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Guaranteed upper bounds for the velocity error of pressure-robust Stokes
discretisations

Philip Lukas Lederer, Christian Merdon

ABSTRACT. This paper improves guaranteed error control for the Stokes problem with a focus on pressure-robustness,
i.e. for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager-Synge type
result relates the errors of divergence-free primal and Hpdivq-conforming dual mixed methods (for the velocity gra-
dient) with an equilibration constraint that needs special care when discretised. To relax the constraints on the primal
and dual method, a more general result is derived that enables the use of a recently developed mass conserving
mixed stress discretisation to design equilibrated fluxes that yield pressure-independent guaranteed upper bounds
for any pressure-robust (but not necessarily divergence-free) primal discretisation. Moreover, a provably efficient local
design of the equilibrated fluxes is presented that reduces the numerical costs of the error estimator. All theoretical
findings are verified by numerical examples which also show that the efficiency indices of our novel guaranteed upper
bounds for the velocity error are close to 1.

1. INTRODUCTION

There is a long history of a posteriori error control for the Stokes problem [24, 40, 6, 1, 7, 32, 41] which which
was only recently refined in [24] with a stronger focus on the possibility of pressure-independent error control
for the velocity if the discretisation is pressure-robust. Pressure-robust discretisations were propagated in recent
years and are characterised by a pressure-independent velocity error that avoids the error from the relaxation of
the divergence constraint [18, 23, 25, 28, 21, 15, 42] and include divergence-free schemes like [39, 16, 12]. A
similar decoupling is needed in a posteriori error control if one is interested in efficient bounds and appropriate
mesh refinement for the velocity error for such methods. The residual-based approaches by [24, 19] achieve this
by applying the curl operator to the residual, hence measuring only the error of the underlying vorticity equation.

In this paper we turn our interest now to guaranteed error control for the velocity and thereby refine existing
approaches in [17, 34, 5, 27, 32]. In principle, the unified approach from e.g. [6, 17] rewrites many second order
elliptic problems on some admissible domain Ω into the form

�div σ � f on Ω(1.1)

which is also possible, with σ :� ν∇u� pId�d, for the Stokes problem

�ν∆u�∇p � f on Ω,

divpuq � 0 on Ω.

Hence, the application of the whole a posteriori error estimators for (vector-valued) Poisson problems, in particular
guaranteed upper bounds like [10, 30, 4, 11, 36, 13], also work for the Stokes problem. However, care has to
be taken for the additional divergence constraint that often leads to pressure-dependent velocity error estimators
or estimators for the combined velocity and pressure error. For problems of the form (1.1), there is the famous
Prager-Synge theorem [35, 2] (originally for linear elasticity) that is nothing else than a Pythagoras theorem in
L2-norms, i.e.

}∇pu� vq}2 � }∇u� ν�1σ}2 � }∇v � ν�1σ}2,

where u can be understood as some approximation to u and σ only has to satisfy some orthogonality or equili-
bration constraint. In our Stokes setting it is required that u,v P V 0 and»

Ω
pdiv σ � fq �w dx � 0 for allw P V 0(1.2)

where V 0 is the subspace of divergence-free H1
0pΩq test functions. An important observation is that, opposite

to the Poisson problem or linear elasticity where the constraint has to hold for the whole spaceH1
0pΩq, equation

(1.2) is not equivalent to

divpσq � f � 0.
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Since �
³
qI : ∇w dx �

³
∇q � w dx � 0 for any q P H1pΩq and w P V 0, the equilibration constraint

and the stress σ can be gauged by any gradient force. Many equilibration error estimators, see e.g. [17] where
unfortunately only ν � 1 is examined, fix this gauging freedom by approximating the pseudo-stress σ̃ :� ∇u�
pId�d or its discrete counterpart σ̃h � ν∇ūh � p̄hId�d with the equilibration constraint

divpσ̃hq � πkf � 0

where πk is the piecewise L2 bestapproximation into the (vector-valued) polynomials of order k, and ūh, p̄h are
the discrete velocity and pressure solutions of an inf-sup stable discretisation of the Stokes equations. Their error
estimator (for a divergence-free discretisation) then reads as

}∇pu� ūhq}2L2pΩq ¤ ν�1
¸
TPT

�
hT
π
}f � divpσ̃hq}L2pT q � }σ̃h � p̄hId�d � ν∇ūh}L2pT q


2

.(1.3)

The seemingly innocent oscillations in the first term can have a severe effect in pressure-dominant situations,
since

ν�1}f � πkf}L2pΩq ¤ ν�1}pid� πkq∇p}L2pΩq � }pid� πkq∆u}L2pΩq.

As one can see, there is a pressure-dependent term that can be relatively large for small ν. Even in a divergence-
free setting ūh P V 0, where we are allowed to measure the oscillations after an application of the curl-operator,
one would still end up with a term ν�1}h2

T curlpπk∇pq}L2pΩq that does not vanish and still produces an error
of the same magnitude. To reduce this effect in classical equilibration procedures one would have to increase k
which results in much more numerical costs and also assumes that the pressure is smooth enough.

To remove this dependency we propose a novel equilibration design that avoids the gauging issue altogether and
ensures the equilibration condition (1.2) as it is for an Hpdivq-conforming subspace of V 0. We so ensure that
even after the discretisation of the equilibration constraint, the complete gauging freedom is preserved. This is
done with the help of the recently developed mass conserving mixed stress formulation [15]. The resulting error
estimator for a divergence-free discretisation structurally looks very similar to (1.3), but consists of the terms

}∇pu� uhq}2L2pΩq ¤ ν�1
¸
TPT

�
ch2
T }pid� πsq curlpf � divpσhqq}L2pT q � }devpσh � ν∇uhq}L2pT q

	2
.

Note, that any gauging is not seen by the norms used on the right-hand side. The unfortunately unknown constant
c stems from approximation properties of commuting interpolators and only depends on the shape of the cells in
the triangulation. In the last part of the paper also a localized pressure-robust design for the equilibrated fluxes on
node patches is presented.

The rest of the paper is organised as follows. Section 2 introduces the Stokes model problem and a Prager-Synge-
type theorem. Section 3 recalls pressure-robust discretisations of the Stokes problem in the primal formulation
and a dual mixed stress formulation. After shortly summarising classical equilibration error estimator approaches,
Section 4 proves novel pressure-independent guaranteed upper bounds in the spirit of the Prager-Synge theo-
rem but with relaxed constraints on primal and dual stress. A local design for equilibrated fluxes that fit into this
framework is presented in Section 5. Section 6 is concerned with the efficiency of the new pressure-robust er-
ror estimators. Finally, Section 7 shows in several numerical examples that the novel upper bounds are indeed
pressure-independent and allow very sharp error control and optimal adaptive mesh refinement for the velocity
error of pressure-robust discretisations.

For the rest of this work we use a bold-face notation for vector valued functions and spaces, but stick to a standard
notation for matrix valued functions and spaces to increase readability. We denote by L2pΩq the space of square
integrable functions and by HspΩq the standard Sobolev space with regularity s. Of special interestet is the H1

space with homogeneous boundary conditions denoted by H1
0 pΩq.

Now let ω � Ω be an arbitrary subset, then we use } � }ω for the L2-norm on ω. In the case ω � Ω we omit the
notation for the domain and simply write } � }. In a similar manner we denote by p�, �q the L2-inner product on Ω.
For high order Sobolec spaces we use the standard notation, hence } � }Hspωq denotes the Hs-norm on ω, and
as before, } � }Hs � } � }HspΩq.

DOI 10.20347/WIAS.PREPRINT.2750 Berlin 2020



Pressure-robust guaranteed error control for Stokes 3

Finally, the deviatoric part devpAq of some matrix A P Rd�d is defined by

devpAq :� A�
trpAq

d
Id�d,

where Id�d is the d-dimensional identity matrix, and trpAq �
°d
i�1Aii is the matrix trace.

2. THE STOKES MODEL PROBLEM AND A PRAGER-SYNGE THEOREM

This section collects some preliminaries concerning the continuous Stokes problem and some important decom-
positions that allow to decouple velocity and pressure quantities.

2.1. The Stokes model problem. Given f P L2pΩq on some open, bounded domain Ω � Rd (d � 2, 3)
with polygonal or polyhedral boundary, the Stokes problem with homogeneous boundary data seeks a velocity
u P V :�H1

0pΩq and some pressure p P Q :� L2
0pΩq � tqh P L

2pωq :
³
Ω p dxu with

�ν∆u�∇p � f on Ω,

divpuq � 0 on Ω.

The regularity assumptions of u and p above allow to expect a weak solution that satisfies

νp∇u,∇vq � pp,divpvqq � pf ,vq for all v P V ,

pq,divpvqq � 0 for all q P Q.

Note, that the pressure acts as a Lagrange multiplier for the divergence constraint as the subspace of divergence-
free functions is equal to

V 0 :� tv P V : divpvq � 0u � tv P V : @q P Q, pq,divpvqq � 0u.

A weak solution u or its stress σ :� ν∇u therefore can also be characterised by requiring u P V 0 and

νp∇u,∇vq � pσ,∇vq � pf ,vq for all v P V 0.

2.2. Characterising pressure-robustness. Any force f P L2pΩq can be uniquely decomposed into

f � ∇q � Pf

with q P H1pΩq{R and the divergence-free Helmholtz–Hodge projector

Pf P tv P L2pΩqd : pv,∇wq � 0 for all w P H1pΩqu.

Due to p∇q,vq � pq,div vq � 0 for all v P V 0, u does not see the gradient force from this decomposition and
it holds

νp∇u,∇vq � pPf ,vq for all V 0.

A discretisation that preserves this property, i.e. its discrete velocity solution is independent of any gradient force
∇q that is added to the right-hand side, is called pressure-robust, see [18, 28] for details.

