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L.B. Ryashko and H. Schurz: Mean Square Stability Analysis 

Abstract 

Mean square stability analysis of some continuous and discrete time sto-
chastic systems is carried out in this paper. We present a general approach to 
mean square stability investigation of systems with multiplicative noise and 
apply presented theory to discretized linear oscillators as often met in Me-
chanical Engineering. The analysis relies on the spectral theory of positive 
operators. As one· of the results one obtains a simple and efficient criterion 
to decide the question of stability of equilibria of linear systems. Conclusions 
for practical usage and preference of numerical methods solving stochastic 
differential equations (SDEs) with white noise can be drawn too. For illustra-
tion and practical meaningfulness, we describe stability domains of stochastic 
8-methods in terms of parametric restrictions. 
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1 INTRODUCTION 

The analysis of stochastic systems with respect to mean square stability of their equi-
libria has attracted many researchers, see e.g. Kats & Krasovskij [7], Khas'minskij 
[8], Kozin [10], Morozan [17], Tsarkov [29] or Willems [32]. Such systems occur in a 
large number of applications as in Physics, Optics or Mechanical Engineering. Often, 
these systems can generally be written as systems of stochastic differential equations 
(SDEs) in Ito or Stratonovich form. There stability examinations play an essential role 

in judgement on qualitative behaviour of natural processes. 

The concept of mean square stability is one of the most attractive and feasible ones 
within the large branch of stability analysis. Due to facilities of modern computers 
and progress in numerical analysis of stochastic differential equations (SDEs), see e.g. 
Kloeden et al [9], the interest in mean square stability analysis has come up once 
again. The basic questions for any numerical algorithm are accuracy and stability. 
The question of accuracy has been worked out well. For example, see e.g. Kloeden 
et al [9], Mil'shtein [15] or Pardoux & Talay [19]. However, the question of stability 
is fairly underdeveloped and still in its very beginning, despite of a number of recent 
contributions. These contributions exclusively deal with numerical stability analysis 
with respect to linear test equations in one dimension. For example, see Hernandez 
& Spigler [5], Mil'shtein [15], Mitsui & Saito [16] or Peterson [20]. All these papers 
do not consider multi-dimensional systems which have important practical meaning, 
e.g. oscillators in Mechanical Engineering, see Bachmann et al [3], Lin & Cai [14] or 
Soong & Grigoriu [27]. It is worth stressing that many multi-dimensional stochastic 
systems are not reducable to sets of independent scalar equations in view of stability 
analysis and test equations. It is also apparent that there is an essential difference 
between stochastic and deterministic systems in this respect. This fact is caused by 
the complexity of .stability analysis for multi-dimensional stochastic systems. An first 
approach to numerical stability analysis for multi-dimensional stochastic systems can 
be found in Artemiev [2] or Schurz [23,24,26]. The practical use of such investigations 
lies in work out of recommendations and selection procedures for more efficient and 
accurate numerical algorithms solving SDEs. Both authors are able to find at least 
one class of methods which provide numerically mean square stable solutions, namely 
stochastic Rosenbrock-methods and B-methods (a family of implicit Euler methods), 
respectively. They also obtain sufficient criterions for numerical mean square stability. 

However, there is still a need to search for more efficient criterions to decide the 
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problem of stochastic stability of both continuous and discrete time systems. The 
decision problem of mean square stability can be reduced to analysis of some matrix 
equation in general. This is justified by Lyapunov function techniques, see Khas'minskij 
[8]. We present some further steps towards clarification of this decision problem in 
both continuous and discrete time setting. The main aim of our work is to find a more 

practical (efficient) criterions for decision on mean square stability. Some parametric 
criterions for certain classes of continuous time systems have already been suggested 
in Levit & Yakubovich [13], Nevelson & Khas'minskij [18], Ryashko [21,22] or Willems 
[32]. For the sake of illustration with practical meaningfulness, we select the class 
of linear stochastic oscillators and its discretization by stochastic B-methods. For 
deterministic a-methods, see Stewart & Peplow [28]. The analysis finally results in 
efficient computation of mean square stability domains of these discrete methods. The 

whole theory relies on exploitation of spectral theory of positive linear operators which 
is well understood nowadays, see Krasnosel'skij et al [11]. 

The paper is organized as follows. In section 2 we carry out some analysis of linear 
continuous time stochastic systems with respect to mean square stability of their equi-

libria. For the sake of classification, the notion of mean square equivalence is introduced 
for stochastic systems. We expose the idea of reduction of number of noise sources of 
original systems to systems with single noise. An efficient criterion for the decision 

on mean square stability of continuous time systems is given by Theorem 2. There an 
interesting relation between the stability behaviour of systems with multiplicative noise 
and systems with additive noise also comes up. The key idea of presented analysis -

the computation of spectral radius of positive operators to decide mean square stability 
- is outlined in section 2 and following ones. Taking advantage of related theory one 
finds parametric criterions for mean square stability analysis in more than one dimen-
sion. Eventually we illustrate the theory with the class of linear stochastic oscillators 

with single degree of freedom and multiplicative white noise under its discretization 

by a-methods. In section 3 mean square stability analysis for continuous time oscilla-
tors is carried out. The examination leads to description of related stability domains. 
Section 4 extends the presented theory to discrete time stochastic systems. In section 

5 the two-parametric family of stochastic a-methods is introduced in particular for 

discretization of linear oscillators. Two representatives of this class are investigated 
. with respect to numerical mean square stability in detail. These are the well-known 
Euler method and an explicit-implicit method where latter method has no counterpart 

in one-dimensional situation. We express restrictions on step size in terms of oscillator 
parameters like intensities of stiffness and friction. For the sake of completeness and 
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comparison, some illustration for the classical one-dimensional test equation is also 
added. The final investigation leads to computation and visualization of corresponding 
stability domains. The paper is closed by conclusions and further remarks in section 6. 

