥∥∥∥∥
C

. (23)

Now, for any k ∈ F and withRk = {i ∈ F : i ≤ k} it holds that∑
i∈Λ∞\Λn

∆iTk =
∑

i∈(Λ∞∩Rk )\Λn

∆iTk ,

where the right-hand side is a finite sum. Since for any of the finitely many i ∈ Λ∞ ∩ Rk there exists an n0 ∈ N such
that i ∈ Λn for all n ≥ n0, we obtain

lim
n→∞

gn(k) = 0 ∀k ∈ F .

The final step is to apply the dominated convergence theorem and exchange the limit and the sum in (23), to obtain

lim
n→∞

‖u∞ − un‖C ≤ Cu,ρ lim
n→∞

(∑
k∈F

g2
n(k) ρ−2k

)
= Cu,ρ

∑
k∈F

ρ−2k
(

lim
n→∞

g2
n(k)

)
= 0.

To this end, we need to show the existence of some g : F → R such that

gn(k) ≤ g(k) ∀k ∈ F and
∑
k∈F

ρ−2kg2(k) <∞.

This is obtained by

gn(k) =

∥∥∥∥∥∥
∑

i∈(Λ∞∩Rk )\Λn

∆iTk

∥∥∥∥∥∥
C

≤ β(k) =
∏
m∈N

(1 + ckm)θ+1 =: g(k),

since
(
β(k)2 ρ−2k

)
k∈F ∈ `

1(F), see above.

For the second step of the proof, we first state an important lemma concerning the decay of the error estimators.

Lemma 15. Let the assumptions of Theorem 8 be satisfied and let Λ ⊂ F be an arbitrary monotone subset. Then, there
exists a constant C = C(M,ρ, c, θ, a) <∞ such that for

η(k , SΛu) := ‖∆k (a∇SΛu)‖Lpµ(Γ;L2(D)), k ∈ F ,

we have for any k ∈ F

η(k , SΛu) ≤ C g(k), g(k) :=

(
M∏
m=1

(1 + ckm)2θ+1

)
ρ−k .

Proof. Set uΛ := SΛu. By linearity ∆k (a∇uΛ) for k ∈ F can be written as

∆k [a∇uΛ] = ∆k

[
a
∑
i∈Λ

∆i∇u

]
=
∑
i∈Λ

∆k [a∆i∇u] .

Moreover, using the Taylor expansion of the solution u we deduce that

∆k [a∆i∇u] = ∆k

a∆i

∑
j∈F

(∇tj ) Tj

 =
∑
j∈F

(∇tj ) ∆k [a∆iTj ] . (24)
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We observe that for certain combinations of i , j , and k it holds ∆k [a∆iTj ] ≡ 0. First of all,

∆iTj =

M∏
m=1

(∆imTjm) ≡ 0 if ∃m : jm < im,

since then ∆im′Tjm′ ≡ 0. Second, the function a∆iTj is a polynomial in y belonging to the space

Pi+1 := span {yp : pm ≤ im + 1 for m = 1, . . . ,M} ,

since a is affine in y . Hence,
∆k [a∆iTj ] ≡ 0 if ∃m : im + 1 < km.

Combining both conditions j ≥ i and i ≥ k − 1, and introducing the notation [k − 1]+ := (max{km − 1, 0})Mm=1,
the sum (24) reduces to

∆k [a∆iu] =
∑

j≥[k−1]+

(∇tj ) ∆k [a∆iTj ] .

Thus, reverting the interchange of the series yields

‖∆k (a∇uΛ)‖Lpµ(Γ;L2(D)) =

∥∥∥∥∥∑
i∈Λ

∆k (a∆i∇uΛ)

∥∥∥∥∥
Lpµ(Γ;L2(D))

=

∥∥∥∥∥∥
∑
i∈Λ

∑
j≥[k−1]+

(∇tj ) ∆k [a∆iTj ]

∥∥∥∥∥∥
Lpµ(Γ;L2(D))

=

∥∥∥∥∥∥
∑

j≥[k−1]+

(∇tj ) ∆k [aSΛTj ]

∥∥∥∥∥∥
Lpµ(Γ;L2(D))

.