2.3. A Prager-Synge-type result for the Stokes system. This section states a Pythagoras theorem for the
Stokes system similar to that of Prager and Synge for the Poisson model problem and the linear elasticity problem
[35, 2]. The Prager-Synge theorem relates the error of primal and equilibrated mixed approximations of the flux
∇u (or εpuq in elasticity) and gives rise to guaranteed error control by the design of equilibrated fluxes for these
problems. The analogon in the context of the Stokes model problem for the flux of the velocity σ :� ν∇u reads
as follows.

DOI 10.20347/WIAS.PREPRINT.2750 Berlin 2020
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Theorem 2.1. Consider any v P V 0pΩq and any σ P Hpdiv,Ωq and the equilibration constraint»
Ω
pf � div σq � v dx � 0 for all v P V 0.(2.1)

Then, it holds the Pythagoras theorem

}∇pu� vq}2 � }∇u� ν�1σ}2 � }∇v � ν�1σ}2.

Proof. This follows directly from integration by parts and

}∇pu� vq}2 � }∇u� ν�1σ}2 � }∇v � ν�1σ}2 � 2

»
Ω
p∇u� ν�1σq �∇pu� vqdx

� 2ν�1

»
Ω
pf � div σq � pu� vqdx � 0.

�

Remark 2.2. Note, that the equilibration constraint (2.1) is pressure-independent, since
³
Ω ∇q � v dx � 0 for all

v P V 0 and q P H1pΩq. Stronger constraints like f�∇q�divpσq � 0 for some known pressure-approximation
q are possible, but potentially lead to an dependency of p� q somewhere, see Section 4.1.

Remark 2.3. In practise, both constraints on the function v and on the flux σ in Theorem 2.1 are hard to re-
alise. Therefore, Section 4 derives guaranteed upper bounds for v that do not necessarily have to stem from a
divergence-free (but pressure-robust) discretisation based on equilibrated fluxes σ that satisfy a discrete version
of the equilibration property. Before that we recall previous results on how to obtain guaranteed upper bounds by
equilibrated fluxes.

3. PRESSURE-ROBUST FINITE ELEMENT DISCRETISATIONS

This section recalls pressure-robust discretisations for the primal problem in velocity-pressure formulation and a
pressure-robust discretisation of the dual mixed formulation. Note, that all discrete quantities related to the primal
problem are marked with a bar on top.

3.1. Notation. Consider some regular triangulation T of the domain Ω into regular simplices with vertices V and
faces F . The subset of interior faces is denoted by FpΩq. The diameter of a simplex T P T is given by hT . We
extend this notation in a similar manner onto faces and simply write hF for the diameter of a face F P F . Further,
if the triangulation is quasi uniform, we abbreviate the notation and simply write h for the maximum diameter of all
simplices.

Let F P FpΩq be some arbitrary face of an arbitrary element T P T . For the ease, we again denote by n the
normal vector on F . Then,

an :� a � n,

at :� a� pa � nqn,

denotes the scalar valued normal and the vector valued tangential part of some vector a P Rd. Further, the
brackets rrbssF denote the jump across the face of some (scalar or vector-valued) quantity b.

The space of piecewise (with respect to T ) polynomials of order k is denoted byPkpT q and the space of piecewise
vector-valued polynomials of order k by P kpT q. The L2-best approximation into PkpT q or P kpT q these spaces
read πk or πk, respectively. We use the notation Pk,cpT q to denote piecewise polynomials of order k that are
continuous across element interfaces and extend the same notation to vector-valued polynomials. Next, the spaces

RTkpT q :� tvh P Hpdiv,Ωq : @T P T DaT P P kpT q, bT P PkpT q, vh|T pxq � aT � bTxu,

BDMkpT q :� tvh P Hpdiv,Ωq : @T P T vh|T P P kpT qu,
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denote the space of Raviart-Thomas and Brezzi-Douglas-Marini functions of order k ¥ 0, respectively. Further,
let

NkpT q :� tvh P Hpcurl,Ωq : @T P T DaT P P kpT q, bT P PkpT q, vh|T pxq � aT � bTx
Ku

denote the space of Nédélec functions of order k ¥ 0.

3.2. Velocity-pressure formulation. Consider an inf-sup stable pair of finite element spaces V̄h � V and
Q̄h � Q, and let R be some reconstruction operator that maps discretely divergence-free functions to exactly
divergence-free ones, see equation (3.4) below. Note, that for simplicity, we only consider a discontinuous pres-
sure approximation in this work, since this allows an element wise reconstruction operator. However we want to
emphasize, that reconstruction operators for continuous pressure approximations are also possible but demand a
more complicated construction, see [21].

The discrete solution pūh, p̄hq P V̄ h � Q̄h of the weak formulation of the Stokes problem is given by

ν

»
Ω
∇ūh : ∇v̄h dx�

»
Ω

divpv̄hqp̄h dx �

»
Ω
f �Rpv̄hq dx for all v̄h P V̄h(3.1)

�

»
Ω

divpūhqq̄h dx � 0 for all q̄h P Q̄h.(3.2)

Examples for suitable finite element spaces and corresponding reconstruction operators, i.e. standard Hpdivq-
conforming interpolation operators, can be found in [18, 25, 26, 28]. For any divergence-free choice, like the
Scott–Vogelius finite element, no reconstruction operator is needed and one can set R � id. See also Table 7.1
below in Section 7 for a list of elements that is used for our numerical experiments.

Some properties of the reconstruction operator are needed. Given the expected optimal convergence rate r of the
Stokes solution, the reconstruction operator has to satisfy the properties

pf , v̄h �Rpv̄hqq � pf � πr�2f , v̄h �Rpv̄hqq for all v̄h P V̄h,(3.3)

that

divpRpv̄hqq P Q̄h and that pdivpv̄hq, q̄hq � pdivpRpv̄hqq, q̄hq for all v̄h P V̄h, q̄ P Q̄h.(3.4)

Furthermore, we assume that the space of continuous affine vector fields is included in the velocity ansatz space,
i.e P 1,c � V̄h and that

Rpv̄hq � v̄h for all v̄h P P 1,c.(3.5)

The following pressure robust a priori error estimate for the velocity can be expected, see [29] for quasi-optimal a
priori error estimates under weaker regularity assumptions.

Theorem 3.1 (Pressure-robust a priori error estimates). Given given u PHmpΩq X V with m ¥ 2, it holds

}∇pu� ūhq} À inf
v̄hPV̄h

}∇pu� v̄hq} � h}pid� πr�2q∆u} À hs}u}Hs�1

where s :� mintm� 1, ru.

3.3. Mass conserving mixed stress formulation. This section presents the recently developed mass conserv-
ing mixed stress (MCS) method from [15, 14, 22] that fits well into the Prager-Synge calculus as it satisfies a
discrete version of the pressure-independent equilibration constraint (2.1). The MCS method was originally moti-
vated by reformulating the continuous Stokes equations such that the exact solutionu is an element ofHpdiv,Ωq.
Compared to the standard weak formulation this reads as a reduced regularity of the velocity. For the derivation
of the mixed system, a new auxilliary variable σ is defined that should equal the gradient of the velocity. However,
due to the reduced regularity of u, this can only be incorporated in a weak sense. To this end one introduces a
new function space

Hpcurl div,Ωq :� tσ P L2pΩqd�d : divpσq P pH0pdiv,Ωqq�, trpσq � 0u,

DOI 10.20347/WIAS.PREPRINT.2750 Berlin 2020
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where pH0pdiv,Ωqq� is the dual space of Hpdiv,Ωqq functions with vanishing normal trace. The condition
trpσq � 0 is related to the incompressibility constraint trp∇uq � divpuq � 0. Using this space the equation
“σ � ν∇u” for u P H0pdiv,Ωqq is then given by»

Ω

1

ν
σ : τ dx � �xdivpτq,uyH0pdiv,Ωq for all τ P Hpcurl div,Ωq,

where x�, �yH0pdiv,Ωq is the standard duality pairing. For further details on the function spaces and the resulting
mixed formulation in the continuous setting, we refer to [22]. The discrete counterpart is presented in the following.

For some given k ¥ 0, the stress σ P Hpcurl div,Ωq is approximated in the space

ΣhpT q :�
 
τh P PkpT qd�d : trpτhq � 0, rrpτhqntssF � 0 for all F P FpΩq

(
.

Here pτhqnt denotes the normal-tangential component of τh, i.e. pτhqnt :� pτhnqt. Note, that pτhqnt|F lies in
the tangent plane parallel to the face F . The other variables u P V and p P Q are discretised within the spaces

V h :� RTkpT q and Qh :� PkpT q.

Then we seek a triplet pσMCS
h ,uh, phq P Σh � V h �Qh such that

apσMCS
h , τhq � xdivpτhq,uhyV h

� p∇ūh, τhq for all τh P Σh,(3.6)

xdivpσMCS
h q,vhyV h

� b1pvh, phq � p�f ,vhq for all vh P V h,(3.7)

b1puh, qhq � �b1pūh, qhq for all qh P Qh,(3.8)

with the bilinearforms given by (note, that trpσhq � 0)

apσh, τhq :�

»
Ω

1

ν
devpσhq : devpτhqdx �

»
Ω

1

ν
σh : τh dx,

b1pvh, qhq :�

»
Ω

divpvhqqh dx,

xdivpτhq,vhyV h
:�

¸
TPT

»
T

divpτhq � vh dx�
¸
FPF

»
F
rrpτhqnnssvh � nds

� �
¸
TPT

»
T
τh : ∇vh dx�

¸
FPF

»
F
pτhqnt � rrpvhqtss ds.