2 MEAN SQUARE STABILITY OF CONTINUOUS TIME SYSTEMS 

Stochastic systems can frequently be written as systems of stochastic differential equa-
tions (SDEs) driven by independent processes with independent increments. Consider 
autonomous linear stochastic systems 

m 

dX(t) = AX(t) dt + L Bi X(t) dWi(t) (2.1) 
j=l 

where X(t) denotes the d-dimensional solution, A, Bi(j = 1, 2, ... , m) real-valued ma-
trices and Wi are uncorrelated standard Wiener processes. In contrast to deterministic 
integration, the solution of these SDEs strongly depends on the choice of the integration 
calculus in (2.1). Without loss of generality, we will only take into consideration the 
well-known Ito interpretation for the corresponding stochastic integration. In passing 
we note that the different stochastic integral interpretations can be transformed into 
each other in a natural way, cf. Arnold [1]. Now, recall definition of exponential mean 
square stability of such systems. 

Definition 1. The ·solution x = 0 of system (2.1) is called exponentially stable in the 
mean square sense or shorter EMS-stable if there exist constants a > 0, L > 0 such 
that 

IE 11 X ( t) 11
2 ~ L exp ( - a t) IE 11 X ( 0) 11

2 (2:2) 

for any X(O) and any t ~ 0. 

Remark. Throughout this paper, for convenience, we call a system EMS-stable if it 
has an EMS-stable null solution. 

EMS-stability of systems (2.1) has been considered by many authors, see Kats & 
Krasovskij [7], Levit & Yakubovich [13], Nevelson & Khas'minskij [18], Ryashko [21], 
[22] or Willems [32]. Common criterions are based on Lyapunov function techniques, 
see Khas'minskij [8]. In the autonomous case, these techniques lead to the decision 
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problem on positive solvability of matrix equation 

m 

A v + v AT + L Bi v BiT = - c . (2.3) 
i=l 

However, this decision problem does not provide practical criteria. For some classes of 
systems, effective criteria could be found by authors mentioned above. From our view 
point it still needs to further clarify and simplify the obtained criteria. 

2.1 Mean square equivalent systems and noise reduction 

The criterions to decide EMS-stability have the most simple and constructive form for 
n-th order Ito equation. Consider 

(2.4) 

where ai E IR are intensities of parametric noise Wi = Ji ei( s )ds. Take ai E IR. Some 
stability analysis for system (2.4) has been carried out by Nevelson & Khas'minskij 
[18]. Using Routh-Hurwitz criterion gives a set of n inequalities which still is fairly 
laborious to evaluate for large systems. 

We are aiming to simplify the analysis of system (2.4) with respect to mean square 
stability. The obvious change of variables Yi = y, Y2 = y(l), ... , Yn = y(n-l) puts system 
(2.4) in the form of (2.1) with d = n = m, 

0 
0 1 0 0 0 
0 0 1 0 Bi T and A - ' eqi, e -

--:an -an-1 -an-2 -a1 

1 

[q;]; = { 
0 ' i =f. j (2.5) 

-an-j+l ' i=J 

The simplicity of stability analysis of these systems is connected with the possibility to 
reduce the number of noise sources Wi. This idea leads to the introduction of a new 
class of d-dimensional S D Es 

dX(t) = AX(t) dt + V XT(t) Q X(t) cp dW(t) (2.6) 
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with single Wiener noise W and appropriate positive-semidefinite d x d matrices Q. r.p 
represents some vector in IRd. Systems of type (2.6) are treated in Ryashko (22]. For 
justification of this class we introduce the definition of mean square equivalent systems. 

Definition 2. Two stochastic processes X, Y are called mean square equivalent if their 
mean square evolutions coincide, i.e'. 

Vt 2:: 0 JE Y ( t) yT ( t) . 

Theorem 1. Assume that lE X(O) XT(o) = JEY(O) YT(O). 
Then process Y satisfying {2.1) with {2.5) is mean square equivalent with process X 
governed by (2. 6) with 

m 

Q = ~ q; qj, r.p = e . 
j=l 

Remarks. The proof of Theorem 1 is an easy application of Ito formula to systems 

(2.1) and (2.6), hence it can be omitted here. For the proof, the correlation between 
W and Wi is not essential. It is also worth noting that the conclusion of Theorem 1 is 

also valid for any matrix A, but the structure of noise terms Bi has to be specified. 