We now set β(k) :=
∏M
m=1(1 + ckm)θ as well as

amax := sup
y∈Γ

sup
x∈D
|a(x ,y)| <∞. (25)

By using the triangular inequality, Proposition 10 and Proposition 11 we deduce

‖∆k (a∇uΛ)‖Lpµ(Γ;L2(D)) =

∥∥∥∥∥∥
∑

j≥[k−1]+

(∇tj ) ∆k [aSΛTj ]

∥∥∥∥∥∥
Lpµ(Γ;L2(D))

≤
∑

j≥[k−1]+

‖(∇tj )‖L2(D) ‖∆k [aSΛTj ]‖C(Γ;R)

≤
∑

j≥[k−1]+

‖tj ‖H β(k) ‖aSΛTj ‖C(Γ;R)

≤
∑

j≥[k−1]+

‖tj ‖H β(k) amax ‖SΛTj ‖C(Γ;R)

≤ amax β(k)
∑

j≥[k−1]+

‖tj ‖H γ(j ),

where we set γ(j ) :=
∏M
m=1(1 + cjm)1+θ . By the Cauchy–Schwarz inequality we obtain

∑
j≥[k−1]+

‖tj ‖H γ(j ) ≤ Cu,ρ

 ∑
j≥[k−1]+

ρ−2j γ(j )2

1/2

,

with ρ as in Theorem 1 and Cu,ρ as in (22). We can then apply Proposition 13 to bound
∑

j≥[k−1]+
ρ−2j γ(j )2. More

specifically, Proposition 13 yields the existence of a constant Cρ,c,θ < ∞ such that it holds

∑
j≥[k−1]+

ρ−2j γ(j )2 ≤ Cρ,c,θ ρ
−2[k−1]+ γ([k − 1]+)2 ≤ Cρ,c,θ

(
M∏
m=1

ρ2
m

)
ρ−2k γ(k)2,
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since γ is increasing and ρm > 1 for each m. Thus, for any k ∈ F we get

‖∆k (a∇uΛ)‖Lpµ(Γ;L2(D)) ≤ amax Cu,ρ β(k) C
1/2
ρ,c,θ

(
M∏
m=1

ρm

)
γ(k) ρ−k .

The statement follows with

C := amax Cu,ρ C
1/2
ρ,c,θ

(
M∏
m=1

ρm

)
, (26)

since g(k) = β(k)γ(k) ρ−k .

This bound of the error indicators is now used to proceed with the second step of the proof to verify the second assumption
of Theorem 3.

Lemma 16. Given the assumptions of Theorem 8 we have for η∞ as in (20) and η̂n as in (18) that

lim
n→∞

‖η∞ − η̂n‖`1(F) = 0.

Proof. We introduce the short-hand notation

Λ+ := Λ ∪Marg(Λ), Λ ⊆ F ,

and notice that consequently Λ+
∞ ⊆

⋃
n∈N Λ+

n . Moreover, we have

|η∞(k)− η̂n(k)| ≤


‖∆k (a∇(u∞ − un))‖Lpµ(Γ;L2(D)), k ∈ Λ+

n ⊂ Λ+
∞,

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)), k ∈ Λ+
∞ \ Λ+

n ,

0, k ∈ F \ Λ+
∞.

Hence,

‖η∞ − η̂n‖`1(F) ≤
∑

k∈Λ+
∞

‖∆k (a∇(u∞ − un))‖Lpµ(Γ;L2(D))︸ ︷︷ ︸
term I

+
∑

k∈Λ+
∞\Λ+

n

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D))︸ ︷︷ ︸
term II

.

We would like to take the limit at both sides, and verify that the two terms on the right-hand side tend to zero, which we
analyze separately in the following.

Term I. Assuming for a moment that we can apply the dominated convergence theorem to exchange the sum and the
limit, we would get

lim
n→∞

∑
k∈Λ+

∞

‖∆k (a∇(u∞ − un))‖Lpµ(Γ;L2(D))

=
∑

k∈Λ+
∞

lim
n→∞

‖∆k (a∇(u∞ − un))‖Lpµ(Γ;L2(D)) by dominated convergence

≤
∑

k∈Λ+
∞

lim
n→∞

β(k)‖a∇(u∞ − un)‖C(Γ;L2(D)) by Prop. 10 with β(k) :=
∏M
m=1(1 + ckm)θ

≤
∑

k∈Λ+
∞

lim
n→∞

β(k)amax‖u∞ − un‖C(Γ;H1
0 (D)) recalling the definition of amax in (25)

= 0 by Lemma 14.