Note, that xdivp�q, �yV h
reads as a discrete version of the duality pair xdivp�q, �yH0pdiv,Ωq for functions τh P Σh

and vh P V h. This modification is essential since the discrete stress space is slightly non conforming, i.e.
Σh � Hpcurl divq. Now let IV h

denote the standard interpolation operator into V h and define for all vh P V h

the discrete H1-like DG norm

}vh}
2
Vh

:�
¸
T

}∇vh}2T �
¸
FPF

1

hF
}rrvhsst}

2
F .

Theorem 3.2 (Pressure-robustness/Discrete equilibration constraint). The discrete stress σMCS
h satisfies a discrete

form of the equilibration constraint of Theorem 2.1 in the sense that

xdivpσhq, IV h
V 0yV h

� p�f , IV h
V 0q � p�Pf , IV h

V 0q.

Moreover, given u P HmpΩqd and σ P Hm�1pΩqd�d XH1pΩqd�d for some m ¥ 1, it holds

}σ � σMCS
h } À hsν}u}Hs�1

where s :� mintm� 1, k � 1u.

Proof. The equilibration constraint follows from the second equation of the discrete system (3.6), since given any
v P V 0, testing with the divergence-free function vh :� IV h

v leads to

xdivpσMCS
h q,vhyV h

� p�Pf ,vhq

DOI 10.20347/WIAS.PREPRINT.2750 Berlin 2020
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which is the claimed identity. We continue with the error estimate by showing that the solution of the best ap-
proximation problem (3.6) is related to solving a MCS-Stokes problem with a zero right-hand in the first and third
equation. To this end let ruh � uh� IV h

ūh. Since divpτhq P P
k�1pT q2 for all T P T and rrpτhqnnss P P kpF q

for all F P F , the properties of the Raviart-Thomas interpolator, integration by parts and the H1-continuity of ūh
give

xdivpτhq, IV h
ūhyV h

�
¸
TPT

»
T

divpτhq � IV h
ūh dx�

¸
FPF

»
F
rrpτhqnnssIV h

ūh � nds

�
¸
TPT

»
T

divpτhq � ūh dx�
¸
FPF

»
F
rrpτhqnnssūh � nds

� �
¸
TPT

»
T
τh : ∇ūh dx�

¸
FPF

»
F
pτhqnt � rrpūhqtss ds � �p∇ūh, τhq.

Further we have b1pIV h
ūh, qhq � b1pūh, qhq for all qh P Qh. This shows that the triplet pσMCS

h , ruh, phq P
Σh � V h �Qh solves the problem

apσMCS
h , τhq � xdivpτhq, ruhyV h

� 0 for all τh P Σh,

xdivpσMCS
h q,vhyV h

� b1pvh, phq � p�f ,vhq for all vh P V h,

b1pruh, qhq � 0 for all qh P Qh.

Since ruh is exactly divergence free, the pressure robust error estimates of the standard Stokes problem from
[22, 14] give

ν}IV h
u� ruh}Vh � }σ � σMCS

h } À hsν}u}Hs�1 ,

what concludes the proof. �

4. RELAXED PRESSURE-ROBUST GUARANTEED ERROR CONTROL

In practise, both constraints on the function v and on the flux σ in Theorem 2.1 are hard to realise. Therefore
we turn our interest to some relaxed version of this theorem that allows to estimate the error of any primal H1-
conforming discretisation (that is not necessarily divergence-free) by pressure-robust mixed methods like the MCS
formulation from Section 3.3. In the first subsection a classical non-pressure-robust approach is revisited, while
the second subsection presents novel guaranteed upper bounds that are pressure-independent (as long as the
primal method is pressure-robust).

4.1. Revisiting classical non-pressure-robust equilibration. In this section we shortly recall state-of-the-art
equilibration error estimators for the Stokes problem from [17]. To compute a guaranteed error estimator in the spirit
of Theorem 2.1, one is interested in a (discrete) stress σ that satisfies the equilibration constraint (approximately).
A naive strategy to compute such an equilibrated flux is based on the mixed formulation of the Poisson model
problem

σ̃ � ν∇u� pI and f � divpσ̃q � 0.

In other words, the flux σ :� σ̃�pI is equilibrated in the sense of (2.1), because divppIq � ∇p has no influence
in (2.1). In fact one could replace p by any other q P L2pΩq or, if p P H1pΩq can shift it into the equilibration
constraint. In practise, see e.g. [17], one resorts to the choice q � p̄h, since p is unknown. Here, p̄h is the discrete
pressure solution of an inf-sup stable discretisation. This approach leads to the following guaranteed upper bound
for the velocity error which is e.g. similar to [17, Theorem 4.1] for q1 � 0 and q2 � p̄h or to [17, Corollary 5.1] for
q1 � p̄h P H

1pΩq and q2 � 0.

Theorem 4.1. For a discrete Stokes solution pūh, p̄hq P H
1
0pΩq � L2

0pΩq of an inf-sup stable discretisation
on some triangulation T with inf-sup constant c0 ¡ 0 and its discrete stress σ̄h :� ν∇ūh, and for any σh P
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Hpdiv,Ωq with
³
T f �∇q1 � div σh dx � 0 for any T P T and for any q1 P H

1pΩq and q2 P L
2pΩq, it holds

}u� ūh}
2 ¤ ν�2

¸
TPT

�
hT
π
}f �∇q1 � divpσhq}T � }σh � q2Id�d � σ̄h}T


2

� c�2
0 } div ūh}

2.

Proof. The point of departure is the well-known error split [1, 17, 7]

}u� ūh}
2 ¤ ν�2}r}2V �

0
� c�2

0 } div ūh}
2

with the dual norm }r}V �

0
:� supvPV 0zt0u rpvq{}∇v} of the residual

rpvq �

»
Ω
f � v dx�

»
Ω
σ̄h : ∇v dx

�

»
Ω
pf � divpσhqq � v dx�

»
Ω
pσh � σ̄hq : ∇v dx.

Since
³
T ∇q1 � v dx � 0, we can subtract the piecewise constant best-approximation π0v of v in the first term

and employ piecewise Poincaré inequalities to obtain»
Ω
pf �∇q1 � divpσhqq � v dx �

»
Ω
pf �∇q1 � divpσhqq � pv � π0vq dx

¤
¸
TPT

}f �∇q1 � divpσhq}T }v � π0v}T

¤
¸
TPT

hT
π
}f �∇q1 � divpσhq}T }∇v}T .

Since
³
q2Id�d : ∇v dx � 0, the second term is estimated by»

Ω
pσh � σ̄hq : ∇v dx �

»
Ω
pσh � q2Id�d � σ̄hq : ∇v dx

¤
¸
TPT

}σh � q2Id�d � σ̄h}T }∇v}T .

A Cauchy inequality concludes the proof. �

Remark 4.2 (Realisations). A possible design of σh involves the Raviart-Thomas or Brezzi-Douglas-Marini finite
element spaces of order k which is denoted by V h and its divergence space denoted byQh. Then, one computes
σNh P pV hq

d and uh P pQhqd such that

pσNh , τhq � puh, divpτhqq � pσ̄h � q2Id�d, τhq for all τh P pV hq
d

pvh, ν divpσNh qq � �pf �∇q1, vhq for all vh P pQhq
d

In practise, since the optimal q1, q2 are unknown, one usually takes the discrete pressure q1 � p̄h or q2 � p̄h
depending on its regularity, which also enables local designs of equilibrated fluxes as detailed in e.g. [17] or using
component-wise designs known for elliptic problems, see e.g. [10, 30, 4, 11, 36, 32, 13].

Remark 4.3 (Efficiency). Efficiency is shown via equivalence to the classical explicit standard-residual error esti-
mator, see [24] for a discussion when and why this is not efficient for pressure-robust discretisations in pressure-
dominant situations. In the numerical examples below, we show that even the bestapproximation (which gives a
lower bound for any local equilibration in the same space) strategy with q1 � 0 and q2 � ph is not efficient for
the velocity error alone in a pressure-dominant situation. The only way to improve efficiency in these pressure-
dependent designs is the pre-computation of a better pressure approximation as it has been suggested e.g. in [27].
However, in situations were the pressure is complicated or non-smooth this comes at highly increased numerical
costs. Our novel pressure-robust local design of Section 5 has the advantage to be totally pressure-independent.
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4.2. Novel pressure-robust guaranteed upper bounds. For the proof of the novel bounds we employ commut-
ing interpolators whose properties are collected in the following theorem. Note, that the operator curl is different
in two and three dimension and depends on the dimension of the quantity it is applied to. If applied to some
scalar-valued quantity ψ P H1pΩq it is defined by curlψ :� pBx2ψ,�Bx1ψq

T . If applied to some vector-valued
quantity ψ � pψ1, ψ2q P H

1pΩq in d � 2 dimensions it reads curlψ :� Bx1ψ2 � Bx2ψ1, and if applied to
some vector-valued quantity ψ P Hpcurl,Ωq in d � 3 dimensions it reads curlψ :� ∇�ψ.

Theorem 4.4 (Commuting interpolations). LetV h � RTk and IV h
be its standard interpolation operator. Further

we define

W d
h :�

#
Pc,k�1 for d � 2

Nk for d � 3.