2.2 A criterion of EMS-stability of system (2.6) 

The following interesting relation to systems with additive noise comes up. Along with 
system (2.6) with single multiplicative noise, consider IRd-valued systems 

dX(t) = A X(t) dt + r.p dW(t) (2.7) 

with single additive noise and 

dX(t) = AX(t) dt (2.8) 

without any random perturbation (i.e. deterministic). It is worth noting that, for 

asymptotically stable systems (2.8), there exists a limit matrix 

(2.9) 

where X(t) is a solution of (2.7). Moreover, matrix Mis a solution of equation 

(2.10) 
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where 0 represents the zero matrix in IRdxd. Now one encounters with the following 
result. 

Theorem 2. The system (2. 6} with single multiplicative noise is EMS-stable if and 
only if it holds that 

(a) deterministic system (2. 8) is asymptotically stable and 

(b} system (2. 7) with single additive noise has matrix M of stationary second moments 

satisfying 

tr(MQ) < 1 (2.11) 

where tr(.) denotes the trace of inscribed matrix. 

Remarks. The proof of Theorem 2 is given in Ryashko (22]. Combining main asser-

tions of Theorems 1 and 2, one can immediately obtain conclusions in view of mean 
square stability of original system (2.4). The efficiency of received criterion lies in the 
practical evaluation of (2.11), whereas requirement (a) obviously represents a necessary 
condition for mean square stability at all. 

2.3 Mean square majorants 

The efficiency of criterion given by Theorem 2 is connected with the specific choice of 
matrices Bi for system (2.4), as indicated with (2.5) before. In general situation, this 
criterion can efficiently be used too. For this purpose we introduce the notion of mean 
square majorants. In stating assertions below 1I denotes the unit matrix of IRdxd. 

Definition 3. The stochastic process X is called mean square majorant to stochastic 

process Y if their mean square evolution satisfies 

where the corresponding inequality sign is understood in terms of positive-semidefinite 

matrices. 

Theorem 3. Assume that 1E X(O) XT(O) ~ 1E Y(O) YT(O) and process X satisfies 

dX(t) == AX(t) dt + )XT(t) Q X(t) dW(t) (2.12) 

where W is ad-dimensional vector of Wiener processes with 

1E dW dWT == Gdt 
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and correlation matrix GE JR1-xd. 
Then process X with one of the following choices 

m 

(i) Q = LBjT Bi, G = 11, 
i=l 

m 

(ii) Q=11,G LBiBF 
i=l 

is mean square majorant to process y governed by (2.1). 

Proof (Idea). After calculation and comparison of evolutions of second moments for 
processes X and Y, the proof reduces to verify 

m 

C1 := L Bi M BiT ~ tr( Q M) G =: C2 
j=l 

for any positive-semidefinite matrix M E lRdxd. This matrix relation is equivalent to 

require the validity of scalar inequality 

for any positive-semidefinite matrix V, which turns out to be true. o 

Remarks. One can find systems of type (2.12) which rule as mean square majorant 
to any original system (2.1). For systems (2.12), a similar theorem as Theorem 2 is 
valid. Thanks to Theorem 3 and this new more general variant of Theorem 2, it basicly 
remains to evaluate condition (b) of Theorem 2 for an efficient mean square majorant 

system to obtain sufficient conditions for mean square stability of the original system. 

3 STABILITY OF CONTINUOUS TIME OSCILLATORS 

Consider the stochastic oscillator 

x + (b+#6)x + (a+va6)x = o (3.1) 

with random perturbation of parameters a ( coefficent of stiffness) and b (coefficient of 

damping, e.g. caused by friction) with intensities a and /3, respectively. 6 and 6 are 
formal derivatives of independent standard Wiener processes W 1 and W 2 • The change 
of variables y = x leads to equivalent formulation 

y (3.2) 
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This system is mean square equivalent to system 

x y (3.3) 

y - a x - by + Ja x 2 + /3 y2 e 
where e represents the formal derivative of standard Wiener process W. 

For stability analysis motivated by Theorem 2, it needs to consider the system 

x y (3.4) 

y - -ax-by+e 

with single additive noise e and related deterministic system 

x - y (3.5) 

y - ax - by. 

For any a > 0, b > 0, system (3.5) is asymptotically stable and system (3.4) has 
stationary second moments with 

1 1 
2ab' m2 = 0, m3 = 2b. (3.6) 

Thanks to Theorem 2, we can describe the structure of mean square stability domain 
belonging to (3.3), and hence for (3.1) too. The domain of EMS-stability is given by 

a /3 
2ab + 2b < 1. (3.7) 

This restriction clearly devides the (a, /3)-plane into regions of stability and instability. 
Note that the increase of parameters a and b implies an extension of mean square 
stability domain of oscillator (3.1). Vice versa, the increase of noise intensities a and 
f3 reduces its domain of stability. 