In order to apply Lebesgue’s dominated convergence, we need to check that there exists a function g : F → [0,∞) such
that, for all n ∈ N and k ∈ Λ+

∞,

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)) + ‖∆k (a∇un)‖Lpµ(Γ;L2(D)) ≤ g(k) and
∑

k∈Λ+
∞

g(k) <∞. (27)
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The bounding function g is obtained by Lemma 15: there exists a constant C <∞ such that

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)) + ‖∆k (a∇un)‖Lpµ(Γ;L2(D)) ≤ 2C g(k),

with

g(k) :=

(
M∏
m=1

(1 + ckm)2θ+1

)
ρ−k .

The required summability of g is derived by Lemma 12, i.e.,

∑
k∈Λ+

∞

2C g(k) ≤ 2C
∑
k∈F

(
M∏
m=1

(1 + ckm)2θ+1

)
ρ−k <∞.

Term II. To verify that the limit of the second term is also zero, observe that the dominated convergence theorem in (27)
implies ∑

k∈Λ+
∞

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)). <∞

Together with the fact that Λ+
∞ ⊆

⋃
n∈N Λ+

n , this implies the final result

lim
n→∞

∑
k∈Λ+

∞\Λ+
n

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)) = 0.

By Lemma 16, the three assumptions of Theorem 3 have been verified, proving convergence of the described adaptive
algorithm.

6 Conclusions

We have proved convergence of an adaptive sparse grid collocation algorithm for approximating the solution of an elliptic
PDE with a multi-dimensional parameter applying the analysis technique from [6], developed for the stochastic Galerkin
FEM, to a slight variation of the algorithm proposed in [31]. In this sense, our work can be seen as an extension or follow-up
of [31], where a very close variant of the algorithm considered here was presented and analyzed numerically, but without
convergence proof.

The algorithm we consider here and in [31] is a modification of the well-known dimension-adaptive sparse grid algorithm
due to Gerstner and Griebel, and it is based on a replacing the hierarchical surplus error indicators with a rigorous residual-
based error estimator. The convergence proof is tailored to the specific problem, i.e., an elliptic PDE with parametric
diffusion coefficient depending affinely on a finite number of variables. Because the algorithm is based on a residual-based
error estimator, the analysis is problem-specific and must be repeated for each PDE at hand as well as for other forms of
the random diffusion coefficient. However, we expect that a large part of the machinery proves valid or at least extensible
in a straightforward way. Particularly, if reliable error estimators (for the approximation error w.r.t. the parameter variables)
are available, simply a stability condition of these estimators w.r.t. un has to been established in order to verify the crucial
second hypothesis of the general convergence Theorem 3. Our analysis in Section 5.1 might serve as a blueprint for doing
so.

Regarding possible extensions of this work, we point out that the convergence analysis we have presented proves conver-
gence but does not provide a rate. This might be achieved by a saturation assumption following again the line of proof in [6]
for adaptive stochastic Galerkin FEM. Conversely, the extension of the specific model problem to the important case of the
diffusion coefficient resulting from the parametrization of a log-normal random field is deemed to be more challenging. An-
other important yet challenging addition to our work would be to extend the convergence result to the infinite-dimensional
case, i.e., to consider countably many parameters M = ∞ in the affine expansion of the diffusion coefficient (2). This
would pose both theoretical and algorithmic challenges: on the theoretical side, our proof would need to be revisited since
some constants are not bounded when M →∞ (in particular, the constant C in Lemma 15, cf. equation (26)). From the
algorithmic point of view, having M = ∞ would make the size of the margin be infinite, which is of course unfeasible.
Under the assumption that ‖am‖L∞ in (2) are monotone decreasing (this assumption could be weakened), then a possi-
ble approach would be to implement a so-called “buffering” procedure, as discussed in [31] (see also [44, 14, 40, 25]): the
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algorithm would start considering only the first M0 <∞ parameters, and any time a parameter is “activated” (i.e. a collo-
cation point is added along that parameter for the first time), the total number of considered parameters would increase by
one, in such a way that there are always M0 “non-activated” parameters.

Another interesting follow-up work would be to perform an extensive numerical campaign on a number of different PDEs
for which Finite-Element error estimators are available, and test numerically whether the algorithm proposed here gives
consistently good performances (i.e., similar to the GG algorithm) for all the PDE considered. Both these numerical inves-
tigations exceed the scope of this work and are left for future research.
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[27] I.-G. Farcaş, T. Görler, H.-J. Bungartz, F. Jenko, and T. Neckel. Sensitivity-driven adaptive sparse stochastic approxi-
mations in plasma microinstability analysis. Journal of Computational Physics, 410:109394, 2020.