Now let IW d
h

be a mapping into W d
h . For d � 3, the operator IW d

h
is the standard Nédélec interpolation operator

as in [3], and for d � 2 we use the (corresponding commuting) H1-interpolation operator as given in [33]. Let T
be an arbitrary simplex and let F be an arbitrary face. The operators IW d

h
and IV h

enjoy the properties:

1 For d � 2 we have the commuting property

IV h
curlψ � curlpIW 2

h
ψq for all ψ P H2pΩq,(4.1)

and the approximation properties»
F
pid� IW 2

h
qψ qh ds � 0 for all qh P Pk�1pF q,(4.2) »

T
pid� IW 2

h
qψ qh ds � 0 for all qh P Pk�2pT q,(4.3)

}ψ � IW 2
h
ψ}T ¤ c2hT }∇ψ}T for all ψ P H2pT q.(4.4)

2 For d � 3 we have the commuting property

IV h
curlψ � curlpIW 3

h
ψq for all ψ P H1pcurl,Ωq,(4.5)

where H1pcurl,Ωq � tψ PH1pΩq : curlpψq PH1pΩqu, and the approximation properties»
F
pid� IW 3

h
qψ � pqh � nq ds � 0 for all qh P P k�1pF q,(4.6) »

T
pid� IW 3

h
qψ � qh ds � 0 for all qh P P k�2pT q,(4.7)

}ψ � IW 3
h
ψ}T ¤ c2hT }∇ψ}T for all ψ P H1pcurl, T q.(4.8)

3 For d � 2 and d � 3 we have»
T
p1 � IV h

qv � qh dx � 0 for all v P V 0, qh P Nk�2pT q(4.9)

}v � IV h
v}T ¤ c1hT }∇v}T for all ψ P H1pT q,(4.10)

with constants c1, c2 independent of hT .

Proof. The properties of IW d
h

in two and three dimensions follows with the results in [33] and standard Bramble-
Hilber arguments. Note, that in two dimensions, the results in [33] are only given for the rotated commuting diagram,
i.e. ∇IW 2

h
ψ � INk

p∇ψq, whereINk
is the standard Nédélec interpolator . However, the claimed results in this

work follow immediately since in two dimensions, the Raviat-Thomas space is simply a rotated Nédélec space
and the curl is the rotated gradient, thus we have pINk

p∇ψqqK � IV h
pcurlψq. Similar results can be found in

[9, 31, 3].
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We continue with the proof of (4.9) but only present the case d � 3 since the two dimensional results follows with
similar arguments. First observe that any divergence-free function v P V 0 has a potential v � curlψ for some
ψ P H1pcurl, T q. Then, for any qh P Nk�2pT q, (4.5) and integration by parts shows»

T
p1 � IV h

qv � qh dx �

»
T
p1 � IV h

q curlψ � qh dx

�

»
T

curlpp1 � IW 3
h
qψq � qh dx

�

»
T
p1 � IW 3

h
qψ � curl qh dx�

»
BT
p1 � IW 3

h
qψ � pqh � nqds.

Since qh P Nk�2pT q � Pk�1pT q and hence curl qh P Pk�2pT q and qh � nF |F P Pk�1pF q, the right-hand
side vanishes due to (4.7) and (4.6). This concludes the proof. �

We are now in the position to derive pressure-robust guaranteed upper bounds via equilibrated fluxes with a proper
discrete analogon of the equilibration constraint (2.1).

Theorem 4.5. Assume the regularity f P Hpcurl,Ωq. For the discrete stress σ̄h :� ν∇ūh of the velocity-
pressure formulation and any discrete stress σh P Σh that is equilibrated in the sense

xdivpσhq, IV h
V 0yV h

� p�f , IV h
V 0q

it holds

}∇pu�ūhq}
2 ¤ ηpσhq

2 :� ν�2
¸
TPT

�
c1c2h

2
T }pid� πk�2q curlpf � divpσhqq}T � }devpσh � σ̄hq}T

	2

� c�2
0 }div ūh}

2.

Proof. As in Theorem 4.1 the point of departure is the error split

}∇pu� ūhq}
2 ¤ ν�2}r}2V �

0
� c�2

0 } div ūh}
2

where it remains to bound the residual functional

rpvq �

»
Ω
f � v dx� ν

»
Ω
∇ūh : ∇v dx for all v P V 0

in its dual norm

}r}V �

0
:� sup

vPV 0zt0u

rpvq

}∇v}
.

Consider an arbitrary test function v P V 0 and some equilibrated flux σh with the properties stated above. Then,
the insertion of IV h

v by the equilibration condition and an integration by parts show

rpvq � xf � divpσhq,v � IV h
vyV h

�

»
Ω
pσh � σ̄hq : ∇v dx

�
¸
TPT

»
T
pf � divpσhqq � pv � IV h

vq dx�
¸

FPFpΩq

»
F
rrpσhqnnsspv � IV h

vq � nds

�

»
Ω
pσh � σ̄hq : ∇v dx.

Since rrpσhqnnss P PkpF q, the second integral vanishes due to orthogonality properties of the normal flux of
pv � IV h

vq. The last integral on the right-hand side can be estimated by»
Ω
pσh � σ̄hq : ∇v dx �

»
Ω

devpσh � σ̄hq : ∇v dx ¤
¸
TPT

}devpσh � σ̄hq}T }∇v}T .(4.11)

Here, devpAq denotes the deviatoric part of aA and it was used thatA�devpAq � trpAqI2�2{2 is orthogonal
on gradients of divergence-free functions.
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The first integral can be estimated as follows in d � 3 dimensions (for d � 2 the arguments are very similar).
Since v � IV h

v is divergence-free, it exists some ψ PH1pΩq with }∇ψ}T ¤ }v � IV h
v}T , see for example

in [8], such that v � IV h
v � curlψ and by the interpolation properties we have

}∇ψ}T ¤ } curlψ}T � }v � IV h
v}T ¤ c1hT }∇v}T on every T P T .(4.12)

By the interpolation properties of IV h
, it holds IV h

curlψ � 0 and hence, by the commuting property (4.5) in
Theorem 4.4, we also have that curl IW 3

h
ψ � 0 where IW 3

h
is the matching commuting interpolation operator.

Note, that the application of the operator IW 3
h

to ψ is well defined, since locally on each element T P T we

have that v � IV h
v P H1pT q and thus we can bound }∇ curlψ}T ¤ }∇pv � IV h

vq}T which gives ψ P
H1pcurl, T q.

Next, if k ¥ 2, consider some Nedelec function θh P Nk�2pT q chosen such that curlθh � πk�2 curlpf �
divpσhqq for which we can apply (4.9).

This, and the other properties of σh yield¸
TPT

»
T
pf � divpσhqq � pv � IV h

vqdx �
¸
TPT

»
T
pf � divpσhq � θhq � curlpψ � IW 3

h
ψqdx

�
¸
TPT

»
T
pid� πk�2q curlpf � divpσhqq � pψ � IW 3

h
ψqdx

�
¸

FPFpΩq

»
F
rrf � divpσhqss � ~n � pψ � IW 3

h
ψqds.

Since f P Hpcurl,Ωq and divpσhq P P k�1pT q, the second integral vanishes due to properties (4.6) of IW 3
h

from Theorem 4.4. For the remaining terms, the interpolation properties of IW 3
h

(see again Theorem 4.4) and
(4.12) yield¸

TPT

»
T
pid� πk�2q curlpf � divpσhqq � pψ � IW 3

h
ψq dx

¤
¸
TPT

}pid� πk�2q curlpf � divpσhqq}T }ψ � IW 3
h
ψ}T

¤
¸
TPT

c2hT }pid� πk�2q curlpf � divpσhqq}T }∇ψ}T

¤
¸
TPT

c1c2h
2
T }pid� πk�2q curlpf � divpσhqq}T }∇v}T .

The combination of the last estimate and (4.11) together with a Cauchy inequality yields

rpvq ¤
¸
TPT

�
c1c2h

2
T }pid� πk�2q curlpf � divpσhqq}T � }devpσh � σ̄hq}T

	
}∇v}T

and hence

}r}2V �

0
¤

¸
TPT

�
c1c2h

2
T }pid� πk�2q curlpf � divpσhqq}T � }devpσh � σ̄hq}T

	2
,

what concludes the proof. �

Remark 4.6. Theorem 4.5 also holds true in the case when we only have the local regularity assumption f P
Hpcurl, T q for all T P T . Note however, that this introduces another term on the boundary of the elements given
by

c3

¸
FPFpΩq

h3
F }pid� πk�1qrrf � nss}

2
F
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added to the estimator ηpσhq2 given in Theorem 4.5. Here, c3 is an additional constant that only depends on the
shape of the simplicies T P T .

Remark 4.7 (Global MCS estimator). One possible choice is σh � σMCS
h , where σMCS

h is the solution of the global
mass conserving mixed stress formulation (3.6) of order k. Another choice can be achieved by a local strategy
that is detailed in the next section.

Remark 4.8 (Divergence quantity). In the numerical examples below, it becomes apparent that the efficiency of
the error estimator is mostly limited by the divergence-term c�1

0 } divuh} for non-divergence-free discretisations.
To avoid this term and possibly further increase the efficiency, one may consider a divergence-free postprocessing
sh P H1pΩq of uh and perform the error estimation for sh or σ̄h :� ∇sh. Effectively this would replace the
term c�1

0 }divuh} by }∇psh � ūhq} without the possibly small constant c0. Candidates for such a postpro-
cessing maybe a locally computed approximation into a divergence-free Scott-Vogelius finite element space (on a
barycentrically refined subgrid) similar to [20].

5. LOCAL EQUILIBRATION

This section suggests some design of an admissible pressure-robust equilibrated flux σh based on local problems
on vertex patches.

5.1. Setup of the local problems. Let V be the set of vertices for V P V let ωV be the corresponding vertex
patch, i.e. the union of all adjacent cells in TV :� tT P T : V P T u. Furthermore, FV denotes the set of
facets within the vertex patch including the facets on the boundary BωV . For a fixed interior vertex V we define
the following spaces with k � r (recall that r is the optimal convergence rate of the primal method)

ΣV
h :� tτh P L

2pTV qd�d : @T P TV , τh|T P PkpT q
d�d with trpτhq � 0u,

Ṽ
V
h :� RTkpTV q,

V̂
V
h :� tv̂h P L

2pFV q : @F P FV , v̂h|F P P kpF q and v̂h � n � 0u,

QVh :� tqh P L
2pωV q : @T P TV , qh|T P PkpT qu.