4 MEAN SQUARE STABILITY OF DISCRETE TIME SYSTEMS 

An analogous analysis to that of section 2 can be carried out for discrete time stochastic 
systems. Such systems naturally occur in numerical solution of SDEs. Consider d-
dimensional discrete time systems 

( 4.1) 
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where en represent real-valued uncorrelated random variables with 

B and Q are d x d real-valued matrices, Q is positive-semidefinite, c.p a vector in IRd. 
In addition to (4.1), as in the continuous time case, we introduce the auxilary system 

(4.2) 

containing single additive noise, as well as the related deterministic system 

(4.3) 

In case of asymptotical stability of system ( 4.3), there exist a limit matrix 

( 4.4) 

where Xn follows ( 4.2). Moreover, matrix M is the solution of equation 

(4.5) 

Let us recall the notion of exponential mean square stability for discrete time 
stochastic systems. Define T as collection of time points (Some authors call T as 
underlying time scale). Interpret Xn as value of discrete dynamic system correponding 
to time tn E /. 

Definition 4. The solution x = 0 of system ( 4.1) is called exponentially stable in the 
mean square sense or shorter EMS-stable if there exist constants a > 0, L > 0 such 
that 

(4.6) 

for any Xo and any tn E /. 

Remark. Throughout this paper, for convenience, we call a discrete system EMS-
stable if it has an EMS-stable null solution. 

EMS-stability of discrete time stochastic systems has been considered by many 
authors, see e.g. Willems [32]. In context of numerical solutions, Artemiev [2] and 
Schurz [23,24,26] studied the mean square behaviour of certain parametric numerical 
methods. All in all, there is still a need to find more efficient criterions. Our work 
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is strongly related to systems of the form ( 4.1). Using the spectral theory of positive 
operators one gains the following criterion. 

Theorem 4. The system (4.1} with single multiplicative noise is EMS-stable if and 
only if it holds that 

(a) deterministic system ( 4. 3} is asymptotically stable and 
(b) system (4.2) with single additive noise has matrix M of stationary second moments 
satisfying 

tr(M Q) < 1. (4.7) 

Proof. First, necessity of conditions (a) and (b) of Theorem 4 for EMS-stability is 
shown. Let system ( 4.1) be EMS-stable. Then system ( 4.3) is asymptotically stable. 
Define JC as the cone of real-valued positive-definite d x d matrices. Moreover, we 
know that, for any matrix G E JC, there exists a real-valued d x d matrix V which 
satisfies the equation 

( 4.8) 

This is a discrete time counterpart of continuous time Lyapunov matrix equation (2.3), 
see also Willems [32]. Consider operators 

( 4.9) 

Now equation ( 4.8) can equivalently be rewritten to 

A[V] + S[V] = - G. (4.10) 

Obviously, asymptotical stability of deterministic system ( 4.3) is equivalent with exis-
tence of the inverse A-1 of operator A. Operator A-1 is negative, i.e. -A-1 [JC] C JC. 
From ( 4.10) it follows 

(4.11) 

where P = - A-1 S - as a result of multiplication of two positive operators - is positive 
too. Therefore it holds V - P [V] E JC, see (4.11). According to Theorem 16.7 from 
Krasnosel'skij [11], this fact implies the important inequality 

p(P) < 1 ( 4.12) 

where p(P) is the spectral radius of operator P. It follows from the structure of operator 
S that 

(4.13) 
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where matrix D - A- 1 [ Q] is a solution of 

- D + BT D B = - Q . (4.14) 

Let V and p be an eigenvector and eigenvalue of operator P, respectively, with 

P [V] = h cpT V cp D = p V. 

Hence, operator P has a single eigenvalue 

p = hcpT D 'P. ( 4.15) 

Introduce scalar product < V, D > := tr(V D) and conjugate operator A* for operator 

A. We have 
A. [V] = - v + B v BT . 

Eventually, relations ( 4.14) and ( 4.15) imply 

p - h < D, 'P 'PT > 
- h < -A-1 [Q],cpcpT > = h < Q,-(A*r1 (cpcpT] > = < Q,M > 

where matrix M solves equation ( 4.5). This identity together with ( 4.12) gives inequal-

ity (4.7). 
Now we check the sufficiency of conditions (a) and (b) for EMS-stability. From previ-
ous argumentation it is known that requirements (a) and (b) of Theorem 4 imply the 

existence of positive operator Pas well as validity of inequality ( 4.12). Hence, equality 

+oo 
(I - Ptl = L pie 

k=O 

holds, where I represents the identity operator. Obviously, operator (I - P)-1 1s 
positive too. It means that, for any C EK,, there exist 

V = (I - Pt 1 [-A-1 [O]] E K,. 

Therefore matrix V E K, is a solution of equation ( 4.8). Consequently, system ( 4.1) is 
EMS-stable. o 

Remarks. An analogous concept of mean square majorants for discrete stochastic 

systems as in the case of continuous time analysis of section 2 can be introduced. The 

extension of presented results to vector-valued noise is possible in a straight forward 

way. We leave such work to the interest of readership. 
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5 STABILITY OF DISCRETIZED STOCHASTIC OSCILLATORS 

In the following we want to study the mean square stability behaviour of continuous 
time oscillators under discretization. There is. a plenty of different stochastic discretiza-

tion techniques for SDEs, see [9], [15] or [19]. Instead of these contributions we suggest 
to consider a generalization of deterministic B-methods, cf. Stewart & Pep low [28]. 