[28] T. Gerstner and M. Griebel. Dimension–adaptive tensor–product quadrature. Computing, 71:65–87, 2003.

[29] M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces for operator equations. Math. Comp.,
78(268):2223—2257, 2009.

[30] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In
P. de Groen and R. Beauwens, editors, Iterative Methods in Linear Algebra, pages 263–281. IMACS, Elsevier, North
Holland, 1992.

[31] D. Guignard and F. Nobile. A posteriori error estimation for the stochastic collocation finite element method. SIAM J.
Numer. Anal., 56(5):3121–3143, 2018.

[32] M. Hegland. Adaptive sparse grids. In K. Burrage and R. B. Sidje, editors, Proc. of 10th Computational Techniques
and Applications Conference CTAC-2001, volume 44, pages C335–C353, Apr. 2003.

[33] V. H. Hoang and C. Schwab. N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian
random inputs. Mathematical Models and Methods in Applied Sciences, 24(4):797–826, 2014.

[34] A. Klimke. Uncertainty modeling using fuzzy arithmetic and sparse grids. PhD thesis, Universität Stuttgart, Shaker
Verlag, Aachen, 2006.

[35] J. Lang, R. Scheichl, and D. Silvester. A fully adaptive multilevel stochastic collocation strategy for solving elliptic
PDEs with random data, 2019. Available as arXiv:1902.03409.

[36] X. Ma and N. Zabaras. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic
differential equations. J. Comp. Phys., 228:3084–3113, 2009.

[37] L. Mathelin and M. Hussaini. A stochastic collocation algorithm for uncertainty analysis. Technical Report NASA/CR-
2003-212153, NASA Langley Research Center, 2003.

DOI 10.20347/WIAS.PREPRINT.2753 Berlin 2020



M. Eigel, O. Ernst, B. Sprungk, L. Tamellini 20

[38] F. Nobile, L. Tamellini, and R. Tempone. Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for
the Approximation of Random PDEs. In R. M. Kirby, M. Berzins, and J. S. Hesthaven, editors, Spectral and High
Order Methods for Partial Differential Equations - ICOSAHOM ’14, volume 106 of Lecture Notes in Computational
Science and Engineering, pages 475–482. Springer International Publishing, 2015.

[39] F. Nobile, L. Tamellini, and R. Tempone. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-
valued functions: application to random elliptic PDEs. Numerische Mathematik, 134(2):343–388, 2016.

[40] F. Nobile, L. Tamellini, F. Tesei, and R. Tempone. An adaptive sparse grid algorithm for elliptic PDEs with lognormal
diffusion coefficient. In J. Garcke and D. Pflüger, editors, Sparse Grids and Applications-Stuttgart 2014, pages 191–
220. Springer, Cham, 2016.

[41] F. Nobile, R. Tempone, and C. G. Webster. An anisotropic sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM J. Numer. Anal., 46(5):2411–2442, 2008.

[42] F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method for elliptic partial differential
equations with random input data. SIAM J. Numer. Anal., 46(5):2309–2345, 2008.

[43] B. Schieche and L. J. Adjoint error estimation for stochastic collocation methods. In J. Garcke and D. Pflüger,
editors, Sparse Grids and Applications - Munich 2012, volume 97 of Lecture Notes in Computational Science and
Engineering, pages 271–293, Cham, 2014. Springer.

[44] C. Schillings and C. Schwab. Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Probl.,
29(6):065011, 2013.

[45] D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM J.
Sci. Comput., 27(3):1118–1139, 2005.

[46] J. Zech and C. Schwab. Convergence rates of high dimensional smolyak quadrature. ESAIM: M2AN, 54(4):1259–
1307, 2020.

DOI 10.20347/WIAS.PREPRINT.2753 Berlin 2020


	Introduction
	Preliminaries
	Model Problem
	Adaptive Polynomial Approximation

	Adaptive Sparse Grid Collocation.
	Adaptive Sparse Collocation for the Diffusion Problem
	Extensions of Theorem 8
	Computational Considerations

	Proof of Convergence
	Proof of Theorem 8

	Conclusions