Note, that in contrast to the global stress space Σh, the local stress space ΣV
h does not include the continuity

constraint rrpτhqntss � 0. Similarly to other local equilibration setups, see for example [4], the trace space V V
h is

chosen such that the normal-tangential trace of functions in ΣV
h lie in V V

h . For the local problems we then further
define the product space

V V
h :� pṼ

V
h � V̂

V
h q{tppc1, c2q, pc1, c2qtq : pc1, c2q P R2u,(5.1)

where pc1, c2q denotes a vector valued constant, and ppc1, c2q, pc1, c2qtq reads as (a constant) element of the

product space Ṽ
V
h � V̂

V
h . Hence, the space V V

h does not contain vector-valued constant functions on the patch.

The projection onto constants πVR : L2pTV q2 � rL2pFV q2st Ñ pR,Rq is given by

πVR pṽh, v̂hq :�
1

|TV | � |FV |

�� ¸
TPTV

»
T
ṽh dx�

¸
FPFV

»
F
v̂h ds

�.
Here, |TV | and |FV | denote the area of the element patch and the skeleton of the patch respectively. Note, that
we then have the equality

V V
h � tpṽh, v̂hq P Ṽ

V
h � V̂

V
h : pid� πVR qpṽh, v̂hq � p0, 0qu.(5.2)

For each element T and every vertex V P T we define the scalar linear operator

BV
T : Pk�1pT q Ñ Pk�1pT q, q ÞÑ BV

T pqq :� Ik�1
N pφV qq,
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where Ik�1
N is the nodal interpolation operator on Pk�1pT q and φV is the hat function of the vertex V . By that

we then define on ωV the scalar bubble projector (see also [21])

BV : Pk�1pTV q Ñ Pk�1pTV q, q ÞÑ BV pqq :�
¸
TPTV

BV
T pqq,

and the vector valued bubble projector

BV : P k�1pTV q Ñ P k�1pTV q, q � pq1, q2q ÞÑ BV pqq :� pBV pq1q, B
V pq2qq.

Lemma 5.1. The vector valued bubble projectorBV fulfills the following properties:

i. BV pqq|BωV
� 0 for all q P P kpTV q.

ii. BV pṽVh q P Ṽ
V
h for all ṽVh P Ṽ

V
h . Further, if divpṽVh q � 0, thenBV pṽVh q P BDMkpTV q.

iii. For all elements T P T we have the partition of unity property¸
V PT

BV pvh|T q � vh|T for all vh P V h.

iv. For a constant c � pc1, c2q P P 0pωV q there holdsBV pcq � φV pc1, c2q.

Proof. Items i. and iii. follow by the definition and the linearity of the bubble projection. For the proof of ii. choose
an arbitrary edge F P FV with the corresponding normal vector n. Since ṽVh is normal continuous we have by
the properties of the nodal interpolation operator

rrBV pṽVh qpxiq � nss � φV pxiqrrṽ
V
h pxiq � nss � 0 for all xi P F.

The second statment immediately follows since if ṽVh P Ṽ
V
h � RTkpTV q is divergence-free, then ṽVh P

BDMkpTV q. For iv. note that for j � 1, 2 there holds on each element T P TV that Ik�1
N pcjφV q � cjφV

hence we conclude the proof. �

For each vertex V we solve the local problem: Find pσVh , pũ
V
h , û

V
h q, p

V
h q P ΣV

h � V V
h �QVh such that

aV pσVh , τ
V
h q � bV1 pτ

V
h , pũ

V
h , û

V
h qq � 0 for all τVh P ΣV

h ,(5.3a)

bV1 pσ
V
h , pṽ

V
h , v̂

V
h qq � b2pṽ

V
h , p

V
h q � GV1 pf , ūh, p̄hqppṽ

V
h , v̂

V
h qq for all pṽVh , v̂

V
h q P V

V
h ,(5.3b)

bV2 pũ
V
h , q

V
h q � 0 for all qVh P qVh ,(5.3c)

with the bilinearforms

aVh pσ
V
h , τ

V
h q :�

¸
TPTV

»
K
σVh � τVh dx,

bV1 pτ
V
h , pũ

V
h , û

V
h qq :�

¸
TPTV

»
T

divpτVh q � ũ
V
h dx�

¸
FPFV

»
F
prrpτVh qnnsspũ

V
h qn � rrpτVh qntss � û

V
h qds,

bV2 pũ
V
h , q

V
h q :�

¸
TPTV

»
T

divpũVh qq
V
h dx,

and the linear form (for a given f , ūh, p̄h)

GV1 pf , ūh, p̄hqpṽ
V
h , v̂

V
h q �

¸
TPTV

»
T
f �BV pṽVh q dx�

¸
TPTV

»
T
pν∆ūh �∇p̄hq �BV pṽVh qdx

�

»
BT
pσ̄h � p̄hIqnnB

V pṽVh qn ds�

»
BT
φV pσhqntpv̂

V
h qt ds.

Note, that bV1 p�, �q reads as the restriction of the discrete duality pair xdivp�q, �yV h
onto ωV , but further includes

the normal-tangential jumps since functions in ΣV
h are not (normal-tangential) continuous. Using integration by
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parts, the right hand side can also be written as

GV1 pṽ
V
h , v̂

V
h q �

¸
TPTV

»
T
f �BV pṽVh q dx�

»
T
σ̄h : ∇BV pṽVh qdx�

»
T
p̄h divpBV pṽVh qq dx(5.5)

�

»
BT
pσ̄hqntpB

V pṽVh q � φV v̂
V
h qt ds.

Remark 5.2. For simplicity we used a muliplication with the hat function φV instead of the bubble projection in the
last integral of GV1 . Note however, that since pσhqnt P P

kpF q for all F P FV , this is identical, i.e.»
BT
φV pσhqntpv̂

V
h qt ds �

»
BT
BV |F ppσhqntqpv̂

V
h qt ds,

whereBV |F ppσhqntq reads as the nodal interpolation into the vector valued polynomial space of order k � 1 on
F of the quantity pσhqnt.

Remark 5.3. As usual for equilibrated error estimators, we slightly modify the definition of the local problems when

the vertex V lies on the Dirichlet boundary. In this case, we remove the degrees of freedoms of V̂
V
h lying on the

domain boundary. Hence, we now replace FV by FV ztF P FV : F � BΩu. Further, we remove the mean value

constraint of the product space, thus we simply set V V
h :� pṼ

V
h � V̂

V
h q.

5.2. Analysis of the local problem. For the analysis we choose the norms

}σVh }
2
ΣV

h
:�

¸
T

}σVh }
2
T � hT }pσ

V
h qnt}

2
BT ,

}pṽVh , v̂
V
h q}

2
V V
h

:�
¸
T

}∇ṽVh }2T �
1

hT
}pv̂Vh � ṽVh qt}

2
BT ,

}pVh }QV
h
� }pVh }.

Note, that the the norm } � }V V
h

reads as an HDG-version of the H1-like DG norm } � }Vh defined in Section 3.3.
Further we define the kernel

KV
1 :�

!
pσVh , p

V
h q : @pṽVh , v̂

V
h q P V

V
h , b

V
1 pσ

V
h , pṽ

V
h , v̂

V
h qq � bV2 pṽ

V
h , p

V
h q � 0

)
.

Lemma 5.4. The bilinear forms aV , bV1 , b
V
2 are continuous. Further there holds the kernel ellipticity

aV pσVh , τ
V
h q Á p}σVh }ΣV

h
}2 � }pVh }

2
QV

h
q for all pσVh , p

V
h q P KV

1 ,

and the inf-sup conditions

1 For all pṽVh , v̂
V
h q P V

V
h there exists a constant β1 ¡ 0 such that

sup
pσV

h ,p
V
h qPΣV

h �Q
V
h

bV1 pσ
V
h , pṽ

V
h , v̂

V
h qq � bV2 pṽ

V
h , p

V
h q

}σVh }ΣV
h
} � }pVh }QV

h

¥ β1}pṽ
V
h , v̂

V
h q}V V

h
.

2 For all pṽVh , v̂
V
h q P V

V
h with divpṽVh q � 0 there exists a constant β2 ¡ 0 such that

sup
σV
h PΣV

h

bV1 pσ
V
h , pṽ

V
h , v̂

V
h qq

}σVh }ΣV
h

¥ β2}pṽ
V
h , v̂

V
h q}V V

h
.

Proof. The continuity of the bilinear forms follows immediately with the Cauchy-Schwarz inequality and using
integration by parts for the volume integrals of bV1 . The proofs of the kernel ellipticity and the inf-sup conditions
follow with exactly the same steps as in the stability proofs of the original MCS-method in [15, 14, 22], since the
bilinear forms and spaces of the local problems in this work simply read as a hybridized version of the original MCS-
method. In this work the normal-tangential continuity of the stress space is incorporated by the additional Lagrange
multiplier ûVh and we switched from the H1-like DG norm used in the original works to the corresponding H1-like
HDG norm given by } � }V V

h
in this work. Note however, that we do not have zero Dirichlet boundary conditions of
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Pressure-robust guaranteed error control for Stokes 15

the velocity variable, but since we excluded the kernel of } � }V V
h

(constant functions) in the definition of the space

V V
h , the results simply follow by norm equivalence. �

Theorem 5.5. There exists an unique solution pσVh , pũ
V
h , û

V
h q, p

V
h q P ΣV

h �V
V
h �Q

V
h of (5.3) with the stability

estimate

}σVh }ΣV
h
� }pũVh , û

V
h q}V V

h
� }pVh }QV

h
À }GV1 pf , ūh, phq}pV V

h q
� .

Proof. Follows with the standard theory of saddle point problems, see for example in [3] and Lemma 5.4. �

Now let V̂ h be the global version of the local space V̂
V
h , thus

V̂ h :� :� tv̂h P L
2pFq : @F P F , v̂h|F P P kpF q and v̂h � n � 0u.