5.1 Stochastic 8-methods and their convergence 

The generalization of deterministic B-methods is done in two directions. One is to 

introduce implicitness of different degrees in each components of numerical solution. 
The other deals with carrying them over to stochastic systems. For mean square 
stability, it suffices to correct the drift influence on the dynamics in an implicit way. 
Consider autonomous !Rd-valued Ito systems of the form 

m 

dX(t) = a(X(t)) dt + 2: lJ (X(t)) dWi(t) (5.1) 
i=l 

where Wi represent independent, identically distributed, standard Wiener processes as 
above. Define Yn as value of numerical solution at time tn, along time-discretization 

of given interval [O, T] with maximum step size~= max{ti+l -ti: i = 0, 1, ... ,nT-1}. 
Then the family of stochastic B-methods is governed by scheme 

m 

Yn+i = Yn + ( 8 a(Yn+i) + e a(Yn)) ~n + 2: ll(Yn) 6W~ (5.2) 
i=l 

where ~n = tn+i - tn, 6W~ = Wi(tn+i)- Wi(tn) and e, e are diagonal matrices with 
entrie:;; Bi, {h E ( -oo, +oo) such that 8 + e coincides with the unit matrix 1I of IRdxd. 

Thus these methods are characterized by vectors B = (Bi) which determine the degree 
of implicitness in components of numerical solution, respectively. Of course, the case 

Bi = 0 (Vi) reduces them to well-known Euler method, and the case e = 0 to implicit 
Euler method. For further examples, see next subsection. 

Let us discuss their mean square convergence and related convergence orders. For 
this purpose we assume that both exact solution of (5.1) and numerical solution (5.2) 

are established on one and the same probability space. The criterion of numerical 

mean square convergence is given by the following. There exists real constant 
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K = K(T, a, bi, X(O)) > 0 such that 

sup lE llX(tn) - Ynll 2 
:::; K D. 2"f (5.3) 

tne,-A([O,T]) 

for all D. > 0 which are sufficiently small. The real constant I ~ 0 is called the global 
order of mean square convergence of numerical method for Y. The analysis with respect 

to this convergence criterion provides the following result. 

Theorem 5. Assume that coefficients a, bi of SDE (5.1) satisfy the requirements of 
global Lipschitz continuity and of linear-polynomial growth. In addition let a E 0 1 (!Rd) 
and IE llX(O)ll 2 < +oo. 
Then numerical solution Y governed by (5.2) with X(O) = Y(O) are mean square 
converging at least with global order I = 0.5. Furthermore they possess local order 

p1 = 2.0 of numerical mean convergence and local order P2 = 1.0 of numerical mean 

square convergence. 

Proof (Sketch). Let Xt,:r:(t + h) and Yt,:r:(t + h) be the one-step values of exact and 

numerical solutions at time t + h started at time t E [O, T), respectively. Verify that 

lllE (Xt,:r:(t + h) - Yt,x(t + h))ll :::; Ki(l + llxll 2
)

1
/

2 hP1 and 

lE llXt,x(t + h) - Yt,x(t + h))ll 2 
:::; K2(1 + llxll 2

) h2
P2 

for sufficiently small step sizes h < 1. Apply Theorem 1 of Mil'shtein [15] to obtain 

desired orders of numerical convergence. o 

5.2 Discretizations of stochastic oscillators 

Now we are going to apply the numerical methods presented before to stochastic oscil-

lators with one degree of freedom as discussed in sections 2 and 3. Consider the two 

parametric class of discretization methods 

Xn+i - Xn + [B1f(xn+l,Yn+i) + (1-B1)f(xn,Yn)]D.n + '1/;(xn,Yn) 6W~ (5.4) 

Yn+l Yn + [B2g(xn+1,Yn+i) + (1- B2)g(xn,Yn)] ~n + o-(xn,Yn) 6W~ 

applied to two-dimensional continuous time system 

x - f(x, y) + 'lj;(x, y) ei 
y - g(x, y) + o-(x, y) 6 

(5.5) 
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where W1 , W 2 represent two independent standard Wiener processes with their for-
mal derivatives e1, e2, repectively. Numerical methods (5.4) belong to the class of 
B-methods with 

The discretization scheme of oscillator (3.3) using methods (5.4) simplifies to 

Xn+l - Xn + [Bi Yn+l + (1 - B1) Yn] Lln (5.6) 

Yn+i Yn - [B2 (axn+l + byn+I) + (1 - B2) (axn + byn)] Lln + p(xn,Yn) 6Wn 

where p(x,y) = Jax2 + {3y2. Obviously, system (5.6) can explicitly be written in 
vector notation 

( Xn+l) ( bu b12) ( Xn) + p(xn,Yn) ( :
2
1) 6 Wn (5.7) 

Yn+l b21 b22 Yn r 

with bu = [1 + B2bh - 81 (1 - B2)ah2]/ tS, b12 = [1 + ( B2 - B1)bh]h/ tS, b21 = -ah/ tS, 

b22 = [(l-(l-B2)bh)-B2(l-B1)ah2]/t5,cp1 = B1h/t5,cp2 = l/tS,tS = l+B2bh+B182ah2 

while using equidistant step size h. System (5. 7) is a natural discrete counterpart 
to continuous time system (3.3). We are interested when this discrete time model 
preserves the stability property of original continuous time system (3.3), and hence 
that of (3.1) too. 