Theorem 5.6 (Properties of the local solution). Let σVh P ΣV
h be the local solution of problem (5.3). There holds

the following properties:

1 For any vh P V h, with div vh � 0, and v̂h P V̂ h, there holds the local equilibrium condition¸
TPTV

»
T

divpσVh q � vh �
¸

FPFV

»
F
rrpσVh qnnsspvhqn �

¸
F

»
FPFV

rrpσVh qntss � pv̂hqt

�
¸
TPTV

»
T
f �BV pvhq dx�

»
T
σ̄h : ∇BV pvhq dx�

»
T
φV p̄h divpBV pvhqq dx

�

»
BT
pσ̄hqnt � pB

V pvhq � φV v̂hqt ds.

2 The solution σh has a zero normal-tangential trace at the boundary

pσVh qnt � 0 on BωV .

Proof. Let V P V be fixed and let ṽVh � vh|ωV and v̂Vh � v̂h|FV
. In a first step we will proof that equation

(5.3b) also hold for constant functions. To this end let c � pc1, c2q � πVR ppṽ
V
h , v̂

V
h qq. Using divpcq � 0 and

integration by parts we have for the left side of (5.3b)

bV1 pσ
V
h , pc, ctqq � b2pc, p

V
h q

�
¸
T

»
T

divpσVh q � pc1, c2qdx�
¸
F

»
F
prrpσVh qnnsspc1, c2qn � rrpσVh qntss � pc1, c2qtq ds

��
¸
T

»
T
σVh : ∇pc1, c2q �

¸
F

»
F
rrpσVh qntss � ppc1, c2q � pc1, c2qqt � 0.

We continue with the right-hand side. Using representation (5.5) we get for the constant c and using property iv.
of Lemma 5.1 that

GV1 ppc1, c2q, pc1, c2qtq

�
¸
TPTV

»
T
f �BV ppc1, c2qq dx�

»
T
σ̄h : ∇BV ppc1, c2qq dx�

»
T
φV p̄h divpBV ppc1, c2qqq dx

�

»
BT
pσ̄hqnt � pB

V ppc1, c2qqt � φV pc1, c2qtq ds

�
¸
TPTV

»
T
f � pc1φV , c2φV q dx�

»
T
σ̄h :

�
∇pc1φV q
∇pc2φV q



dx�

»
T
p̄h divpcφV qdx.
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Now, since pcφV , cφV q is an element of the velocity Stokes discretization space V̄ h (see assumption above
equation (3.5)), and σ̄h � ∇ūh we also get

GV1 ppc1, c2q, pc1, c2qtq �
¸
TPTV

»
T
f � pid�RqpcφV , cφV q � 0,

where the last equality follows since pcφV , cφV q P P 1,c and (3.5). In total, this shows that we also have
GV1 ppc1, c2qq � 0, thus using pṽVh , v̂

V
h q � pπVR � pid� πVR qqpṽ

V
h , v̂

V
h q and the equivalence (5.2) we get

bV1 pσ
V
h , pṽ

V
h , v̂

V
h qq � b2pṽ

V
h , p

V
h q � GV1 pf , ūh, p̄hqppṽ

V
h , v̂

V
h qq for all pṽVh , v̂

V
h q P Ṽ

V
h � V̂

V
h .(5.6)

Since divpvhq � 0 and thus b2pṽ
V
h , p

V
h q � 0, this proofs the first statement.

For the proof of the second statement consider the testfunction v̂Vh P V̂
V
h such that v̂Vh � pσVh qnt on every facet

F � BωV , and zero on the internal facets. Equation (5.6) then gives

�
¸

FPBωV

»
F
pσVh q

2
nt ds � �

¸
FPBωV

»
F
pσVh qnt � v̂

V
h ds � �

¸
TPTV

»
BT
φV pσ̄hqnt � v̂

V
h ds � 0,

where we used that φV vanishes on the boundary BωV and v̂Vh on internal facets. �

5.3. Admissibility of the global flux. After solving the local problems we define the equilibrated flux

σLEQ
h :� σ̄h � σ∆

h with σ∆
h :�

¸
V

σVh .(5.7)

This section shows that σLEQ
h satisfies the global equilibration property of Theorem 4.5.

Theorem 5.7. Let vh P RTkpT q, with divpvhq � 0. There holds¸
TPT

»
T

divpσLEQ
h q � vh dx�

¸
FPF

»
F
rrpσLEQ

h qnnsspvhqn ds � �

»
Ω
f � vh dx � �

»
Ω
Ppfq � vh dx.

Proof. In a first step we show that σLEQ
h P ΣhpT q. For this let v̂h P V̂h be arbitrary, then there holds¸

FPF

»
F
rrpσLEQ

h qntss � pv̂hqt ds �
¸
FPF

¸
V PBF

»
F
rrpσLEQ

h qntss � pφV v̂qt ds

�
¸
V PV

¸
FPFV

»
F
rrpσLEQ

h qntss � pφV v̂hqt ds

�
¸
V PV

¸
FPFV

»
F
rrpσ̄hqntss � pφV v̂hqt ds�

»
F
rrpσ∆

h qntss � pφV v̂hqt ds,

where we used a partition of unity on each F P F in the first step. Applying the second and then the first statement
of Theorem 5.6 (with vh � 0), the sum over the last integral can be written as

�
¸
V PV

¸
FPFV

»
F
rrpσ∆

h qntss � pφV v̂hqt ds � �
¸
V PV

¸
FPFV

»
F
rrpσVh qntss � pφV v̂hqt ds

� �
¸
V PV

¸
FPFV

»
F
rrpσ̄hqntss � pφV v̂hqt ds,

and thus ¸
FPF

»
F
rrpσLEQ

h qntss � pv̂hqt ds � 0.(5.8)

With the choice v̂h � rrpσLEQ
h qntss, we conclude that rrpσLEQ

h qntss � 0 point wise, and so σLEQ
h P ΣhpT q.
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Now let vh P Vh with divpvhq � 0, and v̂h P V̂ h be arbitrary. Using equation (5.8), the definition of σLEQ
h and

integration by parts give¸
TPT

»
T

divpσLEQ
h q � vh dx�

¸
FPF

»
F
rrpσLEQ

h qnnsspvhqn ds

�
¸
TPT

»
T

divpσLEQ
h q � vh dx�

¸
FPF

»
F
rrpσLEQ

h qnnsspvhqn ds�
¸
FPF

»
F
rrpσLEQ

h qntss � pv̂hqt ds

�
¸
TPT

»
T
�σ̄h : ∇vh dx�

»
BT
pσ̄hqnt � pvh � v̂hqt ds�

¸
TPT

»
T
σ∆
h : ∇vh dx

�

»
BT
pσ∆
h qnt � pvh � v̂hqt ds.

Since σ∆
h :�

°
V σ

V
h , a partition of unity and the local contributions σVh let us rewrite the last sums as¸

TPT

»
T
σ∆
h : ∇vh dx�

»
BT
pσ∆
h qnt � pvh � v̂hqt ds �

¸
V PV

¸
TPTV

»
T
σVh : ∇vh dx

�

»
BT
pσVh qnt � pvh � v̂hqt ds.

Applying Theorem 5.6 then shows that the right sum can further be written as

¸
V PV

�� ¸
TPTV

»
T
σVh : ∇vh dx�

»
BT
pσVh qnt � pvh � v̂hqt ds

�
�

¸
V PV

�
� ¸
TPTV

»
T
f �BV pvhq � σ̄h : ∇BV pvhq � p̄h divpBV pvhqq dx

�

»
BT
pσ̄hqnt � pB

V pvhq � φV v̂hqt ds
	

� �
¸
TPT

»
T
f � vh dx�

¸
TPT

»
T
σ̄h : ∇vh dx�

»
BT
pσ̄hqnt � pvh � v̂hqt ds

where we used item iii. of Lemma 5.1 and divpvhq � 0 in the last step. All together, this shows that¸
TPT

»
T

divpσLEQ
h q � vh dx�

¸
FPF

»
F
rrpσLEQ

h qnnsspvhqn ds � �
¸
TPT

»
T
f � vh dx,

and we conclude the proof. �

6. EFFICIENCY

This section proves efficiency of the proposed global and local equilibrated fluxes in the sense that the error
estimator is a lower bound for the velocity error plus norms that only depend on the velocity and have the right
order and data oscillations. In particular also the efficiency bound is pressure-independent.

Theorem 6.1 (Global efficiency of the global design). The error estimator for σh :� σMCS
h from (3.6), is efficient

in the sense that

ηpσMCS
h q À }∇pu� ūhq} � ν�1}σ � σMCS

h } � ν�1hT osckpcurlpf � ν∆T ūhq, T q.

The second term on the right-hand side can be estimated by Theorem 3.2 and may be of higher-order if the order
of V h is large enough and u is smooth enough. The third term on the right-hand side are oscillations as defined
in [24] which may be of higher-order if u is smooth enough.
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Proof. The proof employs the efficiency of the pressure-robust standard-residual based error estimator from [24].
Indeed, triangle inequalities to insert ∇ūh yield

ηpσhq
2 �

1

ν2

¸
TPT

�
c2

1c
2
2h

2
T } curlpf � divpσhqq}T � }devpσh � σ̄hq}T

	2

À
1

ν2

¸
TPT

�
c2

1c
2
2h

2
T } curlpf � divpσ̄hqq}T � c2

1c
2
2h

2
T } curlpdivpσh � σ̄hqq}T � }devpσh � σ̄hq}T

	2
.

The efficiency of the first term follows from the efficiency proof for the pressure-robust residual estimator in [24],
i.e.

ν�1h2
T } curlT pf � ν∆T ūhq}T À }∇pu� ūhq}T � ν�1hT osckpcurlpf � ν∆T ūhq, T q.

Moreover, an inverse inequality shows

c2
1c

2
2h

2
T } curlpdivpσh � σ̄hqq}T À hT } divpσh � σ̄hq}T À }σh � σ̄h}T ¤ ν}∇pu� ūhq}T � }σ � σh}T .

By another triangle inequality we have

}devpσh � σ̄hq}T ¤ }σh � σ̄h}T ¤ ν}∇pu� ūhq}T � }σ � σh}T .

The collection of all terms concludes the proof. �

Unfortunately local efficiency cannot be proven for the global design σMCS
h . However, the next theorem establishes

also local efficiency bounds for the local design.

Theorem 6.2 (Local efficiency of the local design). Let vh P V h, with div vh � 0, and v̂h P V̂ h and assume
that for each element T P T we have ∆u P L2pT q. The local solution pσVh , pũ

V
h , û

V
h q, p

V
h q P ΣV

h �V
V
h �Q

V
h

of (5.3) fulfills the (pressure-robust) estimate

}σVh }ΣV
h
À

�� ¸
TPTV

}σ � σ̄h}
2
T � hT }pν∇u� ν∇ūhqnt}2BT

�1{2

�

�� ¸
TPTV

h2
T }pid� πr�2qν∆u}2T

�1{2

.

If the operator R of the primal method (3.1) is the identity, the last sum of the right hand side vanishes.

Proof. By Lemma 5.4, the inf-sup property of the bilinear form B on the subspace tvVh � pṽVh , v̂
V
h q P V

V
h :

divpṽVh q � 0u gives for the solution pσVh , ũ
V
h , û

V
h q the estimate

}σVh }ΣV
h
� }pũVh , û

V
h q}V V

h
À sup

pṽV
h ,v̂

V
h qPV

V
h

divpṽV
h q�0

BppσVh , ũ
V
h , û

V
h , 0q, pτ

V
h , ṽ

V
h , v̂

V
h , 0qq

}τVh }ΣV
h
� }pṽVh , v̂

V
h q}V V

h

À sup
pṽV

h ,v̂
V
h qPV

V
h

divpṽV
h q�0

GV1 pf , ūh, p̄hqpṽ
V
h , v̂

V
h q

}pṽVh , v̂
V
h q}V V

h

.

Next with f � �∆u�∇p and applying integration by parts (similar to (5.5)), the enumerator simplifies to

GV1 pf , ūh, p̄hqpṽ
V
h , v̂

V
h q �

¸
TPTV

»
T
pσ � σ̄hq : ∇BV pṽVh qdx(6.1)

�
¸
TPTV

»
BT
pσ � σ̄hqntpB

V pṽVh q � φV v̂
V
h qt ds(6.2)

�
¸
TPTV

»
T
pp� p̄hqdivpBV pṽVh qq dx,(6.3)
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where we used thatBV pṽVh q � n � 0 on BωV (see item i. in Lemma 5.1) and that¸
TPTV

»
BT
φV pσqnt � pv̂

V
h qt ds �

¸
FPFV

»
F
rrφV pσqntss � pv̂

V
h qt ds � 0.

By the continuity of the bubble projectorBV (which reads as a weighting with φV q and that φV � Op1q on ωV ,
the Cauchy-Schwarz inequality applied to the sums in (6.1) and (6.2) gives¸

TPTV

»
T
pσ � σ̄hq : ∇BV pṽVh q dx�

»
BT
pσ � σ̄hqntpB

V pṽVh q � φV v̂
V
h qt ds

¤
¸
TPTV

}pσ � σ̄hq}T }∇ṽVh }T � hT }pσ � σ̄hqnt}BT
1

hT
}pṽVh � v̂Vh qt}BT

¤

�� ¸
TPTV

}pσ � σ̄hq}
2
T � h2

T }pσ � σ̄hqnt}
2
BT

�1{2

}pṽVh , v̂
V
h q}V V

h
.

We continue with the remaining third sum in (6.3) (which does not vanish, although ṽVh is divergence-free). For

this let p̃h � πQ̄hp be the L2 projection of the exact pressure onto the pressure space Q̄h and define the mean
value

cp �
1

|TV |
¸
TPTV

»
T
pp� p̄hq dx.

SinceBV pṽVh q P BDMkpTV q according to property ii. in Lemma 5.1, we have that divpBV pṽVh qq P Q̄h, which
gives ¸

TPTV

»
T
pp� p̄hq divpBV pṽVh qq dx �

¸
TPTV

»
T
pp̃h � p̄hqdivpBV pṽVh qq dx

�
¸
TPTV

»
T
pp̃h � p̄h � cpqdivpBV pṽVh qq dx

À }p̃h � p̄h � cp}ωV }pṽ
V
h , v̂

V
h q}V V

h
,

where we again used the continuity ofBV . By the inf-sup condition of the primal Stokes discretization (p̃h�p̄h�cp
has a zero mean value) on the local space V̄ hpTV q :� V̄ h XH1

0 pωV q we have

}p̃h � p̄h � cp}ωV À sup
v̄hPV̄ hpTV q

³
ωV
pp̃h � p̄h � cpqdivpv̄hqdx

}∇v̄h}ωV

.

Now, using that p̄h is the discrete pressure solution we get

�

»
ωV

p̄h divpv̄hqdx �

»
ωV

f �Rpv̄hqdx�

»
ωV

ν∇ūh : ∇v̄h dx

�

»
ωV

p�ν∆u�∇pq �Rpv̄hqdx�

»
ωV

ν∇ūh : ∇v̄h dx.

Since divpRpv̄hqq P Q̄h, see (3.4), we get using integration by parts»
ωV

∇p �Rpv̄hq dx � �

»
ωV

p divpRpv̄hqq dx � �

»
ωV

p̃h divpRpv̄hqq dx � �

»
ωV

p̃h divpv̄hq dx,

and so in total (since
³
ωV
cp divpv̄hq dx � 0 by Gauss’s theorem)»

ωV

pp̃h � p̄h � cpqdivpv̄hq dx �

»
ωV

�ν∆u �Rpv̄hqdx�

»
ωV

σ̄h : ∇v̄h dx

�

»
ωV

�ν∆u � pRpv̄hq � v̄hqdx�

»
ωV

pσ � σ̄hq : ∇v̄h dx,
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where we added and subtracting (including integration by parts)
³
ωV
σ : ∇v̄h dx. By the properties of the recon-

struction operator, the first integral can be bounded by»
ωV

�ν∆u � pRpv̄hq � v̄hq dx À }pid� πr�2
ωV

qν∆u}ωV hV }∇v̄h}ωV ,(6.4)

where hV denotes the diameter of the vertex patch ωV . Thus by the Cauchy Schwarz inequality we get the
estimate

}p̃h � p̄h � cp}ωV À hV }pid� πr�2
ωV

qν∆u}ωV �

�� ¸
TPTV

}pσ � σ̄hq}
2
T

�1{2

,

and so

GV1 pf , ūh, p̄hqpṽ
V
h , v̂

V
h q À

�� ¸
TPTV

}pσ � σ̄hq}
2
T � h2

T }pσ � σ̄hqnt}
2
BT

�1{2

}pṽVh , v̂
V
h q}V V

h

� hV }pid� πr�2
ωV

qν∆u}ωV }pṽ
V
h , v̂

V
h q}V V

h
.

This concludes the proof for the general case. Now assume that R � id, then we see that the additional term in
(6.4) vanishes which proves the stated result in the case where no reconstruction operator in the primal method
(3.1) is included. �

7. NUMERICAL EXAMPLES

This section confirms the theoretical results by some numerical examples. For the ease of representation we
introduce the following notation. We denote by ηN the estimator of Theorem 4.1 where σh � σNh is the solution
of the mixed system given in Remark 4.2 with q1 � 0 and q2 � p̄h. The pressure-robust estimator of Theorem
4.5 is denoted by η. Here, the flux σh either corresponds to the solution σMCS

h of the global problem (3.6) or to the
local equilibrated flux σLEQ

h given by equation (5.7). Further, we define the contributions

ηf � ν�1}hT pid� πk�2q curlpf � divpσhq}, ηNf � pνπq�1}hT f � divpσNh q},

ησ � ν�1} devpσh � σ̄hq}, ηNσ � ν�1}σNh � p̄hId�d � σ̄h},

ηdiv � c�1
0 }pdivpūhq}.

Table 7.1 shows the different inf-sup stable velocity pressure pairs that we consider for the primal formulation
(3.1). Further we give the abbreviation that we use, the expected convergence rate of the error r and the used
reconstruction operator in (3.1) that ensures pressure-robustness. The order k � r also corresponds to the order
of the reconstruction space V h � RTk and the order of the spaces used in the equilibration designs (3.6) and
(5.7). Moreover in two dimensions, P 2,c,� denotes the space of vector-valued polynomials of order 2 including
the local cubic element bubbles, i.e.

P 2,c,�pT q :� tq P P 3,cpT q : q|F P P 2pF q@F P Fu.

In three dimension, we similarly denote by P 3d
2,c,� the space of vector-valued polynomials of order 2 including the

local element bubbles of order 4 and the cubic face bubbles of order 3. A precise definition is given in example
8.7.2 in [3].

The adaptive mesh refinement loop is defined as usual by

SOLVE Ñ ESTIMATE Ñ MARK Ñ REFINE Ñ SOLVE Ñ . . .

and employs the local contributions to the error estimator as element-wise refinement indicators. In the marking
step, an element T P T is marked for refinement if ηpT q ¥ 1

4 max
KPT

ηpKq. The refinement step refines all marked

elements plus further elements in a closure step to guarantee a regular triangulation.
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V̄ h � Q̄h abbr. r � k R
P 2,cpT q � P0pT q P20 1 IBDM1

P 3,cpT q � P1pT q P31 2 IBDM2

P 2,c,�pT q � P1pT q P2B 2 IBDM2

P 3d
2,c,�pT q � P1pT q P2B-3d 2 IBDM2

P 2,cpT q � P1pT q SV 2 id

TABLE 7.1. Considered inf-sup stable Stokes pairs including the expected order of convergence
and the used reconstruction operator.