For sake of completeness, let us recall results on numerical stability of some well-
known representatives of B-methods applied to one-dimensional linear test equation. 

5.3 Stability investigation for 0-method in one dimension 

Here we report on some results concerning evaluation of stability functions of B-

methods applied to classical one-dimensional test equation which is due to Dahlquist. 
For this purpose consider one-dimensional continuous time system 

x + (a + va e) x = 0 (5.8) 

with parameters a > 0, a > 0 and its discretization by 8-method 

Xn+i = Xn - a [B Xn+i + (1 - B) Xn] h - vaxn 6Wn (5.9) 

with equidistant step size h > 0 and B ~ 0. e represents the formal derivative of 
underlying standard Wiener process W (i.e. W(t) = J~e(s)ds), and 6Wn denotes its 
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increment W(tn+i) - W(tn)· After algebraic rearrangements one finds its explicit form 

1 - a (1 - B) h - fo ~ Wn 
Xn+l = l + a () h Xn · (5.10) 

It is well-known that inequality 
a < 2a (5.11) 

establishes the domain of EMS-stability of system (5.8). The discrete counterpart to 
(5.11) for EMS-stability of system (5.9) is given by inequality 

which is equivalent to 

(1 - a (1 - B) h )2 + ah < 1 
(1 + aBh) 2 

a < 2 a + a2 (2 () - 1) h. 

(5.12) 

(5.13) 

Four basic conclusions can be drawn by analyzing inequality (5.13) in conjunction 
with (5.11). First, an enlargement of() 2:: 0 implies monotonically increasing stability 
domains - the stabilizing effect of B-methods. Second, for() > 0.5, discrete time system 
(5.9) is more stable than corresponding continuous time system (5.8), whereas (5.9) 
is lesser stable than (5.8) when () < 0.5. Third, for () = 0.5, both stability domains 
coincide! Fourth, for () 2:: 0.5, the increase of drift parameter a leads to monotonic 
enlargement of corresponding stability domain. All four conclusions hold for any step 
size h > O! 

For the sake of illustration of stability domains corresponding to systems (5.8) and 
(5.9), we add the plots of figures la, lb and le. There the image of stability function 

f = f(a, a, B, h) = a - 2 a - a 2 (2 () - 1) h 

belonging to B-methods applied to one-dimensional test equation (5.8) is drawn for 
() E {O, 0.5, 1}, respectively, while the noise intensity a = 0.01 is fixed. For additional 
convenience, we have also plotted the zero-hyperplane. The sign of the stability func-
tion f determines the domain of stability and instability, respectively. That. is regions 
where negative sign of this stability function occurs belong to the domain of stability 
of related numerical method applied to our one-dimensional test equation. In another 
words, the domain of stability is given by those parameter values (a, h) where the image 
of stability function lies beneath of hyperplane f = 0. 

Figure la shows the image of stability function f corresponding to explicit Euler 
method (i.e. () = 0). For simplicity in visual comparison, the corresponding stability 
functions for same parameter regions as in figure la are depicted in figures 1 b and le. , 
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Figure la. Stability function of one-dimensional explicit Euler method applied 
to (5.8) with varying parameter a, varying step size h and constant a = 0.01. 

-10 

17 

Figure 1 b. Stability function of one-dimensional trapezoidal method applied to 
(5.8) with varying parameter a, varying step size h and constant a = 0.01. 
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One notices an obvious difference between the plots for explicit Euler method (i.e. 
8 = 0) and implicit methods (i.e. 8 > 0). The stability domains are enlarged by using 
implicit methods (More precisely, one can verify the property of monotonic nesting of 
stability domains within the class of linear equations!). This is in coincidence with 
the experience in deterministic numerical analysis. It is worth to mention once again 

that the stability domain of trapezoidal formula (i.e. (} = 0.5) conincides with that of 
exact solution of one-dimensional test equation (5.8), see also figure lb. This fact can 
be generalized to multi-dimensional linear stochastic systems with both additive and 
multiplicative noise, cf. Schurz [23,24]. The implicit Euler method (i.e. (} = 1) is the 
most mean square stable method among 8-methods with 8 E [O, 1]. In general, this fact 
has been firstly noted in Schurz [23]. For visualization of image of stability function 
belonging to implicit Euler method, see figure le. In principle, one could carry on 
with enlargement of stability domain by increase of parameter(} while consideration of 

linear test systems. However, this contradicts to accuracy requirements on numerical 
methods. Thus it is not advicable to do such an increase. Far more, we recommend to 
use numerical methods which perform a combination of explicit-implicit methods, as 
it will be seen in application to stochastic oscillators in the following subsection. 

f 

-10 

Figure le. Stability function of one-dimensional implicit Euler method applied 
to (5.8) with varying parameter a, varying step size h and constant a = 0.01. 
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5.4 Stability investigations for discretized linear oscillator 

Due to the complexity and immense variety of introduction of implicitness in stocha-
stic-numerical methods in higher-dimensional situation, we can only pick up a few 
algorithms for testing their numerical mean square stability behaviour. The main 
attraction shall be drawn to fully explicit Euler method and an explicit-implicit method 
which is a combination of explicit technique in one coµiponent and implicit technique in 
the other component. Let us consider explicit Euler method at first. As necessary 
condition for mean square stability (see Theorem 4), we have to check stability of 
corresponding deterministic system. Of course, by means of analysis of the related 
deterministic system, we also obtain conclusions for stability of first moments. For 

explicit Euler method (i.e. 81 = 82 = 0), system (5. 7) has the form ( 4.1) with 

B = (-~h 1 ~ bh) ,Q = ( ~ ; ) .~ = ( ~) · (5·14) 

Condition (a) of Theorem 4 (i.e. asymptotical stability of related deterministic system) 
is equivalent to requirement I .Ai I < 1 where Ai are the roots of characteristic polynomial 

p(.A) := det(B - .All) = .A 2 - (2 - bh) .A + (1 - bh) + ah2
• 

This condition yields inequalities 

ah2 - 2bh + 4 > 0, ah < b. (5.15) 

As a consequence, one can obtain corresponding stability function 

{ 
h 4 

f 1 = f 1 (a,b,h) = - b + Ji2 
- 4a 

h - -a 
if 

The stability domain for related deterministic system is defined by f 1 (a, b, h) < 0. 

That is negative sign of stability function f 1 establishes the domain in parameter space 
(a, b, h) where explicit Euler method has asymptotically stable null solution. The choice 
of step size for numerical solutions with stable first moments is restricted by the size 
of parameters a, b. Both small values of band large values of b lead to usage of smaller 

step sizes while a is fixed, respectively. The image of stability function Ji with constant 
coefficient a is plotted in figure 2a. It is clearly seen that the choice of step size h is 
strongly connected with parameter b. 

Now, continue with numerical stability of second moments of fully explicit Euler 
method. From Theorem 4 we know that trace-criterion (b) has to be evaluated. Here 

one finds 

tr ( M Q ) = a m1 + {3 m3 (5.16) 
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where matrix M as in (3.6) with 

2 - bh + ah2 

a(4b - (4a + 2b2)h + 3abh2 - a2h3)' m 2 

2 

hm3 ---
2 

m 3 = 4 b - ( 4 a + 2 b2) h + 3 a b h 2 - a 2 h 3 • 

Thus trace-criterion (b) reduces to requirement 

a m 1 (a, b, h) + (3 m 3 (a, b, h) < 1 . 

20 

and 

(5.17) 

On the base of this criterion one can construct and investigate the domains of mean 
square stability of fully explicit Euler method for various parameter values a, b, a, (3, h. 

For sake of illustration, consider the case of a = 0 in more detail. That is random 
perturbations of stiffness parameter a are absent. Then the stability domain in view 
of parameter (3 (intensity of perturbation of friction coefficient b) is defined by 

3 a2 1 · 
(3 < 2 b - ( 2 a + b2

) h + 2, a b h 2 
- 2 h 3 = 2, ( b - a h )(a h 2 

- 2 b h + 4) . ( 5 .18) 

As a consequence, the stability domain of fully explicit Euler method is smaller than 
that of corresponding continuous time oscillator (compare inequality (3. 7) with (5.18)). 
The image of related stability function 

1 /2 = f2(a,b,a=0,(3,h) = (3- 2,(b- ah)(ah2 
- 2bh + 4) 

is shown in figure 2b. For visualization of corresponding stability domain, parameters 
a, a, (3 are fixed. 

Eventually, the numerical stability of an explicit-implicit method is investi-
gated for linear oscillators. Consider 8-method (5.4) with 81 = 0 and 82 = 1.0. Then 
this method applied to linear oscillator (3.3) possesses a scheme of form ( 4.1) with 

( 

1 
B = ah 

-1 + bh 
(5.19) 

Once again one can apply Theorem 4. For stability of related deterministic system, we 
analyze characteristic polynomial 

2 1 - a h2 1 
p(.A) := det(B-.AlI) =.A - (1 + 1 + bh ).A+ 1 + bh 

The restriction I .Ai I < 1 on its roots .Ai yields inequality 

ah2 -2bh-4 < 0. (5.20) 
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Figure 2a. Stability function of Euler method applied to deterministic linear oscil-
lator (3.3) with varying parameter b, varying step size h and constant a = 25.0. 

0 

Figure 2b. Stability function of Euler method applied to linear oscillator (3.3) 
with varying parameter b, varying step size h and constants a = 25.0, {3 = 0.01 
in the absence of perturbations of stiffness (i.e. a = 0). 

21 
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As a result, one receives the restriction on step size h with 

The related stability function 

b + v'b2 + 4a 
h < 

a 

f i = f i (a, b, h) = h 
b + v'b2 + 4a 

a 

22 

( 5.21) 

is visualized in figure 3a. Comparing figures 2a and 3a, there the enlargement of sta-
bility domain for deterministic system can be seen while using implicit techniques. 
Moreover, a simple sufficient condition for asymptotical stability of related determin-
istic system is 

2 
h < va.· 

In contrast to analysis of explicit Euler method, this latter restriction does not depend 
on parameter b. Also the condition on parameter a is less restrictive. 