In the case of the Scott-Vogelius (SV) finite element approximation, the adaptive algorithm includes two meshes:
the macro element mesh T given by a standard triangulation, and the corresponding barycentric refined triangu-
lation (guaranteeing inf-sup stability of the SV element) denoted by TbarpT q. Again, an element T P T is marked
if (mean value of the elements included in one macro element)

1

3

¸
T 1PTbar
T 1XT�H

µpT 1q ¥
1

4
max
KPTbar

ηpKq.

The refinement of T is done as described before. The final mesh is then obtained by a global barycentric refine-
ment step. Note, that although the macro element meshes are nested, there barycentric refinement are in general
not nested.

The implementation and numerical examples where performed with the finite element library NGSolve/Netgen
[38, 37], see also www.ngsolve.org.

ref. level 0 1 2 3 4

ν � 1 σh � σNh 2.62 2.43 2.29 2.20 2.15
ν � 1 σh � σMCS

h 2.30 1.75 1.29 1.14 1.07
ν � 1 σh � σLEQ

h 3.08 2.48 2.01 1.81 1.70
ν � 10�4 σh � σNh 9.53� 103 1.15� 104 9.66� 103 9.63� 103 9.75� 103

ν � 10�4 σh � σMCS
h 2.30 1.75 1.29 1.14 1.07

ν � 10�4 σh � σLEQ
h 3.08 2.48 2.01 1.81 1.70

TABLE 7.2. Efficiency indices in Example 1 on uniformly refined meshes and the SV element.

7.1. Smooth example on unit square. The first example considers the Stokes problem on a unit square domain
Ω � p0, 1q2 with the smooth prescribed solution

upx, yq :� curl
�
x2p1 � xq2y2p1 � yq2

	
and ppx, yq :� x5 � y5 � 1{3

with matching right-hand side f :� �ν∆u�∇p for variable viscosity ν.

Figure 7.1 presents the convergence history of the error of the discrete Stokes solution ūh measured in the H1-
semi norm using the SV element with two different viscosities ν � 1 (top) and ν � 10�4 (bottom) on uniformly
refined meshes. The first important observation is that the error plot for the pressure-robust error estimator σMCS

h

looks exactly the same for ν � 1 and ν � 10�4, while the ’naive’ estimator σNh is nowhere close to the exact error
of the pressure-robust Scott-Vogelius solution for ν � 10�4. As expected, the error estimator scales with ν�1

and so does its efficiency index. One can also see, that the volume term ηNf is of higher order, nevertheless even
on the finest mesh it is still larger than the full pressure-robust error estimator. Further, even if this quantity would
be small, also ηNσ is inefficient. To sum up, the classical error estimator approach is not very efficient for pressure-
robust or divergence-free discretisations in pressure-dominant situations (meaning ν�1p is large compared to
u).
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Oph2q }∇pu� ūhq} ηN ηNσ ηNf
η ησ ηf

FIGURE 7.1. Example 1: Convergence history of exact error and error estimator quantities on
uniformly refined meshes for SV with ν � 1 (top) and 10�4 (bottom) and σ � σNh (left) and
σ � σMCS

h (right).

Table 7.2 lists the efficiency indices on the different refinement levels also for the pressure-robust local variant of
our error estimator. One can see that the error estimator for σMCS

h even is asymptotically exact, while the local
variant is not, but still attains very good efficiency indices around 2. We want to mention again that our error
bounds, unfortunately, contain unknown constants c1 and c2 which were evaluated by c1c2 � 1. However, they
only appear in front of ηf which is, at least in this example and for uniform mesh refinement, of higher order (see
Figure 7.1 again).

7.2. Smooth example on unit cube. The second example is an extension of the previous example onto the unit
cube Ω � p0, 1q3. Similarly, the smooth prescribed solution is now given by

upx, yq :� curl pξ, ξ, ξq and ppx, yq :� x5 � y5 � z5 � 1{2

with the potential ξ � x2p1� xq2y2p1� yq2z2p1� zq2 and with matching right-hand side f :� �ν∆u�∇p
for variable viscosity ν.

Figure 7.2 presents the convergence history of the error of the discrete Stokes solution ūh measured in the
H1-semi norm using the P2B-3d element with two different viscosities ν � 1 (top) and ν � 10�4 (bottom) on
uniformly refined meshes. We can make similar observations as for the two dimensionsl case which validates our
results also for the case d � 3. Further note, that since the right-hand side f is a polynomial of higher order
compared to the two dimensional example, the oscillation terms ηf , ηNf are much larger and dominating the error
estimator at coarser levels.
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FIGURE 7.2. Example 2: Convergence history of exact error and error estimator quantities on
uniformly refined meshes for P2B-3d with ν � 1 (top) and 10�4 (bottom) and σ � σNh (left) and
σ � σMCS

h (right).

7.3. L-shaped domain example. We consider the example from [40] given on the L-shaped domain Ω :�
p�1, 1q2z

�
p0, 1q � p�1, 0q

�
. The velocity u and pressure p0 now satisfy �ν∆u � ∇p0 � 0, and read as

(given in polar coordinates with radius R and angle ϕ)

upR,ϕq :� Rα
�
pα� 1q sinpϕqψpϕq � cospϕqψ1pϕq
�pα� 1q cospϕqψpϕq � sinpϕqψ1pϕq


T
,

p0 :� νRpα�1qpp1 � αq2ψ1pϕq � ψ3pϕqq{p1 � αq

with

ψpϕq :� 1{pα� 1q sinppα� 1qϕq cospαωq � cosppα� 1qϕq

� 1{pα� 1q sinppα� 1qϕq cospαωq � cosppα� 1qϕq

and α � 856399{1572864 � 0.54, ω � 3π{2. To have a nonzero right-hand side we add the pressure
p� :� sinpxyπq, i.e. p :� p0 � p� and f :� ∇pp�q. Note that, since f is a gradient, it holds ηf � 0 in this
example.

Figure 7.3 shows the convergence history of the exact error and the error estimators based on the naive equili-
brated fluxes σNh and the pressure-robust flxes σMCS

h on adaptively refined meshes where the refinement indicators
are steered by the local contributions of the estimators. For ν � 1 both estimators are efficient, the pressure-robust
one is even asmyptotically exact, and all convergence rates are optimal. For ν � 10�4 the numbers and meshes
for the pressure-robust estimator are exactly the same (which is fine, since the deiscrete velocity did not change),
but the adaptive meshes for the naive estimator do not refine the corner singularity and therefore fail to reduce
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FIGURE 7.3. Example 3: Convergence history of exact error and error estimator quantities on
adaptively refined meshes for SV with ν � 1 (top) and 10�4 (bottom) and σh � σNh (left) and
σh � σMCS

h (right).
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h q ηpσMCS

h q ηdiv

FIGURE 7.4. Example 3: Convergence history of exact error and error estimator quantities on
adaptively refined meshes for P2B with 10�4 and σh � σLEQ

h (left) and σh � σMCS
h (right).

DOI 10.20347/WIAS.PREPRINT.2750 Berlin 2020



Pressure-robust guaranteed error control for Stokes 25

103 104

10�1

100

ndof

P31 with ν � 10�4, σh � σLEQ
h

103 104

10�1

100

ndof

P31 with ν � 10�4, σh � σMCS
h

Oph2q }∇pu� uhq} ηpσLEQ
h q ηpσMCS

h q ηdiv

FIGURE 7.5. Example 3: Convergence history of exact error and error estimator quantities on
adaptively refined meshes for P31 with 10�4 and σh � σLEQ

h (left) and σh � σMCS
h (right).
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FIGURE 7.6. Example 3: Convergence history of exact error and error estimator quantities on
adaptively refined meshes for P20 with 10�4 and σh � σLEQ

h (left) and σh � σMCS
h (right).

ref. level reftot � 4 reftot � 3 reftot � 2 reftot � 1 reftot

ν � 1 σh � σNh 1.96 1.98 2.04 2.07 1.93
ν � 1 σh � σMCS

h 1.05 1.03 1.02 1.01 1.01
ν � 1 σh � σLEQ

h 1.61 1.63 1.69 1.62 1.60
ν � 10�4 σh � σNh 1.15� 102 9.87� 101 6.05� 101 5.36� 101 5.50� 101

ν � 10�4 σh � σMCS
h 1.05 1.03 1.02 1.01 1.01

ν � 10�4 σh � σLEQ
h 1.61 1.63 1.69 1.62 1.60

TABLE 7.3. Efficiency indices in Example 3 on adaptive refined meshes using the SV element.
Here reftot denotes the total number of refinement steps of each calculation.

the velocity error. Here, the refinement indicators only see the dominating pressure error and mark accordingly to
reduce the pressure error. Adaptation to the corner singularity only starts when both pressure error times ν�1 and
velocity error are on par. This behaviour was also observed in [24].
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Figures 7.4-7.6 display results for the three other methods P2B, P31 and P20 for the local and global varaint of
our pressure-robust error estimator. Since, the discrete velocity and the error estimator is independent of ν, we
only show the results for ν � 10�4. Note, that these methods are not divergence-free but pressure-robust due to
their reconstruction operator in the right-hand side. However, this causes divpuhq � 0 and hence the contribution
ηdiv appears here. Unfortunately, due to the constant 1{c0 in front of this term, it has a significant impact on the
efficiency of the error estimator that is largest for P20 and smallest for P2B leading to still very small efficiency
indices between 1.5 and 3 for both the local and the global equilibration error estimator.
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