It remains to examine the stability of equation of second moments for the explicit-
implicit method with (5.14). The coefficients of matrix M of stationary second moments 
are 

2 + bh hm3 2 
mi ab(4 + 2bh - ah2 )' m 2 = --2-, m 3 = b(4 + 2bh - ah2 ) • (

5·22) 

Then, after evaluation of trace-criterion (b) of Theorem 4, one finds the restriction on 
the step size h given by 

b- .$::- + J(b- ~-)2 + a(4 -~ h < L, a L-a a o 
a 

¥) 
(5.23) 

For sake of illustration, we confine further discussion to the case a = 0, i.e. the absence 
of perturbations of stiffness parameter a. In this special case the trace-criterion (b) is 
equivalent with 

which yields stability function 

/3 < 2 b + b2 h - ~ b h 2 

2 

!2 = f2(a,b,a = 0,/3,h) = /3 - 2b - b2 h + ~bh2 
2 

(5.24) 

for second moments of explicit-implicit method with (5.14). For steps sizes h E (0, 2 ~), 
the stability domain of explicit-implicit method is larger than that of original contin-
uous time system (3.3). Note that fully explicit Euler method is not stable for h > ~· 
In contrast to fully explicit Euler method, the increase of parameter b (when b2 > 4a) 
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Figure 3a. Stability function of explicit-implicit method applied to deterministic 
linear oscillator (3.3) with varying parameter b, varying step size h and a == 25.0. 

4 

Figure 3b. Stability function of explicit-implicit method applied to linear oscil-
lator (3.3) with varying parameter b, varying step size h and a == 25.0, f3 == 0.01 
in the absence of perturbations of stiffness (i.e. a == 0). 
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gives an extension of stability domain (which is also true in the case a > 0). This is 
clearly visible in figure 3b. In plotting the related stability function f2 it occurs another 
worth mentioning effect of visualization. From figure 3b one might conclude that the 
considered method has stable second moments even for very small parameters b, while 
f3 > 0 is fixed. This obviously contradicts to inequality (5.24). Such 'misprints' can 
happen when scaling is done from a very far-distant point of view. Then focussing to 
critical region (as here the domain where b is sufficiently small) provides visual clarifi-
cation about the sign of stability function, and hence about stability. This observation 
is seen in figure 3c. As a consequence, one has to take some care while judging on base 

of graphic visualization. 

0 

Figure 3c. Stability function of explicit-implicit method applied to linear oscil-

lator (3.3) with varying parameter b, varying step size h and a = 25.0, f3 = 0.01 
in the absence of perturbations of stiffness (i.e. a = 0). 

6 CONCLUSIONS AND REMARKS 

Some analysis of stochastic systems with respect to mean square stability has been 
carried out in this contribution. The theoretical approach relies on the spectral theory 
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of positive operators. By means of spectral radius of involved operators we have found 
practical criteria to classify linear stochastic systems in view of mean square stability, 
both in discrete and continuous time ( cf. Theorems 2 and 4). In some cases it is 
favourable to consider mean square equivalent or majorant systems, as seen in section 
2. For stochastic differential equations (SDEs) we are able to construct mean square 

stable numerical solutions. Essential differences between possible discretizations can 
be noticed. All in all, as in deterministic analysis, implicit techniques are favourable 
in adequate numerical solution of SDEs (see the example of stochastic oscillator in sec-
tions 3 and 5). We have introduced and examined the class of stochastic B-methods. 

The dynamics of deterministic B-methods is well understood nowadays, cf. Stewart & 
Peplow [28]. For example, the implicit trapezoidal and midpoint rule (i.e. Bi = 0.5) 
avoid the existence of spurious solutions, or the implicit Euler method (i.e. Bi = 1.0) 
is BN-stable for the class of dissipative nonlinear differential equations. In stochastics, 

for linear oscillators perturbed by multiplicative white noise, appropriate incorporation 
of implicitness by B-methods lead to an enlargement of corresponding mean square sta-
bility domains. Thus numerical solutions get more and more stabilized while increasing 

implicitness. However, one has to be very careful while using implicit methods. One 

aim is to achieve a balance between numerical stability and other qualitative features 

of numerical solutions. For example, only a small subclass of B-methods (e.g. that of 
trapezoidal or midpoint rule) guarantees complete preservation of stationary probabilis-
tic laws of continuous time systems with additive noise. This fact is proved for linear 

autonomous systems in Schurz [26]. Another effect is met in numerical solutions under 
algebraic side-conditions. Then explicit methods and some implicit B-methods are not 
sufficient to ensure algebraic constraints almost surely. For examples, see Schurz [25]. 
In the presence of certain multiplicative noise terms one has to incorporate a kind of 

'stochastic implicitness'. This is illustrated in [25]. More general methods can also be 
examined, however in a much more laborious way. Then, mostly one can only pro-

vide numerical approximations of corresponding stability functions. This sprinkles the 
scope of this paper, hence it is omitted here. 
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